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Abstract 

The purpose of this paper is to give a non-technical survey of a stochastic approach to 
fluid flow in porous media. A key feature of such flow is that a basically microscopic 
property of the medium (the permeability) gives rize to the macroscopic property of the 
flow. To describe this mathematically the permeability is modelled by a certain distribu­
tion valued stochastic processes ("positive noise") and then the flow is the solution of the 
corresponding stochastic partial differential equation. To make this equation mathemati­
cally meaningful, the product of the distribution valued processes involved is interpreted 
as a Wick product. This interpretation is motivated both from classical Ito calculus and 
from the usual renormalization techniques (the removal of terms due to selfinteraction) in 
quantum statistics. 
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§1. Introduction and motivation. 

The equations for the flow of an incompressible fluid in a porous medium are the following: 

(1.1) Darcy's law: 
... k 
q= -- 'VP 

J.L 

where if= if(x, t) is the velocity of the fluid at the point x and at timet, p = p(x, t) ? 0 is 
the pressure of the fluid at x, J.L (constant) is the viscosity of the fluid and k = k(x) ? 0 is 
the permeability of the medium at x. The gradient is taken with respect to x. 

(1.2) The continuity equation: : = -div(pq) + f 

where () = ()(x, t) is the saturation of the fluid at the point x and at timet, p (constant) 
is the density of the fluid and f = f(x, t) is the source or sink rate (depending on the sign 
of f) of the fluid. 

If we put p = J.L = 1 and combine (1.2) and (1.3) we get 

(1.3) ~~ = div( k V p) + f 

We now make the following simplifying assumption: 

(1.4) 
For each. (x, t) the saturation is either 0 

or equal to complete saturation ea(x) > 0. 

With this assumption we define the wet region at timet, Dt, as the set of points x with 
complete saturation: 

(1.5) Dt = {x; ()(x, t) = eo(x)} 

Then we get the following 3 equations 

(1.6) div (k \j p) =-f in Dt 

(1.7) p(x, t) = 0 for x ~ Dt 

(1.8) 
d 

()o · dt (8Dt) = -k 'V p for x E 8Dt 

where 8Dt denotes the boundary of Dt. 

In other words, we have a moving boundary problem. If k is constant or a known, "reason­
able" nonnegative function, several methods and results are known regarding this problem. 
See [G] and the references there, as well as [BG 1-2] and [0]. 

2 



A major difficulty with this setup is that in reality, for example in the important special 
case of oil/water flow in a porous rock, the permeability function k(x) is often hard to 
measure and varies rapidly from point to point. Actual measurements of k(x) in a porous 
rock sample in a given direction is shown in Figure 1. 

a) 

b) 

c) 

Figure 1 

Measurements of permeability in a porous rock. (A linear interpolation is used on intervals 
where the values are missing) 

Figure 2 

A constant k leads to solutions of the moving boundary problem consisting of expanding 
spheres with centre at the injection hole. 
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One could argue that it would be sufficiently accurate to replace k(x) by its (constant) 
average value kin the equations above. However, if k(x) is constant then the solution of the 
moving boundary problem (1.6)-(1.8) with f(x) equal to a point source will be expanding 
spheres Dt (Figure 2) for t > Q. 

This is, however, far from what actual experiments with fluid flow in a porous rock show. 
See Figure 3, which is from an experiment of Knut J¢rgen Mal¢y. See also [OMBAFJ]. In 
fact, it has been estimated by P. Meakin and others that 8Dt is a fractal with Hausdorff 
dimension about 2.5. 

Figure 3 
A physical experiment showing the fractal nature of the wet region (dark area). Courtesy 
of Knut J¢rgen Mal¢y. 

Thus it is necessary to take into account the fluctuations of k(x) in order to get a good 
mathematical description of the flow. The crux of the matter is that the permeability is 
basically a microscopic property of the medium (the sizes and shapes of the pores etc.) 
while we want to describe the macroscopic properties of the flow. How can microscopic 
and macroscopic quantities operate in the same mathematical equation? The answer is 
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that one should regard k as a (Schwartz) distribution. This means that k is a function 
which has average values over macroscopic sets, but no values at specific points: The 
permeability value only exists as a macroscopic average, it does not make sense to ask for 
the permeability value at a specific molecule. In fact, returning to Figure 1, the graph 
shown is the result of taking averages between x and x + h (h > 0 fixed) and varying x. A 
smaller h would give an even more erratic picture. 

Even if we accept that k should be represented as a distribution, we are still faced with the 
problem that we don't know what these average values of k are. This lack of information 
suggests that one should use a stochastic approach: k should be represented as a distribu­
tion valued stochastic process with certain basic probabilistic properties and one should 
seek solutions of the corresponding stochastic partial differential equations, also in terms 
of distribution valued stochastic processes. Properties of the solutions are then found by 
again taking averages. 

This motivates that the right space to work in is the space of tempered distributions, 
equipped with a natural probability measure. This mathematical model can be used to 
obtain information about the probabilistic properties of the solution (see §7). In addition 
we believe it can also be used to gain insight into possible numerical approaches. This is 
explained more closely in the next section. 

§2. Numerical methods. 

A natural numerical approach to the stochastic version of equations like (1.6) is the follow­
ing: Partition D = Dt into a high number of disjoint boxes Dj. On each Dj pick a value 
kj(w) for the permeability k according to a lognormal distribution, with ki independent of 
kj when i =I j. Then solve numerically (for each w) the boundary value problem 

(2.1) { div (k(x,w) \J p) =-f in D 
p=O on 8D 

where k(x, w) = E kj(w)xD; (x). 
j 

The idea is that by repeating this for a large number of experiments w one should get 
information about the probabilistic behaviour of the solution p = p(x, w). 

However, as the next simple example illustrates, there is no guarantee that such a numerical 
approach will give the effects one seeks. 

EXAMPLE 
Consider the !-dimensional version of the related problem 

(2.2) { (k(x)u'(x))' = 0 
u(O) = 0, u'(O) = 1 
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We split the interval [0, 1] into M subintervals and put k = kj(w) = eN;(w) on subinterval 
Ij, where {Nj} are independent normal N(O, 1) random variables. Then we compute the 
corresponding solution UM(x, w) of (2.2). A numerical simulation of k using M = 50 
subintervals is shown on Figure 4, together with the solution u = usa ( x, w) associated to 
this k. 

The splitting of the interval was of course just a numerical device and one would expect 
that by increasing the number M of subintervals the solution UM should approach the 
"true" stochastic solution u(x,w). However, in this case the effect of increasing M is to 
kill the stochastics altogether! Figure 5 shows a simulation with M = 250 subintervals. 

b_<X) u(x) 

1. 75 
10 1.5 

8 1.25 

6 1 

0.75 

0.5 

1x 

Figure 4 
Simulation of k(x) using M =50 subintervals, and the corresponding solution u(x). 

u(x) 

1.5 

1.25 

1 

0.75 

0.5 

Figure 5 
As in Figure 4 but with M = 250 subintervals 
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If we examine this example more closely we see that the expected value of 
uM(x) = UM(x,w) is given by 

(2.3) E[uM(x)] = x 

and the variance of UM(x) satisfies the inequality 

(2.4) 2 6x 
E[JuM(x) - E[uM(x)]l ] ~ M 

This shows that if one increases M the solution uM(x,w) approaches the trivial deter­
ministic solution u(x) = x corresponding to the constant value k(x,w) = 1. As explained 
in the introduction, this is certainly not what we are interested in for the fluid flow in 
porous media. A numerical approach as above would have to consider a different scaling 
depending on the number M of subdivisions of the domain. The question is what scaling 
and how to prove convergence when M --lo oo. 

To get a mathematical platform for handling these and other questions we now turn to the 
·stochastic model indicated in §1. 

§3. The white noise probability space. 

Let d denote the parameter dimension (in the fluid flow we have d = 3) and letS= S(Rd) 
be the Schwartz space of rapidly decreasing smooth (000 ) functions on Rd. The dual 
S' = S' (R d) is the space of tempered distributions on Rd. 

According to the Bocbner-Minlos theorem there exists a probability measure J..L on S' such 
that 

(3.1) j ei<w,¢>dJ..L(w) = e-~11¢11 2 for all¢ E S 

S' 

where 11¢11 2 = II¢1Ji2(Rd) = J 1¢(x)J2dx and< w,¢ >= w(¢) is the action of wE S' on 
Rd 

¢ ES. 

We giveS' the weak star topology and let B be the Borel sets on S'. The triple (n, B, J..L) 
is called the white noise probability space. See [H] or [HKPS]. 

The white noise process w : s X n --lo R is defined by 

(3.2) W¢(w) =< w, cp >;wE 0, cp E S. 

One can prove that 

(3.3) 
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(where EJ.I. denotes expectation w.r.t. J.l) and this can be used to define W'l/1 more generally 
for 'ljJ E L2 (Rd) -as follows: 

(3.4) 

the limit being taken in L2 (J.1), where ¢n E Sand ¢n-+ '1/J in L2 (Rd). In particular, if we 
put 

(3.5) 

then there exists an x-continuous version Bx (w) of Bx and this version Bx is a d-parameter 
Brownian motion (Brownian sheet). In terms of stochastic integration w.r.t. Bx we can 
write 

(3.6) W<J>(w) = J ¢(x)dBx(w) 
Rd 

In distribution sense this means that we can regard Wx as the distributional derivative of 
Bx: 

(3.7) 

§4. The Wiener-Ito chaos theorem and (white noise) functional processes. 

As usual we define LP(J.l) = {f : S' -+ R; J lfiPdJ.1 < oo }. If p > 1 then LP(J.l) c (S*), 
the space of generalized white noise functionals (see [HKPS]), but there are important 
functions in L1 (J.1) which do not belong to (S*). (See §7 and also [HL0UZ 1-2]). 

Of special interest is the space L2 (J.l), which can be given the following representation: 

THEOREM 3.1 (The Wiener-Ito chaos theorem) 
Every f E L2 (J.l) can be written uniquely on the form 

(4.1) f(w) = f J fn(Ub···,un)dB~n 
n=O(Rd)n 

where fn E i}((Rd)n) (i.e. fn E L2 ((Rd)n) and fn is symmetric in the sense that 
fn(Xu 1 , Xa2 , ···,Xu,.)= fn(Xl, · · ·, Xn) for every permutation u of (1, 2, · · ·, n)) and 
dB~n = dBu1 • • • dBu,. denotes Ito's n-multiple Brownian differential on (Rd)n (see [I]). 
Moreover, if EJ.I. denotes expectation with respect to J.l, 

00 

(4.2) llflli2(J.I.) := EJ.I-[!2 ] = L nlllfnlli2((Rd)n) 
n=O 
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In the same paper [I] Ito also showed: 

If {e1, e2, ···}is a fixed orthonormal basis of L2(Rd) and a= (a1, ···,am) is a multiindex 
of natural numbers then 

(4.3) J e?al Q9 e?a2 ... QSl e~amdB®n = fi hai(fJj) 
(Rd)n J=l 

where ® denotes the symmetric tensor product, 

(4.4) (}j = fJj(w) = j ej(x)dBx(w) ; j = 1, 2, · · · 

Rd 

n = lal := a1 + a2 +···+am and 

(4.5) 

are the Hermite polynomials. 

Using that the tensor products of { ei} constitute a basis of L 2 ( (Rd)n) and expanding each 
fn a sum of such tensor products we see that by combining (4.1)-and (4.3) we can write 
every f E L 2 (Jl) uniquely on the form 

(4.6) f(w) = L CaHa(w) 
Q 

where the sum is taken over all multi-indices a and 

m 

(4.7) Ha(w) =IT hai (fJj) if a= (a1, ···,am) 
j=l 

Moreover, we have 

(4.8) 
a 

Referring to our discussion in the introduction we now return to the definition of the 
distribution valued stochastic processes X we want to work with. Basically these are 
stochastic variables (i.e. measurable functions on S') for each test function ¢, i.e. X = 
X ( ¢, w). Rather than taking derivatives of X with respect to ¢ in distribution sense we find 
it conceptually simpler to adopt the Colombeau point of view [C]: For fixed test function 
or "window" ¢ consider the x-shifted window ¢x defined by 

cPx(Y) = ¢(y- x) 
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Then consider derivatives with respect to x of X ( ¢x, w). More generally, we consider the 
following objects: 

DEFINITION. Let p ~ 1. An LP (white noise) functional process is a function 

X : s X Rd X S' ~ R 

such that 

(i) the map x ~ X(¢,x,w) is (Borel) measurable for each¢ E Sand a.a. wEn 

and 

(ii) the map w ~ X(¢,x,w) is in £P(J.L) for each¢ E Sand each x E Rd. 

In particular, an L 2 functional process can be written 

(4.9) 

where 

La!~(¢, x) < oo for each x E Rd and each¢ E S 
a 

and 

x ~ ca(¢,x) is measurable for each¢ E S. 

To summarize we may regard X(¢,x,w) as the value of X obtained by using the window 
¢shifted to the point x in the experiment w. For example, the d-parameter white noise 
w</> is an L 2 functional process given by 

(4.10) W(¢,x,w) = j ¢x(u)dBu(w) 

Rd 

Computer simulations of Wx = W(¢,x,w) when d = 1 and the window is 

1 
¢(u) =h. X[o,nJ (u) 

with h = 0.1, h = 0.01 and h = 0.001 are shown in Figure 6. 
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Figure 6 
Computer simulations of white noise ( h = 0.1, h = 0.01 and h = 0.001) 

§5. Wick multiplication 

a) Wick products of functions in L 2 (J.L) 

We have argued that in equation (1.6) botk k and p should be modelled by functional 
processes. Since these are distribution valued stochastic processes this raises the question 
how to define the product "k · \Jp", since in general there is no good product definition for 
distributions. In this stochastic setting, however, it is natural to adopt a renormalization 
principle from quantum statistics: 

When we consider the interaction of two classes of particles, we should subtract terms due 
to interaction of a particle with itsel£ 

Let us interpret multiplication as a kind of interaction and adopt this principle to give a 
definition of such a ''renormalized product" or Wick product, denoted by o: First consider 
the special case when 

(5.1) X(w) = J ¢(x)dBx(w) and Y(w) = J '1/;(x)dBx(w) 
Rd Rd 

with¢, '1/J E S. Then renormalization leads to the definition 

(5.2) X o Y =X· Y- j ¢(x)'l/;(x)dx, 
Rd 

because J ¢(x)'!j;(x)dx is a natural representation of the "selfinteraction" term. (If, for 
Rd 

example, ¢ and '1/J have disjoint support, there is no "selfinteraction"). See [HL0U] for a 
discrete analogue. Using Ito's multipleintegral we can write (5.2) as follows: 

(5.3) X o Y = J ¢ ® '1/;(x, y)dB~~ 
(Rd)2 
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when X, Yare given by (5.1). 

Thus the direct consequence of this definition is to define more generally the Wick product 
of two functions X, Y E L 2 (p,) represented by 

X = f J fndBfi;n and Y = f J 9mdB®m 
n=O(Rd)" m=O(Rd)"" 

as follows: 

(5.4) X<> Y = L J fn ® 9mdB®(n+m), 

n,m(Rd)(n+=) 

whenever the series on the right converges in L1. 

An equivalent way of stating this is, using (4.6): 

If X(w) = ~ao:Ha(w) and Y(w) = ~b~H~(w) then 
a ~ 

(5.5) X<> Y(w) = L aab~Ha+~(w) 
a,{3 

whenever the series on the right converges in L 1. 

Another motivation for the use of this Wick product comes from ordinary (i.e. d = 1) 
Ito stochastic differential equations: In [L0U 2, Corollary 3.4] it is proved that if yt is a 
"reasonable" adapted stochastic process then in fact 

T T 

(5.6) j Yt(w)dBt(w) = j Yt <> Wt(w)dt 
0 0 

in a sense which is made precise in [L0U 2]. (There are several versions of this result. See 
also [AP]). This means that if one- as is customary- interprets "multiplication by white 
noise" in a stochastic differential equation as a differential version of "integral with respect 
to Brownian motion" one is really interpreting the product in the Wick sense. So from 
this point of view the use of Wick products in our setting is a natural extension from the 
classical, 1'-dimensional case. 

We also point out that if one of the two factors is deterministic, then the Wick product 
reduces to the usual product. 

b) Wick products of functions in L1 (p,). 

It turns out that solution of equations like (1.6) will not be in L2 (p,) (in fact not even in 
(S*)), but only in L1 (p,) (see §7 and [HL0U 1-2]). Therefore it is necessary to extend the 
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definition of Wick product to L1 (J..L)-functions. The most natural- and naive- way to do 
this is the following: 

(5.7) 

such that 

Define 
X o Y = lim Xn o Yn (limit in L1 (J..L)), 

n-+oo 

provided the limit on the right exists in £ 1 (J..L). 

It can be proved that this definition does not depend on the choice of the approximating 
sequences {Xn}, {Yn} (see [HL0UZ 1]). 

In fact, if X, Y E L1 (J..L) and X o Y = lim Xn o Yn exists in L1 (J..L) then 
n-+oo 

(5.8) :F(X o Y)(¢) = e-~114>11 2 :F(X)(¢). :F(Y)(¢) 

where 

(5.9) :F(Z)(¢) = j ei<</>,w>z(w)dp,(w) (¢ E S) 

S' 

denotes the Fourier transform of Z E L1 (J..L). In particular, choosing ¢ = 0 in (5.8) we get 

(5.10) E[X o Y) = E[X] · E[Y] ([HL0UZ 1)]) 

§6. A mathematical model for permeability: Positive noise. 

The remaining problem in finding a mathematical model for equation (1.6) is to represent 
the permeability k(x) as a suitable functional process K(¢,x,w). One obvious property 
that such a process should have is the positivity, i.e. 

(6.1) K(¢,x,w) 2:: 0 

for all¢ E S,x E Rd and a.a. wE S'. 

Therefore white noise W4> = W(¢,x,w) will not do. And neither will the Wick square of 
white noise, since 

(6.2) Ep[WtJ = Ep[ J ¢ ® ¢dB®2 ] = 0 

(Rd)2 
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However, if we define the Wick exponential of white noise by 

(6.3) Exp[W.p] = L ~w~n 
0 n. 

n= 

then one can prove that in fact 

(6.4) 
. 1 

Exp[W.p] = exp(W.p- 211¢11 2 ), ¢ E S. (see [L0U 1]). 

This shows that Exp[W.p] is positive. Computer simulations of Exp[W.p] are shown in 
Figure 7. 

·~. 
Figure 7 

Computer simulations of the Wick exponential of white noise 

Comparing the simulations in Figure 7 with the actual measurements in Figure 1 it is 
not unreasonable to accept Exp[W.p] as our model for the permeability process K( ¢, x, w). 
However, at the present stage this should be regarded as just one of several possibilities, 
and the important question of finding the best representation for K is a problem of future 
research. 

More generally, if N(¢,x,w) is a functional process such that 

(6.5) N(¢,x,w) 2:0 
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for all ¢> E S, x E R d and a. a. w E S' we call N a positive noise. A characterization of an 
L2-positive noise in terms of its Hermite transform is given in [L0U 1] (see also [HL0UZ 
1]). A consequence of this characterization is that if X andY are L1-positive noises, then 
X<> Y is positive also (when defined). This result is important as a justification of the 
mathematical model we have constructed. 

§7. The stochastic pressure equation for fluid flow in porous media. 

We now return to the original equations (1.6) - (1.8) governing fluid flow in porous media. 
At this stage we consider only equations (1.6) and (1. 7) for a given t. According to our 
discussion above we interpret these equations as follows: 

Let D c Rd be a given bounded domain and let f be a bounded continuous function on 
D. Find an L1-functional process X(x) =X(¢>, x,w) such that · 

(7.1) div(Exp W(x) <> vX(x)) = -(f * c/>)(x) in D 

and 

(7.2) X(x) = 0 on8D 

where* denotes convolution: 

(f * c/>)(x) = j f(y)cf>(y- x)dy 
Rd 

and div, \7 are taken with respect to x. 

Here W(x) = W4>"' (w) as before and the equation (7.1) is to be regarded as a differential 
equation in x, for each ¢> and a.a. w. The difference from a deterministic boundary 
value problem (for each fixed¢> and w) is that ordinary multiplication is replaced by Wick 
multiplication. (See [L0U 2] for a further discussion about this). 

With this in mind we arrive at the following candidate for a solution: 

(7.3) t 

- ~ ~[~ \7 W¢2 (bs) + ~W(bs)]ds}dt] 
0 

Here (bt,f>x) is an auxiliary (!-parameter) BrownianmotioninRd,rv = inf{t > O;bt ~ D} 
and Ex denotes expectation with respect to the law of f:>x of bt starting at x(f:>x(bo = x) = 
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1), while vW(bs) means (VxW<t>Jx=bs etc. In order to verify that X given by (7.3) is the 
solution of (7.1), one must prove that X E L 1(p,), that ExpW <> vX is well-defined (in the 
sense of (5.7)), and that X satisfies the partial differential equation. For these and other 
properties of the solution we refer to the forthcoming paper [HL0UZ 2]. 
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