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Abstract: Let A denote the left regular representation of a locally
compact group G on L?(G) and C*(\(G)) the C*—algebra generated by
A(G). We show that the amenability of G and the amenability of G
considered as a discrete group may both be characterized in terms of

C*(MG))-







1 Introduction.

We first fix some notation. Throughout this note we let G denote a locally
compact (HausdorfI topological) group equipped with a fixed left Haar mea-
sure u, and G4 denote the group G considered as a discrete group. As usual,
LY(G), L*(G) and L*(G) are defined with respect to u. The left regular

representation of G on L*(G), defined by

Mg)E)(h) =&(g™'h), E€ L*(G), g,h € G,

is well known to be a (strongly) continuous unitary representation of G. We
shall denote by A4 the left regular representation of G4 on 12(Gg). All unde-
fined terminology in this paper is explained in at least one of the following
references: [2], [5], [7], [11], [13], [14].

Much attention has been devoted to the study of the following opera-
tor algebras associated with G: the full group C*-algebra C*(G), the re-
duced group C*-algebra C*(G) and the group von Neuman algebra vN(G).
We recall that C*(G) is defined as the enveloping C*-algebra of L(G)
considered as an involutive Banach algebra with an approximate identity.
If B(L?*(G)) denotes the bounded linear operators on L?(G), then C*(G)
is the C*—subalgebra of B(L?(G)) generated by the convolution operators
Ty, f € LY(G), where Ty(€) = fx&, £ € L*(G). At last, uN(G) is the von
Neumann subalgebra of B(L?(G)) generated by A(G) = {\(g), g € G}, or
equivalently vN(G) = A(G)" = C*(G)", where ” denotes the double com-

mutant (in B(L3(G))). The purpose of this note is to draw the attention




to C*(A\(G)), the C*-subalgebra of B(L?(G)) generated by A(G). Of course,
when G is discrete, we have C*(\(G)) = C}(G), and we will therefore mainly
be interested m the non-discrete case. In this case, it is known that C}(G)
and C*(G) are non-unital ([10; Cor. 1 and 2]), while C*(A\(G)) is always
unital.

The only paper we are aware of which explicitely deals with C*(A\(G)) in
the non-discrete case is [8], where Kodaira and Kakutani essentially show that
when G is abelian, then C*(\(G)) is +-isomorphic to C(Gj), the continuous
complex functions on the dual group of G4. This result is nicely exposed
by Arveson in [1], where he generalizes it to other C*—algebras generated
by abelian unitary groups. Further, when G is abelian, it is well known
that C*(G) =~ C*(G) = Co(G), the continuous complex functions on the
dual group of G which vanish at infinity. Thus, C*(A(G)) on one hand and
C*(G) ~ C*(G) on the other hand contain rather different information in the
abelian case. However, still in this case, we also have C*(G3) =~ C(Gj), hence

- C*(M(G)) ~ C*(Gy), which shows that the topology of G is not reflected in
C*(A\(G)). One may therefore wonder whether all the topological flavour of
G does disappear in C*(A\(G)) in the non-abelian case too.

We shall show that this suggestion is not generally true. Our approach re-
lies heavily on the now well-developped theory of amenability ([13], [14]). We
recall that G is called amenable whenever there exists a left invariant mean
on L*(G), i.e. a state on L*™(G) which is invariant under left translations.

A deep C*—algebraic characterization of the amenability of G is that C*(G)




and C*(G) are canonically x-isomorphic. ([12; Theorem 4.21] or [13; Theo-
rem 8.9]). Another characterization via C*(A(G)) is possible: our first result
(Theorem 1) is that G is amenable if and only if there exists a non zero mul-
tiplicative linear functional on C*(A(G)). We notice that the ”only if” part
is known in the discrete case ([3; Theorem 2], [12; Proof of prop. 1.6]). This
resultvprovides a natural C*—explanation to the fact that an abelian group G
is amenable: C*(A(G)) is then an abelian C*-algebra and therefore possess a
non-zero multiplicative linear functional by Gelfand’s theory. Of course, this
is not the most efficient way to prove this fact which is an easy consequence
of the Markov-Kakutani fixed point theorem (cf. [13; Proposition 0.15]).

By combining a remark of Arveson in [1] and some arguments of Figa—
Talamanca in [6], one obtains that if G4 is amenable, then C*(A\(G)) =~
C*(Gq4). With the help of Theorem 1, we can conclude that Gy is amenable
if and only if G is amenable and C*(\(G)) ~ C#*(Gq4). (Theorem 2). Hence,
if G is an amenable group such that G4 is not amenable (f.ex. G = SO(3)),
then C*(A(G)) is not x—isomorphic to C*(Gj).

At last, we characterize the nuclearity of C*(A(G)). We recall that a C*-
algebra is called nuclear if there is a unique way of forming its tensor product
with any other C*—algebra. For some equivalent definitions, the reader may
consult [9], [13] or [15] where further references are given. As a sample of the
work of many hands, we quote the following from [13; 1.31 and 2.35]:

G is amenable if and only if G is inner amenable and C}(G) is nuclear,

if and only if G is inner amenable and vN(G) is injective.




Inner amenability of G means here that there exists a state on L*°(G) invari-
ant under the action on L*°(G) by inner automorphisms of G, while vN(G)
is injective whenever there exists a norm one projection from B(L?(G)) onto
vN(G). We also recall that there exist non-amenable groups G such that
C?*(G) is nuclear and vN(G) is injective. Now, since any discrete group is
inner amenable in the above sense, we have G4 is amenable if and only if
C?(G,) is nuclear, a result proved by Lance in [9; Theorem 4.2]. We shall
use this to conclude that G, is amenable if and only if C*(A(G)) is nuclear
(Theorem 2). Especially, we get that if G is amenable but Gy is nof, then

C*(A(G)) is non-nuclear while C*(G) is nuclear and vN(G) is injective.

2 The results.

We begin with a lemma which is surely known to specialists, but for the

convenience of the reader we sketch the proof.

Lemma A: Let A denote a unital C*—algebra, U(.A) its unitary group and

¢ a state on A. Let z € A and u € U(A). Then
a) p(za) = ¢(x)p(a) for all a in A if and only if p(zz*) = |¢(z)]>.
b) yp(az) = ¢(a)p(z) for all a in A if and only if p(z*z) = |¢(z)[>.
c) p(ua) = p(au) = p(u)p(a) for all a in A if and only if |p(u)| = 1.

d) If V is a subgroup of U(A) which generates A as a C*—algebra, then ¢

is multiplicative if and only if |p(v)| =1 for all v in V.




Proof:
a) Suppose p(zz*) = |¢(z)|?> and let a € A. Then, by the Cauchy—

Schwartz inequality, we get

lo(za) — p(@)e@)F = le((z - ¢())a)?
< pla*a)p((x — ¢(x)) (@ — ¢(z))*)
= ¢(a*a)(p(zz*) — |o(@)*)

= 0.
Hence p(za) = ¢(z)p(a) as desired.
The only if part is trivial.
b) may be deduced from a) or proved similarly.
c) follows from a) and b).

d) follows from c) and an easy density argument.

Theorem 1: G is amenable if and only if there exists a non-zero multplica-

tive linear functional on C*(A\(G)).

Proof: Suppose G is amenable. Then there exists a net {£;} in

{€ € LYG)| || € ll2= 1} such that

| Mg)& — & ||,— 0 for all gin G.




(cf. [13; Theorem 4.4] or [14; Corollary 6.15]). For each i, define ¢; on

C*(MG)) by
(pl(x) =< ina{i >, TE€ C*(’\(G))

Then {¢;} is a net in the state space of C*(\(G)) which (by Banach-Alaoglu’s
theorem) is weak*—compact. Hence we may pick a weak*-limit point of this

net, say ¢, which is a state on C*(\(G)). Now, since

lo:(M@) -1 = | <(\@)&-&),&> I

< I M9)& =& |,— 0 forallgin G,

we clearly have ¢(\(g)) =1 for all g in G. As A\(G) generates C*(\(G)) by
definition, it follows from lemma A d) that ¢ is a non-zero multiplicative
linear functional on C*(A(G)).

Conversly, suppose ¢ is such a functional on C*(\(G)). Then, as ¢ pre-
serves adjoints ([11; Prop. 2.1.9 ]), ¢ is a state on C*(\(G)) such that
le(A(g))] = 1 for all g in G. By the Hahn-Banach theorem for states ([2;

Prop. 2.3.24]), we may extend ¢ to a state @ on B(L?(G)) which satisfies
|&(AM(g))| =1 for all gin G.

As a consequence of lemma A c), we then have
dM9)zA@™)) = B(M9)BMg™)
= ¢(\9)p@)E(Ng ™)
= |B(M\(9)I*¢(z)

= ¢(x)




for all g in G and z in B(L?*(G)).
The amenability of G follows readily from this in a quite standard way. If
M; denotes the multiplication operator on L*(G) by f € L*(G), then one
obtains a left invariant mean m on L*®(G) by defining m(f) = @(My), f €
L*(G), and using that My, = A\(g)MA(g7?) for all f in L°(G) and g in G,
- where fy(h) = f(g7'h), h€G.
O
When U is a continuous unitary representation of G on a Hilbert space
‘H, we denote by my the canonically associated xrepresentation of C*(G)
in B(H). We recall that if V is such another representation of G, then
U is said to be weakly contained in V' (resp. equivalent to V) whenever
ker wy C ker my (resp. ker my = ker my). We shall also need the fact that
7y (C*(G)) is the closure (in the uniform topology) of my(L!(G)) in B(H).

We refer to [5] for more information on this matter.

By regarding G as a discrete group, we may consider A as a re-
presentation of G4 in L%(G). To avoid confusion, we shall denote this repre-
sentation by A\°. For each g € G, we let §, denote the characteristic function

of {g} in G.
Lemma B: C*(A\(G)) = mx (C*(Ga))-

Proof: Let &1 € L*(G). Then for all g in G we have

< 77,\°(6g)§777 > = Z 69("’) < /\°(h)f,77 >=< )\°(9)§,77 >

heG
= < )\(g)f,fl >.




Hence my(6;) = Ag), g € G. This clearly implies that C*(A(G)) C
7 (C*(Gq)). To prove the converse inclusion, let f € I*(G4). Then choose
a sequence of complex functions f, with finite support such that f, — f in

I'-norm. From the above, we have 7 (f,) € C*(A(G)) for all n. Since

[ mxe(fn) =me(F) | = Il mae(fa =)l

< " fn_flll_’o
we get e (f) € C*(AN(G)).

Thus mye (ll(Gd)) - C*(/\(G)), SO

73 (C*(Ga)) = e (G| € C*(A(G)).

The next lemma is a corollary of [1] and [6], but for the sake of complete-

ness, we sketch the proof.

Lemma C: ), is weakly contained in A°. Further, if G4 is amenable, then

Ad is weakly equivalent to A° and C*(\(G)) is x-isomorphic to C*(Gy).

Proof: For each finite subset F' of G, there exists a £ in L?(G) such that
| € ll2= 1 and < A(g)ér,&r >= 0 for all g in F, g # e (the identity of
G). This follows from the easily verified fact that there exists a Borel subset
W = W(F) of G such that 0 < u(W) < oo and pu(gW NW) =0 for all g in
F, g # e, and then by setting u(W)Y2. £ = xw (the characteristic function

of W).




Define so pr(g) = < A(g)ér,&r > = < X°(9)ér,&F > for each g in G.
Then @p a positive definite function on G4 associated to A°. Further, if we
regard {F C G, F finite} as a directed set ordered by inclusion, then we

clearly have
or(g) — 6c(g) for all gin G.

Since 8(9) = < Ad(g)be, 6. > for all g in G, é. is a positive definite function
on Gy associated to \g. As & is a cyclic vector for A4, we then get from [5;

Prop. 18.1.4] that \s is weakly contained in A° as desired.

Now, suppose G4 is amenable. Then p is weakly contained in A4 for all
unitary representations p of G4 (use [5; Prop. 18.3.5] together with [5; Prop.
18.3.6] or [14; Theorem 8.9]). Especially, A° is then weakly contained in Aq4.
Hence )\; is weakly equivalent to \°.

Since C¥(Ga) = mx,(C*(G4)) and
C*(MG)) = mr(C*(Ga)) (by lemma B),

this implies that C*(\(G)) ~ C*(Ga).

Theorem 2: The following statements are equivalent:

(i) Gg is amenable.
(ii) G is amenable and C*(A\(G)) ~ C*(G,).
(iii) C*(A(@)) is nuclear.

(iv) C*(Ga) is nuclear.
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Proof: (i) & (iv) is proved by Lance in [9; Theorem 4.2].

(i) = (ii) Suppose Gy is amenable. Then G is amenable ([13; Problem 1.12]
or [14; Prop. 4.21]) and C*(A\(G)) ~ C}(Ga) by lemma B.

(ii) = (i) Suppose G is amenable and C*(A(G)) ~ C*(G4). From Theo-
rem 1, we then know that C*(\(G)) possess a nonzero multiplicative linear
functional, and therefore that C*(G4) possess one too. Since C*(Ga) =
C*(M\a(Gq)), Theorem 1 now implies that G4 is amenable.

(iii) = (iv) Suppose C*(A\(G)) is nuclear. Since )\, is weakly contained in A°
by lemma B, this implies that 75, (C*(G4)) = C¥(Ga) is a quotient C*—algebra
of mxe (C*(Gg)) = C*(A(G)). As it is known that a quotient C*—algebra of a
nuclear C*—algebra is itself nuclear ([4; Corollary 4]), we obtain that C;(G4)
is nuclear.

(iv) = (iii) Suppose C*(Gj) is nuclear. Since we now know that

(iv) = (ii), we have C*(\(G)) ~ C*(Ga), so C*(A\(G)) is nuclear too.

We conclude this note with some remarks on
X(G) ={¢: C*(A(G)) — C|y is nonzero, linear and multiplicative}

which is a weak*—closed subset of the state space of C*(A\(G)). Theorem
1 says that X(G) # ¢ if and only if G is amenable. When G is abelian,
the result of Kodaira and Kakutani mentionned in the introduction may
be interpreted as the fact that X (G) is homeomorphic to G4. In the non-—

abelian case, X (G) is of course a rather primitive C*-algebraic invariant for




11

C*(AM(@)), but it has the advantage of being easily computed in some cases,
as the following illustrates.

Let H denote a discrete group and CH its commutator subgroup. Then
H/CH is abelian and it is not difficult to show, as it has been observed
by Watatani in [16], that if H is amenable, then X (H) is homeomorphic
to H75H . Hence, if G4 is amenable, we get via Theorem 2 that X (G) is
homeomorphic to G’d75Gd. If G is amenable but Gy is not, one can show
that X (G) contains a copy of G’/EE and may itself be embedded in GJE”G,;,
but we don’t know whether anything more general can be said here. If f.ex.
G = SO(3), then CGy4 = G4, so X(G) = {1} (where 1 denotes the state on

C*(M\(G)) determined by 1(A(g)) = 1 for all g in G, cf. the proof of Theorem

1).
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