ON THE C*-ALGEBRA GENERATED BY THE LEFT REGULAR REPRESENTATION OF A LOCALLY COMPACT GROUP.

by

Erik Bédos.
Institute of Mathematics
University of Oslo
P.b. 1053 Blindern
0316 Oslo 3 – Norway

Abstract: Let λ denote the left regular representation of a locally compact group G on $L^2(G)$ and $C^*(\lambda(G))$ the C^* -algebra generated by $\lambda(G)$. We show that the amenability of G and the amenability of G considered as a discrete group may both be characterized in terms of $C^*(\lambda(G))$.

. •

1 Introduction.

We first fix some notation. Throughout this note we let G denote a locally compact (Hausdorff topological) group equipped with a fixed left Haar measure μ , and G_d denote the group G considered as a discrete group. As usual, $L^1(G)$, $L^2(G)$ and $L^{\infty}(G)$ are defined with respect to μ . The left regular representation of G on $L^2(G)$, defined by

$$\lambda(g)\xi(h) = \xi(g^{-1}h), \ \xi \in L^2(G), \ g, h \in G,$$

is well known to be a (strongly) continuous unitary representation of G. We shall denote by λ_d the left regular representation of G_d on $l^2(G_d)$. All undefined terminology in this paper is explained in at least one of the following references: [2], [5], [7], [11], [13], [14].

Much attention has been devoted to the study of the following operator algebras associated with G: the full group C^* -algebra $C^*(G)$, the reduced group C^* -algebra $C^*_r(G)$ and the group von Neuman algebra vN(G). We recall that $C^*(G)$ is defined as the enveloping C^* -algebra of $L^1(G)$ considered as an involutive Banach algebra with an approximate identity. If $\mathcal{B}(L^2(G))$ denotes the bounded linear operators on $L^2(G)$, then $C^*_r(G)$ is the C^* -subalgebra of $\mathcal{B}(L^2(G))$ generated by the convolution operators T_f , $f \in L^1(G)$, where $T_f(\xi) = f \star \xi$, $\xi \in L^2(G)$. At last, vN(G) is the von Neumann subalgebra of $\mathcal{B}(L^2(G))$ generated by $\lambda(G) = \{\lambda(g), g \in G\}$, or equivalently $vN(G) = \lambda(G)'' = C^*_r(G)''$, where '' denotes the double commutant (in $\mathcal{B}(L^2(G))$). The purpose of this note is to draw the attention

to $C^*(\lambda(G))$, the C^* -subalgebra of $\mathcal{B}(L^2(G))$ generated by $\lambda(G)$. Of course, when G is discrete, we have $C^*(\lambda(G)) = C^*_r(G)$, and we will therefore mainly be interested in the non-discrete case. In this case, it is known that $C^*_r(G)$ and $C^*(G)$ are non-unital ([10; Cor. 1 and 2]), while $C^*(\lambda(G))$ is always unital.

The only paper we are aware of which explicitly deals with $C^*(\lambda(G))$ in the non-discrete case is [8], where Kodaira and Kakutani essentially show that when G is abelian, then $C^*(\lambda(G))$ is \star -isomorphic to $C(\widehat{G}_d)$, the continuous complex functions on the dual group of G_d . This result is nicely exposed by Arveson in [1], where he generalizes it to other C^* -algebras generated by abelian unitary groups. Further, when G is abelian, it is well known that $C^*(G) \simeq C^*_r(G) \simeq C_o(\widehat{G})$, the continuous complex functions on the dual group of G which vanish at infinity. Thus, $C^*(\lambda(G))$ on one hand and $C^*(G) \simeq C^*_r(G)$ on the other hand contain rather different information in the abelian case. However, still in this case, we also have $C^*_r(G_d) \simeq C(\widehat{G}_d)$, hence $C^*(\lambda(G)) \simeq C^*_r(G_d)$, which shows that the topology of G is not reflected in $C^*(\lambda(G))$. One may therefore wonder whether all the topological flavour of G does disappear in $C^*(\lambda(G))$ in the non-abelian case too.

We shall show that this suggestion is not generally true. Our approach relies heavily on the now well-developped theory of amenability ([13], [14]). We recall that G is called amenable whenever there exists a left invariant mean on $L^{\infty}(G)$, i.e. a state on $L^{\infty}(G)$ which is invariant under left translations. A deep C^* -algebraic characterization of the amenability of G is that $C^*(G)$

and $C_r^*(G)$ are canonically *-isomorphic. ([12; Theorem 4.21] or [13; Theorem 8.9]). Another characterization via $C^*(\lambda(G))$ is possible: our first result (Theorem 1) is that G is amenable if and only if there exists a non zero multiplicative linear functional on $C^*(\lambda(G))$. We notice that the "only if" part is known in the discrete case ([3; Theorem 2], [12; Proof of prop. 1.6]). This result provides a natural C^* -explanation to the fact that an abelian group G is amenable: $C^*(\lambda(G))$ is then an abelian C^* -algebra and therefore possess a non-zero multiplicative linear functional by Gelfand's theory. Of course, this is not the most efficient way to prove this fact which is an easy consequence of the Markov-Kakutani fixed point theorem (cf. [13; Proposition 0.15]).

By combining a remark of Arveson in [1] and some arguments of FigàTalamanca in [6], one obtains that if G_d is amenable, then $C^*(\lambda(G)) \simeq C^*_r(G_d)$. With the help of Theorem 1, we can conclude that G_d is amenable if and only if G is amenable and $C^*(\lambda(G)) \simeq C^*_r(G_d)$. (Theorem 2). Hence, if G is an amenable group such that G_d is not amenable (f.ex. G = SO(3)), then $C^*(\lambda(G))$ is not \star -isomorphic to $C^*_r(G_d)$.

At last, we characterize the nuclearity of $C^*(\lambda(G))$. We recall that a C^* -algebra is called nuclear if there is a unique way of forming its tensor product with any other C^* -algebra. For some equivalent definitions, the reader may consult [9], [13] or [15] where further references are given. As a sample of the work of many hands, we quote the following from [13; 1.31 and 2.35]: G is amenable if and only if G is inner amenable and $C^*_r(G)$ is nuclear,

if and only if G is inner amenable and vN(G) is injective.

Inner amenability of G means here that there exists a state on $L^{\infty}(G)$ invariant under the action on $L^{\infty}(G)$ by inner automorphisms of G, while vN(G) is injective whenever there exists a norm one projection from $\mathcal{B}(L^2(G))$ onto vN(G). We also recall that there exist non-amenable groups G such that $C_r^{\star}(G)$ is nuclear and vN(G) is injective. Now, since any discrete group is inner amenable in the above sense, we have G_d is amenable if and only if $C_r^{\star}(G_d)$ is nuclear, a result proved by Lance in [9; Theorem 4.2]. We shall use this to conclude that G_d is amenable if and only if $C^{\star}(\lambda(G))$ is nuclear (Theorem 2). Especially, we get that if G is amenable but G_d is not, then $C^{\star}(\lambda(G))$ is non-nuclear while $C_r^{\star}(G)$ is nuclear and vN(G) is injective.

2 The results.

We begin with a lemma which is surely known to specialists, but for the convenience of the reader we sketch the proof.

Lemma A: Let \mathcal{A} denote a unital C^* -algebra, $\mathcal{U}(\mathcal{A})$ its unitary group and φ a state on \mathcal{A} . Let $x \in \mathcal{A}$ and $u \in \mathcal{U}(\mathcal{A})$. Then

- a) $\varphi(xa) = \varphi(x)\varphi(a)$ for all a in $\mathcal A$ if and only if $\varphi(xx^\star) = |\varphi(x)|^2$.
- b) $\varphi(ax) = \varphi(a)\varphi(x)$ for all a in $\mathcal A$ if and only if $\varphi(x^\star x) = |\varphi(x)|^2$.
- c) $\varphi(ua) = \varphi(au) = \varphi(u)\varphi(a)$ for all a in $\mathcal A$ if and only if $|\varphi(u)| = 1$.
- d) If \mathcal{V} is a subgroup of $\mathcal{U}(\mathcal{A})$ which generates \mathcal{A} as a C^* -algebra, then φ is multiplicative if and only if $|\varphi(v)| = 1$ for all v in \mathcal{V} .

Proof:

a) Suppose $\varphi(xx^*) = |\varphi(x)|^2$ and let $a \in \mathcal{A}$. Then, by the Cauchy–Schwartz inequality, we get

$$\begin{aligned} |\varphi(xa) - \varphi(x)\varphi(a)|^2 &= |\varphi((x - \varphi(x))a)|^2 \\ &\leq \varphi(a^*a)\varphi((x - \varphi(x))(x - \varphi(x))^*) \\ &= \varphi(a^*a)(\varphi(xx^*) - |\varphi(x)|^2) \\ &= 0. \end{aligned}$$

Hence $\varphi(xa) = \varphi(x)\varphi(a)$ as desired.

The only if part is trivial.

- b) may be deduced from a) or proved similarly.
- c) follows from a) and b).
- d) follows from c) and an easy density argument.

Theorem 1: G is amenable if and only if there exists a non-zero multiplicative linear functional on $C^*(\lambda(G))$.

Proof: Suppose G is amenable. Then there exists a net $\{\xi_i\}$ in $\{\xi \in L^2(G) | \parallel \xi \parallel_2 = 1\}$ such that

$$\parallel \lambda(g)\xi_i - \xi_i \parallel_2 \rightarrow 0$$
 for all g in G .

(cf. [13; Theorem 4.4] or [14; Corollary 6.15]). For each i, define φ_i on $C^*(\lambda(G))$ by

$$\varphi_i(x) = \langle x\xi_i, \xi_i \rangle, \ x \in C^*(\lambda(G)).$$

Then $\{\varphi_i\}$ is a net in the state space of $C^*(\lambda(G))$ which (by Banach-Alaoglu's theorem) is weak*-compact. Hence we may pick a weak*-limit point of this net, say φ , which is a state on $C^*(\lambda(G))$. Now, since

$$\begin{split} |\varphi_i(\lambda(g)) - 1|^2 &= |\langle (\lambda(g)\xi_i - \xi_i), \xi_i \rangle|^2 \\ &\leq \|\lambda(g)\xi_i - \xi_i\|_2 \to 0 \text{ for all } g \text{ in } G, \end{split}$$

we clearly have $\varphi(\lambda(g)) = 1$ for all g in G. As $\lambda(G)$ generates $C^*(\lambda(G))$ by definition, it follows from lemma A d) that φ is a non-zero multiplicative linear functional on $C^*(\lambda(G))$.

Conversly, suppose φ is such a functional on $C^*(\lambda(G))$. Then, as φ preserves adjoints ([11; Prop. 2.1.9]), φ is a state on $C^*(\lambda(G))$ such that $|\varphi(\lambda(g))| = 1$ for all g in G. By the Hahn-Banach theorem for states ([2; Prop. 2.3.24]), we may extend φ to a state $\tilde{\varphi}$ on $\mathcal{B}(L^2(G))$ which satisfies

$$|\tilde{\varphi}(\lambda(g))| = 1$$
 for all g in G .

As a consequence of lemma A c), we then have

$$\begin{split} \tilde{\varphi}(\lambda(g)x\lambda(g^{-1})) &= \tilde{\varphi}(\lambda(g))\tilde{\varphi}(x\lambda(g^{-1})) \\ &= \tilde{\varphi}(\lambda(g))\tilde{\varphi}(x)\tilde{\varphi}(\lambda(g^{-1})) \\ &= |\tilde{\varphi}(\lambda(g))|^2\tilde{\varphi}(x) \\ &= \tilde{\varphi}(x) \end{split}$$

for all g in G and x in $\mathcal{B}(L^2(G))$.

The amenability of G follows readily from this in a quite standard way. If M_f denotes the multiplication operator on $L^2(G)$ by $f \in L^{\infty}(G)$, then one obtains a left invariant mean m on $L^{\infty}(G)$ by defining $m(f) = \tilde{\varphi}(M_f)$, $f \in L^{\infty}(G)$, and using that $M_{fg} = \lambda(g)M_f\lambda(g^{-1})$ for all f in $L^{\infty}(G)$ and g in G, where $f_g(h) = f(g^{-1}h)$, $h \in G$.

When U is a continuous unitary representation of G on a Hilbert space \mathcal{H} , we denote by π_U the canonically associated \star -representation of $C^*(G)$ in $\mathcal{B}(\mathcal{H})$. We recall that if V is such another representation of G, then U is said to be weakly contained in V (resp. equivalent to V) whenever $\ker \pi_V \subseteq \ker \pi_U$ (resp. $\ker \pi_V = \ker \pi_U$). We shall also need the fact that $\pi_U(C^*(G))$ is the closure (in the uniform topology) of $\pi_U(L^1(G))$ in $\mathcal{B}(\mathcal{H})$. We refer to [5] for more information on this matter.

By regarding G as a discrete group, we may consider λ as a representation of G_d in $L^2(G)$. To avoid confusion, we shall denote this representation by λ °. For each $g \in G$, we let δ_g denote the characteristic function of $\{g\}$ in G.

Lemma B: $C^*(\lambda(G)) = \pi_{\lambda^{\circ}}(C^*(G_d)).$

Proof: Let $\xi, \eta \in L^2(G)$. Then for all g in G we have

$$<\pi_{\lambda^{\mathrm{o}}}(\delta_g)\xi,\eta> = \sum_{h\in G}\delta_g(h)<\lambda^{\mathrm{o}}(h)\xi,\eta> = <\lambda^{\mathrm{o}}(g)\xi,\eta>$$

= $<\lambda(g)\xi,\eta>$.

Hence $\pi_{\lambda^o}(\delta_g) = \lambda(g)$, $g \in G$. This clearly implies that $C^*(\lambda(G)) \subseteq \pi_{\lambda^o}(C^*(G_d))$. To prove the converse inclusion, let $f \in l^1(G_d)$. Then choose a sequence of complex functions f_n with finite support such that $f_n \to f$ in l^1 -norm. From the above, we have $\pi_{\lambda^o}(f_n) \in C^*(\lambda(G))$ for all n. Since

$$\| \pi_{\lambda^{\circ}}(f_n) - \pi_{\lambda^{\circ}}(f) \| = \| \pi_{\lambda^{\circ}}(f_n - f) \|$$

$$\leq \| f_n - f \|_{1} \rightarrow 0$$

we get $\pi_{\lambda^{\circ}}(f) \in C^{\star}(\lambda(G)).$

Thus $\pi_{\lambda^{\circ}}(l^1(G_d)) \subseteq C^{\star}(\lambda(G))$, so

$$\pi_{\lambda^{\circ}}(C^{\star}(G_d)) = \overline{\pi_{\lambda^{\circ}}(l^1(G_d))}^{\|\cdot\|} \subseteq C^{\star}(\lambda(G)).$$

The next lemma is a corollary of [1] and [6], but for the sake of completeness, we sketch the proof.

Lemma C: λ_d is weakly contained in λ° . Further, if G_d is amenable, then λ_d is weakly equivalent to λ° and $C^{\star}(\lambda(G))$ is \star -isomorphic to $C_r^{\star}(G_d)$.

Proof: For each finite subset F of G, there exists a ξ_F in $L^2(G)$ such that $\|\xi_F\|_{2}=1$ and $<\lambda(g)\xi_F,\xi_F>=0$ for all g in F, $g\neq e$ (the identity of G). This follows from the easily verified fact that there exists a Borel subset W=W(F) of G such that $0<\mu(W)<\infty$ and $\mu(gW\cap W)=0$ for all g in F, $g\neq e$, and then by setting $\mu(W)^{1/2}\cdot\xi_F=\chi_W$ (the characteristic function of W).

Define so $\varphi_F(g) = \langle \lambda(g)\xi_F, \xi_F \rangle = \langle \lambda^{\circ}(g)\xi_F, \xi_F \rangle$ for each g in G. Then φ_F a positive definite function on G_d associated to λ° . Further, if we regard $\{F \subseteq G, F \text{ finite}\}$ as a directed set ordered by inclusion, then we clearly have

$$\varphi_F(g) \to \delta_e(g)$$
 for all g in G .

Since $\delta_e(g) = \langle \lambda_d(g) \delta_e, \delta_e \rangle$ for all g in G, δ_e is a positive definite function on G_d associated to λ_d . As δ_e is a cyclic vector for λ_d , we then get from [5; Prop. 18.1.4] that λ_d is weakly contained in λ° as desired.

Now, suppose G_d is amenable. Then ρ is weakly contained in λ_d for all unitary representations ρ of G_d (use [5; Prop. 18.3.5] together with [5; Prop. 18.3.6] or [14; Theorem 8.9]). Especially, λ° is then weakly contained in λ_d . Hence λ_d is weakly equivalent to λ° .

Since
$$C^{\star}_r(G_d) = \pi_{\lambda_d}(C^{\star}(G_d))$$
 and

$$C^{\star}(\lambda(G)) = \pi_{\lambda^{\circ}}(C^{\star}(G_d))$$
 (by lemma B),

this implies that $C^*(\lambda(G)) \simeq C^*_r(G_d)$.

Theorem 2: The following statements are equivalent:

- (i) G_d is amenable.
- (ii) G is amenable and $C^*(\lambda(G)) \simeq C^*_r(G_d)$.
- (iii) $C^*(\lambda(G))$ is nuclear.
- (iv) $C_r^*(G_d)$ is nuclear.

Proof: (i) \Leftrightarrow (iv) is proved by Lance in [9; Theorem 4.2].

- (i) \Rightarrow (ii) Suppose G_d is amenable. Then G is amenable ([13; Problem 1.12] or [14; Prop. 4.21]) and $C^*(\lambda(G)) \simeq C_r^*(G_d)$ by lemma B.
- $\underline{\text{(ii)}} \Rightarrow \underline{\text{(i)}}$ Suppose G is amenable and $C^*(\lambda(G)) \simeq C^*_r(G_d)$. From Theorem 1, we then know that $C^*(\lambda(G))$ possess a nonzero multiplicative linear functional, and therefore that $C^*_r(G_d)$ possess one too. Since $C^*_r(G_d) = C^*(\lambda_d(G_d))$, Theorem 1 now implies that G_d is amenable.
- (iii) \Rightarrow (iv) Suppose $C^*(\lambda(G))$ is nuclear. Since λ_d is weakly contained in λ° by lemma B, this implies that $\pi_{\lambda_d}(C^*(G_d)) = C^*_r(G_d)$ is a quotient C^* -algebra of $\pi_{\lambda^\circ}(C^*(G_d)) = C^*(\lambda(G))$. As it is known that a quotient C^* -algebra of a nuclear C^* -algebra is itself nuclear ([4; Corollary 4]), we obtain that $C^*_r(G_d)$ is nuclear.
- $\underline{\text{(iv)}} \Rightarrow \underline{\text{(iii)}}$ Suppose $C_r^*(G_d)$ is nuclear. Since we now know that $\underline{\text{(iv)}} \Rightarrow \underline{\text{(ii)}}$, we have $C^*(\lambda(G)) \simeq C_r^*(G_d)$, so $C^*(\lambda(G))$ is nuclear too.

We conclude this note with some remarks on

 $X(G) = \{ \varphi : C^{\star}(\lambda(G)) \to \mathbf{C} | \varphi \text{ is nonzero, linear and multiplicative} \}$

which is a weak*-closed subset of the state space of $C^*(\lambda(G))$. Theorem 1 says that $X(G) \neq \phi$ if and only if G is amenable. When G is abelian, the result of Kodaira and Kakutani mentionned in the introduction may be interpreted as the fact that X(G) is homeomorphic to \widehat{G}_d . In the non-abelian case, X(G) is of course a rather primitive C^* -algebraic invariant for

 $C^*(\lambda(G))$, but it has the advantage of being easily computed in some cases, as the following illustrates.

Let H denote a discrete group and CH its commutator subgroup. Then H/CH is abelian and it is not difficult to show, as it has been observed by Watatani in [16], that if H is amenable, then X(H) is homeomorphic to $\widehat{H/CH}$. Hence, if G_d is amenable, we get via Theorem 2 that X(G) is homeomorphic to $\widehat{G_d/CG_d}$. If G is amenable but G_d is not, one can show that X(G) contains a copy of $\widehat{G/CG}$ and may itself be embedded in $\widehat{G_d/CG_d}$, but we don't know whether anything more general can be said here. If f.ex. G = SO(3), then $CG_d = G_d$, so $X(G) = \{\hat{1}\}$ (where $\hat{1}$ denotes the state on $C^*(\lambda(G))$ determined by $\hat{1}(\lambda(g)) = 1$ for all g in G, cf. the proof of Theorem 1).

REFERENCES:

- W.B.Arveson: A theorem on the action of abelian unitary groups. Pacific J. of Math. 16 (1966), 205-212.
- O.Bratteli and D.W.Robinson: Operator algebras and quantum statistical mechanics vol. I, Springer-Verlag New York Inc. (1979).
- H.Choda and M.Choda: Fullness, simplicity and inner amenability.
 Math. Jap. 24 (1979), 235–246.
- M.D.Choi and E.G.Effros: Nuclear C*-algebras and injectivity; the general case. Indiana Univ.Math.J. 26 (1977), 443-446.
- J.Dixmier: Les C*-algèbres et leurs représentations (2ème ed). Gauthier-Villars, Paris (1969).
- A.Figà-Talamanca: On the action of unitary groups on a Hilbert space.
 Symposia Math. XXII (1977), 314-319.
- E.Hewitt and K.A.Ross: Abstract Harmonic analysis vol. I, Springer– Verlag, Berlin. Göttingen. Heidelberg. (1963).
- K.Kodaira and S.Kakutani: Normed ring of a locally compact abelian group. Proc.Imp.Acad. Tokyo 19 (1943), 360–365.
- E.C.Lance: On nuclear C*-algebras. Journ. of Funct. Anal. 12 (1973), 157-176.

- P.Milnes: Identities of group algebras. Proc.Amer.Math.Soc. 29 (1971),
 421–422.
- 11. G.Murphy: Operator theory and C^* -algebras. Academic Press (1990).
- W.L.Paschke and N.Salinas: C*-algebras associated with the free product of groups. Pacific J.Math. 82 (1979), 211–221.
- A.L Paterson: Amenability. Math.Survey and Monographs 29. Amer.Math.Soc.,
 Providence, Rhode Island (1988).
- J.P.Pier: Amenable locally compat groups. John Wiley and Sons, New York (1984).
- A.M.Torpe: Notes on nuclear C*-algebras and injective von Neumann algebras. Preprint (1981), Mat.Inst., Odense Universitet.
- Y.Watatani: The character group of amenable group C*-algebras. Math.Jap.
 24 (1979), 141-144.