
Implementing
High-Performance Delaunay
Triangulation In Java
Erik Thune Lund
Department of Informatics, University of Oslo
Masteroppgave høsten 2014

Preface

I would like to thank my supervisor, Arne Maus, for his extreme patience in
helping me complete this project.

1

Contents

1 Introduction 4

2 Overview of This Report 6

3 Background 9

4 Algorithms 11
4.1 Delaunay Triangle Properties 11

4.1.1 The Circumcircle Property 12
4.1.2 The Closest Neighbours Property 13

4.2 Testing a Triangle for Validity 14
4.3 Standard Search Triangulation 15
4.4 The Convex Hull . 15
4.5 Closest Neighbours of a Point 16
4.6 Radial Triangulation . 16

5 Data Structures 19
5.1 The Set of Points . 19

5.1.1 Point As a Class . 19
5.1.2 Interleaved Array of Components 20
5.1.3 Seperate Component Arrays 20

5.2 Sorting and Partitioning the Set of Points 21
5.2.1 Sorting . 21

5.3 Partitioning . 22
5.3.1 Segment Partitioning 22
5.3.2 Volume Partitioning 24
5.3.3 Hierarchical Segment Partitioning 25
5.3.4 Grid Partitioning . 25

5.4 The Convex Hull . 27
5.4.1 Querying the Hull for Points 28
5.4.2 Traversal of the Hull 28

2

6 Implementation 29
6.1 Data Structures . 29

6.1.1 The Set of Points as Component Arrays 29
6.1.2 The Grid Partitioner and Sorting 30
6.1.3 The Convex Hull . 33

6.2 Algorithms . 33
6.2.1 Nearest Neighbours by Standard Search 33
6.2.2 Nearest Neighbours by Distance Sorting 35
6.2.3 The Convex Hull by Quickhull 35
6.2.4 Triangulation by Standard Search Radial Triangulation 37
6.2.5 Triangulation by Nearest Circumcenter Radial Trian-

gulation . 39
6.2.6 Triangulation by Existing Edges Radial Triangulation 39

6.3 Thread Labour Division . 39

7 Results 40
7.1 Data Structures . 40

7.1.1 Data Types, Integer vs int 40
7.1.2 Point As a Class . 41
7.1.3 Interleaved Array of Components 41
7.1.4 Seperate Component Arrays 42
7.1.5 Caching Behaviour in PointSet Alternatives 42

7.2 Algorithms . 42
7.2.1 The Convex Hull by QuickHull 42
7.2.2 Closest Neighbours . 43
7.2.3 Triangulation . 44
7.2.4 Algorithm Performance 45

7.3 Program Features . 46

8 Conclusion 48
8.1 Goals . 48
8.2 Implementing in Java . 49
8.3 Further Work . 49

3

Chapter 1

Introduction

"Det skal lages en effektiv (tidsmessig rask og med kapasitet
til mange datapunkter) i Java av Delaunay-triangulering av n
punkter i planet, og det skal lages en meget enkel grafisk modul
for å fremvise en slik triangulering på skjerm. I denne mod-
ellen skal ulike triangulerings-algoritmer kunne testes ut slik at
først bestemmes et større antall (over 50%) av kantene i trian-
guleringen ved de k nærmeste naboene til hvert punkt (se Maus,
Moen Drange: «All closest neighbours are proper Delaunay edges
generalized, and its application to parallel algorithm» Nik 2010,
Bodø). Ut fra dette fullføres så Delaunay-trianguleringen med
minst to andre algoritmer og deres godhet skal vurderes ut fra
tidsforbruk. Den grunnleggende algoritmen basert på naboer skal
implementeres både som en sekvensiell og en parallell algoritme,
og om mulig også de andre algoritmene som undersøkes både
få en parallell og sekvensiell utforming. Til parallellisering kan
PRP-systemet nyttes (som automatisk parallelliserer en rekursiv
løsning). Modellen skal utformes slik at det for senere studen-
ter blir relativt enkelt å bygge ut med algoritmer for trekking av
høydekoter, volumberegninger o.l ."

Over the years, it has become increasingly important to model physical sys-
tems with greater accuracy, especially terrain maps and in simulations. This
can require a very large number of spatial data points which are often tri-
angulated to create a smooth mesh for further processing. One of the pri-
mary, if not the primary method of triangulation is Delaunay triangulation.
Algorithms have been developed previously that can create the Delaunay
triangulation in O(n log log n) time, but as the amount of data increases
even these become too slow. To remedy this, parallel algorithms have been
developed that can exploit the high degree of parallelism and concurrency
in modern computer architectures.

4

The project is all about the design, documentation and implementation
of a program to perform Delaunay triangulation. The program is written
in Java and is focused on performance both with regard to run-time and
memory usage. A goal for the program is to triangulate at least 10 million
points within a reasonable amount of time. The program is designed for the
development and testing of new sequential and parallel algorithms and data
structures to be used when performing Delaunay triangulation.

The documentation in this report and the source code are meant to be
used for understanding the program so that it may be used as an example
in future efforts or to be extended with new capabilities. The program can
create the Delaunay triangulation of the set of points, P , which contains n
points in a plane by using a variety of algorithms and data structures. An
important goal of the project is to explore the ability to parallelize the process
on a modern computer architecture and this is noted where appropriate.

Some of the conclusions in short are that Delaunay triangulation is a
problem that benefits greatly from parallelization with up to 5x speedups on
an 8-core(4 physical cores) CPU. The behaviour of the Java JIT-compiler
is an important factor to take into account when writing a high-performance
Java program. The importance of CPU-cache should not be underestimated
in the design of data structures and algorithms on modern architectures and
finally that triangulating 10 million points requires well within the range of
reasonable time(Between 15-20s on the test machine).

5

Chapter 2

Overview of This Report

Chapter 1 is an introduction to the project. It briefly describes the goals of
the project and some of the content in the report as well as a summary of
the conclusions drawn.

Chapter 2 is this section that describes each chapter in brief and what
can be expected in each of them.

Chapter 3 outlines some of the history behind Delaunay triangulation.
How the triangulation has been done, what it has been used for and how this
has changed over the years. Moving up to more modern history it describes
some of the approaches and breakthroughs that have been made.

In chapter 4 the theory of Delaunay triangulation, the various properties
of the triangulation and the algorithms used in the program are described.
The basic properties of the triangulation are described and how they are
used to determine the triangulation. Several algorithms describing how to
create the triangulation of P are outlined, some of which are implemented
in the program. They are described in detail and later evaluated in terms of
their efficiency, with regard to run-time, memory requirements and overall
complexity.

In chapter 5 I discuss the data structures that the algorithms use. The
goals and requirements of each data structure is outlined and alternatives
for each discussed. There are many alternatives and several of the most
promising or most practical ones are described in their own section. The
data structures are too evaluated in terms of efficency, specifically in how
they impact run-time performance and memory usage.

In Chapter 6 the structure of the program is then described, outlining
the different classes and modules of the program and how they interact. Ex-
planations of design decisions are given as well as information on where it is

6

possible to extend the program. All of the internals of the program, includ-
ing the several common steps done, how the algorithms and data structures
fit in, the alternative capabilities and several other specific details.

When discussing the results of the implementation, each data structure
is given its own section. Here the exact implementations of each data struc-
ture is discussed as well as the measures taken to ensure good performance.
Testing is also done to describe the performance profile of each structure and
to compare alternatives. Of interest is also how well these data structures
perform in a multi-threaded environment and which, if any precautions have
been undertaken to ensure thread-safety.

Following the data structures, the implementations of the algorithms
are described in similar detail. All of the measures and techniques used to
ensure that the algorithms both perform well and give a valid triangulation
are explained. The algorithms are compared against each for different values
of n and evaluated based on their run-time and memory requirements. Since
all the algorithms can run as either sequential or parallel algorithms, the
precautions in the implementation taken to ensure this is possible are also
described.

After explaining how the program works and all its internals, the results
are analyzed and presented in chapter 7. This includes how the different
data structures and algorithms performed as well as possible reasons for why.
There are sections on the various configurable parameters in the program,
mostly those pertaining to to run-time and how they impact it. Of particular
interest here is how well the program scales to multiple cores with different
parameters, algorithms and data structures.

Problems during implementation, both performance trade-offs and bugs
are listed and described in as much detail as they are known. Possible fixes
for some of the bugs are described as well as reasons for why they were not
implemented.

In the final chapter, chapter 8, some conclusions are drawn about how
well the goals have been met. What kind of performance profile that has
been achieved, whether the program is suitable to used for further learning,
if it can be extended to accommodate new algorithms and data structures
easily and what can be expected from it in general.

Some comments are also made on the experience of programming high
performance Java and what measures had to be taken to avoid some of the
performance problems that can occur.

Finally there are some thoughts on how the program could be improved.
Which algorithms or data structures that might be a benefit but were not

7

tested during the course of project and which bottlenecks should be solved
to give the greatest performance increases.

8

Chapter 3

Background

Delaunay triangulation is a method for finding the Delaunay triangles of a
set of points, in this case in a plane. Delaunay triangles are defined as the
triangles of a set P of n points where three points from P form a triangle and
the circumscribed circle of each triangle contains no points from P internally.
Every point in P lies on the circumference of such a circumcircle. These
triangles create a connected graph of all the points, leading to the smallest
angle in the set being maximized, resulting in the mesh of triangles having
few skinny triangles. Since the mesh has few skinny triangles, this can be a
benefit for processing in applications by humans and machines alike.

Delaunay triangulation was first written about by Boris Delaunay in
1934[1] when he devised the method as a form of triangulation. It is most
often used to model a surface defined by P , which is a set of N-dimensional
points. While the triangulation can be generalized to N dimensions, the
most common ones to be used are 2- and 3-dimensional triangulations.

The triangulation itself has, in the past, been an O(n3) procedure which
may involve amongst other things: determining the convex hull of the points,
performing many costly trigonometric or square-root calculations to de-
termine their attributes, and so on. A number of algorithms have been
developed of varying efficiency to deal with the problem(from O(n2) to
O(n log(n))) which use methods to sort the points, search only the closest
neighbours and other techniques. This report will look at ways to efficiently
parallelize the process and make use of the Closest-Neighbours property as
a way of efficiently dealing with triangulation.

Delaunay triangulation, particularly the 2-dimensional kind is often used
to create a surface out of a given set of points, most often as a means to
create a mesh, such as for modelling a geographic surface or the surface of
an object. The triangulation can also be used for more abstract problems
such as finding the Euclidian minimum spanning tree.

9

Delaunay triangulations can also be used as the starting point for several
other processes. Examples of these include point density estimates, search
heuristics and the base for mesh refinement.

10

Chapter 4

Algorithms

The algorithms used to perform the triangulation are equal in importance to
the data structure they operate on, if either one has bad performance as n
increases, the total performance will suffer greatly. This chapter will present
a number of different algorithms and properties and how they can be used
to perform Delaunay triangulation.

The differences in the algorithms are important because while all of them
will work, they are scalable to different degrees with regard to several factors
including, but not limited to: run-time, memory consumption and ability to
be parallelized.

A number of different algorithms have been developed to perform De-
launay triangulation. For example: the standard search algorithms that
exhaust the search space, incremental algorithms that add poionts and iter-
atively "flip" invalid triangles, recursive algorithms that grow a triangulation
outward from a starting point, radial algorithms that fan around each point
and create a "flower" of edges, sweeping algorithms that sweep along an
axis and create triangles through converging edges, divide and conquer algo-
rithms that may use any of these techniques but apply them on mergeable
subsets. The runtimes of these algorithms vary from O(n3) to O(n log log n)
and some can be parallelized more easily than others.

A number of these algorithms have been implemented using a some of
the provable properties in Delaunay triangulation. The algorithms have been
implemented to perform both sequentially and in parallel where possible.

4.1 Delaunay Triangle Properties

There are a number of consistent properties that make determining the De-
launay triangulation or finding individual Delaunay triangle edges easier.

11

Chiefly among these is the circumcircle property and amongst the others it
has been found that the Delaunay triangulation is a superset of both the
convex hull, the nearest neighbour graph and the Gabriel graph[2]. All of
these are relatively easy to find (the two first are O(n log n) operations)
and can be used to jumpstart the triangulation through finding a number of
"easy" edges.

4.1.1 The Circumcircle Property

Chief among the ways to determine the Delaunay triangulation is to use the
circumcircle property. It reads that a cirle circumscribing any triangle of
points from P which does not contain any points from P in its interior is a
Delaunay triangle. Using this property, every edge in a triangulation can be
verified as a correct Delaunay triangle. See figure 4.1 for some illustrative
examples of simple triangulation.

Figure 4.1: a. and b. show two valid Delaunay triangles and their circumcircles.
c. and d. show two invalid Delaunay triangles because their circumcircles contain
another input point. It makes no difference if that point is inside the Delaunay
triangle, just the circumcircle.

12

Edge cases to this property include the possibility of having nco > 3
cocircular points. In those cases, an arbitration must be made to divide
the nco-gon into an appropriate number of triangles. Figure 4.2 shows an
example how to arbitrate the triangles in a case such as this.

Figure 4.2: The nco cocircular points are sorted by distance from 0, 0). Then
starting with the first three points p1, p2 and p3, these three points are connected
with edges. Then the index for each point is incremented giving the points p2, p3,
and p4. These points are connected again and the index increment is repeated.
This repeats until the third point of the three is pnco , after those final edges have
been added, the cocircular points have valid Delaunay triangles.

4.1.2 The Closest Neighbours Property

As described earlier, the Delaunay triangulation is a superset of the Gabriel
graph[2]. The closest neighbours property is an extension of this that says
any two points from P whose antipodal circle contains no points from P
has a Delaunay edge running between them. Figure 4.3 shows this test in
practice. This property has been explored earlier[4] and applied to Delaunay
triangualtion algorithms.

The Convex Hull Property

The convex hull is usually the first step in determining the Delaunay trian-
gulation as it can be used a boundary for algorithms to avoid searching for
triangles outside P . The convex hull is a subgraph of the Delaunay trian-
gulion of P and is where most of the thinner triangles are located. This is
due to the fact that the circumcircles for these edges often do expand out-
ward from P as possibly very large circles. Figure 4.4 shows a few typical
circumcircles on the convex hull.

13

Figure 4.3: If two points in P can create an antipodal circle such as the one
shown above. Where the circle contains no internal points from P , then it is a valid
Delaunay edge.

Figure 4.4: This diagram shows part of a triangulation and three circumcircles for
Delaunay triangles where one edge from each lies on the convex hull. The triangles
lying on the convex hull tend to be thin since their circumcircles are not limited by
any points outside the hull.

4.2 Testing a Triangle for Validity

Determining whether a given triangles is a Delaunay triangle can be done
in several ways. One of the simplest is to create the circumcircle of the
triangle and check the distance from the center to points from P , if one is
inside, it’s not a Delaunay triangle. Another method uses the determinant
of a circle based on three points in a particular order with a fourth as the
variable to determine if a point is within the circumcircle created by the
triangle of the first three. For integer values, both methods will yield exact
and reliable results but in practice that many approximations must be made
with floating point values where integer computations are not available due
to the dimensions of some very large circumcircles. Figures 4.5 and 4.6 show

14

Figure 4.5: The points p1, p2 and p3 form a triangle t that is being tested to see
if it is a Delaunay triangle. The point pc is the center of the circumcircle, p4 is the
point being tested against the circumcircle, r is the radius for the circle and d is
the distance from pc to p4. As long as d ≥ r where p4 ∈ P then t is a Delaunay
triangle.

how these techniques can be used.

4.3 Standard Search Triangulation

Standard Search triangulation very simply attempts to exhaustively create
every triangle combination and uses the above tests to check if it’s a Delaunay
triangle. This is an O(n3) operation and is not recommended for use with
all but the smallest values of n where it might be faster than creating the
minimal support structures of other algorithms.

4.4 The Convex Hull

To calculate the convex hull the QuickHull algorithm is well-suited. It cal-
culates the hull by inflating a minimal hull made of extreme points along an
axis and recursively expanding each edge of the hull as it finds more distant
points along that edge’s orthogonal axis. QuickHull can make good use of

15

∣∣∣∣∣∣
p1,x − p4,x p1,y − p4,y (p1,x − p4,x)

2 + (p1,y − p4,y)
2

p2,x − p4,x p2,y − p4,y (p2,x − p4,x)
2 + (p2,y − p4,y)

2

p3,x − p4,x p3,y − p4,y (p3,x − p4,x)
2 + (p3,y − p4,y)

2

∣∣∣∣∣∣
Figure 4.6: This matrix takes takes 4 input points and the determinant describes if
the fourth point lies inside, on or outside the circumcircle of the first three. The first
three, p1, p2 and p3 are given in counter-clockwise order and form a circumcircle,
p4 is the point being checked against. The determinant of this matrix is d. If d ≤ 0
then p4 lies on or outside the circumcircle.

the partitioning done on the points to limit how many points it searches to
expand the hull and runs on average in O(n log n) time.

4.5 Closest Neighbours of a Point

Using the closest neighbours property it is possible it is possible to find
the Gabriel graph[2] of P , which accounts for about 70% of the edges in
the Delaunay triangulation. But in practice searching exhaustively for all
the edges is inefficient with regard to time spent per edge. The closest
neighbours algorithm instead selects Pn, a subset of P containing at least a
set number of points. The algorithm then tests these points for the closest
neighbour property and stops after it finds one or more such neighbours.
Some algorithms are dependent on each point having at least one neighbour
to start with and so it finds at least the nearest neighbour each point in P .

4.6 Radial Triangulation

Radial triangulation is a triangulation completion algorithm and relies on
both the convex hull being calculated as well as each internal point have at
least one edge determined beforehand. The radial property is displayed in
that each internal point has triangles that make a fan around it.

Starting from a point p1 in P the algorithm finds an existing edge from
p1 to p2. The dividing line l defined by p1 and p2 is then used to search P for
points at a positive distance from l. These points are treated as candidates
for p3, the points found which create a triangle t defined by p1, p2 and p3 are
then compared until a t is found whose circumcircle’s center is the closest in
distance to l. This circumcircle can optionally be validated by using one of
the above techniques and if it passes the circumcircle property the new edge
from p1 to p3 is added to the triangulation. Point p2 is then replaced by p3

16

and the same search repeats until the next p3 is the original p2. Figure 4.7
illustrates this algorithm roughly.

For a point p1 on the convex hull, the algorithm treats it as a special
case when creating the fan, the original p2 is set as the next point counter-
clockwise around the hull and the end point for p2 is set as the next point
clockwise around the hull. The ensures that the fan being created is restricted
internally to the hull and sidesteps the issues of having the algrithm search
in vain for edges outside the convex hull.

17

Figure 4.7: a. through e. show successive searches for points in a radial manner.
This creates a "flower" of edges out from p1. p1 is the point being procesed by the
algorithm, it finds p2 as a starting edge and searches for p3 candidates which can
become the next p2. Solid lines indicate edges that have been found, the dashed
line is the line dividing the search space into positive and negative distance, the
arrows indicate which directions are positive and negative. After e., the search is
back at its initial p2 point and the search is complete.

18

Chapter 5

Data Structures

The choice of data structures to use during triangulation is critical with
regard to performance. Choosing a complex data strcture can needlessly
decrease performance with no gain otherwise. Likewise a naive data structure
might forego performance optimizations that could be implemented with
little extra complexity. The three main data structures that needed careful
evaluation in this project were: the set of points and edges, the partitioning
scheme for that set and the convex hull. The last of those became more
obvious as a structure to evaluate once other optimizations were already in
place.

5.1 The Set of Points

The first data structure to be concerned with is the main store of points,
which includes their coordinates, the edges going between points and other
data each point may have. The program produced here is meant to be
scalable to any number of fields per point and should accommodate this
with minimal performance and storage overhead. P will be regarded as a set
of points regardless of what data structure lies beneath it. Each point in P
gets a unique identifier, either an integer or a reference.

5.1.1 Point As a Class

The first and most simple solution is to create a class: Point. Point would
contain all the components of a single point, the coordinates and edges most
importantly. The edges are stored as a array of references to other instances
of Point and are added to each Point as part of the triangulation process.
See figure 5.1 for a diagram of this approach.

19

Figure 5.1: UML diagram of class Point and how it would relate to P represented
as PointSet.

5.1.2 Interleaved Array of Components

Improving on the previous solution of using objects for each point, another
solution that uses one large contiguous array of values to contain all the
components(or indices to other arrays of component data). For example,
given points with just X and Y coordinates this could be stored in an integer
array containing 2n integers with every other integer being X and Y and
each point being separated by a stride of 2 elements in the array. Figure 5.2
shows how such an array may be structured, with an additional example of
differently typed components.

Figure 5.2: Diagram of an interleaved array. The points contain the integer com-
ponents X and Y as well as the integer reference R as an index into another array
of a different type component. The larger lines delimit each point in the array.

5.1.3 Seperate Component Arrays

Building on the use of arrays to store the component data, an approach
can be devised in which each component is stored in a separate array. In
this approach each point is identified by one index that it shares across all

20

component array e.g. the same index in both x and y coordinate arrays for
the same point. This way each point is represented by a row crossing the
columns of components. See figure 5.3 for an example of this structure.

Figure 5.3: Diagram of a separate component array

5.2 Sorting and Partitioning the Set of Points

Simply having a large set of points isn’t sufficient for efficient triangulation.
More often than not, the edges between points that form the triangles will
be between just the central point p1 and its closest neighbouring points
Pn. Consequently as n grows, the inefficiency of searching the entire set of
points rapidly becomes a bottleneck in the process(O(n3) for the most naive
algorithms).

By selecting an appropriately sized Pn from P , the impact of having to
search a larger P can be greatly minimized. It then becomes obvious that
having some sort of spatial sorting to group nearby points together would
be a great benefit to alowing algorithms to work with subsets of P rather
than the entire set for each operation. By selecting the right kind of spatial
sorting, a closeness property can be maintained where points close to each
other in space are also close to each other in memory.

5.2.1 Sorting

Sorting P in some manner is the first and most obvious way to create as-
sumptions about the order of the points in P . For example P could be

21

sorted along one of the axes, usually one of the elementary axes of the point
components. Since 2D points are in question, the simplest way to sort them
would be along the x-axis or y-axis, but sorting could be done along an ar-
bitary axis. See figure 5.4 for simple illustrations. Other types of sorting
can be done as well such as sorting in with regard to distance from a central
point or sorting radially around a point, but these approaches will not be
discussed here as they are not interesting when sorting P . However, one
usage of sorting that will be discussed is the sorting of subsets of P in order
to create better assumptions about the spatial locality of points. The section
on hierarching segments expands on this.

The primary benefit of sorting along an axis is that when iterating over
P or a subset of P , consecutive points in memory will also lie consectively
along the axis that P has been sorted on.

Figure 5.4: Diagram of sorting along one axis

5.3 Partitioning

Once the points are sorted, the next obvious optimization is to partition
the sorted set P into groups of points. These groups would be ranges of P
divided up either evenly or according to some other criteria. The purpose
is to easily jump into a subset of P given some search criteria instead of
iterating through all of P and finding the desired subset through naive search
every time.

5.3.1 Segment Partitioning

The simplest way to do partitioning is to divide P into p equal-sized portions
of P and record the starting index in P for each of them as well as some
indication for how to select this portion relevant to how P is sorted. This
could be for example recording the X or Y values of the first point in the

22

segment or other data that makes it easy to define this segment as relevant
to a specific query for a subset of points. Figure 5.5 illustrates how sorted
points with segments may be queried for a useful subset of points.

This approach works well to limit the number of points an algorithm must
work with at a given time, but it can lead to non-local points being fetched
if P is not at least near-uniformly distributed. Increasing the number of
points per segment will on average lead to more uniformly-spaced segments
and better locality when asking for the neighbours of a point but decreased
performance as a larger subset of P will be returned.

Figure 5.5: Visualizes a segmentation partitioning of P where each segment con-
tains the same number of points. Segment lines show the start of a segment and
intersect with the first point. a. A possible segmentation containing 4 points in each
segment, with the points sorted along the x-axis. Except for the first segment, the
start of each segment intersects with a point and extends up to but not including
the point starting the next segment. b. The segment containing the circled point
is fetched returning points from 8 to 11. c. The segment thats intersect with a line
are fetched returning points 4 to 11. d. The segments containing the points in the
box are fetched returning points 8 to 18.

23

5.3.2 Volume Partitioning

A different approach to fixed-size segments is fixed-volume segments, where
each segment spans the points contained in a certain volume. Each seg-
ment is then of variable size but covers the same volume of space as other
segments. This immediately leads to better locality for queries of segments
as some guarantees can be made about the locality of the returned subset
of points. Figure 5.6 shows an example of volume partitioning similar to
segment partitioning in figure 5.5.

One disadvantage to this approach is that the density of segments may
vary greatly, with some segments even empty. This can lead to wasted space
spent representing the segments.

Figure 5.6: Visualizes a volume segment partitioning of P where each segment
contains the same volume but a variable number of points. Segment lines show the
start of a segment and if they intersect with a point it is included in the segment
extending to the right. a. A possible volume segmentation containing 6 equally-
spaced segments along the x-axis. b. The segment containing the circled point is
fetched, returning points from 10 to 12. c. The segments that intersect with a line
are fetched returning points 6 to 12. d. The segments containing the points in the
box are fetched returning points 10 to 16.

24

5.3.3 Hierarchical Segment Partitioning

The previous approach, while efficient for partitioning points, will eventually
lead to problems with the number of points in each segment and where they
are in relation to each other. As n grows, if the number of segments does
not grow with it, the number of points per segment will increase and lead to
decreased performance when each returned subset of a query is much larger
than it needs to be. If the number of segments increases proportional to the
number of points, the segments will become spatially thin and the points
contained inside will be less spatially related on average.

It is desirable that segments don’t have dimensions that are too dissimi-
lar and that each one has a manageable number of points contained inside,
the solution is then to create a hierarchy where larger segments contain sub-
segments that try to maintain similar dimensions. One immediate advantage
is that the segment a point lies in and the adjacent segments in every direc-
tion will have points that are closely related and thus enhance the locality
of queries for points.

One drawback to this however is the increased cost of creation and the
cost of addressing these segments, it is a necessarily more complex data
structure. This approach can also be done with subsegments described as
above, either containing a fixed number of points or containing a fixed vol-
ume. If the subsegments contain fixed numbers of points this can easily lead
to adjacent subsegments being unintuitive to address in queries for subsets
of P . Figure 5.7 shows an example of this in practice.

As the number of levels in the hierarchy increases, this problem persists
and creates a great of complexity in getting a subset of P that matches a
query.

5.3.4 Grid Partitioning

Addressing the issue of mis-aligned segments hierarchical model, a flatter,
more regular hierarchy can be created. This partitioning model is more
like a grid. It is based on volume partitioning the points to the number
of dimensions they have. N-dimensional points would get an N-dimensional
grid and so on. In the case of the 2-dimensional points in P , either one of the
X or Y axis could act as the first dimension and then each of those segments
would be divided into segments of the other dimension respectively. The
smaller segments are much like cells in a grid.

The size of cells can easily be tuned to the right size by altering the num-
ber of segments in each dimension to reach an appropriate average number

25

Figure 5.7: Shows a typical issue with addressing fixed size subsegments. Adjacent
segments may have differing numbers of subsegments and those may not be directly
adjacent to each other. This means that finding the right subsegments to return
for a query may require some significant searching.

of points in each cell, Ca. Since the hierarchy has very few levels(N levels for
N-dimensional points) and since the number of segments in each dimension
can be pre-determined, the lookup for each cell can be reduced to a lookup
in an N-dimensional array.

When it comes to addressing larger subsets than a single cell the regu-
larity of the grid can be exploited. Since the grid is entirely regular in the
size and shape of its cells, a box can be made and imposed on the grid. The
corners of this box intersect with the boundary cells that need to be recorded
as delimiters for the subset. Since the Nth dimension of segments are con-
tiguous and match up across rows(can be regarded as columns across the
grid), the resulting box can then consist of a series of 1-dimensional rows
or strips running along the Nth dimension in the grid. This may not be
as efficient as returning a pre-existing subset from a deeper hierarchy that
divides on more than just the elementary axes, but depending on the size of
the cells it can return a much smaller subset that more closely matches the
desired one without sacrificing too much performance.

The time to access any cell in the grid is O(1) due to the strict regular
structure of it. The time to create a subset of the grid can vary depending
the dimensions of the query and how many cells need to be returned.

The biggest problem with the grid partitioning is that as the number of

26

cells increases or Ca decreases, the amount of memory required to store it
increases. This is a parameter that must be tuned appropriately to avoid
having the grid consume too much available memory. The creation of a grid
with many small cells is also a potential issue as each cell must be given a
starting index for which points it holds. Ca can be anywhere from close to 0
and up to n so care must be taken to set it appropriately for the right space
vs. performance trade-off.

Figure 5.8: If grid cell size is too small, space will be wasted representing empty
cells as shown here. Tuning the grid size is therefore a trade-off between resolution
of point addressing and required space to represent the grid in its entirety.

5.4 The Convex Hull

One of the first steps in generating the Delaunay triangulation is to calculate
the convex hull C. C is the volume constructed from the points in P and is
defined by the subset Pc and the edges between them Ec. Ec forms a closed,
convex hull where each ec in Ec is defined by two points in Pc. Ec are created
such that the points P/Pc are all contained inside C or intersect with Ec. Ec

may have parallel edges, and if it does then all intersecting points are part of
Pc. The convex hull is then the smallest set of edges, Ec, defined by points
in P and described by the subset Pc that contains or intersects with P .

The convex hull is a subgraph of the Delaunay triangulation and as such
each of the edges on the convex hull are all edges of Delaunay triangles. For
many algorithms they are used as the starting points to recursively triangu-
late the remaining internal points.

Looking aside from the algorithms used to generate it, the convex hull
needs to be stored in a data structure that can be efficiently queried. Al-
gorithms often need to know if a point is part of the convex hull and which
points are its neighbours in the convex hull. The data structre must therefore
have quick read accesses and must be iterable.

27

Having no data structure to store the hull but rather making checks
to determine if a point was part of the convex hull can quickly become a
very expensive operation as n grows. Many calculations would need to be
performed every time a point was queried so it was determined that an
additional data structure to manage the convex hull was necessary.

5.4.1 Querying the Hull for Points

The primary purpose of having a persistant data structure for the convex
hull is to query whether a point is part of it. One could solve this by having
an extra boolean component per point that would indicate whether it was
part of the hull or keep a list of points to indicate which points are on the
convex hull. These points, Pc, typically number about

√
n and as such are

usually just a small subset of P .

A list of some sort to contain the hull is therefore a practical solution. It
can be queried for the existence of a point and return the answer. But this
solution would still suffer as n increases. A typical Pc for 10 million points
numbers around some 8000 points. Instead of searching through such a list
every time, it’s better to keep a hash table of the points and query it when
needed.

5.4.2 Traversal of the Hull

In addition to querying the hull about whether a point is part of it, some
algorithms can also benefit from knowing which of a point’s neighbours are
part of the hull. For any point on the hull, there will always be two neigh-
bours also on the hull(as long as n > 2). If there references to these two
neighbours are also stored, it’s possible to traverse entire hull for the benefit
of algorithms that may need it.

By using a double linked-list structure, the points of the hull can be linked
together and traversed in either direction. If this list is kept in addition to
the hash table of points, the convex hull can be both queried and traversed
efficiently.

28

Chapter 6

Implementation

The program implementing and testing all of the above data structures and
algorithms is written in Java. It can be configured to run each of the different
algorithms for triangulation and make use of different data structures as
backing for them. The implementation has been designed in fairly procedural
and modular manner to make future extension with new data structures and
algorithms a feasible task.

When the triangulation algorithms have run their course it is possible to
output the resulting data either to file or to output it graphically in a simple
window which shows the points, their identifiers in the set of points and the
edges between them. The graphical representation is not exactly accurate
since it becomes scaled down to fit a window for display.

6.1 Data Structures

The various data structures have been implemented in a fairly straightfor-
ward manner. Several of them contain optimizations such as precomputed
values where appropriate or public access to members to assist in ease of use.
The data structures includeded in the final program are the separate arrays
per component, the grid partitioning scheme and the convex hull. Follow-
ing is a detailed description of the design and implementation of these data
structures.

6.1.1 The Set of Points as Component Arrays

The set of points as component arrays are implemented in the PointSet class.
An UML diagram in figure 6.1 shows an overview of the class members and
methods. The class is implemented in very straightforward manner, nearly

29

Figure 6.1: The PointSet when implemented with seperate component arrays has
four members of size n, where n is the number of points in P . The four members
are arrays for: the x and y coordinates, the edge counts for the number edges found
on each point and finally the array of arrays that contains the edges found for each
point.

as a pure data store with thin wrappers for querying the components of each
point.

The components used for points in the default program are integers for
the x and y components, and an array of integers for the list of edges each
point has as well as an integer indicating the number of edges already in the
array. As described earlier it is trivial to extend the number of components to
include other attributes such for example a boolean array to indicate special
properties for each edge.

The x and y components are considered immutable after the initial sort-
ing and partitioning and should not be altered despite public access to their
arrays. When adding an edge, the edge counter for that point is incremented
and checked against the bounds of the edge array, if the array lacks space
for another edge, a larger one is allocated and the existing edges are copied
over. The default policy for increasing the array size is to double it.

A copying member method is supplied to allow copying a point with all
components from one set to another. If additional components are added to
the set of points, this method will need to be modified or overriden as well.

6.1.2 The Grid Partitioner and Sorting

SearchGrid is the class which implements the grid partitioning scheme and
contains the metadata about PointSet to assist viewing PointSet in a spa-
tially sorted manner. The UML diagram in figure 6.2 shows the layout of

30

Figure 6.2: Diagram showing the two classes Grid and Stripe, where Stripe is an
inner class instantiated by Grid and returned as results for a query. Grid contains
a reference to P , the indices calculated to represent the grid and the length of one
side a cell in the grid. Stripe represents a subset of a row in Grid and uses the
start and end values for the cells it covers as its start and end members. The size
member in Stripe is an optimization that is the pre-calculated difference between
start and end.

this class. The inner class called Stripe is used to represent one subset of a
row in the grid being being presented for processing.

The indices and side_length members of the SearchGrid are the main
points of interest. The indices member contains increasing offsets into the
PointSet describing where each cell of the grid begins and the size of each
cell limited by the start of the next cell. The side_length member is used
to transform from point-space coordinates to cell-space coordinates and vice
versa.

The constructor for the SearchGrid takes care of creating the indices
member. This is the most time-consuming part of the SearchGrid. This
process is best described by the following algorithm and the diagram in
figure 6.3. It boils down to sorting the PointSet on the y-axis, partitioning
it into rows, sorting each row on the x-axis and then partitioning those as
well. The offsets for each column are then recorded in indices and the grid
is completely constructed. The sidelength member is calculated as part of
the partitioning process, see the algorithm below and figure 6.3 for how it’s
determined and used here.

An important part of the SearchGrid is the capability to make subsets
of the PointSet available. This is implemented as a set of methods in the
SearchGrid that can return arrays of Stripe objects. The Stripe objects are
as earlier described the subset of one row in the grid, several of these rows are
combined in an array to form usually a rectangular section of the grid, but
future implementations could use different size rows to create approximate
other shapes such as triangles, circles and lines.

31

Figure 6.3: a. The unsorted points. b. P is sorted on the y-axis. c. P is partition
on the y-axis, the lines indicate thew rows of the grid. d. Each row is sorted on the
x-axis, note the top rows for examples of change. e. Each row is partitioned into
equal columns to complete the grid.

32

6.1.3 The Convex Hull

The ConvexHull class contains two simple data structures, a LinkedList <
Integer > member named hull to contain the list of points on the convex
hull in clockwise order and a HashSet < Integer > named hull_set which
is used for querying the convex hull to find out if it a point is in the list. The
hull member is used to find the "next" and "previous" points on the hull for
a given point by using the corresponding member methods. The hull_set
member is an optimization that’s used to find the existence of a point on the
hull instead of searching through the hull member to find it.

6.2 Algorithms

Most of the algorithms implemented in the program are written in a straight-
forward manner. They often have some simple optimizations to limit the
scope of searches but otherwise use no other smart tricks(such as exploiting
the rest of the Gabriel Graph[2], creating a draft triangulation that can be
refined and so on). The triangulation algorithms implemented are both a
standard search algorithm and radial search algorithm as these two lends
themselves most easily to parallelization in great part due to focusing on one
point at a time.

The algorithms implemented in the program use the same technique to
ensure thread-safety for the most part. When an edge is added from p1 to p2,
only the edge from p1 to p2 is added, there are two reasons for this. The first
is that the edge p2 to p1 will be found later anyway when p2 is searched for
edges. The second reason is that p2 may currently be undergoing processing
by another thread and the edge list for p2 must be regarded as volatile as
such, any concurrent modification has a chance of side-effects such as missing
edges or invalid edge counts.

6.2.1 Nearest Neighbours by Standard Search

The standard search version of the closest neighbour search starts with a
point p1 and gets a boxB from the search grid with at least num_neighbours
points centered on p1. The algorithm then searches B for points named p2
within a search circle C extending to the nearest edge. C is used as a limit
for the distance to p2 as it guarantees that the nearest neigbour property test
will disgregard any points which may have hidden points outside B. Figure
6.4 shows how this may happen if C is not used to limit the search within
B.

33

Figure 6.4: This diagram illustrates a problem with the nearest neighbour search.
p1 and p2 appear to pass the near-neighbour property check, but since their an-
tipodal circle passes outside B a point p3 may still interfere without being detected
when checking for collisions inside B. The solution is then either to use a large
enough B or to restrict which points inside B can be checked to only those whose
antipodal circle with p1 would not pass outside B.

34

When an appropriate p2 is found inside C, it is tested for the nearest
neighbour property against p1. If the property holds, the edge between p1
and p2 is added to the PointSet. If no point in B is found to pass the tests,
a new B is created with a larger C and the search is run again.

6.2.2 Nearest Neighbours by Distance Sorting

Very similar to the standard search version of the closest neighbour search,
the distance sorted variant creates a boxB that contains at least num_neighbour
neighbours and contains the search circle C centered on a point p1. Differ-
ent from the standard search however is that B is copied into an array and
sorted by increasing distance from p1. Then, starting from the beginning of
the list, each point, named p2, is tested for both being inside C and against
p1 for the nearest neighbour property. For each point that fulfills both tests,
the edge p1 to p2 is added to edge list for p1.

Again different from the standard search is that due to the sorting by
distance, once a p2 is found that fails the distance test, the remaining points
will also fail the test and the search can be stopped. Once again, if no edges
have been found, a larger B for a larger C is created and the search is run
again.

6.2.3 The Convex Hull by Quickhull

The construction of the convex hull takes place in the constructor for the
ConvexHull class and uses the QuickHull algorithm to expand the hull
from up to 4 initial points. The initial points are found by searching in-
ward from the four edges of the grid, looking for the minimum x-coordinate,
maximum y-coordinate, maximum x-coordinate and minimum y-coordinate.
They are kept in this order specifically because the line function going clock-
wise around the hull will find distant points at positive distance from the
intermediary hull edges. See figure 6.5 which shows how the line function
direction afects positive distance.

If any points are found multiple times as part of the hull, they will only
be added once. This accommodates for starting hulls that may contain three
or even two points as the initial hull. For each edge Ec in the current hull,
a box B is created to search for the most positively distant point from that
edge. The search for edges inside each edge continues recursively until no
new edges are found.

B is created to contain the start, p1, and end, p2, of the current edge.
This subset from P can be chosen because any point that falls outside B

35

Figure 6.5: a. Shows the direction of positive distance from the edges if the line
functions for the edges are created in clockwise order around the hull. Positive
distance points out from the hull. b. Shows the direction of positive distance from
the edges if the lines functions for the edges are created in counter-clockwise order
around the hull. Positive distance points inward into the hull.

would violate the convex property of hull and be found by an earlier search
for edges. Figure 6.6 illustrates how this works for an example hull.

To find the most distant point from an edge, the line function for that
edge is created and the distance is calculated to each point tested. The dis-
tance calculated is the squared distance as taking the square root and finding
the exact distance is unnecessary since the greater/less than relationship be-
tween the distances checked will remain the same when squared.

The algorithm runs through all the points in B and records successively
more distant points until it exhausts B. If a distant point pd has been found,
two new edges from p1 to pd and pd to p2 are added to the convex hull. Ec

then no longer exists as pd has been inserted between the two in the hull
member in the ConvexHull object.

If the most distant point found lies on Ec, then pd is checked to make sure
it lies between p1 and p2, not outside them. If this holds, Ec is divided into
two new edges as normal and pd is inserted between p1 and p2. If multiple
points are found on Ec, the one closest to p1 is kept as pd.

Figure 6.7 illustrates how the algorithm selects pd from the available
points around each Ec of the existing hull.

36

Figure 6.6: Point p1 is the most distant point that can be found during a search
outward from the edge between the points max_y and max_x. Any point more
distant would replace either max_x or max_y in earlier searches. The triangle
covered by max_x, max_y and p1 will therefore contain any eventual point from
P to create a new edge on the search for the convex hull.

6.2.4 Triangulation by Standard Search Radial Triangula-
tion

This algorithm completes the triangulation of P only if every point p1 has
at least one existing edge to a point p2. This means that it assumes a
closest neighbour algorithm has previously been run to find at least one
neighbouring point. Starting from the first edge for p1 to p2, E, a box B
is created around E as a starting point for the search. All the points in B
are tested as candidates for p3. As is indicated in the algorithm’s name, the
triangulation is radial. In this case it means that any p3 is always a positive
distance from E, any p3 at negative distance to E is disregarded. Secondly,
for p3 to be accepted, the triangle p1, p2, p3 must be a Delaunay triangle.
This algorithm draws inspiration from the work of Arne Maus[3].

To validate p1, p2, p3 as a Delaunay triangle, the circumcircle, Ct, for

37

Figure 6.7: The dashed lines show new edges found by searching for distant points
outward from each of the old, solid edges. Note that the most distant point from
each edge can still fall outside the hull, it will be found on subsequent searches to
expand the hull.

this triangle is created and a box, Bt, is created to encompass the subset of
P in its neighbourhood. Each point p4 in Bt is tested against Ct using the
determinant check to determine if p4 is inside Ct. If no p4 is inside Ct, the
edge from p1 to p3 is added. If no p3 is found in B that creates a Delaunay
triangle, then a bigger B is created and the search starts over.

The algorithm then assigns p3 to p2 and the edge E between p1 and
the new p2 becomes the starting point for the next run of the loop in the
algorithm. This loop continues until the original p2 is once again p2 and the
radial search is complete. There is a special case for the convex hull in that
the start and end points for p2 are different. When it is found that p1 is part
of the convex hull, p2 is set to the the next point counterclockwise around
the hull and the end of the search is set to the next point clockwise around
the hull. This way the radial search on the convex hull searches internally

38

in the hull for new edges. Once the end point for p2 is reached for p1 on the
convex hull, the loop in the algorithm terminates as normal.

6.2.5 Triangulation by Nearest Circumcenter Radial Trian-
gulation

Very similar to the previously described algorithm with the except that when
B is searched for a candidate p3, the circumcircle Ct is created for the tri-
angle p1, p2, p3 as before. In this algorithm however, the p3 considered best
candidate is the one with the circumcenter for Ct nearest to E. After search-
ing through B for these circumcircles, the best one found is tested with the
determinant test against possible points p4 as described above. If the candi-
date for p3 did not create a Delaunay triangle, the search range is expanded,
a new B is created and a new candidate for p3 is searched for, this continues
until p3 has been found.

6.2.6 Triangulation by Existing Edges Radial Triangulation

This algorithm is a smarter version of the nearest circumcenter search. In-
stead of trying all nearby points, it uses existing edges as a starting point
to narrow the search. Any existing edge found to be on the right side of E
is used to create a subset of P that must contain the next p3. If no such
existing edge is found, the same search described above is used to find p3.

6.3 Thread Labour Division

The number of threads spawned for the triangulation is simply the number
of cores reported by the JVM during runtime. These threads have the labour
divided between them simply by being given a range of points to work on.
The division is done as equally as possible since the expected input points are
uniformly random and therefore the amount of work per point is expected
to approach an equal average across all the threads. This division also works
well with the program since it iterates over points in a given range and
calculates the edges for each.

39

Chapter 7

Results

7.1 Data Structures

7.1.1 Data Types, Integer vs int

Early on during development the decision was made to avoid generic types
in Java such as Integer in favor of more primitive int data types. Integer
objects need to be allocated with new, even as part of arrays where they
should ideally be packed in memory. Some number for the use of Integer
vs int are show in figure 7.1. While the triangulation itself only gains a
1.25x speedup, the construction of the Grid gains a much more substantial
speedup at 5.58x. This difference is primarily due to the sorting algorithm
taking significantly longer to Integer objects than int primitives(Not shown
in the table, 15240ms vs 2300ms). Finally, the use of Integer instead of int
lead to almost exactly 2x consumption of the heap after triangulation was
complete.

Data Type Integer int

Construction and Population of PointSet 6731ms 2698ms
Construction of Grid 20834ms 3732ms
Triangulation Time 13775ms 10984ms
Time Spent Triangulating Per Point 10.759859µs 8.670928µs
Heap used at the end of triangulation + GC 1502MiB 753MiB

Figure 7.1: Some of the relevant numbers for Integer vs int and how much time
they take in the run-time and memory consumption of the program. The numbers
are taken from the triangulation of 10 million random points using seed 0. Data
structures used are the seperate component array and grid partitioning while the
triangulation algorithm run is the radial triangulation using nearest circumcenter
search run on 8 threads.

40

7.1.2 Point As a Class

Despite being attractive in an organizational manner, two performance prob-
lems are immediately evident with this approach.

The first of these problems is the indirection involved in accessing the
data of each Point. Because each Point instance is a reference type in Java,
they may lie completely at random in memory, making caching unpredictable
and at worst only the data for the point being accessed is cached by the CPU.

The second problem is the memory overhead requirement for each object
in Java. Each instance of Point has a fixed overhead that becomes a limiting
factor as the number of points grows(Typical overhead for a HotSpot JVM
is between 4 and 8 byte plus the other fields in the object).

7.1.3 Interleaved Array of Components

This approach has a few advantages, the first being that the overhead of
object storage is eliminated with the exception of the overhead for the entire
array. Another advantage is that the point components are laid out contigu-
ously in memory, this is favorable to assist the CPU in caching entire points
or even several points at a time when accessing the store. There are however
some problems with this approach that must be addressed when adding new
components to the points and the overhead involved.

The first of these problems is the complexity of addressing components
of the points. Arithmetic must be done upon access to find the correct
index for the component of the point being addressed. Additional complexity
is involved in addressing non-integer data where these components would
need to be kept in seperate arrays and indices to those arrays be kept as
components to each point in the primary array of points.

This extra indirection leads to the second performance problem. The
cost of the extra arithmetic and extra memory reads from possibly disparate
locations for each access as well as the increased storage requirements in
cache per point all negatively impact the performance of this approach and
limit the number of points the CPU could keep in cache at a given time.

Finally, since all the components or their indices lie contiguously in mem-
ory, they will be cached by the CPU whether or not those components are
ever in use inside a given algorithm. This in turn means that the effective
payload per memory read is reduced. Depending on the number of compo-
nents per point, maybe only a single point’s components will be cached.

41

7.1.4 Seperate Component Arrays

The memory overhead is lower compared to the interleaved array as indices
into each array are the same across the entire point and don’t need to be
stored as their own component.

The caching behaviour of this approach is also favorable as a memory
read of a component will only cache the same component of other points,
ensuring that the amount of useful data being cached is kept at a much
higher level than the interleaved array. Since each component is kept in its
own array, this means those components can be cached separately upon being
read from memory. This can often lead to twice as much useful data being
cached compared to the interleaved array where probably every component
after the one being read is cached regardless of usefulness.

No significant disadvantages to this approach have been identified.

7.1.5 Caching Behaviour in PointSet Alternatives

In addition to their other differences, the alternatives for PointSet also have
different behaviour with regard to how the CPU tries to cache them.

The alternative with each point as an instance of Point comes out worst,
due first and foremost to the fact that every instance must be assumed to
live in disparate memory sections, not sharing any cache lines. Due to this,
the caching efficiency is very low for these objects with at most a single
entire point being cached on read. Typical Java overhead for an object is 8
bytes fixed overhead for Object instances plus the components of the point.
Each point with an x, y and z coordinate will then use 20 bytes for data
and because of memory alignment be padded to 24 bytes. It is possible that
other Point instances can lie directly after each other in memory, but Java
makes no such guarantees about allocation of objects.

The other two approaches using arrays have earlier been described with
regard to how the CPU can cache them. See figure 7.2 for a simple view of
how the CPU can cache the different approaches.

7.2 Algorithms

7.2.1 The Convex Hull by QuickHull

The QuickHull algorithm works efficiently and runs in negligable time com-
pared to the rest of the program. It runs in O(n log n) time and completes
at around 300ms for n = 10million on the test machine. It exploits the grid

42

Figure 7.2: Each X or Y coordinate is an int composed of 4 bytes. The example
shows the caching behaviour of an Intel Core i7 which uses 64-byte cache lines.
In both examples the X and Y coordinates of first point from the left are read.
The black boxes show the data being cached. Example a. shows the behaviour
of seperate component arrays. The X and Y coordinates are in separate arrays
and a total of 8 pairs of elements are read and stored in cache. Example b. shows
the interleaved array where X and Y coordinates are interleaved in memory and
stored in one array. A total of 8 elements are read in to cache but only 4 pairs
of elements. Example c. shows the interleaved array with more components per
point and demonstrates how the caching of useful data goes down as the number of
components increases. Example d. shows the caching behavior when using a class
reference for each point and its components. Just the single point can be regarded
as being cached on any given access.

to create subsets effectively and searches increasingly smaller subsets as it
refines the edges of the hull. Caching on this algorithm is most useful in that
points are prefetched for the larger search spaces in the early edge searches
while later on in the edge refinement process the cache will keep close to the
entire search space in cache and be able to quickly iterate over the points
being tested.

7.2.2 Closest Neighbours

Standard Search Closest Neighbours

This simple algorithm is the algorithm for finding the closest neighbours
which works most efficiently when the JIT-compiler is enabled. It runs in
O(n) time since it attempts to always search the same number of points(
num_neighbours is the target number of points) and checks these for the
closest neighbour property. Due to the points always being searched in order
of memory and tested in order of memory, it is believed that caching benefits
this algorithm greatly as well the as the simplicity lending itself to easy
optimization by the JIT-compiler.

43

Distance sorted Closest Neighbours

This smarter version of the closet neighbours algorithm is better in theory
than the standard closest neighbours search but it is believed that the imple-
mentation of it is not easily optimizable by the JIT-compiler. The run-time
is thus higher than the standard search despite the smaller search space
possible through the distance sorting. The distance sorting itself may have
an impact on the algorithm for sorting the points is not an efficient one(
selection sort has been used).

7.2.3 Triangulation

Standard Search Triangulation

The standard search for triangles progresses in the most linear fashion pos-
sible and always iterates over points as they appear in memory. This leads
to the algorithm being deceptively fast due to the CPU-caching being ex-
ploited. However, this algorithm makes no effort to use any of the "smart"
shortcuts that are standard in the other algoritms, such as defining special
cases for the convex hull, stopping when all edges have been found for a point
or limiting the scope of the search for points to any particular spaces. The
algorithm itself is runs in O(n3) time and for small numbers of points this is
acceptable as the caching offsets the lack of efforts to limit the search space.

Radial Standard Search Triangulation

The standard radial search is an improvement over the standard search pri-
marily in that it has a stop condition for the search outside of simply ex-
hausting the search space. Additionally it limits the scope of the search to
the neigbbourhood of p1 by using the Grid, only searches around a point
in the same direction and has special cases for points in the convex hull.
These technqiues combined make it the best algorithm implemented in the
program so far. Running in O(k2) time, where k is the number of points it
typically has to search through in the boxes it creates for each point.

Radial Search with Nearest Circumcenter Triangulation

This approach is a slight improvement over the standard radial search in that
it only attempts to validate the point in the box found which is the most
likely to be p3. Since it runs a simple circumcenter calculation on the rest
of the points, it ends up running in O(k2) time just like the standard radial
search, but where k is on average smaller than the standard radial search.
Both this and the standard radial search make good use of CPU-caching

44

by searching iteratively through the boxes returned and reusing them where
possible.

Existing Neighbours Radial Triangulation

This algorithm is technically superior to both the standard radial searches
as it can use them as a fall-back to the method of using existing neighbours
as a base for the points. However, this algorithm performs more poorly than
the standard radial search since it searches much more randomly than the
standard radial search. The neighbours it finds can often be at such angles
that the circumcircle defining the search space is very large compared to
the search space that typically develops in the standard radial search. The
algorithm runs in O(k2) just like the other radial searches, but with a larger
value for k.

7.2.4 Algorithm Performance

The triangulation algorithms scale similarly in a multi-threaded environ-
ment. Figure 7.3 shows the speedup for different numbers of cores. The
relative speedup decreases as the number of cores increases, most likely be-
cause the memory bus becomes saturated with requests and can’t keep up.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

Number of Cores

R
el
at
iv
e
Sp

ee
du

p

Figure 7.3: Shows the average speedup for different numbers of cores when trian-
gulating 10 million points.

The performance of the different algorithms against each other appears
to converge at a large number of points(100 million) where it is expected

45

that the existing neighbour algorithm will outperform the simpler one which
only searches nearby points first. This can be seen in figure 7.4.

102 103 104 105 106 107 108

102

103

105

106

107

Number of Points

T
im

e
in

M
ill
is
ec
on

ds
Radial+Nearest

Radial+Nearest+Existing Neighbours

Figure 7.4: Shows the time taken for two of the triangulation algorithms against
different numbers of points, the algorithm using the nearest circumcenter radial
triangulation and the algorirthm using existing neighbours to find the nearest cir-
cumcenter first.

7.3 Program Features

The program in its many iterations has developed to be able to take input
from file, generate its own points for triangulation and output these and their
triangulation either graphically in a GUI or to standard output. Additionally,
there are some diagnostics available for output such as the time used to
triangulate. A typical graphical output for triangulation of 100 points looks
like the image in figure 7.5.

46

Figure 7.5: Shows typical output from the program for 100 random points(Seed
0 is used here).

47

Chapter 8

Conclusion

8.1 Goals

The main goals of this project have been the creation of this document
and its partner program. As it stands, this document should be sufficient
as an introduction to Delaunay triangulation and some of the challenges
involved in the design of software to perform the process. While not all the
most relevant algorithms have been covered, the rudimentary algorithms for
triangulation and the properties and their behaviour have been documented
and implemented.

The program itself has a fairly simple structure with no advanced sup-
port mechanisms to mix and match algorithms and data structures. Instead,
the focus has been on creating consistent interfaces for the data structures
and algorithms as a way to allow for future extension of the program’s ca-
pabilities.

One of the goals was to triangulate 10 million points in a reasonable
time, this was met near the end of the project where 10 million points takes
between 15-20 seconds on the test machine.

With regards to parallelization, creating the Delaunay triangulation has
shown itself to be a task that lends itself easily to parallelization. Many of the
algorithms can be implemented to rely on just one mutable point at a time
and to disregard any of the mutable data in neighbouring points. This means
that race conditions can be completely eliminated and no side-effects will oc-
cur in properly implemented concurrent triangulation algorithms. However,
since the amount of work searching for neighbours is almost guaranteed to
vary from neighbour to neighbour, this disqualifies the problem from being
embarrassingly parallel and indicates that implementations on SIMT(Single
Instruction Multiple Thread) architectures will suffer performance problems.

48

8.2 Implementing in Java

Implementing a high performance program in Java posed no serious problem
so long as the usage of the standard library and generics was avoided wher-
ever it was possible. Both of these features of the Java language may be very
practical, but pose serious performance issues in that the abstractions they
create are not easily optimized away. This was obvious in the difference in
performance when using primitives vs object wrappers, for example int vs
Integer and the generic containers that only operated on Integer objects.
When appropriate versions of these were implemented using only primitives,
the performance increase was substantial. It is therefore advised to avoid
object abstractions and generics when implementing high performance Java
code.

Implementing the algorithms and data structures went without much
issue except for the recurring problem of validating Delaunay triangles. Due
to the usage of the determinant validation method, which caused issues with
casting between long and int types, this caused many bugs and issues that
took a great deal of time to track down.

One of the aspects of Java that has the greatest impact on performance
is the JIT-compiler that constantly looks for opportunities to optimize the
running code. Writing code in a manner that allows the JIT-compiler to opti-
mize the best is not always straightforward and several equivalent variations
of expression were tried when implementing solutions to each problem before
settling on one that allowed the best optimization opportunities. Some of
these techniques include dividing methods up into smaller methods, avoiding
any long stretches of code in methods or loops, sometimes leaving duplicate
calculations in to allow Java to optimize them away at a later time amongst
others.

8.3 Further Work

There are several different things that stand out as possibilities to improve
the performance of the program. Especially some of the more efficient algo-
rithms such as the Divide and Conquer algorithms or sweeping algorithms.

Since the definitions used in creating the Delaunay triangulation are
highly geometrical, this has meant that spatial sorting and the subsequent
creation of subsets of P is one of the greatest optimizations that was done to
decrease the runtime of the program. It is probably possible to make even
more efficient partitioning strategies that may make especially the querying
of circumcircles and half-spaces a more efficient process. Especially being

49

able to refine the results of subset queries to half-spaces would likely give a
decent performance boost.

The algorithms implemented in the program are fairly simple, with the
fastest one, the standard search with limited search scope, running at O(k2).
Where k is the average number of points searched while creating subsets of
P . k is independent of n.

Implementing "smarter" algorithms was attempted, but the effort was
offset by the optimizations the JIT-compiler found for the simpler algorithms
vs the smarter ones, the performance ended up better with the simpler algo-
rithms in several cases. Finding a way to implement the smarter algorithms
in a way that the JIT-compiler can use would possibly bring great perfor-
mance gains, indicated by the performance of the simpler algorithms vs the
smarter ones when running Java in interpretation mode where the smart
ones were faster.

Another large opportunity for performance gains is to find a way to use
the Closest Neighbours property to exploit the fact that 70% of the edges
in the Delaunay triangulation are already present. An algorithm exploiting
this would find some way to detect the "holes" in the triangulations and fill
them in, possibly iteratively or by using properties of the Voronoi diagram.
Such an algorithm would also need to be able to skip many of the checks
of existing edges to avoid a significant performance penality from checking
edges that are already guaranteed valid.

Regarding missing features and bugs, the main obstacle that has not been
handled is the case of cocircular points. A solution to the case is presented
earlier in the report, but the implementation never handles these cases. Find
a way to detect and and handle cocircular points in an efficient manner would
be desirable in future work.

In closing, the performance of the program matches expectations but
there are still plenty of opportunities for improvement, especially with regard
to the algorithms.

50

Bibliography

[1] Boris Delaunay. Sur la sphère vide, 1934.

[2] K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic
variation analysis, 1969.

[3] Arne Maus. Delanay triangulation and the convex hull of n points in
expected linear time, 1984.

[4] Arne Maus and Jon Moen Drange. All closest neighbors are proper
delaunay edges generalized, and its application to parallel algorithms,
2010.

51

	Introduction
	Overview of This Report
	Background
	Algorithms
	Delaunay Triangle Properties
	The Circumcircle Property
	The Closest Neighbours Property

	Testing a Triangle for Validity
	Standard Search Triangulation
	The Convex Hull
	Closest Neighbours of a Point
	Radial Triangulation

	Data Structures
	The Set of Points
	Point As a Class
	Interleaved Array of Components
	Seperate Component Arrays

	Sorting and Partitioning the Set of Points
	Sorting

	Partitioning
	Segment Partitioning
	Volume Partitioning
	Hierarchical Segment Partitioning
	Grid Partitioning

	The Convex Hull
	Querying the Hull for Points
	Traversal of the Hull

	Implementation
	Data Structures
	The Set of Points as Component Arrays
	The Grid Partitioner and Sorting
	The Convex Hull

	Algorithms
	Nearest Neighbours by Standard Search
	Nearest Neighbours by Distance Sorting
	The Convex Hull by Quickhull
	Triangulation by Standard Search Radial Triangulation
	Triangulation by Nearest Circumcenter Radial Triangulation
	Triangulation by Existing Edges Radial Triangulation

	Thread Labour Division

	Results
	Data Structures
	Data Types, Integer vs int
	Point As a Class
	Interleaved Array of Components
	Seperate Component Arrays
	Caching Behaviour in PointSet Alternatives

	Algorithms
	The Convex Hull by QuickHull
	Closest Neighbours
	Triangulation
	Algorithm Performance

	Program Features

	Conclusion
	Goals
	Implementing in Java
	Further Work

