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Abstract

Abundant new ichthyosaur material has recently been documented in the Slottsmøya Member of the Agardhfjellet
Formation from the Svalbard archipelago of Norway. Here we describe a partial skeleton of a new taxon, Janusaurus lundi,
that includes much of the skull and representative portions of the postcranium. The new taxon is diagnosed by a suite of
cranial character states including a very gracile stapedial shaft, the presence of a dorsal process on the prearticular and
autapomorphic postcranial features such as the presence of an interclavicular trough and a conspicuous anterodorsal
process of the ilium. The peculiar morphology of the ilia indicates a previously unrecognized degree of morphological
variation in the pelvic girdle of ophthalmosaurids. We also present a large species level phylogenetic analysis of
ophthalmosaurids including new and undescribed ichthyosaur material from the Upper Jurassic of Svalbard. Our results
recover all Svalbard taxa in a single unresolved polytomy nested within Ophthalmosaurinae, which considerably increases
the taxonomic composition of this clade. The paleobiogeographical implications of this result suggest the presence of a
single clade of Boreal ophthalmosaurid ichthyosaurs that existed during the latest Jurassic, a pattern also reflected in the
high degree of endemicity among some Boreal invertebrates, particularly ammonoids. Recent and ongoing descriptions of
marine reptiles from the Slottsmøya Member Lagerstätte provide important new data to test hypotheses of marine amniote
faunal turnover at the Jurassic-Cretaceous boundary.
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Introduction

From 2004–2012, eight seasons of fieldwork in the Late Jurassic

to earliest Cretaceous Slottsmøya Member of the Agardhfjellet

Formation in the central Spitsbergen Sassenfjord area, have

yielded numerous skeletal remains of marine amniotes (Figure 1)

[1,2]. Through a number of papers, these Arctic localities have

been documented [3–14], which built the framework for what is

now known as the Slottsmøya Member Lagerstätte (SML), which

resulted in the description of two new ophthalmosaurid ichthyo-

saur taxa; Cryopterygius kristiansenae and Palvennia hoybergeti
[15], as well as five new plesiosaurians [16–19]. Here, we present a

description of a third new ophthalmosaurid taxon from the

Slottsmøya Member, which includes most of the skull, girdle

elements and fore- and hind limbs.

The specimen, PMO 222.654, is significant in that it represents

one of the stratigraphically oldest specimens excavated from the

Slottsmøya Member and provides important new morphological

data for comparisons with age pene-contemporaneous material

from the Kimmeridge Clay Formation of the U.K. and elsewhere.

An ever-expanding body of data on ichthyosaurs from the SML

demonstrates previously unrecognized diversity among Late

Jurassic taxa, similar to recent work recognizing high diversity

among Early Cretaceous ichthyosaurs [20]. Collectively, the SML

assemblage is also significant in being one of only two major

marine amniote sites that span the Jurassic-Cretaceous boundary

(the other being the Vaca Muerta Formation of Argentina

[21,22]), thereby contributing to ongoing discussions regarding

potential marine reptile turnover at the Jurassic-Cretaceous

boundary [23].

Geological Setting
The Slottsmøya Member is the uppermost of four members in

the Agardhfjellet Formation [24]. It is overlain by the Mykle-

gardfjellet Bed, which is the base of the Rurikfjellet Formation

[24]. These two formations form the Janusfjellet Subgroup, which

is part of the Adventdalen group first described by Parker [25].

The Janusfjellet Subgroup is Late Jurassic to Early Cretaceous in
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age and is interpreted to be a marine shelf to prodeltaic succession

dominated by shale, with subordinate siltstone and sandstone

[24,25]. The Slottsmøya Member consists of 55-70 meters of dark-

grey to black silty mudstone, often weathered into paper shale.

There are discontinuous silty beds, with occurrences of siderite

and dolomite interbeds and yellow-to-red sideritic concretions

[24]. The Slottsmøya Member records a transgressive and

subsequent regressive period, with varying degrees of dysaerobic

sea bottom conditions [3,26]. There was a low sedimentation rate

and relatively high organic productivity in the upper water

column, leading to significant accumulations of organic matter in

the bottom sediments, reaching 5% in some layers [4,27].

The Slottsmøya Member has been dated biostratigraphically

from the Upper Volgian to Upper Ryazanian, which corresponds

to about 12 million years of deposition [4,6]. The member has

been divided into three units following Collignon & Hammer [3].

The lowest unit extends from the base of the member (222 m) to a

yellow echinoderm marker bed. The middle unit, for which a high

degree of stratigraphic resolution has been established, extends

from the yellow echinoderm bed (0) to the Dorsoplanites bed

Figure 1. Maps of the study area in Svalbard, Norway. A: Palaeogeographic map of the North Atlantic region in the Late Jurassic, modified
from Torsvik et al. [2]. The red dot locates the study area; B: Geological map of the study area including the Agardhfjellet Formation and dig sites. The
black arrow points to the site where specimen PMO 222.654 was excavated. Modified from Hurum et al. [1] and Dallmann et al. [14].
doi:10.1371/journal.pone.0103152.g001
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(27 m), and represents 5 Ma of deposition. The upper unit ranges

from the Dorsoplanites bed (27 m) to the Myklegardfjellet Beds,

which is a condensed section and represents approximately 7 Ma

of deposition. Evidence of carbonate seeps have also been

described from the upper unit [6,7]. The specimen described in

this paper (PMO 222.654) is from the lower section and is

estimated to be approximately 3 Ma older than Cryopterygius
kristiansenae and 2 Ma older than Palvennia hoybergeti (Figure 2).

Materials and Methods

The holotype and only known specimen of Janusaurus lundi,
PMO 222.654, was excavated in 2010 from the Slottsmøya

Member at Janusfjellet (Janus Mountain) in central Spitsbergen.

The specimen was prepared and is housed in the Geological

Museum, at the University of Oslo, Norway. All necessary permits

were obtained for the described study, which complied with all

relevant regulations. The following permit was given by the

Governor of Svalbard to excavate the specimen in 2010: 2006/

00528-24.

Institutional Abbreviations
CAMSM, Sedgwick Museum of Earth Science, Cambridge

University, Cambridge, UK;

GLAHM, The Hunterian Museum, University of Glasgow,

Glasgow, UK;

NHMUK, Natural History Museum, London, UK;

OUM, Oxford University Museum of Natural History, Oxford,

UK;

PMO, Paleontological Museum Oslo, University of Oslo, Oslo,

Norway;

SVB, Svalbard Museum, Longyearbyen, Norway.

Phylogenetic analysis
A new phylogenetic analysis of Ophthalmosauridae was

performed based on 22 taxa and 56 characters, using a modified

version of the matrix in Fischer et al. [23] (see Text S1 and Table

S1 for character list and data matrix). Several new taxa were

added to the analysis, including PMO 222.654 (holotype of

Janusaurus lundi), Cryopterygius kristiansenae, Palvennia hoyber-
geti, Undorosaurus gorodischensis., Malawania anachronus,
Leninia stellans and an undescribed specimen from the Agardhf-

jellet Formation of Svalbard, PMO 222.667 [15,28–30]. The new

matrix includes the majority of undisputed ophthalmosaurids

except Ophthalmosaurus natans (a putative synonym of Ophthal-
mosaurus icenicus) and Nannopterygius enthekiodon, which is

poorly described and currently unavailable for study [31].

We further modified the matrix by the addition of five new

characters (11, 12, 16, 25 & 52), relating to the nature of the

anterior and posterior extension of the jugal, the morphology of

the postfrontal-postorbital contact, the thickness of the stapedial

shaft, and the ventral process on femur (see Text S2).

Finally, we critically reevaluated the existing scores based on

personal observation and the recent literature for Ophthalmo-
saurus icenicus, Stenopterygius quadriscissus, Mollesaurus perial-
lus, Caypullisaurus bonapartei, Brachypterygius extremus, and

Arthropterygius chrisorum [32–34] (see Text S2). Characters were

not weighted or ordered, and the search was an implicit

Figure 2. The stratigraphic position the described Spitsbergen ophthalmosaurids. Janusaurus lundi (PMO 222.654) in reference to
Palvennia hoybergeti (SVB 1451) and Cryopterygius kristiansenae (PMO 214. 578). Adapted from Hurum et al. 2012.
doi:10.1371/journal.pone.0103152.g002
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enumeration. The program TNT [35] was used to analyze the

character matrix and calculate Bremer Support and bootstrap

values A bootstrap analysis was run in TNT with 1000 replicates,

using the TBR algorithm.

Nomenclatural Acts
The electronic edition of this article conforms to the requirements

of the amended International Code of Zoological Nomenclature,

and hence the new names contained herein are available under that

Code from the electronic edition of this article. This published work

and the nomenclatural acts it contains have been registered in

ZooBank, the online registration system for the ICZN. The

ZooBank LSIDs (Life Science Identifiers) can be resolved and the

associated information viewed through any standard web browser

by appending the LSID to the prefix ‘‘http://zoobank.org/’’. The

LSID for this publication is: urn:lsid:zoobank.org:pub:FF4834F1-

AEED-4B08-8E74-7125801C1B3E

The electronic edition of this work was published in a journal

with an ISSN, and has been archived and is available from the

following digital repositories: PubMed Central, LOCKSS and

CRIStin (University of Oslo Library).

Results

Systematic Paleontology
ICHTHYOSAURIA de Blainville 1835

Neoichthyosauria Sander 2000

Thunnosauria Motani 1999

Ophthalmosauridae Baur 1887

Janusaurus gen. nov.

urn:lsid:zoobank.org:act:4D77CFCF-22A0-4899-A619-

1E93D1ADF3C5

Janusaurus lundi sp. nov.

urn:lsid:zoobank.org:act:71E65B35-7215-44AA-BCE7-

E9A3B265E04F

(Figures. 3-14)

Holotype and only specimen: PMO 222.654, an incom-

plete skeleton consisting of a partial skull, representative cervical,

dorsal and caudal vertebrae, a nearly complete pectoral girdle and

left forefin, the right humerus, a partial pelvic girdle and both

femora.

Etymology: Genus name after the mountain Janusfjellet, on

which the specimen was found. Species name in honor of Bjørn

Lund, technician on the excavations in 2006-2012.

Holotype locality: North side of Janusfjellet, ,13 km

northeast of Longyearbyen, Spitsbergen, Svalbard, Norway.

UTM: N78 20.264 E15 50.044

Holotype horizon and stage: Slottsmøya Member, Agardhf-

jellet Formation, early Middle Volgian, Upper Jurassic; 31 m

below the Dorsoplanites Bed, 4 m below the echinoderm bed [1].

Differential diagnosis
A moderately sized ophthalmosaurid (estimated body length of

3-4 meters) possessing the following autapomorphies (marked with

*) and unique character combinations: maxilla with extensive

lateral exposure (short in Ophthalmosaurus and Aegirosaurus);
lacrimal contributes to the posterior margin of the external naris

(excluded in Cryopterygius and Athabascasaurus); posterodorsal

process of jugal forming half of the posterior margin of the orbit

(does not form any of the margin in Cryopterygius); narrow

postorbital bar (broad in Cryopterygius, Athabascasaurus and

Brachypterygius); absence of a squamosal (present in Athabasca-
saurus and Aegirosaurus); extremely gracile and constricted

stapedial shaft*; reduced ophisthotic facet on the basioccipital

(large in Palvennia); presence of an angular-articular contact*;

extremely gracile dentition (more robust in Cryopterygius and

Brachypterygius); interclavicle with an interclavicular trough and

ventral foramen*; proximodistal length of scapula very reduced in

comparison to coracoid length*; humerus with three distal facets

(two in Nannopterygius and Cryopterygius); ulna is the largest

element of zeugopodium (radius is larger in Cryopterygius);
anterodorsal process of the ilium*; ischiopubis completely fused

and lacking an obturator foramen (unfused distally in Cryopter-
ygius and Undorosaurus and oburator foramen present in

Ophthalmosaurus); femur with two distal facets (three in

Platypterygius americanus and Platypterygius australis).

Description
The estimated length of the animal is 3–4 m, based on

comparisons of skull and rib size in other more complete

ophthalmosaurids. The preserved portion of the skull is similar

in size and relative proportions to that of Palvennia hoybergeti,
which is estimated to be a small to moderately sized (3–4 m)

species [15].

Taphonomy: The holotype specimen of Janusaurus lundi
PMO 222.654, is an incomplete, partially articulated skeleton,

collected in four jackets (Figure 3) [36]. The skull, pectoral girdle,

left forelimb, and cervical vertebrae are closely associated. The

right humerus was disarticulated from the rest of the pectoral

girdle. Several ribs and gastralia were clustered together posterior

to the skull, as was the remaining material, including the presacral

and caudal vertebrae, left pelvic girdle and two femora. Several

vertebrae and the right ilium were collected as surface material in

the field. The individual appears to have come to rest on the sea

floor on its right ventrolateral side, which is also better preserved.

Because the specimen was collected in permafrost, the individual

bones are broken into millimeter-sized fragments due to congeli-

fraction, which is typical for all the marine reptile specimens from

the Slottsmøya Member [15].

An isolated tooth was associated with the skeleton of PMO

222.654 (Figure S2 K). The tooth was discovered during

preparation and was located in the vicinity of the disarticulated

right humerus. The tooth is incomplete and lacks the apex of the

crown and measures 3.5 mm in total length. It is very gracile and

needle-like, similar in overall morphology to teeth associated with

the plesiosaur Spitrasaurus larseni (SVB 1450) [16]. For this

reason, we attribute the tooth to a plesiosaurian. However, the

association between the tooth and the holotype specimen of

Janusaurus is unclear. It may be a random association, but we feel

this is unlikely given that this pattern has not previously been

observed in any other specimens of ichthyosaurs or plesiosaurians

in the Slottsmøya Member. The tooth could possibly be evidence

of scavenging on the carcass by a plesiosaurian, however this also

seems improbable given that the extremely gracile tooth

morphology is suggestive of a soft-bodied invertebrate feeder

[37]. Finally, there is a possibility that the tooth could represent

gut contents of the ichthyosaur, although the diminutive tooth

morphology of the ichthyosaur is seemingly inconsistent with this

interpretation, because no other elements of a plesiosaurian were

associated with the skeleton.

Ontogeny: The specimen is interpreted to be an adult, based

on the smoothness of the humeral shaft, the concavity of the distal

facets and the advanced ossification of the forefin elements

[38,39]. In addition, the cross-section shape of the dorsal ribs

exhibit a distinct figure-eight shape with thick cortical bone, which

Kear & Zammit [39] suggested as an ontogenetic adult trait.

Interestingly, the humeri of PMO 222.654 possess flat proximal

ends, which has been described as an indicator of immaturity [38].
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However, this character may not be universally reliable given the

specimen’s size and other evidence of advanced ossification typical

of other ophthalmosaurids [40,41].
Dermatocranium. The skull was exposed near the surface,

and much of the left side is missing or damaged. The skull is

obliquely dorsolaterally compressed, and the chondrocranium is

displaced and partially disarticulated. Most of the interpretations

presented here are based on the better preserved right side of the

skull, which remains largely articulated, although fragmented.

However, in many cases bones of the skull can be confidently

delimited on the basis of well-defined sutural margins. Cranial

ratios classically employed in ichthyosaur taxonomy are not

possible to present here because the rostrum and lower jaw are

incomplete. A detailed photogrammetry video of the skull is

available in Video S1.

The premaxilla is highly eroded, and its contact with the

lacrimal is poorly preserved. However, the posterior-most portion

of the subnarial process appears to contact and possibly overlap

the lacrimal, ventral to the external naris. The posterior-most

margin of the subnarial process closely approaches the jugal, but

whether they contact is unclear (Figure 4). The premaxilla-nasal

contact in the area anterior to the external naris is heavily eroded,

and the suture is difficult to identify; as a result, the presence and/

or nature of a supranarial process is uncertain. The right maxilla
has considerable exposure along the lateral surface of the skull.

Only the anterior-most tip of the maxilla is not preserved, but the

element extends at least as far as the anterior end of the preserved

rostrum. Its posterior end terminates just anterior of the midpoint

of the ventral margin of the orbit. The maxilla is clearly

discernable from the jugal along a clear sutural margin. However,

the degree to which it extends dorsally, in the vicinity of the

lacrimal and external naris, is unclear. So far as can be discerned,

the maximum dorsoventral height of the maxilla lies in line with

the posterior margin of the external naris. A dental groove in the

premaxilla and maxilla holds small conical teeth.

Most of the right and posterior portion of left nasal is

preserved. There is no sign of an internasal foramen, although this

area is poorly preserved. The nasal forms the entire dorsal margin

of the external naris and the prefrontal, excluding the latter from

contact with the external naris. Dorsal to the external naris, the

nasal projects laterally to form a prominent, though somewhat

crushed, shelf. Posteriorly, the nasals fan out to overlap the

postfrontal.

The lacrimal is robust, and its margins are easy to discern.

The lacrimal forms the entire posterior and much of the ventral

margin of the external naris. The jugal borders most of the ventral

margin of the lacrimal save the anteroventral-most portion of the

lacrimal. The lacrimal articulates with the prefrontal along a zone

of well-defined interdigitating processes. As seen in lateral view,

the posterior margin of the lacrimal is bent at an angle of

approximately 140 degrees. Similar to the condition in other

ophthalmosaurids, the lacrimal bears a prominent lateral ridge in

the center of the element that extends from its posteroventral

margin dorsally to near the border of the external naris [31]. The

shape of the external naris can be somewhat discerned and is

anteroposteriorly shorter than tall.

The jugal forms the entire ventral margin of the orbit. The

anterior portion of the jugal markedly thins dorsoventrally,

anterior to the orbit, and overlaps the ventral margin of the

lacrimal. The anterior portion of the jugal is straight and is

Figure 3. Skeleton of PMO 222.654. The specimen is presented showing the better preserved (stratigraphical-down) side after it was prepared.
Dashed lines indicate boundaries of each of the four field jackets made at the time of collection. (Adapted from Novis [36]). Scale = 1 m.
doi:10.1371/journal.pone.0103152.g003
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Figure 4. The skull of Janusaurus lundi (PMO 222.654). A: Photo in right lateral view of the skull. B: Right lateral view with interpretation of the
individual elements. Abbreviations: a, angular; art, articular; d, dentary; en, external naris; j, jugal; l, lacrimal; mx, maxilla; n, nasal; or, orbit; p, parietal;
pmx, premaxilla; po, postorbital; pof, postfrontal; prf, prefrontal; q, quadrate; qj, quadratojugal; sa, surangular; st, supratemporal. Scale = 5 cm.
doi:10.1371/journal.pone.0103152.g004
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bordered ventrally by the maxilla. The right jugal is broken and

distorted ventral to the mid-point of the orbit, but appears to

gently curve dorsally along the posterior third of its length before

contacting the postorbital (Figure 4).

The right prefrontal forms approximately one third of the

dorsal margin of the orbit. The anterior edge of the prefrontal does

not appear to contribute to the external naris. Together with the

postfrontal, the prefrontal forms the supraorbital flange. The nasal

and postfrontal overlap the prefrontal medially and posteriorly,

respectively. The right postfrontal is a large and prominent

element, whose size and extent are discerned on the basis of bone

fiber orientation, which radiates from the center of the bone. It

forms the posterior two-thirds of the dorsal border of the orbit.

The nasals appear to overlap the anterior margin of the

postfrontal. The postfrontal-postorbital contact is short externally,

but the two elements share a long overlapping contact ventrally,

on the medial side of the orbital rim (Figure 5). The postfrontal has

a broad contact posteriorly and medially with the supratemporal,

thereby excluding the postfrontal from participating in the lateral

margin of the temporal fenestra. However, the postfrontal forms

most, if not all, of the anterior border of the supratemporal

fenestra. Medially the relationship of the postfrontal to the frontal

is unclear. Anterior to the supratemporal fenestra, the postfrontal

has a long, straight overlapping contact with the parietal that

extends nearly to the midline of the skull.

The relationships of the frontals cannot be discerned due to

poor preservation of the skull roof. However, part of the right

frontal could be preserved at the dorsal-most area of the preserved

portion of the skull, associated with a structure that could

represent part of the pineal foramen. The right parietal is well

preserved and forms the entire medial margin of the supratem-

poral fenestra. The parietal-supratemporal contact is hard to

discern (Figure 5), although a supratemporal process is present.

There is no indication of ornamentation or a sagittal crest along

the dorsal surface of the skull. The supratemporal fenestra is

anteroposteriorly longer than wide, although crushing makes it

difficult to interpret its original shape.

The right supratemporal is exposed on both sides of the

specimen. Its anterior and medial processes form all of the lateral

and most of the posterior margins of the supratemporal fenestra,

respectively. A squamosal was not identified in PMO 222.654,

and is presumed to have been absent, as the region in which this

element is usually present is well preserved in the specimen. The

postorbital bar of Janusaurus is relatively narrow (Table 1) and

has a postorbital bar ratio (maximum anteroposterior width versus

anteroposterior length of the orbit) of 0.68. The postorbital has

Figure 5. Oblique dorsal view of the skull of Janusaurus lundi (PMO 222.654). The dotted lines mark eroded or equivocal sutures.
Abbreviations: p, parietal; pfor, pineal foramen; prf, prefrontal; pof, postfrontal; po, postorbital; q, quadrate; qj, quadratojugal; st, supratemporal; stf,
supratemporal fenestra. Scale = 1 cm.
doi:10.1371/journal.pone.0103152.g005
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Figure 6. The basioccipital and right stapes from Janusaurus lundi (PMO 222.654). A: posterior view of the basioccipital; B: anterior view of
the basioccipital; C: dorsal view of the basioccipital; D: ventral view of the basioccipital; E: lateral view of the right stapes, F: medial view of the medial
head of the right stapes; G: anterior view of the right stapes; H: posterior view of the right stapes. Abbreviations: baf/bsf, basioccipital and
basisphenoid facet;bsf, basiospenoid facet; hp, hyoid facet; oc, occipital condyle; opf, opisthotic facet; qf, quadrate facet; stf, stapes facet.
Scale = 1 cm.
doi:10.1371/journal.pone.0103152.g006
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clear sutural relationships with the postfrontal dorsally, the

supratemporal posterodorsally, the quadratojugal posteriorly,

and the jugal ventrally. The quadratojugal contacts the

postorbital along most of its posterior border and has a short

underlapping contact with the supratemporal dorsally. As seen in

lateral view, the ventral portion of the quadratojugal is antero-

posteriorly broader than the dorsal half and thus projects caudally

from the posterior margin of the postorbital bar.

Figure 7. Medial view of the preserved right mandible of Janusaurus lundi (PMO 222.654). Medial view of the posterior portion of the right
mandible and the posterior portion of the palate. Abbreviations: a, angular; art, articular; cor, coronid process; part, prearticular; partp, prearticular
dorsal process; pgp, preglenoid process; pt, right pterygoid; sa, surangular. Scale = 1 cm.
doi:10.1371/journal.pone.0103152.g007

Figure 8. The right hyoid from Janusaurus lundi (PMO 222.654). Posterior is to the left, anterior to the right. Ventral view is situated at the top,
dorsal view below. Scale = 1 cm.
doi:10.1371/journal.pone.0103152.g008
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Braincase. PMO 222.654 preserves the basioccipital, basi-

sphenoid and right stapes, but other elements are either not visible

or not preserved. Selected measurements can be found in Table 2.

The basioccipital of PMO 222.654 was disarticulated from the

braincase but is largely intact, though fragmented. The element

was not found in place and is poorly preserved. Our orientation is

presented in Figure 6 A-D. The occipital condyle is intact, but the

extracondylar area is eroded and part of it is missing. The occipital

condyle is convex and is mediolaterally wider than tall. In dorsal

and posterior view the condyle blocks the extracondylar area

almost entirely from view, although an indication of the lateral

facets for the ophisthotics are visible. It is only possible to describe

Figure 9. Pectoral girdle of Janusaurus lundi (PMO 222.654). A: posterior view of the left clavicle; B: posterior view of the right clavicle; C:
anterior view of the left clavicle; D: anterior view of the right clavicle; E: ventral view of the interclavicle; F: dorsal view of the interclavicle; G: dorsal?
view of the right scapula; H: dorsal view of the left coracoid; I: dorsal view of the right coracoid. Abbreviations: amp, anteromedial process; ict,
interclavicular trough; ms, medial symphysis; sb, scapular blade; vf, ventral foramen. Scale = 5 cm.
doi:10.1371/journal.pone.0103152.g009
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the facet for the left ophisthotic because the right has been

deformed. The length of this facet is approximately 3 cm. Most of

the dorsal surface is damaged, but an indication of the left

exoccipital facet is preserved. The anterior surface is fragmented,

with little surface available for description. However, the preserved

anterior surface is uneven and pitted and has a projection in the

center of the anterior surface; this process extends ventrally and

ends in an eroded ‘‘spine’’. There is no indication of a ventral

notch, but this area has been severely damaged, so this structure

may have been present.

Only the right stapes was recovered from the dorsal part of the

skull (Figure 6 E-H). The stapedial shaft is thin, rounded and

gracile along the entire shaft, expanding slightly at the quadrate

facet. The posterior side of the medial surface of the stapes is flat,

and expands posteriorly from the medial head in dorsal view. The

anterior margin is convex, especially at the medial stapedial head.

A ridge on the articular surface of the medial stapedial head

separates the surface for the ophisthotic from the ventrally-situated

surface for the basioccipital and basisphenoid. This surface

terminates in a ridge that could be homologous to the hyoid

process described for Ophthalmosaurus icenicus and Acamptonectes
densus [23,31]. The entire medial stapedial head is rugose, and a

tubercle on the ventral side is interpreted to be a surface for

attachment of a hyoid ligament as in O. icenicus and some

specimens of Acamptonectes [23]. The basisphenoid is lodged

inside the orbit and was not possible to remove for description.

Palatal complex. The palate is poorly preserved, and most

of the elements are lost. Parts of the posterior ramus of the right

pterygoid are visible in medial view (Figure S1). The right

pterygoid is displaced and damaged in several places. The

quadrate ramus is drawn out into three processes, extending

laterally, medially and dorsally. The ventral surface of the

quadrate ramus is smooth, but with a more irregular posterior

end. The pterygoid extends anteriorly up to the mid-point of the

orbit, where it is eroded. The right pterygoid is visible but situated

on top of the right quadrate, blocking it from medial view

Figure 10. Left humerus of PMO 222.654. A: dorsal view with articulating elements; B: ventral view; C: proximal view; D: anterior view; E:
posterior view; F: distal view. Abbreviations: er, elevated rim; dpc, deltopectoral crest; dp, dorsal process; pe, preaxial accessory element; pef, preaxial
accessory element facet; i, intermedium; r, radiale; R, radius; Rf, radial facet; U, ulna; Uf, ulnar facet. Scale = 5 cm.
doi:10.1371/journal.pone.0103152.g010
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(Figure 7). The right quadrate is partially visible ventral to the

postorbital and quadratojugal, and in posteromedial view beneath

the right pterygoid (Figure S1). Unfortunately most of this element

is not visible enough to describe in detail.

Mandible. PMO 222.654 only preserves an incomplete right

lower jaw, visible in both lateral and medial views, but is missing

its anterior end. Measurements of the individual elements can be

found in Table 3. Only the posterior-most region of the mandible

is well-preserved, particularly in medial view (Figure 7). The

posterior margin of the dentary lies in line with the anterior third

of the orbit. A small portion of the dental groove is visible in which

diminutive conical teeth are held. The surangular extends at

Figure 11. Ilia and left ischiopubis of Janusaurus lundi (PMO 222.654). A: lateral view of the right ilium; B: lateral view of the left ilium; C:
medial view of the right ilium; D: medial view of the left ilium; E: dorsal view ilia; F: medial side of the left ischiopubis; G: lateral side of the left
ischiopubis. Abbreviations: adp, anterodorsal process; af, acetabular facet; ipf, ischiopubic facet. Scale = 1 cm.
doi:10.1371/journal.pone.0103152.g011
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least as far anteriorly as the preserved portion of the jaw. In medial

view, a small coronoid process is visible. Posterior to the coronoid

process is a second and more prominent, dorsally-projecting

process on the surangular, here termed the preglenoid process.

This structure, whose entire medial surface is marked with ridges,

has been interpreted to be the point of insertion for the M.

adductor mandibulae externus group (MAME) in Ophthalmo-
saurus by Kirton [31] or the M. adductor mandibulae internus

pseudotemporalis (MAMIP) by Kear [42].

In lateral view, the anterior end of the angular lies near the

preserved portion of the skull. The angular contributes approx-

imately two-thirds of the dorsoventral height at the posterior end

of the mandible in lateral view. Although the posterodorsal portion

of the ramus was lost during preparation, its size and shape can be

determined by facets on the articular. In medial view, the angular

extends further posteriorly than the prearticular and forms the

ventral margin of the articular. The prearticular is dorsoven-

trally tall anteriorly as seen in medial view. The shape of the dorsal

margin of the prearticular somewhat mirrors that of the

surangular, in possessing a slight dorsal process before abruptly

tapering in height posteriorly to a narrow process, and terminating

along the anteromedial margin of the articular. Only a small

portion of the splenial is preserved medially, but little can be said

regarding its morphology.

The articular is articulated to the prearticular and angular,

and enclosed behind the surangular in lateral view (Figure S2 L). It

appears more anteroposteriorly elongated than round. The clear

sutures for the prearticular on the medial side as well as for the

surangular on the lateral side, suggest that the element is

articulated. In medial view the articular is convex, bulging

outwards posterodorsally, with a prominent ridge located along

the posterior edge. The anterodorsal edge articulating with the

Figure 12. The left femur of Janusaurus lundi (PMO 222.654). A: dorsal view; B: ventral view; C: proximal view; D: anterior view; E: posterior
view; F: distal view. Abbreviations: dp, dorsal process; ff, fibular facet; tf, tibial facet; vp, ventral process. Scale = 1 cm.
doi:10.1371/journal.pone.0103152.g012
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Figure 13. The axial skeleton of Janusaurus lundi (PMO 222.654). Including the partial atlas-axis complex, complete trunk vertebra, neural
arches, dorsal rib and gastralia from PMO 222.654. A: lateral? view of atlas-axis complex; B: anterior view of atlas-axis complex; C: lateral view of trunk
vertebrae; D: anterior view of trunk vertebrae; E: posterior view of trunk vertebrae; F: dorsal view of trunk vertebrae; G: neural arch from the sacral
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quadrate is rounded and rugose, suggesting large amounts of

connective tissue. The ventromedial side is smooth and is slightly

concave, where it articulates with the prearticular and the angular.

An articulation between the articular and the angular has not been

previously identified in ophthalmosaurids, but occurs in some

specimens of Stenopterygius [43]. Anterolaterally the articular is

covered by the surangular and the angular. The medial surface of

the articular is smooth in the center, becoming more irregular

towards the articular surfaces.

Dentition. In medial view, disarticulated tooth fragments are

visible. The total number of fragments preserved is uncertain,

although they have remained in the jaw. The crown height based

on partial fragments is very short with an estimated height less

than 9 mm. Fine ridging is occurs on all sides of the teeth.

Scleral elements. A partially articulated but poorly pre-

served scleral ring is present in the right orbit. The minimum

length of a single plate, as measured from the inner to outer

margin of the ring, is approximately 6 cm.

Hyoid apparatus. A pair of hyoid rods was found on the

ventromedial side of the angular, but only the right hyoid was in

sufficient condition to be prepared (Figure 8). The rod is

completely three dimensional and gently curved in shape. The

anterior end is convex and club-like. The shaft of the hyoid rod is

rounded in cross section and its posterior end is semi-spatulate.

The appendicular skeleton
The pectoral girdle. The pectoral girdle of PMO 222.654

was articulated, although slightly displaced, and lacks only the left

scapula (Figure 9). The clavicles are well-preserved. The right

clavicle is 1.5 times as long as the anteroposterior length of the

right coracoid (Table 4; Figure 9 A-D). The medial ends of both

clavicles end in finger-like projections that neatly interdigitate with

their opposites [44]. The visceral surfaces of the medial portions of

the clavicles are dished, so as to envelope the lateral rami of the

interclavicle. The lateral ends of the clavicles curve dorsally and

posteriorly and bear facets for the scapula. The interclavicle is

complete and well preserved (Figure 9 E-F). The lateral rami are

dorsoventrally flattened and ventrally convex for reception with

the clavicles. The combined mediolateral width of both lateral

rami is greater than the anteroposterior length of the interclavicle.

Located on the anterior half of the dorsal surface of the posterior

ramus are two dorsally-projecting processes that form the lateral

margins of a narrow, anteroposteriorly-oriented excavation, which

is here termed the interclavicluar trough. Not all of the shale

imbedded in this posterior-most section of this trough was

removed during preparation. Thus, the true posterior extent of

the interclavicular trough is longer than shown on Figure 9 E-F.

The posterior end of the element is dorsoventrally flattened and is

somewhat expanded mediolaterally. A foramen is located on the

ventral surface of the interclavicle, where the lateral and posterior

rami meet.

The coracoids (Figure 9 H) are slightly longer anteroposteriorly

than wide mediolaterally. The medial symphysis forms the

anterior two-thirds of the coracoid; in medial view the outline of

the symphysis is lenticular and markedly short dorsoventrally. In

dorsal view, the anterior margin of the coracoid forms a prominent

anteromedial process, which marks the lateral margin of a well

formed anterior notch. The scapular and humeral facets are

approximately equal in size and are offset at an angle of 150

degrees from the sagittal plane. Only a poorly-preserved and

incomplete right scapula was recovered (Figure 9 G). The

suprascapular border is intact, although rather short compared

to the size of the rest of the pectoral girdle. The anterior portion of

the scapular blade is distorted and folded, which precludes further

description.

Forefin. Two partial forefins are preserved in PMO 222.654.

The left forefin includes a complete humerus disarticulated from

the pectoral girdle with an articulated zygopodium and a few

associated autopodial elements. The right humerus was entirely

disarticulated and was found in the vicinity of an isolated right

radius. The orientation and identity of the humeri was determined

by comparisons with articulated limbs of other ophthalmosaurid

remains from the Slottsmøya Member and from published

descriptions [15,31,45]. The anteroposterior axis was determined

region in anterior view; H: neural arch from the trunk region in lateral view; I: nearly complete dorsal rib; J: complete gastralium. Abbreviations: prz,
prezygapophysis; dp, diapophysis; ns, neural spine; pp, parapophysis. A-H Scale = 1 cm, I Scale = 10 cm, J Scale = 1 cm.
doi:10.1371/journal.pone.0103152.g013

Figure 14. Skull reconstruction of Janusaurus lundi in right lateral view. Abbreviations: a, angular; art, articular; bo, basioccipital; d, dentary;
en, external naris; j, jugal; l, lacrimal; mx, maxilla; n, nasal; or, orbit; p, parietal; pmx, premaxilla; po, postorbital; pof, postfrontal; prf, prefrontal; q,
quadrate; qj, quadratojugal; sa, surangular; st, supratemporal; stf, supratemporal fenestra.
doi:10.1371/journal.pone.0103152.g014
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by the location of the preaxial accessory element and the

dorsoventral orientation via the shape and position of the dorsal

process and deltopectoral crest (Figure S2 A-D).

The humerus is proximodistally longer than anteroposteriorly

broad at its distal end. The distal end is anteroposteriorly broader

than the proximal end (Figure 10 A-B). The minimum anterior-

posterior width at midshaft is 16% smaller than the maximum

anteroposterior width of the proximal end, giving a length-to-

width ratio of 1.8. The proximal articular surface of the humerus is

relatively flat, with a rugose surface texture. An elevated rim circles

the periphery of the dorsal, anterior and ventral portions of the

articular facet. In dorsal view, the dorsal process originates near

the anteroposterior midpoint of the articular facet and extends to

midshaft. It is slightly angled towards the anterior margin. The

dorsal process is relatively tall and narrow compared to the

deltopectoral crest, which is more broadly rounded (Figure 10 E).

The deltopectoral crest begins near the anterior margin of the

humerus, extends to near the midpoint of the shaft, and slants

slightly posteriorly. In anterior view, the preaxial margin of the

humeral shaft is dorsoventrally shorter than tall and has a broadly

rounded postaxial margin.

Distally, the humerus bears three concave distal facets. The

anterior-most, for the preaxial accessory element, is approximately

half the anteroposterior length and dorsoventral height of the

radial facet (Table 5). The ulnar facet is dorsoventrally taller than

the radial facet, but slightly shorter anteroposteriorly (Table 5).

Relative to the long axis of the humerus, the facets for the preaxial

accessory element and the ulna are angled at approximately 17

degrees anteriorly and 30 degrees posteriorly, respectively.

The zygopodial row includes the radius, ulna and a preaxial

accessory element, where the radius and ulna are recognized as the

two largest elements [31,45]. The preaxial accessory element is

oval-shaped in dorsal view, but is dorsoventrally narrow anteriorly.

The proximal margin is three times the dorsoventral thickness of

the distal end. The preaxial accessory element bears two distinct

articular surfaces, one proximally for the humerus and the other

posteriorly for the radius. The ulna and radius are similar in

dorsoventral height, but the ulna is anteroposteriorly longer. In

dorsal view, the ulna is triangular in outline, whereas the radius is

more oval. Both elements are convex on their articular facets for

reception by the humerus (Figure 10 A). The surfaces in contact

with the humerus and other elements are pitted and rugose.

Very little of the autopodium of PMO 222.654 has been

preserved (Figure 10 A). The left intermedium and possibly the left

radiale are semi-articulated with the left zygopodium. The

intermedium articulates snugly between the radius and ulna and

is twice as thick dorsoventrally at its proximal end than at its distal

end. Several other small elements were found in the vicinity of the

left humerus but their identity is equivocal. It is not possible to

determine the number of digits in PMO 222.654.

The pelvic girdle. PMO 222.654 includes two disarticulated

ilia and an ischiopubis found in the vicinity of a series of

articulated caudal vertebrae, along with both disarticulated femora

and several limb elements (Figure 11).

One ilium is complete, whereas the other is missing its distal

portion (Figure 11 A-E). Our preferred orientation for the ilia

follows the description for Ophthalmosaurus icenicus provided by

Kirton [31], comparisons with a complete and articulated pelvic

girdle of Cryopterygius kristiansenae [15] and descriptions from

other articulated specimens [46]. Determination of the mediolat-

eral axis is based on curvature of the element along its

proximodistal axis, with the concave surface being medial. We

interpret the markedly concave margin of the ilial shaft to be

facing posteriorly. The proximal end is mediolaterally flattened,

and the proximal end twists medially, closer to the vertebral

column. The distal end is slightly larger than the proximal end and

has two facets for the ischiopubis and femur. Using these criteria

we interpret the one complete ilium to be the right. Using this

Table 1. Selected cranial measurements of PMO 222.654 (in mm).

Preserved skull length (Postorbital to preserved anterior of premaxilla) 475

Anteroposterior length of orbit 220

Maximum dorsoventral hight of orbit 160

Anteroposterior length of postorbital bar 45

Preserved length of lower jaw (right) 520

Preserved jugal length 270

Preserved maxilla length 260

Lacrimal dorsal-ventral height 80

doi:10.1371/journal.pone.0103152.t001

Table 2. Selected braincase measurements of PMO 222.654 (in mm).

Occipital condyle width/posterior width of basioccipital 9

Mediolateral width of basioccipital/ 14

mediolateral height of basioccipital

Maximum lateral length of basioccipital 60

Maximum lateral height of basioccipital 56

Length of preserved left ophistotic facet 30

Length of preserved left exoccipital facet 23

doi:10.1371/journal.pone.0103152.t002
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orientation, the prominent process visible on each ilium is located

in the proximal half of the element and projects anterodorsally

(Figure 11 A-D). This ilial process occurs on both elements and is

not a taphonomic artifact. The ilial process ends in a blunt tip and

curves slightly medially. The lateral surface of the process bears

small ridges and the medial surface is rugose. Both the proximal

and distal ends of the ilia are pitted.

The preserved ischiopubis is interpreted to be the right, based

solely on its association with the right ilium. It is nearly complete

but is slightly eroded at its distal end. The element is

mediolaterally thickened proximally, but is otherwise very flat

and anteroposteriorly broader distally (Figure 11 F-G). Both the

ischium and pubis are fused along their entire length, and there is

no indication of an obturator foramen. The maximum length is

3.3 times longer than the maximum width (Table 6). The

proximodorsal edge bears a ridge that flattens towards the distal

end [31].

Table 6. Selected pelvic girdle measurements of PMO 222.543

(in mm).

Hindfin. The hindfins are completely disarticulated and

include two femora and several partial zygopodial and/or

autopodial elements. These elements are too damaged to identify

and describe. Measurements of the individual femora can be found

in Table 7.

The identity of the femora was determined using the articulated

pelvic girdle and hind fin of Cryopterygius [15] and Maxwell et al.

[47]. The left femur (Figure 12) is better preserved than the right

(Figure S2 E-J), but the distal ends of both femora are compressed,

Table 3. Selected mandibular measurments from PMO 222.654 (in mm).

Preserved angular length 485

Preserved suranglar length 453

Maximum posterior angular height 50

Maximum posterior surangular height 25

Approximate articular anteroposterior length 65

Height of preglenoid process 12

Height of coronoid process 2

doi:10.1371/journal.pone.0103152.t003

Table 4. Selected pectoral girdle measurements of PMO 222.654 (in mm).

Coracoids

Coracoid Left

Maximum mediolateral width 201

Maximum anteroposterior length 206

Length of intercoracoid suture 142

Coracoid Right

Maximum mediolateral width 213

Maximum anteroposterior length 219

Length of intercoracoid suture 156

Length of scapular facet 45

Length of glenoid facet 49

Scapula (Right)

Maximum proximodistal length 173

Clavicles

Clavicle left

Preserved maximum length 306

Maximum width 75

Clavicle right

Maximum length 344

length of scapula facet 45

Maximum width 76

Interclavicle

Preserved anteroposterior length 160

Maximum length of lateral bar 219

doi:10.1371/journal.pone.0103152.t004
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so the facets for tibia and fibula are unclear. The proximal and

distal ends are nearly identical in anteroposterior width. The

proximal articular surface is well preserved in the left femur. This

surface is convex dorsally and concave ventrally at the location of

the ventral process. In proximal view, the femur is approximately

as dorsoventrally tall as anteroposteriorly wide. In ventral view, an

anteroposteriorly broad ventral process extends to near the

midpoint of the femur. The dorsal process originates near the

anterior margin and terminates midway along the shaft. There

appear to be only two facets located on the distal end, although

this is equivocal. On the right femur a slight ridge seems to

separate the two facets (Figure S2 H). The fibular facet is

approximately 20 percent longer than the tibia facet. The

anteroproximal side appears to have several foramina.

The axial skeleton. A total of 21 complete to partially

complete vertebrae were found, including the atlas-axis, four

articulated cervicals and several dorsal vertebrae, which were

associated with the skull. Seven articulated caudal vertebrae were

found near the pelvic girdle, along with 10 other disarticulated

sacral/caudal vertebrae. The atlas-axis complex is incomplete

and is laterally compressed, with only the right lateral side

(stratigraphically up) preserved. The complex is completely fused

and lacks any sign of a suture. The anterior face of the atlas

(Figure 13 A-B) is broad compared to the axis, and more deeply

cupped to articulate with the occipital condyle. Most of the dorsal

and cervical vertebrae were left in articulation with the dorsal ribs,

but a single cervical vertebra was removed, directly posterior to

the atlas-axis (Figure 13 C-F). It is laterally compressed and

deformed, but facets for the right rib and right side of the neural

arch are visible. The anterior surface of the vertebrae is very

concave and slightly irregular, suggesting connective tissue

investment. Two partial and disarticulated neural arches from

the sacral- and trunk region, were preserved but cannot be

measured or described further due to poor preservation (Figure 13

G-H).

Most of the preserved dorsal ribs are associated with the

dorsal vertebrae. The trunk ribs are estimated to be on average 90

cm in length. The most complete of these measures 84 cm in

length, although approximately 10 cm of the distal end was

missing (Figure 13 I). The ribs are figure-eight shaped in cross

section along the entire length of the shaft, apart from the circular

cross section at its ventral termination [46]. PMO 222.654

preserves a large number of gastralia, which are seldom

described in ophthalmosaurids. The gastralia have a circular cross

section. Their medial ends are softly rounded and the lateral ends

terminate in a thin point (Figure 13 J).

Discussion

Janusaurus lundi can be confidently placed in Ophthalmosaur-

idae on the basis of having a reduced extracondylar area of the

basioccipital, extensive lateral exposure of the angular, and a

preaxial accessory element in the forelimb [46]. The specimen has

an anterior twisting dorsal process on the humerus, which has also

been proposed as a synapomorphy of the clade [48]. A broad

contact between the premaxilla and lacrimal, although not present

in Platypterygius australis [42], has been identified as a general

synapomorphy, which the specimen could possibly share [40]. The

Table 5. Selected measurements from the left humerus of PMO 222.654 (in mm).

Maximum proximodistal length 152

Maximum anteroposterior width, proximal end 104

Maximum dorsoventral height, proximal end 86

Maximum anteroposterior width, distal end 136

Maximum dorsoventral height, proximal end 69

Mimimun anteroposterior width, midshaft 85

Length of radial facet 49

Length of ulnar facet 61

Length og preax. element facet 25

doi:10.1371/journal.pone.0103152.t005

Table 6. Selected pelvic girdle measurements of PMO 222.543 (in mm).

Ilium

Maximum anteroposterior length 97

Acetabulum process length 9

Posterior height 22

Length of anterodorsal process 24

Ischiopubis

Maximum proximodistal length 181

Anteroposterior length, proximal end 35

Anteroposterior length, distal end 55

Dorsovental thickness proximal end 11

doi:10.1371/journal.pone.0103152.t006
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following discussion compares Janusaurus lundi to all described

Middle Jurassic to Early Cretaceous ophthalmosaurids as well as

an undescribed ophthalmosaurid, PMO 222.667, from the

Agardhfjellet Formation and Malawania anachronus [28]. A skull

reconstruction can be found in Figure 14.

Dermatocranium
The subnarial process of the premaxilla appears to have

contacted and possibly even broadly overlapped the anterior

process of the lacrimal, similar to that of Caypullisaurus bonapartei
and Aegirosaurus leptospondylus [49–51], but unlike Platypter-
ygius australis which lacks this contact [42]. Although a

premaxilla-jugal contact is unclear, this area lacks any evidence

for the broadly interdigitating contact seen in Brachypterygius
extremus [52]. The subnarial process of the premaxilla of

Janusaurus lundi participates in the anterior and anteroventral

boundary of the external naris similar to the condition in C.
bonapartei and A. leptospondylus [49–51], but unlike the

morphology in P. australis and Athabascasaurus bitumineus which

lack any contact [42,53]. This also differs from the condition in

Ophthalmosaurus icenicus, where the premaxilla only borders the

anteroventral margin of the external naris [31].

The maxilla of Janusaurus lundi has considerable lateral

exposure, particularly posteriorly, similar to the condition in

Caypullisaurus bonapartei, Palvennia hoybergeti and Cryoptery-
gius kristiansenae [15,49], but not to the degree of Leninia
stellans, where the maxilla extends as far as the mid-point of the

orbit [29]. This trait is absent in Ophthalmosaurus icenicus and

Athabascasaurus, where the maxilla has almost no posterior

exposure [31,53]. The maxilla of J. lundi fails to contact the

lacrimal; this differs from O. icenicus, Maiaspondylus lindoi and P.
hoybergeti, where the ventral border of the lacrimal clearly

contacts the maxilla in lateral view [15,31,54]. The maxilla does

not appear to clearly contact the external naris as in Platypterygius
australis and M. lindoi [42,54]. In the description for M. lindoi,
Maxwell and Caldwell [54] described the extensive overlap

between jugal and maxilla as an autapomorphy for the species,

but this feature is now also described in J. lundi and C.
kristiansenae [15]. Despite lacking its anterior-most margin, the

maxilla shows extensive anterior and lateral exposure compared to

most ophthalmosaurids [15,42,53].

The nasal of Janusaurus lundi participates in the external naris

and forms the dorsal border, possibly as an arched overhang

similar to the morphology in Platypterygius australis, and

Ophthalmosaurus icenicus [31,42]. The nasal forms the entire

dorsal boundary of the prefrontal similar to the morphology in O.
icenicus, Sveltonectes insolitus and Palvennia hoybergeti, but

unlike the condition in Athabascasaurus bitumineus where the

posterodorsal portion of the prefrontal is covered by the

postfrontal [15,31,41,53].

A prominent anterior process of the lacrimal is present and

more pronounced than in Cryopterygius kristiansenae [15], but

less pronounced than in Aegirosaurus leptospondylus, Ophthal-

mosaurus icenicus, Platypterygius americanus and Platypterygius

bannovkensis [31,51,55,56]. The lacrimal of Janusaurus lundi

clearly forms the entire posterior border of the external naris,

unlike the anatomy in C. kristiansenae, Platypterygius australis

and Athabascasaurus bitumineus, where the lacrimal is excluded

from the external naris by an ascending process from the maxilla

[15,42,53]. The gently concave orbital margin of the lacrimal in J.

lundi contrasts with the 90 degree bend seen in C. kristiansenae

[15]. The external naris is dorsoventrally taller than anteropos-

teriorly long, similar to that in C. kristiansenae, but unlike the

condition in other ophthalmosaurids such as Palvennia hoybergeti,

O. icenicus and A. leptospondylus, where the naris is longer than

tall [15,31,51]. The prefrontal does not participate in the border of

the external naris, as in O. icenicus and Sveltonectes insolitus

[31,41].

There appears to be significant variation of the morphology and

relationships of the anterior process of the jugal in ophthalmo-

saurids. Thus, we have separated the variation into two different

states and incorporated them into the phylogenetic analysis

(Character 11): 1) the anterior process of the jugal terminates

posterior to the anteroventral margin of the lacrimal; 2) the

anterior process of the jugal reaches or extends anterior to the

anteroventral margin of the lacrimal. Most ophthalmosaurids

possess the first state (0), including Leninia stellans, Maiaspondylus
lindoi, Cryopterygius kristiansenae, Caypullisaurus bonapartei,
Aegirosaurus leptospondylus, Sveltonectes insolitus, Ophthalmo-
saurus icenicus and Athabascasaurus bitumineus
[15,29,31,41,51,53,54], while Platypterygius australis, Caypulli-
saurus bonapartei and Brachypterygius extremus have the second

state (1) [31,42,50]. Janusaurus lundi is tentatively referred to the

first state, as the jugal terminates ventral to the lacrimal but does

not reach the anteroventral end. The shape of the jugal at the

ventral border of the orbit also shows great variation throughout

Ophthalmosauridae; the degree of ‘‘bowing’’ varies from being

entirely straight, to being gently bowed. The jugal of J. lundi has a

slightly bowed anterior process of the jugal which is neither as

straight as the jugal of B. extremus and C. kristiansenae, or as

gently bowed as the jugal observed in A. leptospondylus, O.
icenicus, Palvennia hoybergeti and P. australis [15,31,42,51,52].

The variation in the degree of bowing needs to be further

investigated and constrained considerably before being included in

a phylogenetic analysis. The presence of a posterodorsal process of

the jugal articulating with the postorbital is also subject to

Table 7. Selected femora measurements of PMO 222.654 (in mm).

Left Femur

Maximum proximodistal length 103

Maximum anteroposterior width, proximal end 57

Maximum height, proximal end 49

Maximum anteroposterior width, distal end 58

Right Femur

Length of tibial facet 17

Length of fibular facet 21

doi:10.1371/journal.pone.0103152.t007
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variation across the majority of described species in which this

region is well-preserved, including O. icenicus, A. leptospondylus,
P. australis, S. insolitus and A. bitumineus [31,41,42,51,53]. In C.
kristiansenae the process is absent entirely, whereas in J. lundi the

process is significantly prominent, comprising nearly half of the

posterior margin of the orbit [15]. There is also great variation in

the elements contacting the posterodorsal process of the jugal. We

have separated this variation into two states, which are included

into the phylogenetic analysis (Character 12): 1) the posterior

margin of the jugal articulates with the quadratojugal and the

postorbital; 2) the quadratojugal is excluded from the posterior

margin of the jugal by the postorbital. In J. lundi, S. insolitus and

A. bitumineus the quadratojugal is excluded from the jugal by the

postorbital [41,53]. Alternatively, in O. icenicus and Leninia
stellans the jugal is overlapped by the postorbital, but a posterior

flange overlaps the quadratojugal [29,31], and in C. kristiansenae,

P. australis and A. leptospondylus, the jugal borders the postorbital

and quadratojugal ventrally [15,42,51].

The anteromedial edge of the postfrontal overlaps the parietal

broadly, possibly similar to the state in Athabascasaurus
bitumineus [53] but unlike the postfrontal in Ophthalmosaurus
icenicus, where this is limited to a small area at the anterior of the

supratemporal fenestrae [31]. The posterior process of the

postfrontal expands mediolaterally to overlap the supratemporal,

unlike the condition in Aegirosaurus leptospondylus, Platypterygius
australis and Leninia stellans, where the postfrontal is constrained

and terminates narrowly posteriorly [29,42,51]. There is no

obvious parietal crest or ridge, unlike P. australis, where a parietal

crest is present [42].

The extent of the lateral margin of the supratemporal of

Janusaurus lundi resembles that in Athabascasaurus bitumineus,
forming the entire lateral margin of the supratemporal fenestra.

This condition differs from that in Aegirosaurus leptospondylus,
Ophthalmosaurus icenicus and Platypterygius australis, where the

supratemporal forms only half of the border [31,42,51]. The

supratemporal forms most of the posterior border of the

supratemporal as in most ophthalmosaurids, which differs from

the reduced condition in Leninia stellans [29].

The postorbital bar is relatively narrow anteroposteriorly,

similar to that of Palvennia hoybergeti, Aegirosaurus leptospondy-
lus, Nannopterygius enthekiodon and Ophthalmosaurus icenicus
[15,31,51], but markedly different from the broad configuration

observed in Cryopterygius kristiansenae, Caypullisaurus bonapartei
and Platypterygius americanus [15,49,55]. The postorbital of

Janusaurus lundi has reduced lateral exposure compared to that

in Platypterygius australis, A. leptospondylus, Sveltonectes insolitus
and Athabascasaurus bitumineus [41,42,51,53]. The quadratojugal

has a large lateral exposure, more than in O. icenicus but not to

the degree of A. bitumineus [31,53]. Similar to the anatomy in O.
icenicus and Platypterygius australis, the quadratojugal of J. lundi
bears a short posterior process [31,42], which is absent in C.
kristiansenae and A. bitumineus [15,53]. The absence of a

squamosal in J. lundi is similar to the condition in P. hoybergeti
and C. kristiansenae [15], but unlike the condition in O. icenicus,
Brachypterygius extremus and A. bitumineus [31,52,53].

The extracondylar area of the basioccipital in Janusaurus lundi
is reduced as in Palvennia hoybergeti, Sveltonectes insolitus,
Aegirosaurus leptospondylus, Arthropterygius chrisorum and PMO

222.667 [15,33,40,41,51]. This contrasts with the condition seen

in Ophthalmosaurus icenicus, Mollesaurus periallus and Caypulli-
saurus bonapartei, where the extracondylar area is more

prominent [31,49,50,57]. In posterior view, the outline of the

basioccipital differs markedly from the more pentagonal shape

seen in O. icenicus, M. periallus and the undescribed PMO

222.667 [31,57,58], by being mediolaterally wider than dorso-

ventrally tall, giving it an oval-like shape similar to that seen in

Athabascasaurus bitumineus, S. insolitus, Palvennia hoybergeti
and Platypterygius spp.[15,41,42,53]. In lateral view, the profile of

the basioccipital is similar to P. hoybergeti in being anteroposte-

riorly longer than tall. The posterior face appears to lack a

notochordal pit present in A. chrisorum and P. hoybergeti [15,40].

J. lundi lacks a ventral notch, which is present in O. icenicus [31].

The gracile stapes of Janusaurus lundi differs from the stouter,

more massive stapes of Ophthalmosaurus icenicus, Mollesaurus
periallus, Athabascasaurus bitumineus and Platypterygius australis
[31,42,53,57], and its stapedial shaft is even thinner than that of

Palvennia hoybergeti and Acamptonectes densus [15,23]. The

quadrate process is reduced, similar to A. densus [23]. The

horizontally-oriented ridge on the medial surface separates the

facet for the ophisthotic and that for the basioccipital and

basisphenoid, unlike the groove described in P. hoybergeti and O.
icenicus [15,31]. A depression is also described in A. densus, but is

situated anteroventrally [23]. The articular face for the ophisthotic

is relatively smaller in J. lundi than that observed in P. hoybergeti
[15].

The angular comprises two-thirds of the dorsoventral height of

the posterior ramus of the mandible of Janusaurus lundi, similar

to the angular in Athabascasaurus bitumineus [53]. This differs

from the condition in other ophthalmosaurids, such as Ophthal-
mosaurus icenicus and Palvennia hoybergeti, where the posterior

ends of the angular and surangular contribute equally to the

dorsoventral height of the ramus in lateral view [15,31]. The

apparent contact between the angular and the articular, which is

not observed in other ophthalmosaurids, has been described in

some species of Stenopterygius [43].

Janusaurus lundi has a prominent dorsomedial preglenoid

process on the surangular, which has been described in some

specimens of Ophthalmosaurus icenicus, Platypterygius australis
and Acamptonectes densus (GLAHM 132588) [23,31,42]. A low

coronoid process occurs just anterior to the preglenoid process of

the surangular, which is also present in O. icenicus. A similar

preglenoid process and a coronoid process can be observed on a

specimen of O. icenicus (OUM J.10574/12) and similar, although

less distinct processes are seen on specimen PMO 222.654. No

such processes occur in Palvennia hoybergeti [15]. A slight dorsal

process is present also on the prearticular, which is a putative

autapomorphy of this species, as this element is usually covered by

the splenial in other species.

Recent work has demonstrated that the dentition of ophthal-

mosaurids can vary considerably in size and in the number of teeth

[15,20,41,53,59]. The fragmentary teeth found in the holotype

specimen of Janusaurus lundi, appear smaller and more gracile

compared to those in other ophthalmosaurids, such as Cryopter-
ygius kristiansenae, Palvennia hoybergeti, Brachypterygius extre-
mus and Platypterygius australis [15,31,42]. Poor preservation

precludes further comparisons.

Hyoid elements are infrequently reported in ophthalmosaurids,

in part because they are usually disarticulated or obscured from

view [46]. Hyoids have been described in specimens of

Sveltonectes insolitus, Platypterygius spp., Acamptonectes densus,
and Cryopterygius kristiansenae (pers. obs. AJR, PMO 214.578)

[15,23,41,42]. In all specimens, the hyoids are rod-like and slightly

curved. The anterior end is convex, club-like, smooth and laterally

compressed in in PMO 222.654, as in S. insolitus, whereas the

posterior end is convex and club-like in Platypterygius australis
and Platypterygius hercynicus ([41,42,60].
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Appendicular and axial skeleton
The taxonomic utility of the pectoral girdle in many

ophthalmosaurids is questionable, due to the large amounts of

intraspecific variation [61]. However, the pectoral girdle of

Janusaurus lundi is well preserved and provides new data on

morphological variation in this region. The clavicles of J. lundi are

more robust and thickened in comparison to those in Cryopter-
ygius kristiansenae and PMO 222.667 [15], and more closely

resemble those of Ophthalmosaurus icenicus and Aegirosaurus
leptospondylus [31,51].

The scapula of Janusaurus lundi is notably shorter proximo-

distally than the same element in most ophthalmosaurids, when

compared against the anteroposterior length of the coracoid, a

feature that does not seem attributable to taphonomic distortion.

The interclavicles of Ophthalmosaurus icenicus (pers. obs. AJR:

NHMUK R.2180, R.2853, R.4753 CAMSM; J.68689eb, OUM;

J.48012) and PMO 222.667 are conspicuously thickened along the

anterior margin of the lateral ramii; this thickening is absent in J.
lundi. Most notably the presence of an interclavicular trough is

unknown in any other ophthalmosaurid, and this appears to be an

autapomorphy of J. lundi. Likewise, a ventral foramen is absent in

O. icenicus, Aegirosaurus leptospondylus and Cryopterygius
kristiansenae [15,31,51].

The coracoids are similar in shape to that of Acamptonectes
densus, Ophthalmosaurus icenicus (pers. obs. AJR CAMSM

J29808, OUM J.48009), Cryopterygius kristiansenae and Aegir-
osaurus leptospondylus, and are most similar to that of Arthropter-
ygius chrisorum and Undorosaurus gorodischensis in general

morphology [15,23,30,40,44,51]. They differ from the strongly

dorsoventrally thickened coracoids in Platypterygius australis and

Sveltonectes insolitus [41,62]. The intercoracoid symphysis extends

along two-thirds of the medial length in Janusaurus lundi, in

contrast to C. kristiansenae, where the symphysis forms only half

of the medial length [15]. The coracoid symphysis of J. lundi is

dorsoventrally thinner than in S. insolitus, O. icenicus and P.
australis and is of similar height to that of A. chrisorum
[31,40,41,62]. The anterior notch in J. lundi is rounded and

shallow, in contrast to S. insolitus, where it is deep and narrow,

and in C. kristiansenae and A. densus where it is deep and wide

[15,23,41]. The scapular facet is approximately half the size of the

glenoid facet as in A. chrisorum and C. kristiansenae [15,40], in

contrast to the somewhat smaller facet in U. gorodischensis [30].

In overall morphology the humerus of Janusaurus lundi is most

similar to that in Arthropterygius chrisorum, Undorosaurus
gorodischensis and Maiaspondylus lindoi [30,40,54], in that there

is little constriction of the midshaft and similar anteroposterior

lengths on the proximal and distal ends. This differs from the

humerus of Cryopterygius kristiansenae, Sveltonectes insolitus and

Platypterygius australis, where the proximal end is enlarged or of

the same length as the distal end [15,41,62]. Similar to the

humerus in the holotype specimen of A. chrisorum and to some

extent that in S. insolitus [40,41], the proximal surface of the

humerus in J. lundi is nearly flat, even though these specimens are

interpreted to be adults. The elevated rim found on the proximal

articular surface of J. lundi and PMO 222.667 is similar to the

condition described for U. gorodischensis and A. chrisorum.

However, pending first-hand examination of the specimens, it is

unclear if these structures are truly homologous [30,40]. The short

and narrow dorsal process of J. lundi differs from the tall dorsal

process found in S. insolitus, Acamptonectes densus and many

species of Platypterygius [23,41,60,62]. Unlike the humerus of

Ophthalmosaurus icenicus [31,46], the deltopectoral crest of J.
lundi is more prominent in proximal and anterior views, although

it is still relatively shorter than the dorsal process.

There are three large and distinct distal facets on the humerus

in Janusaurus lundi, while only two distal facets are found in

Nannopterygius enthekiodon, Platypterygius americanus and

Sveltonectes insolitus [31,41,63], and a diminutive third facet is

sometimes found in Cryopterygius kristiansenae and Undorosaurus
gorodischensis [15,30]. In some taxa which possess three facets,

such as Brachypterygius extremus, Aegirosaurus leptospondylus and

Maiaspondylus lindoi [51,52,54], the anterior-most is interpreted

as the radius, not the preaxial element, as found in J. lundi. The

facet for the radius is dorsoventrally wider, where the facet for the

ulna is anteroposteriorly longer, unlike Arthropterygius chrisorum
and Ophthalmosaurus icenicus, where the radius facet is the larger

[31,40]. However, this trait seems to vary individually, particularly

in Acamptonectes densus [23].

The elements of the zeugopodium of the forefin in Janusaurus
lundi vary in dorsal outline; the radius is oval, the ulna slightly

triangular and the preaxial element is circular. This differs from

the elements in Sveltonectes insolitus, Cryopterygius kristiansenae,

Aegirosaurus leptospondylus and Maiaspondylus lindoi, where the

radius and ulna are pentagonal in form [15,41,51,54]. The

preaxial accessory is three times thicker proximally than distally as

in Arthropterygius chrisorum and Ophthalmosaurus icenicus
[31,40]. The radius is slightly convex on the proximal surface,

similar to the radius in O. icenicus [31]. The ulna is the largest

element in PMO 222.654, as in specimens of O. icenicus and S.
insolitus [31,41]. The pointed process observed on the proximal

edges of the ulna and radius in A. chrisorum are not present on the

described specimen [40].

The pelvic girdle of Janusaurus lundi is distinctive compared to

that in all other ophthalmosaurids, in that the ilium bears a

prominent, anterodorsally directed ilial process. A pelvic element

figured in the description of Caypullisaurus bonapartei, is

tentatively interpreted as a pubis [49,50]. Given the unusual ilial

morphology seen in J. lundi, there is the possibility that this

element may in fact be an ilium. The described specimen PMO

222.654 illustrates the possible morphological variation of this

element, so the pelvic element of C. bonapartei should be

reexamined to confirm this.

The ischiopubis of Janusaurus lundi lacks an obturator

foramen, similar to the condition in Aegirosaurus leptospondylus,
Athabascasaurus bitumineus, Platypterygius australis and Svelto-
nectes insolitus [41,51,53,64]. Many other ophthalmosaurids

possess an obturator foramen, such as Ophthalmosaurus icenicus
[31], whereas Cryopterygius kristiansenae and Undorosaurus
gorodischensis have an incompletely fused ischium and pubis at

their distal ends [15,30]. In J. lundi, the distal end of the

ischiopubis is 1.6 times wider than the proximal end, whereas it is

over twice as wide in A. leptospondylus [51].

The femur of Janusaurus lundi measures two-thirds of the

proximodistal length of the humerus, as in Arthropterygius
chrisorum and Ophthalmosaurus icenicus [31,40], but the femur

is only half the size of the humerus in Caypullisaurus bonapartei,
Platypterygius hercynicus and Aegirosaurus leptospondylus [49-

51,60].The proximal and distal ends have the same maximum

anteroposterior width, unlike the femur in Cryopterygius kristian-
senae and Undorosaurus gorodischensis where the distal end is

more expanded [15,30]. The proximal end of the femur in

Platypterygius australis differs from the condition in J. lundi, in

that the dorsal and ventral processes are both prominent, giving it

a completely different shape [64]. The dorsal process is small and

rounded in profile and is located anteriorly as in O. icenicus, A.
chrisorum and C. kristiansenae [15,31,40]. In contrast, the dorsal

process in Sveltonectes insolitus and P. australis is much narrower

and is located closer to the proximal-distal midline of the femur in
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P. australis [41,64]. J. lundi has a prominent ventral process on

the femur, similar to A. chrisorum and C. kristiansenae [15,40].

The ventral process of J. lundi terminates just beyond the mid-

point of the femur, as in S. insolitus and Platypterygius americanus
[41,55], but unlike O. icenicus, C. kristiansenae and A. chrisorum
where it terminates at or proximal to the mid-point [15,31,40]. As

in most ophthalmosaurids, the distal end of the femur in J. lundi
bears two facets for the tibia and the fibula, in contrast to

Platypterygius spp., which have three [63].

Phylogeny
Our analysis resulted in 3 equally most parsimonious trees, with a

length of 128 steps; the strict consensus tree is presented in

Figure 15. Congruent with Fischer et al. [23], Arthropterygius is

recovered as the basal member of Ophthalmosauridae, along with

Undorosaurus, which is included here for the first time in a

phylogenetic analysis. Our analysis also recovers two major

ophthalmosaurid clades, that are broadly congruent with Ophthal-

mosaurinae and Platypterygiinae of Fischer et al [23]. Within

Platyperygiinae, the tree topology is largely similar to that recovered

by Fischer et al. [23], with the major exception being the exclusion

of Athabascasaurus, which is here nested in Ophthalmosaurinae. In

our analysis, Ophthalmosaurinae is greatly expanded from that

recovered by Fischer et al. [23] in terms of taxonomic composition.

Within Ophthalmosaurinae, there are two subclades; 1) Acampto-
nectes densus (Leninia stellans+Ophthalmosaurus icenicus), and 2)

Mollesaurus periallus (Athabascasaurus bitumineus (SML taxa)).

However, it is noted that bootstrap percentages and Bremer

Support values for most clades is poor.

The most significant result of this analysis is the recovery of all

three named species of SML ichthyosaurs (Janusaurus, Cryopter-
ygius and Palvennia) and PMO 222.667 in a single polytomy

within Ophthalmosaurinae, which in turn is the sister group to

another high latitude taxon, Athabascasaurus. Although relation-

ships among the SML ichthyosaurs are not resolved, it does

suggest the presence of a single clade of Boreal ophthalmosaurids

that existed just prior to the Jurassic-Cretaceous boundary. From a

biogeographic standpoint, this result is intriguing in that it mirrors

interpretations regarding endemicity among Boreal ammonites

and onychites (cephalopod hooklets) at this same time [65,66].

Mutterlose et al. [67] proposed that the Greenland-Norwegian

segment of the NE Atlantic was the deepest section of the seaway

between the Boreal and Tethys Seas, bordered at both ends by

shallower waters and islands. As such, the effect of sea-level

fluctuations can significantly alter the palaeobiogeographic distri-

bution of marine faunas, with periods of regression enhancing

provincialism [66]. Low local sea-level at this time could explain

the varying regional degree of the provinciality of the faunal

Figure 15. Strict consensus tree of the family Ophthalmosauridae. The tree is formed of three MPTs with 128 steps, showing relationships
among Ophthalmosauridae and the outgroups. Boot strap value marked with number for values .50%, Bremer Support values shown for 2 and
above.
doi:10.1371/journal.pone.0103152.g015

A New Upper Jurassic Ophthalmosaurid Ichthyosaur from Spitsbergen

PLOS ONE | www.plosone.org 22 August 2014 | Volume 9 | Issue 8 | e103152



realms [67]. The presence of endemic marine faunas in the Boreal

realm at this time is also important, in that it provides potential

insight into the timing and nature of connectivity between the

water masses of the Tethyan and Boreal realms during the

opening of the North Atlantic rift basin. Although these results

provide an intriguing hypothesis regarding the paleobiogeography

of ophthalmosaurids, more robust interpretations will ultimately

depend on the results of ongoing phylogenetic work on the clade,

particularly with respect to increasing taxon sampling and

expanding the numbers of taxonomically informative characters.

Conclusions

Janusaurus lundi gen. et sp. nov. is a new ophthalmosaurid

ichthyosaur from the early Volgian of Spitsbergen (Svalbard). It

possesses a unique combination of cranial and post-cranial features,

compared to other ophthalmosaurids, including autapomorphic

features of the pelvic and pectoral girdles. This new species adds to

our knowledge about the diversity of ophthalmosaurid ichthyosaurs

from the Jurassic-Cretaceous boundary. Including Janusaurus
lundi, nine genera of ichthyosaurs are now known from the

Tithonian/Volgian, four of which are found in high latitude

regions. Significantly, three of these are from the SML, and other

new taxa are currently under study. Phylogenetic analysis indicates

that all the Svalbard ophthalmosaurids nest within Ophthalmo-

saurinae, and they form an unresolved clade of Boreal ichthyosaurs.

All of the described ophthalmosaurid taxa from Spitsbergen to date

are endemic and are not referable to taxa from lower latitudes.

Based on the available information both plesiosaur and ichthyosaur

diversity may parallel ammonite diversity, in which there are unique

boreal taxa at this time [15]. This sparks the question whether there

was a complete marine connection towards the Tethys Sea the

entire NE Atlantic at this time interval, or simply that it was

inaccessible. Our knowledge of the Svalbard ophthalmosaurids is

far from complete, as many specimens have yet to be described. The

marine amniote material from the Slottsmøya Member will

continue to expand our knowledge of the diversity and distribution

of marine amniotes during the latest Jurassic.
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Figure S1 Medial view of the skull of Janusaurus lundi
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C: anterior view; D: posterior view, scale = 5 cm. E-J: Right

femur; E: dorsal view; F: ventral view; G: proximal view; H: distal
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Argentina. Geobios 45: 535–540.
34. Fernández MS, Talevi M (2013) Ophthalmosaurian (Ichthyosauria) records

from the Aalenian–Bajocian of Patagonia (Argentina): an overview. Geological
Magazine 151: 49–59.

35. Goloboff P, Farris J, Nixon K (2010) T.N.T. 1.1: Tree Analysis Using New

Techology Available: http://www.lillo.org.ar/phylogeny/tnt/. Accessed 2014
Jul 13.

36. Novis LK (2012) A taphonomic study of marine reptiles from the Upper Jurassic
of Svalbard. M. Sc. Thesis, University of Oslo. 54 p.

37. Massare J (1987) Tooth morphology and prey preference of Mesozoic marine

reptiles. Journal of Vertebrate Paleontology 7: 121–137.
38. Johnson R (1977) Size independent criteria for estimating relative age and

relationships among growth parameters in a group of fossil reptiles (Reptilia-
Ichthyosauria). Canadian Journal of Earth Sciences 14: 1916–1924.

39. Kear BP, Zammit M (2014) In utero foetal remains of the Cretacous

ichthyosaurian Platypterygius: ontogenetic implications for character state

efficacy. Geological Magazine 151: 71–86.

40. Maxwell EE (2010) Generic reassignment of an ichthyosaur from the Queen

Elizabeth Islands, Northwest Territories, Canada. Journal of Vertebrate

Paleontology 30: 403–415.

41. Fischer V, Masure E, Arkhangelsky MS, Godefroit P (2011) A new Barremian

(Early Cretaceous) ichthyosaur from Western Russia. Journal of Paleontology

31: 1010–1050.

42. Kear BP (2005) Cranial morphology of Platypterygius longmani Wade, 1990

(Reptilia: Ichthyosauria) from the Lower Cretaceous of Australia. Zoological

Journal of the Linnean Society 145: 583–622.

43. Godefroit P (1993) The skull of Stenopterygius longifrons (Owens 1881). Revue
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