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Abstract

This thesis studies and compares three different ways of modelling epidemic
diseases. The simulations are done for a small group over a short time period. In
the first chapter an ODE model is presented. This is used to model two different
examples of epidemic systems. The second chapter introduces a PDE model,
which also takes the geographic position into account. The parameters from the
first model are used for the PDE model, to study the spatial effect. Random
walk is used as the third model. Here, human behavior has been added to the
model to achieve a more realistic result. Throughout the thesis two examples
are used, namely an influenza outbreak in an English boarding school and a
potential zombiefication based on the TV series Walking Dead. The results from
these two cases are used to compare the different models.
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Chapter 1

Introduction

Throughout the history great epidemic diseases have spread across the world,
leading to catastrophic consequences for human populations. Millions of lives
have been taken. The Black Death and Cholera are epidemics that have moved
over large distances into Europe Ref.[5, p. 315]. An important aspect in the
current spread of diseases is the displacement of human populations. About a
million people cross international borders daily. The growth of human population,
especially in underdeveloped countries, is another factor that affects the spread.
These developments played a key role in the spread of HIV in the 1980’s. The
World Health Organization has estimated that around 32.6 million people are
infected with the HIV virus today Ref.[7]. Knowledge about the spread and
severity of epidemic diseases is valuable for the human population in preventing
major damages. The current outbreak of Ebola in West Africa in March 2014
Ref.[8], has shown that epidemics will occur repeatedly. Mathematical models
can help us understand the severity and prepare the population in the best way
possible.

In this thesis three different models will be used to simulate epidemic diseases.
The three models that will be used are: the ODE model, the PDE model and
Random walk. Each model will be presented and the results will be analyzed and
compared throughout the paper. The threshold value for an epidemic disease
will be examined in chapter, 2. The chapter 3, focuses on how a travelling wave
of infected disperse in an area. The fourth chapter, 4, will look into Monte Carlo
methods, which will later be used for the Random walk simulations.

A couple of choices have been made for this thesis. First, the systems will be
modeled for a short period of time. The length of the longest simulations is a
month, while the fourth chapter only consists of simulations with the length of
half an hour. This is done to study variations of human and zombie behavior
in a zombiefication. Second, all models are simulated as closed systems. The
amount in each simulation never exceeds 763 humans and the time aspect is
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short. Therefore the birth and death rate is close to negligible, and are set to
zero.

Two different examples will be used for all three models. The first case is
based on an influenza outbreak which occurred at an English boarding school
in 1978. A basic SIR system will be used to model the epidemic trough 15
days. This example shows the effect of varying the parameter values in the
system. This will be done in chapter 2. The maximum concentration of infected
humans will be compared, to see if the results between the models differ. The
effect from the two spatial models in chapter 3 and chapter 4 will be compared
to the ODE model. The second case is based on the TV series Walking Dead.
Here, a SEIR model will be used to simulate a zombie outbreak. The model is
based on the paper Escaping the Zombie Threat by Mathematics by Langtangen,
Mardal and Rgtnes Ref.[3]. The simulations will be done for different phases,
and the parameter values in each phase will be changed and studied. Differences
in behavior will be used to vary the simulations. Restricted areas will be used
in the simulations of the PDE model, while Random walk also adds altered
behavior.

The code used for the thesis can be found at https://github.com/torbjornseland/
master. There will be a link Movie attached to each figure that has a simulation
on web. This can be used to study the simulations, especially for the Random
walk model.


https://github.com/torbjornseland/master
https://github.com/torbjornseland/master
https://torbjornseland.github.io/master

Chapter 2

ODE models

This chapter will be split into two different parts. The first part is based on
the chapter Dynamic of Infectious Diseases from Mathematical Biology by J.D
Murray Ref.[5]. A basic ODE system will be presented and studied to see how
this model can give information about the disease. The section will check if a
disease is severe for the human population, and based on this called an epidemic
disease. The example from English boarding school will be used. The second
part will be based on a scenario where the population faces a zombification, one
of the most critical and devastating epidemic diseases that can occur. Here, the
TV series Walking Dead will be used as reference. The ODE model from the
paper Escaping the Zombie Threat by Mathematics by Langtangen, Mardal and
Rotnes Ref.[3] will be used to model the zombie outbreak.

2.1 Simple epidemic models

Most of the models shown here will have a constant population. The zombie
model shown later will have a slight increase considering newborn, but this will
be close to negligible. This may differ from the real world, where the population
in different areas will vary with population flow. Reasons for doing this are, first
of all to simplify the model and second to be able to model a closed system. How
the population interacts is another assumption that has to be done. Here this is
set to be similar for the whole area that is modeled. To simplify the population
can be divided into three different groups.

o Susceptible (S), who are humans that are healthy and at risk of becoming
infected.

o Infected (I), who are humans who have the disease or are carriers of the
disease. This group can infect the group Susceptible.

e Removed (R),who are dead or recovering humans, often people that already
have had the disease.

11
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The natural order for a human is,
S—1—R.

This model is called STR model, but the number of groups can be changed. ST
only consists of the two first groups and a SEIR model has added an extra
group Ezxposed , E, where the disease is latent. This can be used to model the
incubation time.

The transmission of the infection and incubation period are elementary factors
in the spread of a disease. These are reflected in the terms of the equations.
Since this is a SIR model, the incubation time is negligible. The amount of
people in each group can be seen as a function of time, expressed as S(t), I(t) and
R(t). The growth of infected caused by susceptible humans, can be viewed as a
rate proportional to the number of infected and susceptible humans multiplied
by a constant,rSI, where r > 0. This constant controls the efficiency of the
transmission from S to I. This will appear as a reduction in the function S(¢).
The rate of removal from infected to removed group can be viewed as the number
of infected times a constant, al, where a > 0 controls the time spent in the
infected group. The dynamic model will be,

s

& 9T

o rS

% =rSI —al (2.1)
dR

g

a ¢

This model is called the Kermack-McKendrick(1927) model Ref.[5, p. 320]. It
is considered that the groups are uniformly mixed and that there is equal
probability of contact for all individuals. These assumptions will not be correct
for all diseases, especially sexually transmitted diseases. The total number of
the population will stay constant, since this is a closed system. This can be seen
on the total change.

dS dI dR
e T i 2.2
dt * dt + dt 0 (2:2)
Therefore the total size of the population, IV, will be constant.
St)+I(t)+R(t)=N (2.3)

2.2 Threshold phenomenon

The threshold value is essential when studying an epidemic model. To cause an
epidemic situation, the model needs to fulfill I(¢) > I for some ¢t > 0, where I
describes the initial condition of the infected group. The initial conditions can
be given as,

S(0)=S>0,  I0)=1I>0,  R(0)=0. (2.4)
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These initial conditions given in Eq.(2.4) combined with r and a controls the
epidemic situation. These will affect the spread of the infection. From Eq.(2.1)
the function for the infected group at initial time is,

dl
— = Ip(rSp — 2.5
G| -nesi-a (25)

The expression inside the brackets controls the change in I. The function will
increase if Sy > 2, this will therefore be the threshold value for the function.
The threshold value will be described by the variable p,

p="= (2.6)

100 Thres‘ho\d phenor‘rﬁenon

80 -

/ S+l=N

60 -

Infective (1)

sl |

201

0 20 p 40 60 80 100
Susceptible (S)

Figure 2.1: Simulations of the SIR model (2.1) with start positions along the
blue diagonal line. I increases until S is equal to the threshold value p, which is
set to 35. Then I is reduced to 0. In the simulations where Sy < p, no epidemic
situation is achieved.

This can be shown with some phase trajectories of the infected and susceptible
humans in Fig.(2.1). The simulation shows that I is based on the relation between
S and p. This can be described with a reproduction rate,

’/‘SO
Ry = — 2.7
0= (27)
It will cause an epidemic reaction if Ry > 1. This parameter is crucial in
the understanding of the work with the disease. To prevent a dispersion, the
value of Ry has to be under 1. An effective way to get control is by global
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vaccination programs. Smallpox is an example on a disease that nearly has
been eradicated around the world. This is due to a reduction of susceptible
humans. However there is always a small chance of side effects when using
vaccination, and therefore some people choose to skip it. This is quite critical
for the fight of total eradication. Not only is it a big risk for the specific person,
but it also increases the number of susceptible humans. An epidemic situation
can quickly grow again if the reproduction rate reaches the threshold. Some
analytical studies can be done on the model in Eq.(2.1).

al — (rS—a)l p B
s s~ tte P=

s le

(I #0). (2.8)

The singularities will all lie on the I=0 axis. This equation can be integrated
and will then give phase plane trajectories in the (I,S) plane. This can be seen
in Fig.(2.1).

I+ S —plnS = constant = Iy + Sy — pln Sy (2.9)

All initial values satisfy Iy + Sy = N since R(0) = 0. This will change when

t > 0. If a disease appears it would be important to know the severity of the

disease and the chance of developing to an epidemic disease. Therefore it is

crucial to know the maximum value I, which occurs when S = p. At this
dI

point, % = 0. This can be found by using (2.9)

I+S—plnS=I+Sy—plnSy
Imax+p_plnp:IO+SO_plnS0
Imaxz—p+p1np+fo+SO—P1HSO
»

Imax ZN_P+PIH SO

(2.10)
The different trajectories in Fig.(2.1) shows the difference between Sy > p and
So < p. An increasing of the infected group will occur in the cases where Sy is
higher. While a decreasing will happen when Sy is lower. An example can be
shown. The p in the simulation in Fig.(2.1) is set to 35, while N = 100 for all
trajectories. A calculation can be done on the lowest trajectory which has the
initial conditions Sy = 90 and Iy = 10

p
Imax =N — In -
p+p nSO

35
Linae =100 — 35 + 35 In oo
Tnax =31.94

This situation causes an epidemic situation since I a5 is much higher than the
initial condition Iy. The Fig.(2.1) shows that the trajectory of this function
starts decreasing after this point. In the two upper trajectories where Sy < p,
the infected group starts decreasing from the initial condition. The infected
group will decrease towards zero as t — .
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2.3 English boarding school

The British medical journal published a report from a boarding school in England
in 1978. One of the boys had brought with him a disease back to the school.
Since this was a boarding school, they were totally isolated from others and had
a closed system to model [5, p. 325]. The simulation can be seen in Fig.(2.2)

800 Epidemic in English Boarding School 1978

— susceptible
— infective
— removed

700+

600 |

w
o
o

400

Number of boys

300 |

200+

100+

0 2 1 6 8 10 12 14
Days

Figure 2.2: An English boarding school is modeled for 15 days with the following
parameters: N = 763, S = 762, In = 1, Ry = 0, p = 202 and r = 2.1821073.
An increase in the infected group can be seen since Sy > p.

2.3.1 Maximum concentration of infected

The maximum concentration of the infected group can be found from using
the threshold value. The result can be compared to the simulation in Fig.(2.2).
Maximum of infected can be found by the following equation from Eq.(2.10)

Imax = N —p+pln £ (2.11)
So
By inserting the parameters from the simulation in Fig.(2.2) in Eq.(2.11), the
value of Iyax = 292. The I,x of the simulation can be found by checking the
maximum number of the infected list. This is similar to the calculated I, .
This maximum value of the infected group occurs when the susceptible group is
202, and similar to the value of p in the simulation.
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2.3.2 Variation in parameter value p

The parameter value p has a major impact on the result. The epidemic disease
could turn out quite differently than in the situation in Fig.(2.2), caused by
variations in a and r. Fig.(2.3) consists of some examples where p varies from

50 to 400.

rho = 50 rho = 100

Number of boys
e N W s oW
5 8 8 &8 3
8 8 8 8 8
Number of boys
e N W s oW
5 8 8 &8 3
8 8 8 8 8

o
o

)
w

10 15 20 25 30 () 5 10 15 20 25 30
Days Days
rho = 202 rho = 400

Number of boys
IS
8
8
Number of boys
5 g
8 8

w
S
S

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Days Days

Figure 2.3: English boarding school with four different values of p. In the
first plot where p = 50, the infected group will increase until the number of
susceptible group falls down to 50. This will result in a majority of infected
students. In the last plot where p = 400, the total number of susceptible humans
stays around 170 students and will go towards a steady number as I(co0) = 0.

2.4 Zombification

One of the worst epidemics that can affect the human population is a zombie
attack. This will have a huge impact on the way humans live today. Several
movies and series has illustrated this type of situation, but it is time that
the scientists also take this threat seriously. There have been written several
papers about this. Munz et. al[4] used the SEIR model to simulate a possible
upcoming zombiefication, where the latent group(E), is replaced with an infected
group(I) and the infected group([) is replaced with a zombie group(Z). Here it
is important to know that the infected group in the SIZR is not the same as in
the SEIR model. The following model was used,
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ds

P _w_ 897 _

= BS 58

dI

— =857 — ol — 01

o BS ol — ¢

az

— =pl —aSZ

7 ol +CR—aS
%:554—6[4-0452—@1%

This is a bit more complicated than the standard SETR model. A presenta-
tion of the parameters;

e X describes the birthrate for new susceptible humans. 22 is now able to

dt
be positive. This will be 0, since the system is closed.

e 357 describes the numbers of susceptible humans that become infected ,
based on interactions between zombies and humans. Similar to the case
for ST in the SIR model.

0 describes the number of natural deaths in the group. This is used in the
susceptible and infected groups

oI describes the probability for an infected human to wake up as a zombie.

(R describes the number from the group Remowved that arises in the group
Zombie.

e aSZ describes the number of zombies killed by susceptible humans in the
zombie attacks.

This model was challenged by Langtangen, Mardal and Rgtnes [3] now
referred to as LMR, where they developed another model. They had three
objections to the model from Munz et al. [4]. LMR argue that dead zombies
cannot become functioning zombies again. Therefore ¢ will be zero, if magic
is not introduced. They let the parameters in the model change with time,
according to different phases. LMR argue that the behavior will change with
time during a zombie attack. The parameters in the model from LMR was based
on the movie The Night of The Living Dead. This was done to reproduce its
scenarios and then predict how a zombie outbreak would appear. There is also
added a function w(t), which creates a massive attack from the humans. This is
controlled by a time variable and give the susceptible humans a chance to fight
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back. The system can be seen in Eq.(2.12):
as

— =S BSZ 055

ﬂ =8SZ — ol — 0,1

th (2.12)
= =0l — (a+w(t))SZ+ (R

dR

= =055+ 1] —CR+ (a+w(t)SZ

The main change is the w(t). This is a Gaussian curve and can be seen in

eq(2.13). ,
- 1 (t—T,
w(t) = a;exp (2 ( . ) ) (2.13)

w(t) controls the attacks from the susceptible humans, which will be fired at
predefined time steps. These are controlled by the three parameters.

e @ here works as a similar parameter as «, but will only be activated when
the susceptible group is organized and ready to attack.

e T contains a list of numbers, which controls the time when the attacks will
occur.

e o controls the length of the attack.

This function will be modeled later when it is used in section 2.4.4

2.4.1 Parameters used in the model

The parameter values are essential factors when modelling a zombie attack.
Data from the movie The Night of The Living Dead was used as basis for the
parameters in the ODE system from LMR [3]. This thesis is based on a thorough
study of the TV series Walking Dead [1]. The data will be based on the first
five episodes and are constructed after having watched the episodes carefully.
The three phases in a zombie attack will be based on the form used in the paper
from LMR, but with an extended version in the Counter attack phase .

2.4.2 The Initial phase

The disease is not yet known in this phase and humans try to save the sick ones
by taking them to hospitals or getting some kind of treatment. Because of this
ignorance related to the disease, the number in the infected group is high. This
phase is often quite short and humans soon start to realise that the risk of getting
infected by saving others is really high. Walking Dead never shows anything
from this phase, but the viewer sees the results when the main character sheriff
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Rick Grimes wakes up at the local hospital. What he sees is the major damage
caused in the Initial phase, while the society has moved to the Hysterical phase.

To determine the values for each group in each phase, the length of Ricks
coma is essential. There are several factors that give an indication of the time
aspect. When Rick wakes up at the hospital, he has grown a smooth beard
of about 1 cm. This would correspond with 1 month in average for a male of
European origin. He also has some flowers that have dried out. These also give
the impression that some weeks have gone by. The hospital is running on its
emergency generator. This would probably not last for many days with a fully
operational hospital, but the hospital is as well as shut down when Rick wakes
up and can give the emergency generator a longer lifetime. Dr. Edwin Jenner
gives the viewer some information in episode 5 where he tells the videolog that
it was 63 days since the epidemic started spreading. By studying the first five
episodes in detail, one gets an impression that the time aspect has not been in
focus. Therefore the different phases are constructed from the information that
has been given. Rick Grimes has probably been in a coma for a month and what
he meets the first days will be the basis for the number in each group. The total
amount of objects in the model will be based on the number of humans, dead
and zombies seen in the first five episodes.

e The number of humans has been estimated to 62. 20 living in the camp
with Rick, 40 humans in the old nursing home and the father and son in
episode 1.

e The number of dead is estimated to 200. This is based on the amount of
dead outside the hospital where Rick woke up.

e The number of zombies are assumed to be 360. These are based on the 30
outside the house of Morgan Jones and his son Duane, 300 zombies in the
city Atlanta and 30 zombies attacking the camp.

The total number will be 622, and the time aspect aroud a month, which means
that these numbers are for the Hysterical phase.Over the three first days when
Rick is awake, 1 human and 20 zombies are killed in battles. This can be used to
find the final number in the Initial phase by calculating backwards. By going nine
similar periods backwards, the number of killed zombies is 190. The same can be
done for humans, which then results in 9 killed humans in this period. The final
number for the Initial phase can then be set to 71 humans, 540 zombies/infected
and 20 dead. This is the same number as for the initial values for the Hysterical
phase, since the phases are connected.

Another issue to discuss is the incubation time. Here there are two examples
that can be used. The first transformation from human to zombie happens for
the character Amy, who was bit in the arm by a zombie. The transformation
happens in about 12 hours. The other example is character Jim who has a
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slower transformation. This lasts for about two days before the rest of the group
leave him alongside the road on their way to CDC(Center for Disease Control).
An estimate of the incubation time can be set to 24 hours based on these two
transformations.

The ODE system in Eq.(2.12)can be used to model the Initial phase. The
expected results are Sy = 621 and Z, = 1 while the two other groups are set to
zero. The value of 8 can be found with the expression SAtSZ from the first
ODE equation. After three days about 90 percent of the humans are killed.

BALSZ = 0.95
33=0.9 (2.14)
B=03

The probability of a human being infected will be set to § = 0.3. The natural
death and the birth number is set to 0, since the simulations are performed
over short period and for a small group. dg = ¥ = 0. It is quite hard to find
similar realistic data for infected humans, so é; = dg. Since this is data for the
Initial phase, zombies are seen as infeteced humans that can be saved. Therefore
a = 0. And the two last parameters are also zero, a = ( = 0. The Initial phase
is modeled in Fig.(2.4):

The results shows that the human population is eradicated in about a half
day. This is not the case, and some adjustments need to be done. There are
three parameters that are interesting to study. The first one is 3, which describes
how many humans that get infected in a human-zombie collision. The second
one is o. This parameter controls the incubation time. The last parameter that
can affect the number in each group is a. This describes the number of zombies
killed in a human-zombie collision. These variables are plotted separately and
combined in Fig.(2.5). The idea here is to produce results that fulfill the final
number for the groups Susceptible and Removed, which is 71 and 20. The blue
dot in each plot describes this value. A rough estimate has been done for each
parameter before using it. This is why they all lie in different regions than the
parameter value in Fig.(2.4)

By choosing # = 0.01155, o = 1.37 and o = 0.00044, the simulation can
be seen in Fig.(2.6). It is possible to argue for the changes done in Fig.(2.6).
Increasing p to 1.37 reduces the incubation time. Now the average time will be
about 17.5 hours, which is realistic. The probability  is sensitive and has a
major effect only by small variations. This is due to the term that it is a part of
AtSZB. A couple of examples demonstrate this. One hour can be estimated by
setting At = 1/24. When using the initial values for the groups Susceptible and
Zombie and = 0.01155 from Fig.(2.6). A rough estimate of the infected group
in the first hour will be (1/24) % 721 % 1 % 0.01155 = 0.34. About one-third of a
human in the first hour seems as a slow and not very aggressive disease. However
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Figure 2.4: Initial phase for Walking Dead. = 0.3, p =1 and a = 0 leads to
eradication.

when the number of Zombies slowly increases, the number of infected will be
affected. By looking at the hour when the values are equal between humans and
zombies, about 200 in each group, the number of infected will be 19.25 per hour.
This result in about 10 percent of the humans. By changing g to the value from
Fig.(2.4), the number of infected will be 500 per hour and it is quite easy to see
that this will lead to eradication in a short amount of time. The last parameter
« controls the number of zombies that dies in collisions between zombies and
humans. While humans still think that the infected can be saved, it is still a
chance that the result from a collision can end with a zombie kill. These results
can therefore be seen as realistic values.

2.4.3 The Hysterical phase

Now the humans start to avoid the infected and some try to fight them. The
humans often gather in groups and try to find safe spots away from the zombies.
Important supplies as weapons and food are their main priorities. Barricades
are built and the guarding is strict. When Rick Grimes wakes up, the hospital is
abandoned and the halls are filled up with dead people. Quite fast he understand
that he needs to reach safety. After a couple of days he ends up in a camp outside
Atlanta city. A couple of elementary changes has happened with the interaction
between humans and infected/zombies. In the Initial phase, the humans tried to
help the infected humans. This resulted in a high percent of infected. Now they
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Figure 2.5: The final result for susceptible and removed group. These plots
give a knowledge in the effect of varying the parameters. 8 and ¢ mainly affects
the number of susceptible humans at final time, while « affects them both.

understand this risk and keep distance to those who are infected. This will give
B a lower value. The morality for a zombie kill has dramatically changed. While
this was seen as no option in the Initial phase, this is now okay. The humans
have started to treat zombies and infected as enemies instead of sick allies. This
results in a higher death rate among the zombies, which is described by «.

The hysterical model can be constructed based on the data found in the
Initial phase.

Hysterical phase initial values final values

S 71.3 62
I 230.8 -

Z 298.9 360
R 21 200

Here, the infected and zombies are counted as one group for the final values,
since it is difficult to separate these groups in the series. The time aspect will be
modeled for 30 days, which results in a ten times longer simulation. Since the
final results are known here, a similar adjustment of the parameters can be done.
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Figure 2.6: Initial phase for Walking Dead. The parameter values are set to
B = 0.01155, p = 1.37 and a = 0.00044. The final values are S,, = 71.3,I,, =
230.8, Z,, = 298.9 and R,, = 21, which is quite close to the result from the movie.

The range of the parameter values have been found by some test simulations
similar as shown in Fig.(2.5). The following parameter values can be used to
simulate the Hysterical phase: § = 0.000011, o = 1.4 and o = 0.000208. The
simulation is shown in Fig.(2.7).

Fig.(2.7) fulfills the result that was predicted based on the series. These
final numbers correspond with the number in each group when Rick woke up at
the hospital. The plot shows that the number of zombies increases quickly and
reaches its maximum value after a couple of days in this phase, similar to the
number of infected that dramatically decreased. Here the humans have been able
to stabilize. Since the clashes between humans and zombies are dramatically
decreased, nearly no humans get infected. And in the cases where humans have
to face zombies, the killing rate has increased. The increase of the removed
group is close to proportional to the decrease of the zombie group, which means
that it is mostly zombies that die.

2.4.4 The Counter attack phase

This Counter attack phase is more complicated to model, since this phase appears
simultaneously as the Hysterical phase in Walking Dead. The group of humans
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Figure 2.7: Hysterical phase with parameter values § = 0.000011, o = 1.5 and
a = 0.000208.

are trying to avoid the zombies, but when the zombies get too close, the humans
need to fight back. These situations are caused by a high density of zombies in
some areas, which force the zombies to spread. In Walking dead the Counter
attack phase appears when a group of 30 zombies reaches the camp. This triggers
a fight where all the zombies are killed and 4 of the humans get bitten. This
shows that a Counter attack phase from the humans causes a lot of damage.
The time aspect is set to 6 hours. Now the function w(¢) will be used. This can
be seen in Fig.(2.8):

To get some start values, SZw(t) = 30 can be used. Where w(t) is the area
under the function. By inserting the final values from Hysterical phase for S and
Z, the area shall be w(t) = 1.34 - 1073, This result can be reproduced by using
a = 0.00103 and o = 0.005 in w(¢). The Counter attack phase is set to appear
during the last part of the day [0.75,1]. The value of T is then set to T=[0.875].

This simulation in Fig.(2.9) results in some deaths. However, the total
number should be higher. Another problem is that no humans died during this
battle. The ODE model (2.12) is based on The Night of the Living Dead, where
the amount of humans who are killed is close to zero. This is not the case in
Walking dead. Therefore the risk of dying is higher for human during a Counter
attack phase. This is solved by adding pw(t)SZ, where p is the risk for a human
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a=0.9,T=1,sigma=0.1

Figure 2.8: w(t) is a Gaussian function where a controls the maximum value, T’
controls the time for maximum value and o controls the length of the attack.

getting infected compared to a zombie kill during this attack. The model (2.12)
can then be expanded to system(2.15),

% =5 — (B4 (t)SZ — 65

W (B4 mo0)S7 — of ~ 11
¢ (2.15)

dz
dR

Fig.(2.10) is modeled with the initial values given when Rich woke up,
explained in the Initial phase. The result after this day is that the humans are
reduced to 58 humans. The number in the infected group is increased to 2.47,
which can be explained with the two characters in the series, Amy and Jim. The
number of removed humans is increased to 231, and is a combination of killed
zombies and humans who are attacked. By modelling this for another day, the
removed group will increase with a couple of new deaths.

It would be interesting to check what would happen if this Counter attack
phase was repeated over time. Who would survive? An attack every other day
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Figure 2.9: The Counter attack phase with parameter values a = 0.00103,
o = 0.005 and T = 0.875. 8-9 zombies are killed and all humans survive

will give the following result shown in Fig.(2.11). After 200 days there would
be about 15 humans and 12 zombies left. Then the humans would be able to
survive since they are more efficient in battles.

2.4.5 The three phases in Walking Dead

By adding these three phases together, the final result after the attack should be
possible to match. The simulation here will be done with the parameters used
in the earlier sections. This can lead to a small error since the result of the final
number in each phase is given with decimals and the initial values are based on

assumptions and round off numbers. The different parameter values are listed in
Tab.(3.3).

parameter Initial phase Hysterical phase Counter attack phase

B 0.01155 0.000011 0.000011
0 1.37 1.5 1.5

o 0.00044 0.000208 0.000208
a 0 0 0.0073
o 0 0 0.005
7 0 0 0.14

The simulation is run for 34 days. The three first days are in the Initial phase, the
resisting days are in the Hysterical phase. The Counter attack phase is released
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Figure 2.10:  Counter attack phase with parameter values a = 0.0073 and
w=0.14.

on day 33 and lasts for about 6 hours. The plot is shown in Fig.(2.12). This
clearly shows that the change in parameter values affects the different phases.
The different values are shown in the Tab.(2.4.5), where the values are given at
the initial time. The last column consist of the final values after 34 days.

values Initial phase Hysterical phase Counter attack phase final values

So 621 71 62 58
Iy 0 231 0 1

Zy 1 299 359 332
Ry 0 21 202 231

Considering the uncertainty of the parameters, this simulation gives a result
close to the expected result.
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Walking Dead simulated after 5 episodes. Based on the three
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2.5 Discussion

The simulations of the example English boarding school were based on a basic
SIR model, shown in Eq.(2.1), and expected results were achieved. The maximum
concentration of the infected group could be found by using Eq.(2.10). The
value of I,,x was first calculated for the example from section 2.3 with the given
parameter values, and this resulted in I,,x = 292. The numerical solution shown
in Fig.(2.2) gave the same result for ..

With variations in the parameter value p, different epidemic results were
achieved. In section 2.3, the value of p was set to 202. By decreasing this value
to 50, all students would be infected during the 10 first days. Increasing the
value of p up to 400 on the other hand, would result in 170 remaining students
in the susceptible group after 30 days.

The Zombiefication part was based on the model and phases from Langtangen,
Mardal and Rgtnes Ref.[3]. The parameters and the length of the phases
were adjusted to simulate Walking Dead. Since the simulations were based on
observations from the TV series Walking Dead, the parameter values in the
model were adjusted to fulfill the result.

The parameter values 3, ¢ and « from the model in Eq.(2.12) were adjusted
for the different phases in section 2.4. The effect of varying these parameters
could be seen for the two groups Susceptible and Removed in Fig.(2.5). Varying
B, which describes the number of susceptible humans that become infected, had
a major effect on the result for the susceptible group. The changes in «, which
describes the number of zombies killed by susceptible humans, affects the result
in the removed group. The changes in g, which describes the probability for
an infected human to wake up as a zombie, affects the susceptible group in the
Initial phase. By varying the different parameters in Eq.(2.12), the expected
result from Walking Dead was achieved.

The parameters found in this model will be used for all three chapters. This
model is easy to use. The parameter values can easily be adjusted to fit a
known solution, shown for the example from Walking Dead. However,it gives no
information about the spatial spread of the disease. It will therefore be useless
in describing how a disease can spread abroad countries and borderlines. The
next two chapters will introduce more complicated models which will take the
spatial position into account.
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Chapter 3

PDE models

This chapter will introduce a spatial model for epidemic diseases. The ODE
system from the previous chapter 2 can be expanded with a term for geographic
spread of the disease. The first section 3.1 will be based on the simple SIR model
presented in previous chapter, and the chapter Geographic spread and Control of
epidemics by Murray [6]. The parameter values from the section 2.3 will be used
for the model and the results will be compared. The position of the different
groups will be studied to see if it affects the numbers in the groups. The last
section 3.3, will study and expand the system from Langtangen, Mardal and
Rgtnes [3]. The results and parameter values used to calculate Walking Dead
will be compared with the previous ODE system and variations of this PDE
model.

3.1 Simple system for spatial spread

A spatial variable, x, will be introduced to the model. This results in both
temporal and spatial variations. The difference from a standard ODE system
will be the diffusion part added to each equation. The system can be seen in
Eq.(3.1).

S

— = —rIS + DV?

T rIS + DV~<S

% =rIS —al + DV?I (3.1)
OR )

Here S describes the susceptible group, I describes the infected group and R
describes the removed group. The following conditions are set for the boundary
and initial values:

ugp(0,8) =u(X,t) =0, u=S,I,R (3.2)
u(z,0) = fu(x), w=S,I,R '

31
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This results in Neumann conditions at the boundary. The following implementa-
tion can be used at the boundary
uy —up _0
2Ax (3.3)

uy =uf

This is solved by adding an extra point on each side, called ghost points. The
values in these ghost points are updated every time step with values from u} and
u% _;. All three groups, S,I, R in Eq.(3.1) have the same diffusion coefficient,
D. This gives the three groups the same diffusion speed. This can vary between
systems. Later in the chapter, in section Zombiefication, different diffusion terms
are given to the groups. The two probabilities IS and al will work in the same
way as in the ODE system. Since this model takes the position into account, a
group of infected that move into a uniform population with susceptible humans
can be model. The group of susceptible has the density Sy. A simulation can
show the geotemporal spread of the disease. The problem can first be considered
as one-dimensional. The system can be nondimensionalised by writing

I I R
I*:f I*:f * T
So’ So’ R So’
1/2 (3.4)
¥ = @ x, t*=rSut )\:i
D ) ob, 7”507

So is used as a representative population. Now Eq.(3.1) can be expressed as in
Eq.(3.5). The asterisks have been dropped to make it easier to read.

oS 028

o - T g

ol 021

Z _ Z - 3.5
o =15 =M+ (3:5)
OR 0’R

o =M g

The three parameters r, a and D have been replaced by A\. The reproduction
rate that was presented for the ODE model can be seen as 1/\.
1 TSO
Ry=—=— 3.6

o7 X a (3:6)
The number of secondary infections produced by one primary infected can be
seen as 1/A. It can also be used to measure two different time scales. The first
one, 1/(rSp), measures the contagious time of the disease. The second one looks
at the life expectancy for an infected. This can be described as 1/a [6].

3.1.1 Travelling wave 1D

In this case the travelling wave describes how a group of infected travels through
a geographic area of susceptible humans. This will be shown by sending a pulse
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from the infected group into a group of susceptible. A travelling wave solution
can be described as follows,

I(z,t) =1(z), S(z,t)=5(z), R(x,t)=R(z), z=ux—ct, (3.7

The value ¢ describes the wave speed. This represents a wave of constant shape
that travels in the positive x-direction. Eq.(3.7) can be inserted into Eq.(3.5).
This result in the ordinary system Eq.(3.8)

S +¢8' —1S=0,
I"+cl'+1(S—X)=0 (3.8)
R'"+cR+IN=0

This makes an eigenvalue problem. The value of A needs to stay in a range where
¢ > 0 is fulfilled. The values S, I and R have to stay nonnegative. This leads to

0 < S(—0) < S(0)
I(—00) = I(o0)

1
0, (3.9)
1> R(—o0) > R(co) =0

An epidemic wave can be seen in Fig.(3.1). The value of X is set to 0.5. The
initial value of the susceptible group is 1 for the area and the removed group
is set to 0. The infected group has a Gauss curve around 0 at initial time. In
the four subplots in Fig.(3.1), the epidemic wave travels towards the other side.
The value z, which is defined in Eq.(3.7), is used to plot the travelling wave
measured at a specific point, in this case x = 15. This travelling wave is shown
in figure(3.2). The infected group in Eq.(3.8) can be linearised when z — oo.
This leads to S — 1 and I — 0. The result can be seen in Eq.(3.10).

I"+cl'+1(S—X\) =0 (3.10)
This can be found by

1(2) o exp [(—c +c?—4(1 - A)l/g)z/z] (3.11)

Since it is required that I(z) — 0 and I(z) > 0, oscillations around 0 must be
prevented. If a travelling wave exist, it has to satisfy

c>201-NY2 <1 (3.12)

If A > 1, no travelling wave will exist. Then the disease will die out. The terms
defined in Eq.(3.4) will give the threshold conditions,

a
A=—<1 1
7“5'0< (3.13)

This is the same value that was given for the ODE model in the previous chapter.
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time = 0.0, z=15.0 time = 9.9, z=5.1

Figure 3.1: A Gaussian function of infected with height 0.2 is placed on the
left side. This causes an epidemic wave controlled by the parameter A = 0.5.
The size of the epidemic wave is measured at point x = 15 and can be seen in
Fig.(3.2) Movie.

3.1.2 Verifying the solution

To verify the implementation of the model, two manufactured solutions are used.
A solution that fulfills the boundary conditions is selected for the manufactured
solution. The solver is then tested to see if is reproduces the known solution.
The solver will be tested against a constant solution and a cosinus solution.

3.1.3 Constant solution

A constant solution uses preproduced constant values for the concentrations S,
I and R. These can be replaced by S = Cs, I = C;, R = C,.. The value of C;
can only be 0 in Eq.(3.5). This results in a poor test where several bugs can
escape. The system can be expanded by adding a term SR to the susceptible
group and subtracting the same term from the removed group. Then all three
values can be tested. The system will then look like this:

a8 928

oI 91

9L s 3.14

o = 15— M+ (3.14)
2

Of _si-pry 28

0x?’

ot
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— Susceptible — Infective — Removed

=25 =20 =15 =10 =5 0 5 10 15

Figure 3.2: The travelling wave measured at z = 15 in figure(3.1). The value of
z is defined as & — c¢t. The initial value the travelling wave can be seen when
z = 15.

By deriving Eq.(3.14), the following system Eq.(3.15) has to be solved

Cics = BC’!‘
CiCs = \C; (3.15)
AC; = =pC,

The values 8 and A are based on the constants Cy, C;, C,., which can be chosen
freely. Here they are set to Cy = 1.2,C; = 0.8,C, = 0.6. This results in
A=Cs=12and g = CC—C = 1.6. A test is made in python and can be seen
below.

def _test_constant_solution():
nnn

Test problem where u=u_const is the exact solution, to be

reproduced (to machine precision) by any relevant method.
mnnn

def exact_solution(t):
return C_s,C_i,C_r

def lam(t,x):
return C_s

def beta(t,x):
return (C_s*C_i)/float(C_r)
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#Constant values

Cs=1.2

C_i=0.8

C_r =0.6

#lam = C_s

#beta = (lam*C_i)/float(C_r)
2; Nt = 200
20; Nx = 40

np.ones (Nx+3)*C_s
np.ones (Nx+3)*C_i
np.ones (Nx+3)*C_r

t,x,S,I,R = simple_PDE(T,Nx,Nt,X,lam,beta,S_1,I_1,R_1)

S_e,I_e,R_e = exact_solution(t)

difference = abs(S_e - S).max() # max deviation
tol = 1E-14

assert difference < tol

difference = abs(I_e - I).max() # max deviation
tol = 1E-14
assert difference < tol

difference = abs(R_e - R).max() # max deviation
tol = 1E-14
assert difference < tol

The test was run with no error, and the three constant values were produced
correctly. This test is not good enough to qualify the program alone, however
an error here would result in a large error in the program.

3.1.4 Manufactured solution

By constructing a function to each equation in the Eq.(3.5), a manufactured
solution can be created. Here S,I and R are pre produced. The system will be

oS 05

oI 0?1

Z IS — i 3.16
pr IS — M+ 92 +g(x,t), (3.16)
OR O*R

a =\ + w—Fh(l‘,t),

where f, g and h are source terms used to achieve the expected results for S, I
and R. In this case the functions will be:

oS 925
2
g, t) = % IS4 AT — % (3.17)
2
hat) = B o 8

ot N
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When choosing

the expected function for the groups, it is important that the

boundary conditions from Eq.(3.2) is fulfilled.

ug(0,8) = uyx(X,8) =0 (3.18)

The quantities have been set to:

S(x,t) = cos(%x)t

I(x,t) = cos(%n)t (3.19)

R(z,t) = cos(%x)t

sympy is used to find the corresponding source terms f, g and h. This results in
the following equations seen in Eq.(3.20)

Flot) = (2 cos( o) + (
g(z,t) = (At — t? cos(%x) + (

h(z,t)

™

X)Qt +1) cos(yx)

X
(=Xt + (%)215 +1) cos(%x)

)2t +1) Cos(%x) (3.20)

A similar test made for the constant solution can be used here. While the
constant test expected a difference on machine precision, this is not the case here.
In this test, an expected convergence rate can be measured. The implementation
of the manufactured test can be seen below.

def _test_manufactured_solution(T,Nt,X,Nx):

def exact_solution_S(t,x):

return

np.cos(np.pi*x)*t

def exact_solution_I(t,x):

return

np.cos(np.pi*x)*t

def exact_solution_R(t,x):

return

def beta(t
return

np.cos(np.pi*x)*t

,X)
exact_solution_S(t,x)*exact_solution_I(t,x)/exact_solution_R(t,x)

def f(t,x):

return

(t**2xnp.cos(np.pi*x) + (np.pi/float(X))**2xt + 1)#*np.cos(np.pi*x)

def g(t,x):

return

def h(t,x):

return

dx
dt

(lam*t - t**2*np.cos(np.pi*x) + (np.pi/float(X))**2xt + 1)#*np.cos(np.pi*x)

'(—lam*t + (np.pi/float(X))#**2xt + 1)#*np.cos(np.pi*x)

X/float (Nx)
T/float (Nt)

S_1 = exact_solution_S(0,np.linspace(0-dx,X+dx,Nx+3))
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I_1 = exact_solution_I(0,np.linspace(0-dx,X+dx,Nx+3))

R_1 = exact_solution_R(O,np.linspace(0-dx,X+dx,Nx+3))
t,x,S,I,R = simple_PDE(T,Nx,Nt,X,lam,beta,S_1,I_1,R_1,f,g,h)
S_e = exact_solution_S(t[-1],x)

I_e = exact_solution_I(t[-1],x)

R_e = exact_solution_R(t[-1],x)

difference_S = abs(S_e - S).max() # max deviation
difference_I = abs(I_e - I).max() # max deviation
difference_R = abs(R_e - R).max() # max deviation

return difference_S,difference_I,difference_R

3.1.5 Convergence rate

The solver can be verified by checking the convergence rate. Here, a common
discretization parameter h can been used. Since the stability criteria demands
that the following term in Eq.(3.21) is fulfilled:

A 2
At <= % (3.21)
The common discretization parameter has be set to h = At = AT”EZ and can be
used in Eq.(3.22) to study the convergence rate.
e=C,h+Cih=Ch (3.22)

The value of h has been set to 0.005, which result in At = 0.005 and Az = 0.1.
By reducing the value of h, the convergence rate is expected to be 1. The error,
€ has been produced for four different values of h. The result can be seen in
Tab.(3.1.5).

h 1 T s
4 16 64
¢ 99E3 25E3 6.164 15E4

The convergence rate can now be found by using
e h” (3.23)

The error values from Tab.(3.1.5) can be inserted with the different values of
the discretization parameter in Eq.(3.24).

. log(er/e2) (3.24)

T ~
>~ log(h1 /h2)

Where hy = h, hy = %, ..., This gives the following result

61/62 62/63 63/64
r 1.00178 1.00044 1.00011

The expected convergence rate for this model is fulfilled.
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3.1.6 Travelling wave in 2D

The Eq.(3.5) can be discretized for a 2D area. This is more realistic when
simulating a geographic spread of an epidemic disease. The nondimensional
system can be discretized with Forward Euler in time and centered difference in
space.

n+1 n n n n n n n
Sig — 56 _ g 4 (Si—l,j — 257 + St N Shj—1 =257 + Sm‘+1)
At 1,77 AxQ Ay2
o [ 20 I, I —2Ir 4 [T
i,] N b Iiy?jsirfj _)‘Iirfj + < =1, A;; i+1,j 4 b 1 Ayé -,J+1>
n+1 n n
Rig — Ry e o (Bitay Z 2R+ Ry Ry = 2R 4 Ry
At J Az? Ay?
(325)

The known values can be placed on the right side. The system will then be

Sno, . —28n. 4 8n . o S —28n 4 SN
n+1 _ i—1,j ,J i+1,j i,j—1 %,J 1,j+1
St =8P+ At (—Jgfjsgjj + ( A - Ay >>

I, =21 + I . . . =21 + I".
+1 _ gn n an n i—1,j ) itl,j =1 i.J 4, +1
L7 =10 + At (IMSM — A+ ( A2 + Ay? ))
R}, —-2R}),+R},, R} _|—-2R! + R},
R = R At A i—1,j (%) i+1,j 1,j—1 6,J 4,41
i, i T ( ig T+ ( Ax2 + Ay?

(3.26)
This results in an explicit system, which is easy to code. It consists of known
values on the right side and only one unknown value on the left side.

3.1.7 A Gaussian wave

In the PDE system for the 1D equation, a Gaussian quantity of infected humans
was placed on the left side in the initial value. This resulted in a wave of
infected spreading along the x-axis. A similar procedure can be done for the
2D simulation. A couple of simulations have been produced for the 2D system.
The first simulation is calculated with a Gaussian function along the points(0,y)
for the infected group at initial time. The second simulation has placed the
Gaussian function at point(0,0) for the infected group at initial value.

The size of the epidemic wave can be measured and compared by studying
the travelling wave at a certain point. In these two 2D simulations in Fig.(3.3),
the wave are measured in the point (15,15), while the travelling wave in the 1D
simulation was measured at point(15).

The shapes of the two travelling waves in Fig.(3.3) are similar. The only
difference is the time when the wave occurs. The plot for 1D wave in Fig.(3.2)
has the same shape. With a closer study, the area under the function can be
measured in all three cases. The result can be seen in Tab.(3.1.7)
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Gaussian function from one side Gaussian function from one corner

Figure 3.3: Travelling wave measured at point (15,15) with two different initial
values for the infected group. I: The initial value is set as a Gaussian line along
(0,y). II: The initial value is set as a Gaussian function at point (0,0).

1D wave 2D wave line 2D wave point
1.43 1.43 1.43

The area in all three simulations approach the same area when At and Ax are
reduced. The size and shape will not change by expanding the system from
1D to 2D. However, by studying Fig.(3.3), one can see that the wave occurs at
different times. This is caused by the distance from the start position for the
Gaussian wave. The first subplot that starts with a Gaussian function along the
x = 0 axis gets a wave from the infected group that flows along the x axis. This
can be seen as a wave on the beach. Everyone that have the same distance from
the ocean will be hit simultaneously. The travelling wave for the 1D simulation
and the first subplot occurs at the same time, because they are measured at the
same distance from the starting point. The last plot is also measured at (15,15),
but occurs later. Since the wave starts at point (0,0), the distance to (15,15) is
21.21. This means that the wave will reach the point 6.21 time steps later. This
is a reasonable conclusion based on the plot.

3.1.8 Changes in the initial flow

By increasing the initial wave of the infected group, the initial value of infected
can be studied. The simulation is run with the same parameters as for the three
simulations above and the only difference is the initial value for the infected
group. The Gaussian wave of the infected group is placed at point(0,0) as for
subplot IT in Fig.(3.3). The simulation can be seen in Fig.(3.4).

The size and shape can be compared by measuring the travelling wave at
point(15,15). The travelling wave for this simulation can be seen in Fig.(3.5)
and the area for the travelling wave is measured to 1.43, which is similar to the
three other simulations.
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Figure 3.4: A major flow of infected spread outwards in the field. After a certain
time, the wave has passed the area and the number in each group stabilized.Movie

The size of the travelling wave will not be affected by changing the value
of the infected group. However there is a difference in the time when the wave
occurs. In the simulation where the initial value is higher, the travelling wave
reaches the measuring point (15,15) earlier. This can be explained by the idea
of a ball dropped from a large height. If the ball is released or thrown to the
ground, it will only affect the acceleration of the ball, not the terminal velocity.
After a certain time the released ball and the thrown ball will reach the same
maximum speed. This is the case for the speed of the travelling wave.

3.1.9 Changes in lambda

The one thing that affects the speed and size, is the A\ variable in the PDE
system(3.5). This A is a combination of a, which controls deaths among the
infected group, r, which controls the number from the susceptible group that
gets infected in meetings between the infected and susceptible groups. The
last parameter in A is the concentration of Susceptible, Sy. By changing this
parameter, the travelling wave will change in both size and shape. In Fig.(3.6),
the simulation is run with four different values of A. To understand the results
in Fig.(3.6), the A function can be studied,

a

A= —
V”SO7

(3.27)
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Figure 3.5: The travelling wave with a major increase of infected at the initial
time.

A major and aggressive travelling wave is caused when A — 0. In Fig.(3.6),
A is run with value 0.01 in the first subplot. This results in a travelling wave of
infected that eradicates the susceptible group in a short time. The wave starts
decreasing when all susceptible humans are infected. By looking at Eq.(3.27),one
can see that a small value is caused by a small a compared to r and Sy. If a is
low, this results in few deaths/immune in the infected group. This means that
the infected group will grow and be able to infect even more humans from the
susceptible group. The same thing will happen if r is large. A result of a large r
will be an aggressive disease that infects a major part of the population. The
same result will happen if Sy is large. Then there are several possible humans to
infect. Therefore an outburst of a disease is more critical in a crowded city than
in the wilderness, far from other humans.

If X\ increases above 1, the disease will not be able to spread. The number
of infected will decrease, since the number in the removed group caused by the
infected group is higher than the amount of infected humans from the susceptible
group. After a certain time, the number of infected will die out. If X stays at 1,
the number of infected will be equal the whole time.
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Figure 3.6: The travelling wave simulated with different A values. The values
that are used: A = 0.01 for subplot I, A = 0.3 for subplot II, A = 0.7 for subplot
IIT and A = 1 for subplot IV.

3.2 English boarding school

An example from an English boarding school was presented in the previous
chapter 2. This example was based on the book from J.D Murray [5], and was
modeled for an ODE system. A similar result should appear for the PDE system
with the same parameter values and a uniform distribution of the groups. The
school had 763 students, and one of the students brought a disease back to the
school. The following numbers were used for the ODE system in chapter one.
N =1763,5 =762,y =1,Ry=0,p =202 and r = 2.18 - 1073.

The first simulation is produced with uniform distributed concentration, This
is done to verify the implementation. A person is defined as one cubic. The total
volume of the whole group is spread over the area. The area is set to be 100 m
x 100 m, which results in an average height of 1/10000 m per person. This is
done to get a uniformed distribution. This would of course be more difficult in
real life, particularly if the person would be alive. Since the infected group only
consists of one person, the total height will be 0.0001 for the whole area. The
susceptible group consists of 762 students and the total height at each point will
be 0.0762.
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The results from subplot I in Fig.(3.7) are equal to the results from the ODE
system modeled in the previous chapter.This can be seen in Tab.(3.2.2). This is
as expected, since the diffusion term is negligible in this system. The simulation
results in a group of separate ODE systems modeled over an area.

3.2.1 Maximum concentration of infected

The maximum concentration of the infected group was found for the ODE system
in the previous chapter. The expected value of I, was first calculated, and
later verified with the numerical solution of the ODE system. The reproduction
rate found for the PDE system in Eq.(3.6) was given by the same parameters
as for the ODE system. A similar maximum value is expected from the PDE
solution. The maximum value of the infected group from the numerical PDE
solution is Inax = 292 and is equal to the I, for the ODE solution.

3.2.2 Introducing a Gaussian distribution of infected

An assumption one can make is that a person is not able to be evenly distributed
over an area. In this example, with only one infected student at initial time,
the chance of being infected increases the closer the susceptible group gets the
infected student. The student is represented by a Gaussian function in the
middle of the school yard, to see if the position affects the result. The height is
set to 1 and the volume of the Gauss function is set to 1 cubic. The simulation
can be seen in Fig.(3.8) and the total amount of students in each group can be
be seen in Fig.(3.7).

The results from the uniform distributed and Gaussian distributed simulations
show various results. The initial position of the infected group is the difference
between the simulations. This has a major impact. Since the only ones that can
be infected by the Gaussian distribution are the students close to the infected
student, this restricts the spread of the epidemic. The chance of getting infected
in this area is higher. The Fig.(3.8) shows that the infected group quickly grows
in the center, where the infected was placed. Subplot IV in Fig.(3.8) shows that
the amount from the removed group in the center is close to the maximum of
the initial value of the susceptible group, while the students along the boundary
of the schoolyard seem to be unaffected after 15 days. This simulation shows
that the position of the infected group has a major role in the simulation.

The position of the infected group, here as a Gaussian function, also affects
the outcome. Subplot III in Fig.(3.7) describes a simulation where the Gaussian
function is placed in the corner with position(0,0). The total volume of the
function is increased to 4 since only a quarter of the function is placed in the
area. Tab.(3.2.2) shows that the total number of infected is lower than for the
centered placed Gaussian function. The infected student is only able to spread
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the disease to a quarter of the population compared to the infected student in
the center.

If the simulations are run for a long time, the difference between each group
will decrease. After 100 days there will be about 18 students in the susceptible
group in the uniform distributed simulation, compared to 25 students in both of
the Gaussian simulations. A table with the values from the three simulations
performed for this English boarding school are compared to ODE system from
chapter 2.

ODE system PDE uniform dist PDE center PDE corner

5 Days _ -

Susceptible 444.62 444.62 748.03 757.33
Infected 209.56 209.56 7.36 2.35
Removed 108.82 108.82 7.60 3.32
10 Days _ _

Susceptible 37.59 37.59 697.71 743.58
Infected 117.59 117.59 24.43 6.66
Removed 607.82 607.82 40.86 12.76
15 Days _ _—

Susceptible 21.09 21.09 597.01 717.02
Infected 17.30 17.30 46.96 12.37

Removed 724.62 724.62 119.03 33.61




46 CHAPTER 3. PDE MODELS

800 Uniform distribution for the Infective class

Number

0 2 4 6 8 10 12 14
Days

800 Centered Gaussian for the Infective class

700 |

600 |

500+ 4

400+ 4

Number

300 |

200 1

B ;"‘%
0 L | I I

Days

800 Corner located Gaussian for the Infective class

700 R

600 | |

500} |

200/ ]

Number

200 |

100+ |

0 2 4 6 8 10 12 14
Days

Figure 3.7: English Boarding School modeled with three different initial values
for the infected student. The amount of students in each group modeled over 15
days. Subplot I: uniform distribution. Subplot II: The student is placed as a
Gaussian function in center. Subplot ITI: The student is placed as a Gaussian
function in the corner (0,0).
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Figure 3.8: The infected student is placed in the center as a Gaussian function
at initial time. The height of the Gaussian function is set to 1 m and volume is

set to 1 cubic.Movie
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3.3 Zombiefication

The previous chapter studied an ODE system designed to calculate the number
in the four groups: Susceptible, Infected, Zombie and Removed during the five
first episodes in the TV series Walking Dead Ref.[1]. The model was based on
the model from Langtangen, Mardal and Rgtnes Ref.[3], with an extra term in
the counter attack phase. The ODE system from the chapter 2 can be expanded
with a diffusion term in each group to make a PDE system. This can be seen in
Eq.(3.28)
os
ot
ol 9
— =B+ pw(t)SZ — oI —6;1+ D;V<I
ot (3.28)

Y — (B4 pw(t))SZ — 858 + D, VS

7
%—t =ol — (a+w(t)SZ+(R+ D,V*Z
%Jf = 655+ 611 — CR+ (a +w(t)SZ + D, VR

The Eq.(3.28) can be solved numerically by finite difference. Forward Euler
is used for the temporal discretization and centered difference for the spatial
discretization. This is solved with the same technique as for the SIR model(3.25).
The system can be seen in Eq.(3.29)

gntl _ gn.
L = 5 — (B4 pw(t)ST 21 — 655

At
D Sit1,; =250 + Sl N Sij—1 = 250 + 5741
® Az? Ay?
i
i, i, n rrn n n
- — = (B + pw())Si 255 — ol — 611}
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D, Ty =200 + 1 N 100 =200 + 14
! Ax? Ay?

ZnHl g
) = oI — (a+ w(t) ST 28 + CRY

At 4,377
wp. (s m A Dy | 2 — 220+ D
- Ax? Ay?
R _ Rpe
v 5 n n n n on

4D Ri 1 —2Ri; + Ry N Rij 1 —2RE; + R4
" Az? Ay?
(3.29)
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By setting the unknown to the left, the following system in Eq.(3.30) can be
solved:

St = 51+ AT = (B + po(t) Si 27 — 6551,

Lp, (B T 250 Sty | S = 250, + Sl )
s Az? Ay?

I = 17+ At((3 + o (0)ST, 22 — ol — 3117,

D, Iy =200 + 1 n 10 =200 + 1 )
! Az? Ay?

205 = 725+ At(of - (a+ w(t) ST 2 + CRY,

D Zitay =220+ 2 N 21 =220+ 2 )
8 Az? Ay?

RIFY = R+ A4 (8687 + 0117 = CRY + (o +w(8) ST, 21,

D Ry —2R:; + Riy, N Rij1 —2Ri; + Ry )
" Ax? Ay?

A simulation with uniform distributed groups can be done to verify the imple-
mentation of the system. The result is expected to be similar to the ODE system
in the previous chapter. A zombie attack can be separated into three different
phases, based on the paper from Langtangen, Mardal and Rgtnes [3]. The first
phase is short, and it is called the Initial phase. The humans are unfamiliar with
the disease in this phase and are as a consequence quite naive to the disease.
This result in a high chance of getting infected. The next phase is called the
Hysterical phase. The humans are now more familiar with the situation and try
to avoid the infected group. This result in a lower chance of getting infected.
The last phase, which happens at the same time as the Hysterical phase, is
the Counter attack. This phase is often initiated when humans are attacked
by zombies. The following parameters that were used for simulating the first
episodes of Walking Dead will be used here. These can be seen in Tab.(3.3).
By computing the system for all three phases, the value in each phase can be
compared to the ones from the ODE system. This will give an indication of
whether the discretization is done correct.

(3.30)

parameter Initial phase hysterical phase counter attack

3 0.01155 0.000011 0.00011
0 1.37 1.5 15

o 0.00044 0.000208 0.000208
a 0 0 0.0073
o 0 0 0.005
m 0 0 0.14

The simulation in Fig.(3.9) seems to match the results from the ODE system.
For further verification, comparison of the groups in each phase is done. This
result can be seen in Tab.(3.3)
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Initial phase modeled with PDE with equal propability
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Figure 3.9: The Eq.(3.30) modeled with uniformed distributed groups. Initial

values Sy = 621,

Iy =0, Zy =0 and Ry = 0 with parameters from (3.3).

The initial values for the four groups are set to Sy = 621, Iy =0, Zy =1
and Ry = 0 in all simulations. The values in Tab.(3.3) are measured at the final
time for each phase. The Initial phase lasts for three days and the values are
measured at time = 3. The Hysterical phase is a continuous phase, and will not
stop until an eventual eradication. The values are therefore given before the
Counter attack at time = 33. The Counter attack lasts for some hours, and is
measured at time = 34, which is a day after the attack. The value of At is set

to 1E-3.
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ODE system PDE uniform dist PDE gauss center

Initial phase

Susceptible 71.3 71.3 81.12
Infected 230.8 230.8 210.94
Zombie 298.9 298.9 310.11

Removed 21.0 21.0 20.60
Hysterical phase _

Susceptible 61.6 61.6 70.55
Infected 0.3 0.3 0.34
Zombie 358.6 355.6 334.33

Removed 201.5 201.5 217.56
Counter attack _ _

Susceptible 57.8 57.8 66.50
Infected 1.2 1.2 1.23
Zombie 331.8 331.8 305.86

Removed 231.3 231.3 249.19

These results shows that the PDE system gives the same results as the ODE
system.

3.3.1 Spatial spread of the susceptible group

In the previous section, 3.2, the location of the infected group was proven to
have a major influence on the result. However here the susceptible group was
uniformly distributed over the schoolyard. The number in each group, based
on the study of Walking Dead, was seen in three different locations in the TV
series. By only studying the TV series, it is hard to decide the geographical
distance between these three locations. Since this paper focus on a small group
of people, the following simulations are done on a grid with size 40m x 40m and
for a group of 622 persons. Three susceptible groups will be divided out at initial
time. The three susceptible groups will now be called constellations, to avoid
any confusion with the groups Susceptible, Infected, Zombie and *Removed. The
three constellations are represented as Gaussian functions. A person is defined
as one cubic. The following initial positions for the constellations :

e Small constellation with center in position(6,6) with the volume of 21 cubic,
correspond to the population of 21 humans

e Middle constellation with the center in position(12,25) with voulme of 200
cubic, correspond to the population of 200 humans

e Large constellation with the center in position(25,12) with volume of 400
cubic, correspond to the population of 400 humans

The diffusion term describes the diffusion for each group. This can be seen as
the speed towards equilibrium for each group. If the diffusion constant is large,
the flow towards equilibrium will go faster. In these simulations, the diffusion
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constant for the groups Susceptible, Infected and Zombie is set to 1, while the
diffusion constant for the group Removed is set to 0.

The parameters from Tab.(3.3) will be used here, and the three phases will
be modeled as shown for the uniformed distributed PDE system. The values
will be used for three different simulations with the similar initial value for the
different groups. The position of initial values can be seen in Fig.(3.10) and are
based on the data given for each constellation above. The difference in the three
simulations will be the position of the zombie at initial time. The zombie will
be placed in center of the small, middle and large constellation.

Initial values for susceptible

40

35

30

-2.88
25
+2.40

20
411.92

15 41.44

10 0.96

0.48

0.00

Figure 3.10: The initial value for the susceptible group for three simulations.
Small constellation at position(6,6) with volume of 21 cubic, middle constellation
at position(12,25) with volume of 200 cubic and large constellation(25,12) with
volume of 400 cubic. All three groups are build up with a Gaussian function.

Fig.(3.11) shows the simulation where the zombie is placed in the large
constellation. The four subplots are from the different phases that arise during
a zombie attack. The different groups have the same color as introduced in
Fig.(3.9). It is difficult to separate the three groups Infected, Zombie and
Removed, since they all have a low value at initial time. The development of the
amount can easier be seen in the Tab.(3.3.1). Since the amount of the susceptible
group is quite low in the small constellation where the zombie arises, the disease
is not able to infect too many before the society has moved to the next phase,
assuming that the broadcasting about the disease works okay for the first days.
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Figure 3.11: Walking Dead simulated with the zombie at initial time in the
large constellation. Subplots shown at each phase. Movie

By placing the zombie in the middle constellation, the amount in the zombie
group increases to a higher level. The damages are higher, and after a month the
total population of the susceptible group is reduced to 427. The last calculation
done for the large constellation in Fig.(3.11) shows major damages. Here the
amount in the zombie group increases above the number of susceptible humans.
The infected group also increases to above 100 after a couple of days in the
initial phase. This can be explained by the high number of meetings between
susceptible and zombies. By studying the subplot IT in Fig.(3.11), the zombies
are grouped in the large constellation, while the middle and small constellation
mostly consist of susceptible humans. By counting the loss of susceptible humans
during the first phase, the Tab.(3.3.1) shows that this amount corresponds with
the size of the constellations where the zombie was placed, given by the number
17, 188 and 362 in the small,middle and large constellation.

The results from the uniformed distributed simulation is still much higher
for the zombie group the in these three simulations. This shows that using the
parameters from the ODE system in a geographical area makes little sense. A
realistic assumption is that a zombie is restricted to a given area, and therefore
the parameters will not be equal for all. The chance of getting infected is much
higher if a person from the susceptible group is close to an infected. There is also
a greater chance of getting infected if the susceptible group has a high density.
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Small constellation = Middle constellation Large constellation

Initial phase — R R

Susceptible 602.93 425.31 246.18
Infected 3.09 25.96 49.29
Zombie 14.30 162.28 311.26
Removed 0.65 7.42 14.25
Hysterical phase _ -
Susceptible 602.31 420.11 237.41
Infected 0.03 0.20 0.36
Zombie 6.40 96.21 205.37
Removed 12.23 104.45 177.83
Counter attack - _
Susceptible 602.05 418.17 233.65
Infected 0.08 0.59 1.14
Zombie 4.60 82.64 179.09
Removed 14.24 119.57 207.09

3.3.2 Free areas for the susceptible group

To model a realistic zombie attack, humans ability to think logically is crucial in
the fight. The mobility was presented as a factor in the previous section. Another
important skill that the susceptible group holds, is the ability to decide the
safety of an area. In the TV series Walking Dead, the humans build barricades
to keep the zombies outside. This gives the susceptible group free areas where
they can stay. This idea can be transferred to the PDE system by rewriting the
Eq.(3.28) with spatial dependent diffusion terms. The diffusion constant D,, is
now replaced with a diffusion function 7, (x) for u = S, I, Z, R, which is spatial
discretized. Since a diffusion equation always goes towards equilibrium, this
rewriting will only slow down/stop the selected group to diffuse into an area. In
this case it will stop the zombie group from diffusing into the buildings.

% =% — (B + p(t)SZ — 555 + V(vs(z)VS)

% =(B+ p(t)SZ = of = DidyI + V(1 (x) V1) 1)
%f —ol — (a+w(t))SZ + (R + V(12(2)V Z)

O 655 + 011 — R+ (0 + w(1))SZ + V(a(a)VR)

The diffusion term is the difference between this system and Eq.(3.28). The
discretization can be shown for for a general . This will be similar for all groups.
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A centered difference is used for the spatial discretization.

= V(y(x)VS)
= (7(x)S2)z + (V(x)Sy)y
_ Stizg — Sit1ye, Stjri/z ~ Sij-1y2
@ v (3.32)
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Since the calculations are based on spatial points, the values inside the function
of v need to be adjusted. This can be done by the use of an arithmetic mean,
which can be seen in Eq.(3.33). The notation g;;1 /2 is a simplification of the
function q(w;41/2) with z,41/ = 2; +1/2Ax

1
Qiv1/2 = 5(%’ + Git1) (3.33)
This arithmetic mean can be inserted for all 4’s in the system. The system can
be expressed:

Sl = gn At(E — (B + p(t))ST, 275 — 5557,
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2Ay2
It = 12 A((B 4+ p(0)SE, 22 = oIy = 12,
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(3.34)
The diffusion term for the removed group is taken away, since dead people are
not able to move. This system looks quite messy, but it is straight forward to
calculate. All values on the right side are known values and the system is easy
to solve. Now every point will be controlled by the diffusion constants given
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in y(x). This makes it easier to control the flow in each group. With a high
diffusion constant, the diffusion will spread fast. When the diffusion constant
goes towards zero, the flow will decrease towards zero flow. This will result in a
set of ODE systems modeled for each point.

3.3.3 Ten minutes at Frederikkeplassen

Frederikkeplassen at the University of Oslo is a possible area for an upcoming
zombie attack. This simulation will try to model a ten minute sequence with
the diffusion parameter added in this section. Since students often learn and
interact fast, they will only use three minutes before they realize the danger
and transitions into the Hysterical phase. A map of Frederikkeplassen is used to
define the safe and critical areas. The buildings are set as areas where only the
susceptible humans are allowed to move. This is done by setting the diffusion
constant to zero for the zombie and infected groups. Since the buildings are safe
spots for the susceptible humans, an idea would be to express this in the diffusion
term by forcing the susceptible humans for other areas into the buildings. This
is more difficult, since the concentrations in each group wants to diffuse towards
equilibrium. A way to delay this process is by setting the diffusion constant to
be low in the buildings and high outside. This will result in a fast diffusion in
the open areas and a slow diffusion inside the buildings.

800 __Frederi with unform distribution and diffusion 800 Zombie attack at Frederil

700 700

" / S " /,\X\: ————
Figure 3.12: The amount in each group for two simulations of Frederikkeplassen
modeled same parameters for 10 minutes. Subplot I with uniformed distributed
groups and same diffusion constants for all groups. Subplot II is based on
Fig.(3.13) with different initial values for each group.

Two simulations have been done at Frederikkeplassen. The amount in each
group can be seen in Fig.(3.12). The first simulation has a solution based on the
ODE system, with uniformed distributed groups, equal diffusion constants and
no free areas for the susceptible humans. The second simulation is modeled with
three groups of susceptible humans, as in the previous section. The small group
with 21 students is placed at point(4,4), the middle group with 200 students
is placed at point(15,8) and the large group with 400 students is placed at
point(8,13). The zombie is placed at point(8,10). The v(x) is set to zero in the
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buildings for the zombie and infected group, and one in the rest of the area.
For the susceptible group, v(x) is set to 0.1 in the buildings, which causes slow
diffusion. In the outside areas, vy(z) is set to 5 for the susceptible group. The
desired result is to push them into the buildings, but this will only happen
if there is a lower concentration inside the buildings. Therefore this will not
reflect a realistic flow of a susceptible population. This simulation can be seen
in Fig.(3.13)
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Figure 3.13:  Frederikkeplassen modeled with free areas for the susceptible
groups. The diffusion function (z) is set to zero for the zombie and infected
groups in the buildings. The zombie at initial time is placed in the center of
Frederikkeplassen. Movie

The results in Tab.(3.3.3) shows that the three first minutes are crucial. The
number after three minutes shows that only 72 humans survived the attack in
the uniformed solution, compared to 252 in the free areas. The number in the
zombie group is quite similar for the simulations with uniformed distribution
and free areas measured at ¢t = 3. However at ¢ = 7 the difference is major.
This can be explained by looking at Fig.(3.13) and the building with the middle
group placed inside. When the zombie starts attacking at ¢ = 0, the large group
is exposed. This group is placed close to the zombie and the position is in an
open area. The zombie can attack right away and the number in the infected
and zombie groups increases fast. In the two first minutes, a major part of the
large group is infected and the zombie group starts to spread. After 2-3 minutes,
the group has reached the building with the middle group. Here the diffusion
is set to 0, and the spread of zombies stop. Since the diffusion variable for the
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susceptible group is quite low inside the buildings, it takes time before the group
diffuses. Maybe the right diffusion value along the buildings would be 0, to avoid
any leakage. This would again cause problem for the diffusion of the susceptible
group into the buildings. It is also reasonable to think that the susceptible group
needs to diffuse after a certain time. The lack of supplies would force them out.

Uniform distribution  Free areas

3 Minutes
Susceptible 72.23 252.72
Infected 229.65 75.69
Zombie 296.67 276.55
Removed 20.84 13.94
7 Minutes
Susceptible 70.78 251.35
Infected 0.83 0.51
Zombie 498.72 325.54
Removed 49.12 41.26
10 Minutes
Susceptible 69.69 249.84
Infected 0.25 0.38
Zombie 479.00 295.71
Removed 70.55 72.36

3.4 Discussion

This PDE model made it possible to analyze epidemic diseases for a spatial
area. The travelling wave is essential for a disease to spread within one area. If
the reproduction rate seen in Eq.(3.6) was below 1, the travelling wave would
decrease towards zero and the disease would disappear. By varying A, one could
see that a low value would cause a total eradication of the susceptible group. By
setting A >= 1, the damage from the epidemic wave would be close to zero and
the disease would die out.

The results from the English boarding school shows that the position of the
infected student has a major impact on the result. A uniform distribution was
first calculated and compared with the ODE simulation in the previous chapter.
This gave the same result. However, placing the infected student in the center
of the schoolyard, resulted in 68 percent more susceptible after in days than
with an uniform distribution. The amount of susceptible is even higher if the
student is placed in the corner. Then the amount is 70 percent higher than in the
uniform group. The results can be seen in Tab.(3.2.2). The uniform distribution
shows that there are 21 students left in the susceptible group and 724 in the
removed group in 15 days. The opposite result can be seen for the simulation
where the infected is placed in the corner. Here, there are 717 susceptible and
33 removed left.
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Section 3.3 verified the uniformly distributed PDF solution with the ODE
solution from the previous chapter. These were expected to be similar. The
English boarding school studied the variations in the position of the infected
with a uniformly distributed group of susceptible. This section tried to expand
this idea by splitting the group of susceptible into three constellations. One
zombie was placed in all three constellations, and the simulations showed that
the loss of susceptible was proportional to the size of the constellation. For the
small, middle and large constellation the loss of susceptible were 18,196 and 375
based on the Tab.(3.3.1). The middle group lost 97 percent susceptible based
on the size of the constellation, which was the highest percentage in all three
constellations. This can be explained by the overlapping between the middle
and the large constellations, seen in Fig.(3.10). This overlapping resulted in
a minor spread of the disease to the constellation next to it. As seen in the
section 3.2, the position of the infected student has an impact on the spread of
the disease. This section shows that the susceptible group also affects the result.
It is therefore better to use a PDE model than an ODE model. It is realistic to
assume that different groups will never be uniformly distributed, and that the
positions have a major effect.

The last section 3.3.3 tried to implement human behavior by giving the
susceptible group the ability to keep zombies outside the buildings. This was
done by giving the groups: Zombie and Infected restricted areas. This was crucial
factor for the humans in Walking Dead to prevent meetings between them and the
zombies. Houses and buildings were used as shields. The three constellations from
the previous section was used. However, the position was changed. The middle
constellation was placed in one of the buildings. By studying Fig.(3.13), one can
see that the zombie group was not able to diffuse into the buildings. As a result,
the middle constellation avoided attacks. However, since the concentrations for
each group will go towards equilibrium, the movement pattern for each group will
differ from human behavior. The next chapter will use a Random walk model
to simulate this zombie outburst. This will be based on the section 3.3.3, and
introduce different conditions depending on the phase the zombies and humans
are in.
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Chapter 4

Random walk

The last chapter will study a third way to model epidemic diseases. This will
be done by using a Random walk model. This technique is quite different
from the two models presented earlier. Here, Monte Carlo simulations and
probabilities are used instead of differential equations, which have been in focus
earlier. The first section will be an introduction to general principles for Monte
Carlo methods and Random walk based on the paper from M.H. Jensen Ref.[2].
The next sections will use the parameters from the English boarding school and
Walking Dead to see if a Random walk model can expand the knowledge about
epidemics by adding human behavior.

4.1 Monte Carlo methods

Techniques from Monte Carlo are widely used in several fields as chemistry,
physics, medicine, biology and in finance Ref. [2]. These numerical methods can
be seen in general terms as statistical simulation methods, which use random
numbers to perform the simulations. Four terms are required to understand the
Monte Carlo strategy:

e Random variable

Probability distribution functions (PDF)

e Moments of a PDE

e The pertinent variance o2

The two first terms are important when modelling a Random walk simulation,
while the two last terms are important when studying the result. The four terms
are explained below.

61
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4.1.1 Random variable

Random variable can be seen as a stochastic variable, where the outcome cannot
be presumed. Examples as tossing dice, flipping coins or gambling are based
on this principle. Although the outcome is unknown, knowledge about the
probability and the range can be studied. The numbers in the domain for two
dice are

{2,3,4,5,6,7,8,9,10,11,12}

with the corresponding probabilities are
{12345654321}1
) ) ) ) ? ) ) ) ) ? 36

By throwing two dice once, there is no guarantee that the result will be 7,
though this has the highest probability. However, by repeating this operation,
the distribution would reflect the probabilities above. A stochastic variable can
either be discrete or continuous, but will in both cases be denoted as capital
letters, X,Y. A discrete example is the example above, where the domain is
given with exact values, x1, 22, x3,...,2,. The continuous case can be seen as
the probability in a given area. An example can be the distance from a dart to
the center, after trowing a dart randomly.

This chapter will use random variable for several decisions. The path of the
walker will be controlled by two random variables. The first will control the
direction of the walker, by drawing a random number between 0 and 27. The
second random variable will control the number of time steps walked in the
chosen direction. Here a number between 1 and 20 is drawn. This is done to
create a more realistic movement pattern. Random variables will be drawn for
each parameter value given in the previous ODE and PDE systems. Here the
outcome will be based on the random variable and the probability given by the
parameter value.

4.1.2 Probability distribution functions (PDF)

The PDF is a function p(z) on the domain that gives the probability or relative
frequency for a outcome. In the discrete case, the function can be seen as

p(z) = Prob(X = x) (4.1)

The PDF in the continuous case is not able to directly depict the actual prob-
ability. The probability is instead defined as the density around x with an
infinitesimal interval. This can therefore be seen as an integral, since it is the
density of the probability rather than the probability Ref.[2]. This can be defined.

Probla < X <b) = /bp(:c)dx (4.2)
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To quote M.H. Jensen "Qualitatively speaking, a stochastic variable represents
the values of numbers chosen as if by chance from some specified PDF so that
the selection of a large set of these numbers reproduces this PDF." Ref.[2]. This
sums up the relation between random variables and the PDF. If this is not
fulfilled, the group of stochastic variables does not fulfill the criteria for random
numbers.

The size of p(x) has to be in the interval 0 < p(z) < 1, since the probability
cannot be negative or larger than 1 for an event to happen. The sum of all
events has to be 1, both for discrete and continuous PDFs, and can be seen as

follows
> p() =1

x; €D

/wEDp(x)dx =1

There are several distributions that are essential when looking at continuous
PDFs. The main PDF in this chapter will be uniform distribution and can be
seen in Eq.(4.4).

(4.3)

p(z) = ﬁG(w —a)f(b—x) (4.4)
with:
O(z)=0, x<0

O(z)y=1, >0 (4:5)

This is used to disperse the group of walkers at initial time over the area. The
chance will be equal for all positions. This PDF is also used in the movement
pattern and for the spread of the disease. To get a correct estimate, it is important
that the set of random numbers is large enough. Gaussian distribution is the
second PDF used in this chapter. This is often called normal distribution and
can be seen in Eq.(4.6)

_ 1 (z — p)?
p(x) - O'\/% exp(— 20_2 )

(4.6)

This will give the same distribution as the Gaussian function used in the previous
chapter. Here it will be used for the simulations of all three phases, to describe
the initial positions of the walkers.

4.1.3 Moments of a PDF
By defining h(z) as an arbitrary function, the expectation value can be written
(hyx = /h(m)p(w)dm (4.7)

Here, defined on the domain of the stochastic variable X, with PDE p(z). A
more general way to write the expectation is by adding a power of, n, to the
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equation. This can now be seen as the moments. The n-th moment is defined

(™) = /x"p(x)dx (4.8)

The value of n can be set to zero. This results in (1) and creates a normalized
condition for p. The first order is called mean and is often defined with a pu.

(xy =p= /:cp(x)dx (4.9)

This represents the average value of PDF and is often called the expectation
value of p Ref.[2]. Since this system consists of small group of walkers, which is
modeled over a short period, the results from the simulations will vary. Therefore
a set of simulations will be performed and the average values will be used.

4.1.4 The pertinent variance o?

Central moments is a special case of moments defined as

(@ — ()" = / (& — (x))"p(z)de (4.10)

The first two central-moments are trivial and only result in 1 and 0, respectively
for n =0 and n = 1. However, the second central-moment is more interesting to
study. This is denoted as 0% or Var(X), called the variance. This can be shown.

0% = (a%) - (a)? (4.11)

The square root of the variance, o = /{(x — (x))?) is called standard deviation.
This can be seen as the spread around the mean of the PDF. Since the result is
based on the average value of a set of simulations, the standard deviation also
gives essential information. If the standard deviation is major, one can expect
large variations when modelling a system. This will make it more difficult to
predict the result of an outcome. Since these systems are quite small, one can
expect major variations and a large standard deviation.

4.2 English boarding school

The parameters in this example has been equal for all three systems. The chance
of getting infected by influenza requires a meeting between an infected person
and a susceptible person. A random walker will after a sufficient number of
steps cover the whole area. A simulation is done for a student with a random
position at initial time. 1000 random steps are taken every day, which results in
a step every 90 seconds. The step length is set to 5.7024 m, and is based on the
average distance a person walks every day. The simulation is performed for 15
days, which results in 15000 random steps. The size of the schoolyard is set to
100 m x 100 m, and the disease can spread within a distance of 5 meters.
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Figure 4.1: The positions a random walker has covered in 1, 5 and 15 days. A
random step with length 5.7024 m is performed every minute. The positions are
plotted for every ten minutes.

Fig.(4.1) shows that a random walker will be distributed over the area after
enough steps. The students in the school are divided into three groups.

e The Susceptible group: This consists of susceptible students, who are at
risk of getting infected. This group is described by S.

e The Infected group: This consists of infected students. The group is
described by I.

e The Removed group: This consists of students who are immune to the
disease. This group is described by R.

The total number of students is N = 763. The initial values are: Sy = 762, [ = 1
and Ry = 0. There are two parameters that are used in the simulation. The first
parameter 7, describes the gain of infected students from the susceptible group.
This rate is proportional to the number of susceptible and infected students
and is given by rSI. The second parameter a describes the rate of removal
from the infected group to the removed group. These two parameters are set
tor=2.18-1072 and a = 0.44036 for the ODE system simulated in chapter 2.
The ODE system can be seen in Eq.(4.12)

ds

iy <

I rS

dI

 — ST —al 4.12
7 rS a ( )
dR

Il

a

The parameters  and a must be adapted to the Random walk simulation. The

parameter r is used in
rS1T (4.13)

and is based on the fact that all possible combinations of S and I are executed
during one time unit. This is not necessarily the case in a random simulation.
The meetings in a random simulation depends on the number of random walkers,
the possibility of a meeting and the number of time steps during one time unit.
If the possibility of a meeting is small, the students have to be close to transmit
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the disease. If the number of time steps is high, the chance of one meeting
another is higher. The following term has to be fulfilled:

rrmo = 7"50[0 (414)

Here myg is a constant value and represents number of meetings between the
susceptible group and the infected group at initial time. This can be found by a
numerical simulation of the random walkers. The number of meetings for the
infected student during one day is simulated for 1000 days, and the average
result per day is used. The average number of meetings during one time unit
is mo = 1905.223. Now Eq.(4.14) can be rewritten and r, can be expressed by
known values:

Ty = rolo (4.15)

mo

The parameter r, is now used to calculate the risk of getting infected in a meeting
between a susceptible student and an infected student.

The value of a has to be adjusted as well. This parameter is only affected by
the time. If 1000 random steps a day are simulated, the parameter value for a,
can be found by studying the average period of illness. This can be found by
%. The average period is 2.27 days. The value of a, can be set to 0.00044036.
With a numerical simulation of 100 000 random walkers and the parameter value
a, = 0.00044036 for becoming immune, one can see that the average number
will be 2.27 days. The simulation of the English boarding school can be seen in
Fig.(4.2).

4.2.1 Lower maximum concentration for the infected group

In the previous chapters, the threshold value was found for the epidemic systems.
The reproduction rate could be used to check if the disease would develop into
an epidemic disease. The reproduction rate can be seen in Eq.(4.16)

T’So
a

Ry = (4.16)
If Ry > 1 was fulfilled, an epidemic situation would occur. With the parameters
from the ODE simulation, he result would be Ry = 3.77. This information
could be used to find the maximum concentration of the infected group. This
was shown in Section 2.2. In the two previous chapters, the maximum value of
infected, given by I,,,4, has been set to 292. By studying the Fig.(4.2), one can
see that the maximum value of the Random walk simulation is lower, and occur
later. The maximum value of the infected group is here measured to be 263.

Since the transformation of a student from the susceptible group to the
infected group only requires one successful meeting, where successful is seen
as the transmission of the disease. There will be no difference in the result if
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— Susceptible ODE - - Susceptible random walk Standard deviation Sus.
— Infected ODE - - Infected random walk Standard deviation Inf.
— Removed ODE - - Removed random walk Standard deviation Rem.
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Figure 4.2: Random walk compared to an ODE simulation of Eq.(4.12). The
random function is shown with a dashed line, with the standard deviation shown
as the colored area around the dashed line. The random function is based on
the average of a set of simulations.

the transmission of the disease happens once or several times during one time
step. However, if the number of infected increases, the risk of one person getting
infected several times increases as well. By studying Fig.(4.2), one can see that
the differs between the simulations occur when the concentration of infected is
high.

4.2.2 The chance for a disease to spread

When calculating the group of simulations, only 75 percent of the simulations
resulted in an epidemic disease. 25 percent resulted in a transmission of the
infected student to the removed group, before the student was able to infect
other students. These simulations were performed on a small group, and the
results may differ in larger groups. A removal rate above one will not necessarily
lead to an epidemic disease, if the group is small enough.

4.3 Zombiefication

The ODE system given in the chapter 2 will be used for this simulation. This
can be seen in Eq.(4.17). The parameters have to be adjusted for this simulation,
similarly to the parameters for English boarding school. Frederikkeplassen at
Blindern will be used as the area where the simulations will be done. The area
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is estimated to be 100m x 100m and the disease will be able to spread if the
distance is closer than 4 meters. There will be done four different simulations
in this section, where the influence from human behavior to the model will
be studied. The time unit will be set to minutes, and the simulations will be
done for 10 minutes for the two first simulations. The last simulations will be
performed for 34 minutes. 100 random steps will be performed every minute.

B 5 (8 + mol1)57 - 558

W 0+ mot)SZ — of — 511

[ (4.17)
— =0l — (a+w(t))SZ + (R

%If —05S + 611 — CR+ (o + w(t))SZ

Similarly to the English boarding school, the parameters in Eq.(4.17) have to
be adjusted. The parameters from the two first phases in Walking Dead will be
used. These can be seen in the table below. The number of meetings per minute
is set to my = 98.64, based on the average from 300 time steps. This is used to
find the value of 3, and «., similar to the method shown in the previous section.
The value for g has been adjusted by first finding the average incubation time for
the infected group. This has been done by setting 1/9. The average incubation
time is 0.72 minutes. This is really fast, and not a realistic number, based on
the TV Series Walking Dead. By numerical simulations, the value of g, can be
set to 0.0137 for each simulation. This will result in an average incubation time
of 0.72 minutes. The same can be done for the value in the hysterical phase.

parameter Initial phase hysterical phase

B 0.01155 0.000011
B, 0.07271 0.000693
0 1.37 1.5

o, 0.0137 0.015
o 0.00044 0.000208
o 0.00277 0.001309

These parameter values are used for all simulations. The previous chapter 3
introduced the spatial effect and the ability for humans to seek safe areas. This
chapter will introduce different conditions for the walkers. These conditions will
affect the interaction between the groups. In chapter 2, the simulated period was
estimated to 34 days. This will be different in this chapter. The section 3.3.3 in
the previous chapter will be used as preference for the results.

4.3.1 Random walk

Random walk will be the first condition for each walker. This results in a smooth
distribution of the whole group. The simulation will be done for ten minutes at
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Frederikkeplassen. The simulations are shown with the python package Pygame,
where the random walkers are represented with different images. These can be
seen in Fig.(4.3).

o J &)

Figure 4.3: Figures used in the simulation. I: The walkers in the susceptible
group can be seen as humans with green sweater. II: The walkers in the infected
group can be seen with a red and green sweater, with one arm in front. III: The
walkers in the zombie group can be seen with a white sweater and both arms in
front. IV: the walkers in the removed group can be seen as a tombstone.

The initial values for the four groups are equal as for the previous chapter.
Sy =621, Iy =0, Zg = 1 and Ry = 0. The walkers are randomly distributed
over Frederikkeplassen at initial time. The initial positions in one simulation
can be seen in subplot I in Fig.(4.4).The probability distribution function for
the walkers are here set to be uniform. The walkers will therefore have the
same probability for walking in all directions. The step length is based on an
average pace of 5 kilometers per hour. This result in a step length of 0.83 m for
each random walk. The first simulation is run for 10 minutes. The parameters
from the Initial phase are used from 0 to 3 minutes. From 3 to 10 minutes, the
parameters from the Hysterical phase are used. The result after 10 minutes can
be seen in subplot II in Fig.(4.4).

100 simulations with these parameter values are performed, and the average
and standard deviation of the simulations are plotted in Fig(4.5). 95 percent
of the simulations led to an epidemic disease. However, the standard deviation
is large. By studying the second phase from 3 minutes to 10 minutes, one can
see that the amount in each group varies. In the Hysterical phase, the standard
deviation is high for the susceptible and zombie groups. Therefore the outcome
from a random chosen simulation is hard to predict.

By comparing the average result with the PDE simulation from section 3.3.3
in the previous chapter, one can see that the average results differ from the PDE
results. The average number of the susceptible group is higher than the result
from the PDE simulation.
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Figure 4.4: Positions from the simulations of Frederikkeplassen. I: Initial
position for 621 susceptible humans and 1 zombie. II: Final position of a

simulation of Frederikkeplassen. Movie

PDE Random walk  Moving smart

3 Minutes
Susceptible 72.23 279.2 87.51
Infected 229.65 162.05 229.02
Zombie 296.67 167.57 284.88
Removed 20.84 13.168 20.59

7 Minutes
Susceptible 70.78 276.36 82.79
Infected 0.83 0.6421 35.35
Zombie 498.72 278.87 397.46
Removed 49.12 66.115 106.4

10 Minutes
Susceptible 69.69 274.34 79.96
Infected 0.25 0.4736 34.87
Zombie 479.00 243.48 350.15

Removed 70.55 103.69 157.02
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Figure 4.5: The average and standard deviation of a set of simulations on
Frederikkeplassen. The Initial phase lasts from 0 to 3 minutes. The Hysterical
phase lasts from 3 to 10 minutes. The parameter values can be seen in Tab.(4.3).

4.3.2 Moving smart

Next phase is based on the movement pattern that would be more realistic based
on the TV series Walking Dead. Here the zombie group searches after humans
from the susceptible group in the area around them. If there are humans that are
close enough, the zombies will start moving towards the humans. The same is
done for the humans in the susceptible group. The humans search after possible
attacks from the zombies. When the zombies get to close, the humans try to
escape by moving away. If the distance between the zombie and human is to
high, they will randomly walk around.

Similar to the Random walk condition above, the Moving smart condition is
calculated based on 100 simulations. The step length is equal for the susceptible
group and the zombie group. Therefore the number of zombies are set to 10, to
avoid a chasing game, where one zombie runs after the group of susceptible with
the equal distance the whole time. A screenshot of one simulation can be seen in
Fig.(4.6). One can see that the zombies chase the humans around. The zombies
have to cooperate to be able to get close enough to attack the humans.

Some simulations were first tried where only one zombie was initialized at the
start. This resulted in zero infected humans and a chasing zombie as explained
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above. However, when the amount of zombies was increased to 10, the difference
in the result was major. One can see in Tab.(4.3.1) that after the Initial phase,
there are only 100 susceptible humans left in the average Moving smart. The
cooperating force from the zombie group gets stronger as the group increases.
Then they are able to chase the susceptible group from several fronts, and it is
difficult for the susceptible group to avoid fights. Similar situations are seen in
Walking Dead. In the city Atlanta, where the amount of zombies is high, the
ability to escape is difficult. However, when the main character Rick Grimes
meets individual zombies, he can easily escape the danger. A plot of the average
result with the standard deviation can be seen in Fig.(4.7).

A result of this cooperating force from the zombie group is that the group is
able to eradicate the susceptible group in several simulations. After the Initial
phase, 15 of the 100 simulations results in total eradication for the susceptible
group. At final time the number of simulations that causes eradication have
increased to 29 simulations. This Moving smart condition seems to give the
zombie group the greatest advantage, when the density of zombies gets high.

4.3.3 Three phases in Walking Dead

A natural idea is to use different conditions for different phases. The first phase,
Initial phase, will include a Random walk condition for all groups. While the
Hysterical phase will include a smart moving condition for the susceptible and
zombie group. The infected group will move randomly around as in the Initial
phase. The third phase will be the Counter attack, where the susceptible group
will stop running and then counter attack the zombies. The strength of the
attack depends on the density of humans around. If the density of humans is
high in an area, the strength of the susceptible group will increase. This is
not the case for the zombie group. The simulation will be performed for 34
minutes, where the three phases have been scaled down from days to minutes.
This simulation will not be able to say anything about the result for 34 days.
This will demand other values. This result will give an insight into how human
behavior will affect the result.

The susceptible group will at initial time be split into three groups. The
distribution in the groups will be based on a Gaussian distribution explained
section 4.1. The susceptible groups are placed at the following positions: 21
humans at position(6,6), 200 humans at position(12,25) and 400 humans at
(25,12). The initial position for the zombie is randomly placed around for all
simulations. 100 simulations are performed. Screenshots from a simulation can
be seen in Fig.(4.8).

By studying the Tab.(4.3.3), the three phases gives the susceptible group a
greater chance of staying alive. One can see that there is only 1 person from
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the susceptible group that dies in the Hysterical phase compared to 4 in the
ODE simulation. The similar result can be seen for the zombie group. There are
several that dies in the ODE simulation that in the Random walk simulation.
This can be explained by the fact that the susceptible group tries to avoid fights
by running away.

ODE Random walk Free arecas

Initial phase

Susceptible 71 274 331
Infected 231 157 130
Zombie 299 178 149

Removed 21 14 12
Hysterical phase

Susceptible 62 256 330
Infected 0 0 0
Zombie 359 31 256

Removed 202 335 37
Counter attack

Susceptible 58 256 330
Infected 1 0 0
Zombie 332 28 255

Removed 231 338 37

4.3.4 Free areas for the susceptible group

The last advantage the susceptible group will get, is to be able to move into
buildings to escape the zombies. A similar thing was done for in the previous
chapter, 3. However, the effect is better here. The free areas are found by
using the pixel values for the backgroud picture. The value of the buildings
is similar for all buildings, and is used to control the direction of the zombie
group. Nothing is done for the susceptible group. The movement pattern for
the susceptible students will only be affected by the positions of the zombies. A
screenshot after 10 minutes can be seen in Fig.(4.10)

One can see from Fig.(4.10) that the humans moves into the buildings. These
are not defined as any free areas. However, the zombies are not able to go
in here, and the result is that this becomes the desired area for the humans.
By studying Fig.(4.11), one can see that the change in amount of zombies and
humans flattens out over time, this can be explained by the fact that the humans
are now able to avoid battles. The Counter attack phase in negligible in the
simulation with free areas. Since the humans are able to avoid connections with
the zombies, the counter attack disappears.
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Figure 4.6: Three Screenshots of the moving pattern for the zombie and
susceptible groups with the Moving smart condition.I:Close after initial time.
The zombies are chasing the humans.IT: A large group of humans have recently
been infected in the upper left corner. III: Close to total eradication for the
human group. Only a small group left in the center of Frederikke. Movie
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Figure 4.7:

Minutes

The average and standard deviation of for the Moving smart

conditionon Frederikkeplassen. The Initial phase lasts from 0 to 3 minutes.The
Hysterical phase lasts from 3 to 10 minutes. The parameter values can be seen

in Tab.(4.3).
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Figure 4.8: Three screenshots from a simulation of the three phases. I: Shows
the initial position of the susceptible and zombie group. II: Shows the position
and number before the Hysterical phase. 11I: shows the result after the Hysterical
phase. Movie
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Figure 4.9: The average and standard deviation for a set of simulations over
three phases. An ODE simulation withthe same parameters is added to the plot
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Figure 4.10: A screenshot of a simulation over three phases with free areas for
the susceptible group inside the buildings. The scrennshot is taken 10 minutes
into the simulation. In the Hysterical phase. Movie
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Figure 4.11:

Zo=1and Ry = 0.

The average and standard deviation for a set of simulations over

three phases, with free areas inside the buildings. Initial values Sy = 621, Iy = 0,
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4.4 Discussion

The results from the English boarding school shows that the maximum con-
centration of the infected group, Inax, is reduced when using Random walk
to simulate the disease. From the ODE and PDE simulations in the previous
chapters, the value was I, = 292. For the Random walk, the average I;,.x was
263. A susceptible person can only be infected in each time step, and it can only
happen once. This may affect the value of I,ax. To study this further, a couple
of variations could be made in the simulations. Here, the number of simulations
for the group was set to 200. A larger set of simulations would perhaps have
given a different result. The second is to study the Random walk model with
shorter time steps, and see if this affected the result.

As shown in section 2.2, the reproduction rate, Ry, had to be above 1 for an
epidemic situation to occur. The reproduction rate was calculated to Ry = 3.77
for the English boarding school. However, 25 percent of the simulations resulted
in no epidemic occurrence because the infected student was transposed to the
removed group before he was able to infect other students. 200 simulations were
performed for this example, and the percent may differ for an even larger set
of simulations. However, this result shows that when modelling closed systems,
especially with a small group, an epidemic situation may not occur, even with a
reproduction rate, Ry, above one.

In section 4.3 the effect of human behavior in an epidemic model was studied.
To achieve the most realistic situation, the simulations were performed in minutes,
instead of days as in the previous models. The two conditions Random walk and
Mowing smart were simulated and compared with the uniform PDE solution from
section 3.3.3. The Random walk was based on a random movement pattern for
all groups. The Moving smart mode gave humans and zombies a more realistic
behavior. Based on Walking Dead, the humans would avoid the zombies, while
the zombies would strive to take the humans. When simulating the condition
Mowving smart with only one zombie at initial time, the zombie was never able
to reach any of the susceptible humans. In other words, the result of this
was that the zombie group did not increase. The simulations were therefore
later done with 10 zombies at initial time. When studying Tab.(4.3.1), one
can see this variation in the condition Moving smart gives the zombie group
an advantage. There were 72 susceptible left after 3 minutes in the uniform
PDE simulation, while the average simulation of Random walk resulted in 279
susceptible humans. A random walker can only be at one place at the time,
compared to the PDE simulation, which covers the whole area. This supports
the conclusion from section 3.4, which said that the position of the groups plays
a key role in modelling the spread of a disease. The variations in Moving smart,
makes the zombie attack more aggressive. The average result for the susceptible
group after 3 minutes was 87 humans. The condition Moving smart resulted
in eradication for the susceptible group in 15 of the 100 simulations after three
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minutes. At final time, the number was increased to 29 cases of eradication for
the susceptible group.

The two lasts sections consist of simulations of all three phases from Walking
Dead, with a shorter time frame than in the series. These simulations gave some
interesting results. The movement pattern for the Initial phase was random for
both cases, while the Hysterical phase consisted of the condition Moving smart.
The effect of restricted areas for the zombies gave a higher amount of susceptible
humans shown in Tab.(4.3.3), than in the other simulations. While there were
274 humans left in the average Random walk simulation after the Initial phase,
there were 331 susceptible humans left for the average simulations with restricted
areas for the zombie group. By comparing this to the ODE simulation where
there were 71 susceptible humans left, one can say that the susceptible group
gets an advantage by adding human behavior. As follows, the conclusion is that
Random walk models will be able to produce more realistic simulations, than
the two previous models.



Chapter 5

Discussion and conclusion

In this thesis, two examples have been used to simulate the three different
epidemic models. The results have been analyzed and compared throughout the
paper. Here, the most important analyzes and comparisons will be discussed
and summarized. Based on this some conclusions will be made, and ideas for
further work will be presented in section 5.0.1

The first example was an English boarding school which was first simulated
by the ODE model. This simulation was based on given parameter values from
the British medical journal. One could see that the maximum concentration of
the infected group could be found by Eq.(2.10), and the numerical simulation
gave the same result. By adjusting the parameter p in Fig.(2.2), the result from
the epidemic disease changed. When p was set to 50, it lead to total eradication
of susceptible students during the first 10 days. However, by increasing p to 400,
the amount of susceptible students was 170.

The introduction of the PDE model, made it possible to compare results
of different simulations. The PDE model was first simulated for the English
boarding school with uniform distribution. This gave the same result as in
the ODE model, which was expected. However, when the infected student was
placed in center, the amount of susceptible students increased with 68 percent
in 5 days. The disease was now less effective and one can see from Fig.(3.8) that
the disease only spread to the students in the center. Another variation was
made. By placing the student in the corner, the number of susceptible students
increased to 70 percent in 5 days. To summarize, the same parameter values and
size was used for all three simulations mentioned above, but the results differed
widely.

In both the ODE model and the PDE model, the maximum value of infected
was Imax = 292. This was not the result from the Random walk simulation. In

81
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the Random walk simulation the average maximum value of the infected group
was Imax = 263, which is lower than for the other models. By studying Fig.(4.2),
one can see that the infected ODE is always within the range of the standard
deviation for the Random walk simulation. The average value for the Random
walk is based on 200 simulations. It would be interesting in further work to
increase this number even more, to see in what degree that would affect the
average value. Another element that the Random walk model added, was the
chance of an epidemic disease to die out. 25 percent of the simulations resulted
in no epidemic occurrence. The infected student was transposed to the removed
group before he was able to infect other students. This would not be the case
for the ODE and PDE model, since the reproduction rate was above one, as
explained in section 2.2.

The second example was based on the TV series Walking Dead. Here, the
amount in each group was known, and the parameter values for the ODE model
were adjusted to fit the expected result. The parameter values 3, o and «
from the model in Eq.(2.12) were adjusted for the different phases in Walking
Dead, and based on this, the evolution in Walking Dead can be seen as realistic.
However, the ODE model does not take the spatial factor into account. The
position of the infected student had an effect on the result for the English
boarding school. In the simulation of the PDE model one of the goals were to
see if the size of the group of susceptible also had an effect on the result. The
susceptible group was therefore split into three constellations of different sizes,
called the small-,middle and large constellation. One zombie was placed in all
three constellations, and the simulations showed that the loss of susceptible
was proportional to the size of the constellation. For the small, middle and
large constellation the loss of susceptible were 18,196 and 375 based on the
Tab.(3.3.1). The middle group lost 97 percent susceptible based on the size of
the constellation, which was the highest percentage in all three constellations. To
summarize, the PDE simulations showed that the size of the susceptible group
also affects the result. The last simulations of the PDE model were made in an
attempt to implement human behavior. This was done by giving the zombie
and infected restricted areas, in other words keeping them outside the buildings.
The simulation shown in Fig.(3.13) gave the susceptible group in the buildings a
greater chance of surviving. However, since the concentrations for each group
in an PDE model goes towards equilibrium, the movement pattern differs from
human behavior. As a conclusion, the goal of implementing human behavior
would be easier to attain using a Random walk model.

To study the effect of the human behavior, the simulations of the Random
walk model were run for a short amount of time. The condition Moving smart,
where the zombies chase the susceptible humans, was used. With only one
zombie at initial time, the result was zero loss for the susceptible group. This
result was also due to equal moving speed for humans and zombies, which made
the humans able to avoid battles. As a variation the simulation was performed
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with 10 zombies at initial time. This resulted in 87 humans after 3 minutes,
compared to 297 humans in the Random walk simulation. These results are
based on the average value of a set of simulations. However, if one look more
closely at the different results of the simulations with the condition Moving
smart, 15 of 100 simulations resulted in eradication of the susceptible group after
3 minutes. After 10 minutes the result was increased to 29 simulations. This
was not the case for any of the simulations with the Random walk condition.
However, the condition Moving smart would not be a realistic movement pattern
in all situations.

The last simulations of the Random walk model, combined the conditions
Random walk and Moving smart. In the Initial phase, the condition was set
to Random walk, while it was changed to the Moving smart condition in the
Hysterical phase. One set of simulations were run with the ability for all groups
to move freely within one area, while another set of simulations were modeled
with restricted areas for the zombie group. These were compared to the ODE
simulation from the second chapter. The parameter values and the amount wass
equal for all simulations. After the Initial phase, there were 71 susceptible left in
the ODE simulation, 278 in the simulation where the groups could move freely
and 331 in the simulation with restricted areas for the zombies. To summarize,
adding human behavior to the model increases the chance for humans to survive.

As a final summary of the main results in this thesis, one can say that the
ODE model can be adapted to problems, where the result is already known.
The model can then be used to study the evolution of the epidemic disease.
However, it does not take the spatial factor into account. This makes the model
weak, predicting the spread of a disease. The PDE model is able to implement
the spatial factor. The results from the English boarding school and the TV
series Walking Dead showed the effect of the position. However, when wanting
to add human behavior, this model becomes weak. It offers limited possibilities
of applying movement pattern that can be seen as realistic, especially for small
groups. The Random walk model was able to take the spatial effect into account
and implement human behavior. These two factors gave the most realistic
simulations. A drawback was the high calculating capacity. The longest Random
walk simulation was 34 minutes long. Making longer simulations with a higher
amount would demand more calculating capacity than in the other models.

5.0.1 Further work

As said in the introduction of the thesis, a couple of choices were made. The first
one was that systems would be modeled for a short period of time. The second
one was that all models would be simulated as closed systems, which meant using
a certain number of people and a certain time frame. In further work it would
be interesting to expand the Random walk model by using parallelization.This
would make it possible to make longer simulations with a higher amount.
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Another idea for further work is to add more skills to the different groups
in Random walk model. The effect of these changes could be compared to the
effect of varying the parameter values. The skills and strength of a human was
similar for all in the susceptible group. This is not authentic. In the real world,
all humans have different skills and would behave differently when meeting a
zombie. Interesting skills to add could be:

e weapons for the susceptible group
e noise sensitivity for the zombie group
e the ability to cooperate within the groups.
This would make the Random walk model more authentic in simulation of a

zombie outburst.

A final suggestion for further study is based on the movement speed of the
three groups Susceptible, Infected and Zombie. In this thesis the movement speed
of the three groups has been equal. However, in Walking Dead, the average speed
was higher for the susceptible group, than for the two others. Further studies of
how this would affect the results could be interesting.
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