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A STOCHASTIC APPROACH TO MOVING BOUNDARY PROBLEMS

Bernt @ksendal®

Summary

Moving boundary problems arise for example in the study of fluid flow in porous media.
Using optimal stopping of an associated diffusion, a (stochastic) weak concept of a solu-
tion of a moving boundary problem is introduced. This allows the use of methods from
stochastic analysis to investigate weak/variational and classical solutions.

In particular, we prove the existence of a variational solution {p(z, t), Wt}e>0 of the moving
boundary problem

div(k(z)V,p(z,t)) = — f(z,t) forz e Wy, t >0
p(-,t) € Hy(Wy) fort>0
80 |OW, - £(OWy) = —kV,p|0W, for t > 0

where Wy is a given bounded open set in R™, 6y(z) and f(z,t) are bounded measurable
functions and we assume that

(i) k(=) > is a Muckenhoupt A; weight. (In particular, this allows k to have zeroes)

and
(ii) Wo C W, for all ¢ > 0. (This holds, for example, if f(z,t) > 0 for all z,t)

*) This work is supported by a grant from the VISTA program “Fluid flow in stochastic reservoirs”
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§1. Introduction

To describe the flow of an incompressible fluid in a porous medium the following basic
equation is used:

(1.1) Darcy’s law:
- k
g=—-——=Vp
I
where ¢ = E(x,t) denotes the seepage - velocity of the fluid at the point z € R® and at
time t, k = k(z) > 0 is the permeability of the medium, p is the viscosity of the fluid and
p = p(z,t) is the pressure of the fluid. (Here and throughout ¥ denotes the gradient with

respect to z).
(1.2) We also use the continuity equation

06

5 = —div(d) + f

where 6 = 6(z,t) is the degree of saturation (i.e. the fluid weight per unit volume of the
medium) p is the density of the fluid and f = f(z,t) gives the fluid source/sink (depending
on the sign of f) rate at the point z and at time ¢. Combining (1.1) and (1.2) we get

06 )
(1.3) % = vk vp)+ £,

where for simplicity we have set the value of the two constants p, 1 equal to 1.

In addition we need a relation between # and p. We will assume that at every instant
t 6(z,t) assumes one of only 2 possible values, 0 or 6y(z) > 0, corresponding to zero
saturation (“dry” region) or complete saturation (“wet” region). Thus we put

(1.4) Wi = {z;0(z,t) = 6y(z)} (the wet region)

As we will explain below the interpretation of (1.3) then becomes:

(1.5) Lp :=div(kyp)=—f forz € W,
(1.6) p =0 for z € OW; (the boundary of W)
d

(1.7) 9o|awt'a(3Wt) =—kvplow, (t20)
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Thus the moving boundary problem is the following:

Given measurable functions k : R* — [0,00), 8 : R* — (0,00) and f : R**! — R and given
a bounded initial domain Wy, find a function p(z,t) and a family of domains {W;};>¢ such
that (1.5)-(1.7) hold. Following Gustafsson [17] we call a solution (p, W;) of (1.5)-(1.7) a

classical solution.

Remark. The exact meaning of the “expansion velocity” gt-(awt) in (1.7) is the following;:
Suppose that locally at some time t¢ and some point y € 0W,, the domains W, can be
described by

Wy = {.’t; ¢($) < t}a

where ¢ is some smooth level function with 7¢ # 0. Then we define

v
| v 9|2

1
(1.8) Z,‘;(awt) = at .

W, T~ — ¢
/,____1&_/ ¢ (x)=ty
W

~ (et ) VO
v & (t tO)]V¢|2

In this paper we are primarily interested in the case where the permeability k(z) is allowed
to vary rapidly from point to point, so we want to impose as few restrictions on k(x) as
possible. In particular, we do not want to assume in the set-up that k(z) is smooth, only
that k(z) is (Borel) measurable (and that k(z) > 0).

This means that (1.3) and (1.5)-(1.7) should be interpreted in the distribution sense. More
precisely, let Hy = Ho(W;) denote the closure of C§°(W:) in the norm

ks, = [ 1o+ [19 ks

W t ‘Vg

The natural variational (or distributional) interpretation of (1.3) is that p(-,t)eH(1V,)
(where Wy is open) for each t and

= [ [ ot ppta)e @yaad

= / / vp.vq/).kwxdtJr/ / fygdedt,
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for all ¢(t) € C§°(R),(z) € C§°(R?)

(Here - and in the rest of this paper - dz,dt--- means Lebesgue measure on R™ for the
appropriate n. In general we let C§°(U) denote the family of infinitely differentiable
functions with compact support in the set U C R”, while C§° means C§°(R™) for the
appropriate n).

Using (1.4) we rewrite the left hand side of (1.9) as
(1.10) —/(/Oo(x)¢(x)dx)¢'(t)dt = /%(/Go(m)¢(m)dx)¢(t)dt
W, ‘ W,

Since this holds for all ¢ € C§° we conclude that

(1.11) G 0@ =~ [vp v ko + [ fpds
Wi

for all ¢ € C§°.

In particular, suppose t — W, is left continuous, in the sense that

for all compact sets K C W, there exists € > 0 such that

1.12
(1.12) K C W,for all s € (t — ¢,t].

Then by (1.11) we get

(1.13) | /Vp - YYkdr = /f¢dw for all ¢ € Co(Wy),

which is the variational interpretation of (1.5).

To see that (1.11) also contains (1.7), we assume that dW; is smooth and write (for

P € C5°)

(1.14) /Vp VYkdr = /1,/) -(?-I-)-kda—/tb Lpdz,
oW,
where do denotes surface measure on OW;. Since Lp = —f in Wy, the substitution of

(1.14) in (1.11) gives

(1.15) (/%@ (z)dz) = — /¢ébkd Vi € C°

oW,

which is the variational formulation of (1.7).




Thus we may regard both (1.5) and (1.7) as consequences of the one condition (1.3), i.e.
of (1.11). However, it is convenient to split (1.11) into the corresponding “inner” and
“boundary” part, thereby also allowing a localization of the boundary part. This leads to
the following;:

DEFINITION 1.1. Let k : R® — (0,00),8p : R® — (0,00) and f : R* xR — R
be measurable functions, k¥ € L'(dz) and 6, and f bounded, and let W, be a bounded
domain in R". We say that {p(z,t), W;}+>¢ is a variational solution of the moving boundary
problem if the following, (1.16)-(1.18), hold:

(1.16) /Vp - YYkdz = /f@/)d:c for all o € Cg°(Wy),t >0
w, W,

(1.17) W, C R"™ is open and p(-,t) € Ho(Wy) for all t > 0

(1.18) For all ¢t > 0 and all z, € oW, there exists a ball B centered at z¢ such that

G B@)e) =~ [Ip(a,0) vt + [ sz,
W,

for all ¢ € C§°(B).

If (1.18) is interpreted in distribution sense with respect to ¢, we call the solution weak
variational. If (1.18) is interpreted in the (strong) sense that the t-derivative exists for
each t € I, we call the solution strong variational.

The purpose of this paper is twofold. First, we introduce the concept of a stochastic solu-
tion, defined quite generally. Second, we prove that under mild conditions the stochastic
solution actually constitutes a variational solution outside Wy and we give conditions which
guarantee that the stochastic solution is a classical solution.

Regarding the first part, it is now well known through the works of Baiocchi [1], Duvaut
6], Elliott [9], Gustafsson [16], [17] and subsequently Begehr & Gilbert [2], [3] that if
p(z,t) > 0is a classical solution and we define

t

(1.19) u(z,t) = /p(a:,s)ds

0

then for cach ¢ the function u(-,t) is a solution of a certain variational inequality denoted
by U;. In general, if for each ¢ a solution u(:,t) of U; exists, then u(z,t) is called a weak
solution of the moving boundary problem. This concept was introduced by Gustaffson in
[16], [17]. We refer to these works for morc information about such weak solutions. We
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remark that it is well known that under certain conditions optimal stopping problems and
variational inequalities are equivalent [4], so in such cases our concept of a stochastic weak
solution coincides with the weak one. However, as mentioned before we are interested in
studying moving boundary problems with as few regularity/ellipticity conditions on the
permeability k(z) as possible and in such a general set-up we no longer necessarily have
this equivalence. Moreover, by introducing a stochastic approach we can benefit from an
efficient machinery from stochastic analysis and Dirichlet forms.

In particular, we prove the existence of a variational solution of the moving boundary
problem under the assumptions that (see Theorem 3.4 below)

(1.20) k(z) is Muckenhoupt A, weight (see (2.3) below)

(in particular, this allows k(z) to have zeroes)

(1.21) Wo Cc Wy  foralle t

(A sufficient, but not necessary, condition for (1.21) is that f(z,t) > 0 for all z, t).

Remark. This result extends directly to the anistropic case where k(z) > 0 is replaced
by a matrix [ki;(z)]1<i j<n, provided that (1.20) is replaced by

(1.20)’ There exists a Muckenhoupt A, weight w(z) > 0 and a constant C' > 0 such that
. ,
U@ <Y &itikij(2) < Cu(a)lEl?
4]

for all £ = (¢4, ...,&,) € R™ and all z.

Theorem 3.4 represents a substantial extension of the (isotropic case of the) main result
of Begehr & Gilbert in [3], where the corresponding assumptions are

(1.22) k(z) € C'te,

(1.23) (AX>0) A< k(z) <A for all =
and

(1.24) f(z,t) = f(z) >0  forall =z




§2. Construction of the stochastic solution.

Let
(2.1) L¢ = div(k v ¢)

be the operator in (1.5). First we construct a diffusion (Xs,P*,();s > 0,z € R* whose
generator is L. Here P® denotes the law of {X,},>¢ starting at = and ¢ < oo is the life
time of X,. ' '

A sufficient condition for the existence of such a stochastic process is the Hamza condition

1
2.2 — €I e. i
(2.2) o) € Lj,.(dz) a.e.(dz) outside Z,

where
Z = {z;k(z) = 0},dz = Lebesgue measure on R".

If (2.2) holds then the symmetric bilinear form

E(u,v) = /VuTVvkdx; u,v € Cg°
Rn

(regarded as a densely defined form on K = L*(R™, dz)) is closable and hence constitutes
a regular Dirichlet form with generator L, i.e,

E(u,v) = —(Lu,v)g; u € D(L),v € CL

(Here (-,-)k denotes the usual inner product in K, i.e.

(6, %)k = / H(a)b(z)dz; 6,9 € C°)
J

Therefore there exists a diffusion {X,} whose generator coincides with L. See [14] for
details. '

Note that condition (2.2) is very weak. For example, it suffices that k(z) is lower semicon-
tinuous. In such a generality we cannot get enough information about X, for our purposes,
so we will from now on assume that k(z) satisfies the following stronger condition

k(z) is a Muckenhoupt A, weight,i.e.

(2'3) su —1— c(x 1:-—1— ! T)< o0
Bp(lBIB/"( )d )(|B|B/k($)d ) < oo,

the sup being taken over all balls B C R" and |B| = [ dz is the volume of B.
B ;
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The A, weights were originally introduced by Muckenhoupt in connection with weighted
maximal function inequalities. The concept has turned out to be important in many other
connections also, for example in the potential theory for degenerate elliptic equations. For
example, in [10], [11] and [12] several fundamental results are established regarding the
potential theory for

L¢ = div(k 7 ¢)
when k is an Aj-weight as in (2.3). We will apply some of these results in this paper.

Fix a bounded open set U C R™ such that U D Wy and let ¢ denote the first exit time for
U for X;. From now on we assume that there exists T' > 0 such that

(2.4) WU supp f(-,t) CUforallt <T

and we consider only the time interval 0 < ¢t < T. The Green operator (of X; in U), is
defined by

(2.5) Guv(z) = Guv(z) = E”[/ v(X)dt] for v lower bounded,
0

where E* denotes expectation with respect to PZ.

This definition is the stochastic equivalent to the variational definition of the Green oper-
ator in [11, Theorem 1]. There G = Gy : Ho(U)* — Ho(U) is defined by the relation

(2.6) Eu(G(F),v) = F(v) forv e Ho(U),FeHo(U)*,

where Ey(4,¢) = f Vé - VY - kdz; ¢, € C§°(v) is the Dirichlet form corresponding to

the process X kllled at the first exit time from U and HO(U )* denotes the dual of Ho(U).
Now Ho(U)* can be identified with the space of distributions

F=fy—divf

where f: (fi, -+, fa) and ' € L*(U,kdz),1 - 0,1,--+,n, with the action of F' on

v € Hyo(U) given by
Fo) = [ ofoda+ 3 =

In particular, choosing T' = f(-,t) we get from (2.6) the useful relation

(2.7) E0(Gu f(1),v) = / (- o(@)dz, v e Ho(U).
J ,

For a more detailed explanation of the equivalence of the two definitions (2. 5) and (2.6)
see for example [20,§3].




We can now apply an important result about the Green operator from [10, Lemma 3.6):
(2.8) ' If v is bounded, then Gv is continuous.

By a version of the Hille-Yosida theorem (see e.g. [5, p 252)) it follows that

(2.9) X is Feller-continuous,

i.e. ¢ — E*[u(X,)] is continuous for each ¢ > 0 and for each bounded, continuous function

We are now ready to start the construction of the (weak) stochastic solution of the moving
boundary problem: :

Define

0y outside W

Then by (2.8) the function G7 is continuous. Choose a continuous function go such that

g < Gn on Wo
(2.11) { go = Gn Outside WO

Before we proceed we recall some basic notions and results from the theory of optimal
stopping;:

If g is a lower bounded, continuous function on R™ (the reward function) we define

g"(2) = sup B*[g(X-)],
the sup being taken over all {M,}-stopping times 7, where M, i the o-algebra generated
by {X,(-);s <t}. -

A function, denoted by §, is called the least X;-superharmonic majorant of g if § is X;-
superharmonic (i.e. § is lower semi continuous and §(z) > E®[g(X,)] for all M;-stopping
times 7),§ > ¢ and if h is any X;-superharmonic function such that h > ¢ then h > §.

If V ¢ R™ is a Borel set we let
rv =inf{t > 0; X ¢ V}

denote the first exit time from V for X;.

The fundamental theorem of optimal stopping states the following:




THEOREM A. Assume that (2.4) holds. Then we have:
() §g=g" |
(ii) Define D = {z;g(z) < §(z)} (the continuation region). Assume that 79 < 0o a.s.
P? and that g is bounded. Then 7p is an optimal stopping time in the sense that

9*(2) = E*[9(X+p)]

A proof of Theorem A (which only requires that the process is Feller continuous) can be
found in (19, Th. 10.9]. Note that the existence of § (which is not obvious) is a part of the
statement (i) and that since § is lower semicontinuous the set D must be open.

We now apply this to our function go above:

LEMMA 2.1.
go =Gn.
Proof. Since Gn is X-superharmonic and Gy > go we clearly have

(2.12) Gn > go

On the other hand, by the strong Markov property we have that Gn is X-harmenic in
W, so
Gn(z) = E*[Gn(X,)]

where o = Tw,. Therefore

(213) Gi(a) < sup E”lgo( X)) = gi(2)

By Theorem A (i) we have g§ = § so Lemma 2.1 follows from (2.12) and (2.13).

We conclude that we can identity the starting region Wy as the continuation region for the
optimal stopping problem for gq: '

COROLLARY 2.2.
Wo = {z; go(z) < go(z)}

The idea is to extend this identification to work for all ¢ >0:

For t > 0 define

(2.14) gi(z) = go(z) — /Gf(:c,s)ds
and let
(2.15) 9i(z) = sup E%[g¢(X)]
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We now have all the ingredients for the weak stochastic solution concept:
DEFINITION 2.3. Let ,
w(z,t) = g;(z) = g:(x)

and put '
D = {z;9:(z) < g{(2)}; t 2 0.

Then (w(z,t), Dt)t>0 is called the stochastic solution of the movmg boundary value prob-
lem.

§3. When does a stochastic solution give a variational solution?
To justify the terminology of Definition 2.3 we now proceed to show that under reasonable
conditions we have that

p(z,t) = —a—t(x,t) and Wy := D,
actually is a variational solution of the moving boundary problem (1.16)-(1.18).

First we establish some useful (basically well known) auxiliary results.

LEMMA 3.1. Let h > 0. Then

t+h t+h

- / GIfl(z, s)ds < giyn < gt + / G\f|(z, s)ds
t t

Proof. Note that if h > 0 then

t+h t+h

do= (g + [ GFz,9)ds)" < gurn + [ eifia,syas
t t .

and
t+h t+h

s = (g [ 61,549 <4+ [ G, )ds
t 1

COROLLARY 3.2. If f(z,t) > 0 for all 2, then w(z,t) and D; are increasing in t
Proof. Choose h > 0. Then by Lemma 3.1
t+h N , t+h
wla,t 4 h) = giya(x) = geun(@) 2 61(@) = [ Gf(e,9)ds — go(a) + [ GF(a,5)ds
t : 0
=¢;(z) — g(z) = w(z,1).
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It follows that Dy = {z;w(z,t) > 0} C {z;w(z,t + h) > 0} = Dyts.
COROLLARY 3.3. w(z,-) is Lipschitz-continuous for each z.

t+h ,
Proof. |w(z,t+ h) —w(z,t)] <2 [ G|f|(z,s)ds < hM for all h > 0, for some constant
t
M depending only on f and the domain U, using (2.8).
In particular, 2 5¢(z,t) exists for a.a.t. We proceed to show that S 1 ex1sts, is related

to p in (1.13) or (1.5):

LEMMA 3.4. Assume that

aw_g:,_t_)_ exists for t = o and some z € Dy,.
Then
(3.1) ( )t —t = Gf(z,t0) — (GF)*)(z, 1),

where in general h()(2z) = E*[h(X,)] denotes the X-harmonic extension of a given func-
tion h on 0Dy to the interior D; and we have put

¢ = inf{s > 0; X, ¢ D;}(= p,).

Proof. For all t > 0 define the X-harmonic measure /\;(zt) on 0D; by
AO(F) = P*[X,, € F);F Cc D,
Then if ég—';’(av:,to) exists, we have
w 0, . 0
(_é?)t=to = gt'(gt)t=to - E(gt)i=lo
0
= 5 [ HDL )t + 65,10

8D¢
= [ Gt + / oL + G0
8D, aD, '
—— [ GBI+ 6f(a,t0) = Gzt (@) asto)
8Dy,

In this argument we have used that

- / 91D ()

oD,
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is maximal for ¢ = to (since Dy, is the continuation region for gi,) and therefore the
derivative is zero if it exists.

We now define
(3.2) p(z,t) = Gf(z,t) — (Gf)V(z,t) forallz andt

To see that p(-,t) actually solves the boundary value problem (1.13) with W; := Dy, we
use the strong Markov property to rewrite p as follows: (Put 7, = 7 for simplicity)

¢ ¢
(at) = B [ F(X.)ds) - BF[EY[ [ e
OC C0
(33) = £=( [ f(x)as) - (7 [ £x)ds]

= Ez[/ f(Xs)dS] = Gth(:t,t), '

using the notation of (2.5).

Thus p(-,t) coincides with the Green operator for the domain D, applied to f and this
function is by construction in Ho(D;) (see (2.6)). Moreover by (2.7) and (3.3) we get

[ ve-vikds = 6o, ) = Gt ) = [ Fuds
W, D,

for all 9 € C§°(Dy), where & = Ep,. Hence (1.15) holds.

Note that from Corollary 3.3 and Lemma 3.4 we get that for all z 9 (z,t) exists for a.a.t
and .

(3.4) ‘ w(z,t) = jo — go + /GD, f(z,s)ds forallt
0 .

We are now ready to prove one of the main results of this pdpe:i

THEOREM 3.4. Let 6, f be as in Definition 1.1, U as in (2. 4) and suppose that k € A,,
i.e. k satisfies (2.3).

Suppose that
(3.5) Wo Cc D, forall t>0.
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Then
p(z,t) := Gp, f(z,t) and Wy := Dy = {z;w(z,t) > 0}

constitute a (weak) variational solution of the moving boundary problem (1.16)-(1.18).

Proof. We have already established that (1.16) and (1.17) hold and that Dy = W, (Corol-
lary 2.2). It remains to prove that (1.18) holds.

‘Fix t >0, o € 8Dy, let B be a ball centered at zo and choose 3 € C§°(B).

As above put &(-,-) = €p,(+,-) and let (-, -)¢ denote the inner product in K; = L?(Dy; dz).
Then since n = 6y outside Wy, n = 0 on Wy and Wy C D; we have

bodr — [ botpdz = [ nypdz = (n,¢), = &(Gn, )
Joem o]

D,
(3.6) = &i(g0,%) + E(Gn — g0, )

= &) + & [ GFds,b)
0

Now if 1 € Dy, (the domain of the generator L) then

t t t '
£ / Gfds, ) = —(Ly, / Gfds) = — / (L, Gf)eds
(3.7) 0 0 0 7

- / E(GF,¥)ds = / (F,)eds,
0 0 .

and since D, is dense in C§° (in the Ho(U)-norm) (3.7) extends to all ¢ € C§°.

By Theorem A we have g (z) = E®[g:(Xrp, )], which is X-harmonic in D;. Therefore
9;(z) = E*[9(X,)] = E*[§(X,)] for = € Dy \ Do,

where |

¢
o =inf{s > 0;X, ¢ D,\ Dy} and 7, =Gn—/Gfds.

Hence g7 = G, \5,(L7:) + 9, in Dy \ Dy, so

&g, ¥) = 5t(GD,\Bo(L§t), ¥) + &g, ¥)

(3.8) = (Lgs, ¥) + &(9s, %)
= —gt(.gt)zp) + gt(gt)"vb) =0
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Therefore, using (3.4) we may write

Ege, V) = Eulge,¥) — Eu(gt, ) = *5t('wt,¢)

- = 6.0~ g0,4) ~ & / 5o (2,9)ds, ¥)

= —gt(go - g0a¢) /gt 1¢)ds, ‘

by adapting the same argument as in (3.7).
Substituting (3.9) and (3.7) in (3.6) we get

(3.10) / 8o 1pdz — / forpdz = / € 2 )ds +‘ / (f,zp);ds,

and (1.18) follows.
]

The proof above also leads to a sufficient condition that the stochastic solution is a strong
“variational solution. From (3.10) we see that the left hand side is differentiable for all ¢ if
the functions f(z,s) and Gp, f(z,s) are both s-continuous for each z. If we assume that
f(z,-) is continuous then a sufficient condition for the continuity of s — Gp, f(=,s) is the
following;: :

(3.11) t — 7¢(w) is continous in probability (measure) with respect to P?, for all z.

Condition (3.11) states that in some weak (stochastic) sense the domains D; vary continu-
ously with t. A situation where (3.11) does not hold- and where one cannot expect to find
a classical solution of the moving boundary problem - is indicated on the figure below.

This gives the following result

THEOREM 3.5. Let 6y, f,U, k, D; be as in Theorem 3.4 and assume in addition that

(3.11) s — 74(w) is continuous in P®-measure, for all z
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and
(3.12) s — f(z,s)is continuous for all =

Then s — w(z, s) is continuously differentiable for all z and
ow -
p(a:,t) = _67(3:70 = Gth(l',t),Wt =Dy = {x;w(a:,t) > 0}

constitute a strong variational solution of (1.16)-(1.18).

Finally we return to the classical problem (1.5)-(1.7) and ask for sufficient conditions that
our general stochastic solution gives rize to a classical solution. Applying Theorem 3.4 we
obtain the following result:

(In the following C* will denote the functions whose derivatives up to k'th order are
Holder continuous with exponent a > 0) '

THEOREM 3.6 Suppose the following holds:

(3.13) k(z) € C1* for some a > 0

(3.14) ilelg( k(z) > 0 for all compacts K C R™

(i.e. L = div(kgrad) is (locally) uniformly elliptic)
(3.15) For all t > 0 there exists a > 0 such that f(-,t) € CO*

In addition, assume that (3.5) holds and that

(3.16) D, is a C** domain for each t

Then t — w(z, ) is continuously differentiable for all z and the function

ow
p(z,t) = E(w,t) = Gp, f(z,t)
together with the sets D, = {z; w(z,t) > 0} solve the classical moving boundary problem
(1.15)-(1.17). |

Proof of Theorem 3.6: Properties (1.5)-(1.7) follow from known regularity results of
solutions of elliptic boundary value problems, (see e.g. [15] or [18]) combined with Theorem
3.5. ‘ '
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