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Abstract 

We show that there is a close connection between deterministic differential equations of 
the form 

dd~t = b(~t) + a(~t) · L (k(t)zk 
t k 

(where Zk = Xk + iyk are complex parameters) and Ito-Skorohod stochastic differential 
equations of the form 

where b0 , a<> denote the Wick versions of the functions b, a. 

The connection is provided by the Hermite transform 'H, which maps £ 2 stochastic pro­
cesses Xt into (deterministic) analytic functions 'H( Xt )( z1 , z2 , • • ·) on 

c~ = {(z!, Z2, •• ·); Zk E c and 3M with Zj = 0 for j > M}, 

and by its inverse 1-{-1 , which can be given an explicit form. 
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§1. Introduction. 

The purpose of this paper is to establish a link between deterministic differential equa­
tions and Ito-Skorohod stochastic differential equations. If the coefficients are analytic 
functions the connection becomes particularly simple. The key to the link is to replace 
ordinary products in the deterministic equation by Wick products o in the corresponding 
Ho-Skorohod equation. More generally, the given ordinary functions f should be replaced 
by their Wick versions r'. 
The proof of this connection is provided by the use of the Hermite transform'}-{ and its (left) 
inverse 1-l-1 . The Hermite transform associates to a given (generalized) stochastic process 
X t on the white noise probability space ( S', :F, J.l) (see definition in §2) an analytic function 
H(Xt)(zl' Z2, .. ·) = Xt(ZJ, Z2, ... ) on c~. This particular transform was introduced by us 
in [L0U], but the general idea of associating analytic functions to functions on S' is much 
older. See [H), [HKPS) and the survey [MY] and the references there. An important 
property of '}-{ is that it transforms Wick products into ordinary complex products and 
this explains its role in the link above. 

Another crucial property of 1{ is that it has a (left) inverse '}-{-1 which can be computed 
explicitly as an integral with respect to the infinite product of the normalized Gaussian 
measures on R. This gives a useful method for solving Ito-Skorohod stochastic (possibly 
anticipating) differential equations involving Wick versions. 

A key result (Theorem 3.3) states that if J ·bB1 denotes Skorohod integral (Bt is Brownian 
motion) then 

T T 

J YtbBt = J Yi o Wtdt 
0 0 

for all Skorohod integrable processes Yi, where Wt denotes the white noise (generalized) 
process. Thus Wick multiplication appears naturally when Ito or Skorohod stochastic 
differential equations are used to model dynamical systems with noise. Ordinary and 
Wick multiplication coincide for deterministic processes, but for stochastic processes the 
products differ and we would like to stress that it is not obvious what type of product 
one should use to get the best model. As an example - and an illustration of our main 
result - we discuss (§4) the following model for population growth in a crowded, random 
environment: 

dXt = rXt o (N- Xt)dt + aXt o (N- Xt)bBt 

§2. Some preliminaries. 

Since white noise is so fundamental for our construction, we recall some basic facts about 
this generalized (i.e. distribution valued) process: 

For n = 1, 2, .. · let S(IRn) be the Schwartz space of all rapidly decreasing smooth ( c=) 
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functions on Rn. Then S(Rn) is a Frechet space under the family of seminorms 

11/IIN,o = sup(l + lxiN)I8a f(x)l, 
xEIII 

where N ~ 0 is an integer and a = ( a 1 , • · • , O'k) is a multi-index of non-negative integers 
ai. The space of tempered distributions is the dual S'(Rn) of SIRn), equipped with the 
weak star topology. 

Now let n = 1 for the rest of this section and put S = S'(R). By the Bochner-Minlos 
theorem (see e.g. [GV]) there exists a probability measure p. on (S', :F) (where :F denotes 
the Borel subsets of S') such that 

(2.1) E~'[ei<w,4>>] := J ei<w,t/>> djt(w) = e-!114>112 for all</> E S, 

S' 

where llc/>11 2 = llc/>lli2(1J1) and< w,c/> >= w(c/>) for wE S'. We call (S',:F,J-t) the white noise 
probability space. 

It follows from (2.1) that 

(2.2) j f(< w,c/> >)drt(w) = (27rll</>ll 2 )-1 j f(t)e- 2 1l1:1l 2 dt;</> E S, 

S' R 

for all f such that the integral on the right converges. (It suffices to prove (2.2) for f E CQ", 
i.e. f smooth with compact support. Such a function f is the inverse Fourier transform of 
its Fourier transform j and we obtain (2.2) by (2.1) and the FUbini theorem). In particular, 
if we choose f(t) = t2 we get from (2.2) 

(2.3) 

This allows us to extend the definition of < w, c/> > from </> E S to c/> E L2 (R) for a.a. 
w E S', as follows: 

(2.4) < w, c/> >:= lim < w, </>k > for</> E L2(R), 
k->OCJ 

where cPk is any sequence in S such that c/>& --+ c/> in L2 (R) and the limit in (2.4) is in 
L2 (S', J-t). 

In particular, if we define 

(2.5) Bt(w) :=< w,x[o,cJ > 

then we see that ( Bt, S', J-l) becomes a Gaussian process with mean 0 and covariance 

E~'[Bt(w )Bs(w )] = J < w, X[o,t] > · < w, X[o,s] > djt(w) 
S' 

= J X[o,tj(x) · X[o,sj(x)dx = min(s, t), using (2.3). 

Ill 
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Therefore Bt is essentially a Brownian motion, in the sense that there exists a t-continuous 
version B 1 of B t: 

p( {w; B1(w) = Bt(w)}) = 1 for all t. 

If u E L2 (R) we define, using (2.4) 

00 J ¢>(t)dBt(w) =< w,¢> >, 
-oo 

which coincides with the classical Ito integral if supp ¢> C [0, oo ). 

If we define the white noise process W4> by 

(2.6) W4>(w) =< w, ¢> > for¢> E S,w E S' 

then the white noise process W4> may be regarded as the distributional derivative of Bt, in 
the sense that, if ¢> E S 

00 00 

< ~ Bt(w ), </> > = - J </>'(t)Bt(w )dt = J </>(t)dBt(w) 
-oo -oo 

= lim ""'¢>(ti)(Bt.+1 - Bt·) = lim ""¢>(ti) < w, X(t· t·+1J > 
Lltj-+0 ~ ) ) Llt;-+0 ~ ) , ) 

1 J 

= lim < w, L </>(tj )X(t· t·+tl >=< w, ¢> >= W4>(w ), 
Atj-+0 . J>J 

J 

where the second identity is based on integration by parts for Ito integrals. 

By the Wiener-Ito chaos theorem (see e.g. [I] and [HKPS]), we can write any function 
f E L2(p,)(= L2 (S',p,)) on the form 

(2.7) J = f J fndB®n, 
n=O 

where 

(2.8) 

i.e. fn E L 2(Rn,dx) and fn is symmetric (in the sense that fn(XuuXu 2 , .. ·,xaJ 
f(xi,···,xn) for all permutations a of(1,2, .. ·,n)) and 

-oo -oo -oo -oo 

4 



for n 2: 1, while n = 0 term in (3.1) is just a constant fo. 

For a general (non-symmetric) f E L 2 (R") we define 

(2.10) 

where j is the symmetrization of f, defined by 

(2.11) 

the sum being taken over all permutations a of (1, 2, · · ·, n). 
With J,fn as in (2.7) we have 

00 

(2.12) llflli2(p) = L: n!llfnlli2(DI") 
n=O 

Note that (2.12) follows from (2.7) and (2.9) by the Ito isometry, since 

E[(J fndB 0 ")( J fmdB 0 m)] = 0 for n =/= m 

!lin IJim 

and 
00 U2 

E[(J fndB 0 n)2 ] = (n!) 2E[( J ... ( j fn(ul,""",un)dBl)"·dBun) 2
] 

IJin -oo -oo 

00 U2 

= (n!)2 • j · · · ( j f~(ul, · · ·, un)dul) ···dun= n! j f~(u)du 
-00 -00 IJin 

Here Bt(w ); t 2: O,w E S' is the !-dimensional Brownian motion associated with the white 
noise probability space ( S', J-L) as explained above. 

Now suppose that Xt = X(t,w) : IR x S'--+ R is an B X F-measurable stochastic process 
such that E[XF] < oo for all t. (Here 8 denotes the Borel a-algebra on R). Then by the 
above there exist fn(t, ·) E L2 (Rn) such that 

(2.13) Xt(w) = f j fn(t,ul,"',un)dB~"(w) 
n=OIIin . 

~oreover, each fn can be chosen measurable in all its variables (see [NZ]). Fix T > 0. Let 
f n denote the symmetrization of f n · Xo9~T with respect to its n + 1 variables. Suppose 

(2.14) 

5 



T 
Then tbe Skorobod integral of Xt, denoted by J XtliBt, is defined by 

0 

(2.15) 

The Skorohod integral is an extension of the Ito integral in the following sense: 

T 
(2.16) If yt is adapted and E[f Y?dt] <co then the Skorohod integral of Y exists and 

0 

T T J ytliBt = J ytdBt. 
0 0 

(See [NZ]). 

As is customary we let H 8 = H 8 (Rn) denote the Sobolev space 

Hs(Rn) = {~ E S'(Rn); II~IIJt.•(R") := j I¢(Y)I2 (1 + IYI 2 ) 8 dy <co}, 

IIi" 

where ¢ denotes the Fourier transform of~ and s E R. Then the dual of H 8 is H-s for 
all s E R. For notational simplicity we put 

00 

so that ifF E H-oo then FE H·-k for some k. 

We now recall the definition of functional processes, which were introduced in [L0U]: 

DEFINITION 2.1. A functional process {X(·,w)}weS' is a sum of distribution valued 
processes of the form 

(2.17) X.p(w) = X(<P,w) = f: J F(n)(<P®n)dB®n(w);</J E S,w E S' 
n=ORn 

where 

and 

6 



Moreover, we assume that 

(2.18) E[IX(¢,w)l2] = f: n! j < p(n),¢®n >2 (u)du < oo 

n=O ill" 

for all ¢ E S with 11¢11£2 sufficiently small. 

To make the notation more suggestive we often write the functional process X(¢,w) on 
the form 

(2.19) Xt(w) = f j Ft.~.t(u)dB~n(w) = f j Ft(n)dB 0 n, 
n=0111 n n=ORn 

where each Ft(n)(u) is really an L2-valued distribution in the t-variable, t = (h, · · ·, tn)· 
The distributional derivative of Xt with respect to t is then defined by 

(2.20) 

where 

dXt ( ) = ~ J .!!_p(n) ( )dB®n( ) dt w ~ dt t, ... ,t u u w 
n=Oan 

d (n) n ap(n) 
dt Ft,t, ... ,t = (L -8--. )x=(t, .. ·,t), 

j=l XJ 

8~. denoting the usual distributional derivative with respect to x;, i.e. 
J 

ap(n) 8¢ 
< -8-,¢ >=- < p(n>,-8 > for 1/J = 1/J(xt,· ··,xn) E S(Rn). 

Xj Xj 

EXAMPLE 2.2. The wl1ite noise process Wt can be represented as a functional process 
as follows: 

00 

(2.21) Wt = J 6t( u )dBu 
-oo 

where bt( u) is the usual Dirac measure, i.e. 

< bt(u), ¢(t) >= ¢(u) 

To sec this note that, according to the definition above, (2.21) means that 

(2.22) Wt,D(w) = j <jl(u)dBu(w) 
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for suitable constants c~~) = c~n) ( ¢> ), where a = ( a1, · · · , am), Ia I = a1 + · · · + am and 

This gives the (unique) representation 

(2.26) Xq, = E L c~n) J (®OidB®n = L COl J (®OidB®IOII 
n=O l01l=n 01 

where c~n\) E H-00(Rn) for n ~ 1, c~) ( ·) E H- 00 (R). 

DEFINITION 2.4. Let Xq, be the functional process with the representation (2.26). 
Then the Hermite transform (or ?{-transform) of Xt~; is the formal power series in infinitely 
many complex variables Zt , z2, • · • given by 

00 

(2.27) 1l(X.p)(z) = Xt~;(z) = L L C01 Z 01 = L C01 Za, 

n=O l01l=n 01 

The main properties of the Hermite transform can be summarized as follows: 

THEOREM 2.5 [L0U]. 
(a) For each integer N put 

and define 

Then the power series for x~N) converges uniformly on compacts in eN and hence repre-

sents an analytic function in C N, for each N. . 

(b) (Inverse ?{-transform). Define the measure >. on the product a-algebra on !fiN by 
(2.28) 

00 00 00 

J J(y)d>.(y) = J · ··( J ( J J(y1 ,···,yn)e-h~ ~)e-h~ ~)···e-h~ Ji; 
-oo -oo -oo 

iff: RN -t R is a bounded function depending only on finitely many variables YI, · · ·, Yn· 
(This defines >. as a premeasure on the algebra generated by finite products of sets in IFi 
and so >. extends uniquely to a measure on the product a-algebra of R~'~ ). Then 

(2.29) X.p = 1{-l(.f(q,) := [/ Xq,(x + iy)d.A(y))z= J CdB 
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where x + iy =(xi + iy1, x2 + iy2, ···)and "x = J (dB" is a short-hand notation for the 
substitution Xk = j(kdB,k = 1,2,···. 

(c) Suppose p, q ~ 1 is such that i + i = 1. Let Xq,, Y,p be functional processes such that 

for all l/1 E S sufficiently small. Then X,p <> Y,p is a functional process and 

1i(X,p <> Y,p) = 1i(X,p) ·1i(Y,p), 

where the product on the right is the usual complex product in the complex variables Zj 

(and a tensor product in the coefficients (as functions of l/1) ). 

i 

§3. Wick multiplication and Ito-Skorohod stochastic differential equations. 

In this section we establish a connection between deterministic and Ito-Skorohod differ­
ential equations. The key to this connection is that ordinary multiplication should be 
replaced by Wick multiplication or, more generally, given functions should be replaced by 
their Wick versions. This will be explained more closely below. Heuristically, our main 
result could be formulated as follows: 
Ito-Skorohod calculus using usual multiplication is equivalent to usual calculus using Wick 
multiplication. 

First we make some remarks about the Hermite transform and its inverse, explained in §2: 

DEFINITION 3.1. Let Ut(z) = u(t;zt,Z2,"'): [O,oo) X c~ _. c be measurable and 
satisfy the conditions 

( 3.1) ( Antisymmetry) ut(z) = ut(z) for all t, z, 

where denotes complex conjugation, and 

T 

(3.2) J J J lut(z )l 2d.\(x )d.\(y)dt < oo 
0 

for all T < oo, where z = x + iy as before. 

Then we say that ut(t) is a generalized Hermite transform. The family of such functions 
is denoted by 9. If - in addition - Ut ( z) satisfies the requirement 

(3.3) Ut( ·) is analytic in each Zk E C, k = 1, 2, · · · 

we call Ut(z) an analytic Hermite transform. The family of such functions is denoted by 
A. 
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Note that if u E A we can write 

Ut(z) = L Cor(t)zor for z E c~ 
or 

and we see that 
Ut(z) = Xt(z) 

where 

Xt = L:::Cor(t) j (®ordB®Iorl = 'H-1( Ut)• 
or 

is the in verse Hermite transform of u t ( ·). So u is indeed the Hermite transform of a 
functional process X. 

However, if we start with a general Vt(z) E 9 and apply the inverse Hermite transform 

we get a functional process Yi whose Hermite transform Yt = 1i(Yi) does not necessarily 
coincide with Vt. For example, if 

t.] [('Il 

This can be written in canonical form 

from which we see that 
Yt(z) = c(t)[z; + 2]. 

Dut this argument shows that to any given Vt E 9 we can always find a (unique) analytic 
ft = H(H-1(vt)) E A with the same inverse Hermite transform as that of Vt. We call ft 
the analytic representative of Vt. 

We will need the following result: 

LEMMA 3.2. Let Vt E 9 and let ft E A be the analytic representative of Vt. Then 

( :L·1) j Vt( z )zkd>.(y) = J ft( z )zkd>.(y) for k = 1, 2, · · · 
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Proof J Vt(z)zkd>.(y) = Xk J vt(z)d>.(y) + i J Vt(z)ykd>.(y) and similarly for J ft(z)d>.(y). 
Siucc Vt and ft have the same 1-l-1 transform we have 

j Vt(z)d>.(y) = j ft(z)d>.(y) 

So to prove (3.4) it suffices to prove that 

00 00 

j Vt(z)yke-h~dyk = j ft(z)yke-h~dyk = 0 for all k 

-oo -oo 

nud this is a direct consequence of the antisymmetry relation (3.1 ). 

\"le proceed to prove the following basic relation between Ito/Skorohod integrals and white 
noise calculus: (As usual we let Wt = J 8t(u)dBu denote the white noise functional process 
ii!Jd 

00 

W1(z) = L (j(t)zj 
j=l 

its Hermite transform) 

THEOREM 3.3. Let T > 0 and let yt be a stochastic process such that 

T 

j(j j IYt(t) · Wt(z)j 2d>.(x)d>.(y))dt < oo. 

0 

T 

Then its Skorohod integral J Yt(w )6Bt exists and 
0 

T T 

(3.5) j Yt(w)6Bt = jrj Yt(z) · Wt(z)d>.]x= J (dBdt (z = x + iy) 
0 0 

Iu particular, if {Yi} is {Ft}-adapted, then 

1' T 

( 3.G) j Yt(w)dBt = jrj Yt(z) · Wt(z)d>.]x= J (dBdt 
0 0 

Proof. If we put Yi = 0 for t rf:. [0, T] and write 

Yi = L ca(t) j (0 adB0 iai = L(ca, (k)(k(t) J (0 adB®ial, 
a a,k 
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thcll we get (all d.\- integrals are evaluated at x = J (dB) 

00 

J Yt8Bt = :L)c0 , (k) J (k 0 (®0 dB®Iai+I 
_ 00 a,k 

= L(ca,(k) J ZkZ 0 d).. 
a,k 

00 

= L_(ca, (k) j ZjZ 0 dA · I (k(t)(;(t)dt 
a,k,; -oo 

00 

= J cj l:)ca, (k)(k(t)z0(~ (j(t)z;)d-\)dt 
-oo a,k 1 

00 00 

= j cj Yt(z) · (~ (j(t)zi)d-\)dt = j cj Yt(z)Wt(z)d-\)dt, 
-oo 1 -oo 

as claimed. 

A more striking way of stating Theorem 3.3 is the following: 

COROLLARY 3.4. Let Yt be as in Theorem 3.3. Then 

T T 

(3.7) j Yi(w)8Bt =I Yt ¢ Wtdi 
0 0 

If, in addition, Yt is :Ft-adapted then 

T T 

(3.8) I Yt(w)dBt = J Yt ¢ Wtdt 
0 0 

l11 other words: Ito integration is equivalent to Wick multiplication by white noise followed 
!Jy tJ.<-:ual (Lebesgue) integration. 

Remark: Using (3.8) repeatedly we see that the Wiener-Ito chaos formula. (2. 7) may be 
written 

which is strikingly similar to the Taylor expansion of a real analytic function. See [St) for 
<t discussion about this. 
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f'rom (3.8) we sec that if we model a white noise differential equation 

dXt 
-- = b(Xt) + u(Xt) · "white noise" dt 

by the Ito stochastic differential equation 

dXt = b(Xt)dt + u(Xt)dBt, 

we are actually interpreting the product 

u(Xt) · "white noise" as the Wick product u(Xt) o Wt. 

This raises the question whether it may be more appropriate to interpret other nonlinear 
terms in the equation in the "Wick sense" as well. For example, as a model for population 
growth in a crowded - and random - environment we could use the equation 

dXt 
- = (r + aWt)Xt(N- Xt) 
dt 

iu the "traditional" sense, i.e. 

(3.9) 

or we could use the Wick version of the products: 

(3.10) 

\Vhich model gives the best description of the situation? We will examine this example 
more closely in §4. (We remark that it follows from the main result in [L0U] that if 
0:::; Xs :::; N for 8:::; t then Xs 0 (N- Xs) ~ 0 for s ~ t.) 

First we introduce the general concept of the Wick version / 0 of a given real function f: 

DEFINITION 3.5. Let f: C--+ C be measurable. H Xt is a stochastic process in L2(tJ) 
snch that 

J J if(Xt(x + iy))j 2d.X(x)d.X(y) < oo 

thcll 

(3.11) 

ddincs a stochastic process in L2 (tJ). This process yt is denoted by f 0 (Xt) and called the 
H!ick version of f(Xt). 
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n 
EXAMPLE 3.6. If f(z) = L: a"z" is a complex polynomial then 

k=O 

n 

r)(Xt) = La"x:", 
k=O 

i.e. the <>-polynomial obtained by replacing the usual powers by Wick powers (assuming 
the latter exist). 

THEOREM 3. 7. Let b : C -... C and u : C ._. C be measurable functions, b(z) = b( z) and 
u(z) = u( z). Suppose there exists T = T( Xt, x2, · · ·) > 0 such that for all k E N and all 

(zt, · · ·, Zk) = (xt +iyt, · · ·, Xk +iyk) there is a unique solution d") E L2(Xro,TJdt x d).. x d)..) 
of the (deterministic) differential equation 

(k) k 

d~t = b(H(H-1(d")))) + u(1i(H-1(d")))) · L (j(t)zj; 
j=l (3.12) 

e~k) =eo E £ 2().. X A) given. 

Define et( z) for z E C~ by putting 

(3.13) 

Assume that b(H(H- 1(et))) and u(H(1i- 1(et))) · Wt belong to L 2 (Xro,TJdt x d).. x d)..). 

Define 

(3.14) Xt(w) = 1i-1(et) := [! et(z)d)..(y)]x= j (dB(w) fort< T(J (dB). 

Then the process Xt solves the Ito-Skorohod stochastic differential equation 

(3.15) 

Proof. If z(k) = (z1 , · · ·, Zk, 0, ···)when z = (zt, · · ·, Zk, Zk+b ···)we have by uniqueness 

This shows that et ( z) is well-defined. Moreover, note that by antisymmetry of b and u we 
have 

(3.16) et(z) = et(z) for all z E C~. 

With Xt defined by (3.14) we have 

t t 

et(z) =eo+ j b(Xs)ds + j u(Xs) ~ (j(s)zids fort< T(x) 
0 0 J 
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for all z E C~. We integrate this identity with respect to d,\(y) and apply the Fubini 
theorem to obtain 

t t 

(3.17) x,(w) =a+ J b0 (Xlf)ds + J (! u( .. ·trwlfd,\(y))x= I (dBds fort < T(j (dB) 
0 0 

By Lemma 3.2 we may replace u(X11 ) by its analytic representative and by Theorem 3.3 
we obtain (3.15). 

If b and u are analytic then e, ( ·) becomes analytic and hence e, coincides with its analytic 
representative 'H('H-1(et)). So in this case Theorem 3.7 simplifies to: 

THEOREM 3.8. Let b : C -+ C and u : C -+ C be analytic functions satisfying 
b(z) = b(z) and u(z) = u(z). Suppose that there exists T = T(x1,x2, · · ·) > 0 such 
that for all z = (zt,Z2,". ·) = (xt + iyt,X2 + iy2,". ·)there is a unique solution et(z) E 
L 2(x[o,Tjdt x d,\ x d,\) of the equation 

(3.18) 

for t < T, where eo( ZJ, Z2' ... ) is analytic. 

Moreover, assume b(e,) and u(et) · W1 belong to L2(X[o,Tjdt x d,\ x d,\). 

Then 

(3.19) 

solves the Ito-Skorohod stochastic differential equation 

(3.20) 

for t < T(w) := T(f (1 dB, J (2dB, · · · ). Moreover, this is the unique solution satisfying 

(3.21) 

Proof It only remains to prove uniqueness. H Xt and l'i both solve _(3.202 then Xt and ft 
both solve (3.18). By uniqueness of the solution of (3.18) we have Xt = Yt and hence 

-1 - -1 -X, = 1-l (Xt) = 1i (Yt) = Yt. 

Remark. Note that X 0 may be anticipating, so Theorems 3.7 and 3.8 provide a new 
approach to (this type of) anticipating Skorohod stochastic differential equations. See [P] 
and the references there for more information about such equations. 
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§4. Application to population growth in a crowded, stochastic environment. 

To illustrate Theorem 3.8 we consider example (3.10) in detail, i.e. we consider the follow­
ing Ito-Skorohod stochastic differential equation 

( 4.1) dXt = r Xt o (1- Xt)dt + aXt o (1- Xt)t5Bti Xo = x 

where x, r, a are constants, r is positive ,and where we for simplicity have put N = 1 and 
assume x > 0. 

In view of Theorem 3.8 we are led to consider the following deterministic equation 

( 4.2) 

Put c = l-x. 
• X I . 

First assume x > 2' I.e. lei< 1. Then the (unique) solution of{4.2) is 

( 4.3) ~t(z) = [1 + cexp( -rt- aF(t, z))t1 fort< T 

'vvhere 

t 

( 4.4) F(t, z) = J W,(z)ds = L Zk(t)zk, 
0 k 

t 

with Zk(t) = J (k(s)ds and T = T(x1, · · ·) = inf{t > 0; cexp( -rt- a 2:: Zk(t)xk) = 1} 
0 k 

For t < T we have 

J ~t(z)d>.(y) = 

( 4.5) f ( -l)mcm exp(-rmt- am L Zk(t)xk) · J exp( -ima L ZkYk)d>.(y) 
m=O k k 

Now 

( 4.6) J . 1 2 dyk 1 2 2 2 
exp( -zmaZkYk- -yk) rn= = exp( --m a Zk) 

2 y211" 2 

So 
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Substituting Xk = J (kdB we conclude that ( 4.1) has the solution 

(4.7) 
00 1 

Xt = x?) = L ( -1)mcm exp( -(rm + 2a2m 2)t- amBt) 
m=O 

This is the solution if! < x < 1 and t < T(w) = inf{t > 0; cexp( -rt-aBt) = 1} (Bo = 0). 

Since the series in ( 4. 7) actually converges for all t (for a.a.w) it is natural to define Xt for 
all t by this formula. With this definition we see that 

( 4.8) 

where Xt is the solution of (4.1) in the deterministic case (a= 0). Moreover, 

( 4.9) 1. x<I)- 1 1m t - a.s., 
t-+oo 

although for all t > 0 we have 

(4.10) P~'[X?) > 1] > 0 (if a'# 0) 

Thus in this stochastic model there is always a positive probability that the population 
will exceed the limiting value 1. 

However, since 

E"[(X?)) 2 ] = oo 

for all t (if a =/:. 0) X~l) is not a global solution of ( 4.1) in our (L 2 ) sense. But we shall 

show below that X~1 ) is a global solution in a weaker sense. 

Next assume 0 < x < t, i.e. c > 1. 
Then the unique solution of ( 4.2) can be written 

( 4.11) et(z) = c-1 exp(rt + aF(t,z))[1 + c-1 exp(rt + aF(t,z))]-1 

for t < T( x ). 

For t < T( x) we have, by a similar calculation as above, 

Substituting Xk = J (kdB we get the solution 

(4.12) 
00 1 

Xt = X~2 ) = L ( -l)m+1 e-m exp((rm- 2a2m2 )t + amBt) 
m=1 
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if 0 < x < ! and t < T(w ). 

Again we note that ( 4.12) actually converges for all t (for a. a. w) so we define X}2
) for all 

t by this formula. In this case (0 < x < ! ) we still get 

( 4.13) 

and 

(4.14) P 11 [x?> > 1] > 0 for all t > 0 (a =f. 0) 

However, in contrast with ( 4.9) we now have 

(4.15) 

Now define X t by 

( 4.1G) 

1. x<2> - o Im t -
t-+oo 

1 2 
a.s. if r- -a < 0 

2 

X _ t 2 { 
X(l) if! <X 

t - x?> if o < x < ! 
I.e. lei < 1 

i.e. c > 1 

Vvc claim that Xt actually solves (4.1) for all t, in the sense that Xt is Fradapted, 

(4.17) 
1' 

P 11 [1 IXt o (1- Xt)l 2dt < oo for all T] = 1 

and 

( 4.18) for all T 

To verify this we have to compute Xt o (1- Xt)· If Xt = x?> we have by (4.7) 

(4.19) 

Xto(1-Xt) = 

00 1 - L ( -ct+m exp( -[r(n + m) + 2a2(n2 + m2 )]t) exp(-amBt) o exp( -anBt) 
m=O 
n=l 

To compute the last Wick product we rewrite the last two exponentials as Wick exponen­

tials: 

Ddine 

( 4.20) 
00 1 

Exp(vt) := L ~~<>n 
n. 

n=o 
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A similar computation verifies (4.17),(4.18) in the case when Xt = x?>. 

Rcma.rk 1 Note that both the computation for Xt = x?> and for Xt = x?> actually still 
works if we put c = 1, as long as t > 0 (and a =j:. 0). But neither of them converges fort = 0 
with this value of c. It is an interesting question if equation ( 4.18) has any solution at all 
with x = ~ (if a f:. 0) and if so, whether it is unique or not. The difficulty at this starting 
point x = k reflects the fact that the corresponding (complex) deterministic equation ( 4.2) 
does not have a solution for all Zk E C. In view of (4.9) and (4.15) it is natural to regard 
x = ~ as a kind of "stochastic bifurcation point". 

Remark 2. It is interesting to note that our solution Xt is closely related to the classical 
8-function. The latter is defined by 

00 

( 4.24) ecw,r) = 2:: exp('1rin2 r+21rinw) ; 
n=-oo 

where wE C andrE H = {z E C; Im z = 0} (See e.g. [M]). So, for example, if we choose 
c = 1 (and t > 0) in (4.7) and (4.12) we have 

x?) - x?) = f ( -1)n exp( -(rn + ~a2n2 )t- anBt) 

( 4.25) 
n=-oo 

00 1 
= L exp(-2a2n 2t+n(7ri-rt-aBt))=8(w,r) 

n=-oo 

with 

( 4.26) 
1 i 

w = 2 + 27r(rt + aBt), 

Remark 3. Note that the (unique) solutions x?>, X~2) in (4.7), (4.12) are not Markov. 
For example, if 0 < x < k we have 

( 4.27) 
00 1 

Ex[X~~hiFt] = L ( -1)m+Ic-m exp((rm- 2a2m 2)t + amBt) exp(rmh) 
m=l 

while 
00 

(4.28) Ex~2)[X~2)] = L(-1)m+II't-mexp(rmh), 
m=l 

where c = (1-x)jx, {t = (1-XJ2))/XJ2) and Ft is the u-algebragenerated by {Bs(·)}s<t· 
The equality of ( 4.27) and ( 4.28) would imply that 

{t 1 2 - = exp( -rt +-a mt- aBt) 
c 2 

for all m, which is impossible unless a = 0. 
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Logistic paths 
The same sample path with r = 1, 01 = 1. Starting points: 0.75, 0.6 

0.6 

0.4 

0,2 

Logistic growth 

tr---~--~~------------

0,4 

0,2 

Different sample paths with r = 1, 01 = 1. Starting point: 0.55 

J.oghtlc growth 

~t 

Logiatic growth 

lr-------~~~----------
0.8 

0.2 

Dif[ereut sample pat.hs wit.h r = 1/5, 01 = 1/2. Starting point: 0.6 

Logistic r,~rowth 

0.4 0,4 

0,;> 0.2 

Dif[cwnt sample pat.hs with r = 1/5, 01 = l/2. Starting point: 0.25 

J,oglatlg growth 

1.15 

1.5 

1.25 

lr---------~~~--~hk--
0,7~ 

Ditrerent sample paths with r = 1/5, a= 1. Starting point: 0.25 

Loqlatlc qrowth Logistic qrowth 

1.5 1~---------------------
0.8 

0.6 
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Tbe nou-Mnrkovian nature of the solutions reflects the fact that the value of the Wick 
product X 1 <> (1 - X 1) at a given w0 E S' is not a function of Xt(w0 ) alone, but depends 
on the whole set of values {Xt(w);w E S'}. 

The solutions X1(t), xrl) are illustrated on the figure, which shows computer similations 
for various choices of 1·, t and starting point x. In a sense the use of Wick products gives 
a model of a population with a "memory": If the population reaches the value 1 (the 
capacity of the environment) from a lower starting point, it has got a momentum which 
makes it possible to grow even further. 

It would Le interesting to compare the solutions ( 4. 7), ( 4.12) to the solution of the "tra­
ditional" stochastic model (3.9). Unfortunately this comparison does not seem to be 
straightforward, because it appears to be difficult to solve (3.9) as explicitly as we have 
solved ( 4.1 ). 

A ck now ledge me nts 

W<' are grateful to P. Mallia.vin, P.A. Meyer and J. Potthoff for useful discussions. This 
work is supported by VISTA, a research cooperation between The Norwegian Academy of 
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