
-1-

Wellfounded and non-wellfounded types of

continuous functionals

DagNormann

The University of Oslo

1 Introduction and summary
When Kreisel [3] introduced the continuous functionals, the main

motivation was to find an absolute notion of 'constructibly true' for

statements of analysis. A statement of analysis can be represented as a type,

which again can be seen as a set of functionals at a certain level, and the

statement is constructibly true if this type has a recursive element.
It turns out that any statement of analysis proved in a constructive formal

logic will be constructibly true in Kreisel's sense.

Kleene [2] introduced the equivalent hierarchy of countable functionals

as a subhierarchy of the hierarchy of all functionals of finite types. The

countable functionals are closed under Kleene's [1] notion of

computability, and are thus natural from a recursion-theoretic point of

view.

We see type theory as an attempt to extend constructive analysis to a

constructive set theory. Intype theory we deal with function spaces,

infinite product spaces and variants of second order constructions. It is
well known that in order to get a full set-theoretic model of transfinite

first order type theory one need an inaccessible cardinal or some other

high-power set-theoretical axioms. Naive models for type-theory with

universes require even stronger principles.

Such results show that the set-theoretical principles on which type theory

is based are very strong and that the constructivity-aspect of the theory

must be reflected in the semantics if the semantics is going to be

-2-

manageable.
The question trigging off the writing of this paper was as follows:

If we construct a model for transfinite type theory where each object is

countable and where 'constructive' is replaced by 'continuous', what

will the complexity of the full model be?

Since it is the nature of the underlying intuition and not of the formal

theory we are investigating, it is important that the semantics must be

based on a natural interpretation of the type-constructors themselves and

not of the various formal theories for them.

In this paper we will use a simplified version of Kreisel's continuous
functionals as the base for such investigations.

The many characterisateons of the continuous or countable functionals of

finite types (see Normann [4] or [5] for a survey of such

characterisateons) show that the concept is a natural one. It may then be

expected that a continuation of the hierarchy based on the same idea of

construction will form a possible source for semantics for type theories,
and that the investigation of this hierarchy gives back some information
about the nature of type theory.

Although we are not constructing models for specific theories, we expect
that when a statement can be represented as a type, and if this statement is

proved in any reasonable constructive logic, the type will have a recursive
element.

We will first define the basic hierarchy, where we do not take matters as

equality between objects or effectivity of the structures into consideration.

Then we will discuss how to restrict the constructions in various ways

giving more structure to the objects constructed.

Our hierarchy of 'types' will be based on the standard constructions of type

theory, such as finite and infinite sums and products of continuously

parameterised families of types. In addition we generalize the introduction
of types via strict positive inductions. We will accept types with non­

wellfounded trees of subtypes, but where each element will have a

wellfounded basis. We call such objects type-streams.

The results are in three groups.

-3-

The first results show that there are natural recursion theorems in this

setting. The advantage of type-streams to strictly positive operators is that

the predecessor relation is not so rigid. Thus the recursion theorem will

cover recursive definitions of functions f where the calculation of f(x)

requires the knowledge of f(y) for objects y at some depth below x, and

not necessarily at the immediate predecessors. Type-streams also makes it

possible to represent more relevant sets of predecessors as types.

Using Baire-space (NN) makes it easy to view inductively defined types

as a special case of nonwellfounded types, but there are of course possible

to model such types with domains, with categories or using any other

standard way of modelling type theory.

The next group of results shows a close connection between the hierarchy
at hand and the hierarchy for recursion in the functional 3E. Forming

dependent types is more or less a continuous collection, while recursion
in 3E is based on a highly discontinuous collection principle. The proof of

the equivalence of those two hierarchies supports to some extent the view

that the notion of a transfinite type is a complex and non-constructive

one.

At the end we use 3E to extend the hierarchy to a hierarchy accepting

certain second order constructions, and we prove some basic properties of

these constructions. This shows that we do not need to increase the
complexity in order to model second order phenomena.

A full account of these results will require several long, tedious and

unexciting proofs. We will leave out many details, in order to make the

underlying ideas more transparent. Some proofs will be left entirely for

the reader, while for others we outline the main steps. It may sometimes
take some effort to fill in the details.

2 The basic hierarchy
We are going to define a hierarchy of types, where the elements of the
types will be Kleene-type associates. At each level the hierarchy will be

closed under strictly positive inductions. These inductively defined types

will be special cases of what we may call type-streams.

-4-

Example 1
Consider the equation

X=NE9N-7X.
In our semantics we will let

X = N E9 (N --7 (N E9 (N --7 (N E9 ""in£ ...))))

and for an object a to be an element of X we require that the evaluation
tree of a is well founded.

Example 2

Consider the type stream

X = N ffi (N --7 (NN E9 (N --7 (N(NN) E9 (N --7 ...)))))

This does not correspond to a single type-equation. Still we may define the

elements of X in a precise way. Our definition of types will capture types

like X in example 2.

We are now ready to give the formal definitions. We will let FUN be a

recursive set of code numbers of finite functions from N to N I

identifying them with the functions themselves. An associate will be a

function from N to N that maps FUN monotonuously into FUN. Any

associate 'Y will define a partial continuous function Fy. NN--7 NN in the
canonical way.

2.1 Definition
By induction on the ordinal a we define the class Ba c N N together

with the interpretation I(f) c NN for f e Ba· The elements of Ba will

be indices for the basic a-types.

Assume that B13 is defined for J3 <a and that I(f) is defined for f e Bp.

i) Ba is the largest set satisfying

h e Ba if and only if

or

or

h = 10 (the constant zero)

h = < 1 , f I g > or h = < 2 I f I g > for some f 1 g e Ba

h = < 3 I f I g > or h = < 4 , f, g >

where f e Bp for some p <a and g is an associate such that

Fg(x) e Ba whenever x e I(f)

-5-

ii) We define {I(h) }he B as the minimal solution to
a

the following equations in { J(h) }he B :
a

h = 1o: J< h > = Po } -
h = < 1 , f, g >: J(h) = { < 1 , 0 I X > I X e J(f) } u { < 1 I 1 , X > I X e J(g) }

h = < 2 , f, g >: J(h) = { < 2 , x , y > I x e J(f) and y e J(g) }

h = < 3, f, g >: J(h)= { < 2, x, y > I x e I(f) andy e J(Fg(x))}

h = < 4 , f , g >: J(h) = { < 3 , x > I x is an associate and for all y e I(f)

we have that FxC y) e J(FgC y)) }
h = < 5 , f >: J(h) = J(f).

2.2 Remarks

Using the existence of largest fixpoints and lea.St fixpoints of monotone

operators we see that the concepts of Definition 2.1 are well defined. The

types constructed will contain a unit type and will be closed under disjoint

unions, finite products and certain dependent infinite sums and products.

The case h = < 5 , f > is mainly a dummy case, but it will be of technical

use besides providing us with the empty type as the least solution to the

equation X = X.

We will show in some detail that these definitions capture the fixpoints of

strictly positive inductive definitions.

2.3 Definition

We define the strictly positive operators r:~ NN) ~ P(NN) , and for

each r the set of indices 'Y for r as follows:

r(X) = X has index < 5 , - > where - is the totally undefined function.

r(X) = I(f) has index < 0 , f > when f e Ba.

If r1 and rz have indices 'Y1 and 'Y2 resp. then r(X)= r1(X) E!1 r2(X)

has index < 1 , 'Y1 I 'Y2 > and rc X) = r 1 (X) X r 2 (X) has index

< 2 I 'Y1 I 'Y2 >.
If f e Bf3 for some f3 e On, if g is an associate and if for each x e I(f) we

have that Fg(X) is an index for r X then < 3, f, g > is an index for

L,(r x< X) I x e I(f)) and < 4, f, g > is an index for II< r x< X) I x e I(f)).

2.4 Theorem

If r is a strictly positive operator, then there is an ordinal a and an

element Fixr e Ba such that r(I(Fixr)) = I(Fixr) and this is the least

-6-

fixpoint of r.

Proof
Let r be given. In r there may be suboperators that are constant I(f) for

some f e B13 for some ordinal (3. Let a be an upper bound for the set of

such (3.
Uniformly recursive in an index 1 for r there is a monotone continuous
operator G on the set of partial functions from N to N mapping total

objects into total objects and such that if f e Ba then G(f) e Ba and
I(G(f))= r(I(f)) for sufficiently large a. G is constructed by a routine
application of the recursion theorem in such a way that G has a total

fixpoint. This will be our Fixr. We leave the details for the reader.

2.5 Remark
In the definition of strictly positive inductive definitions we omitted one

possible case

rc x > = .I:C r 2< x, x > 1 x e r 1 c x > >
where both r1 and r2 are strictly positive.
There are several reasons for this. One reason is that we would have to

restrict r 2 to cases where r 2(X , X) will be meaningful for all X E r 1 (X)
throughout the induction. This is technically unpleasant, but possible. ,

Another reason is that Theorem 2.4 will fail. It is however possible to alter

the definition of Ba in order to recover the theorem.

A third reason is that certain structural results concerning strictly positive
inductive definitions will fail. We will mention one result (without

proof) which will fail if we extend the definition in any nontrivial way:

2.6 Theorem (Functoriality)

Let r be strictly positive with index y.

Uniformly in 1 there is a recursive operator r* such that if g:X ---? Y is
continuous, then r*(g):r(X) ---? r(Y) is continuous.

Moreover r* commutes with composition of functions.

The functorial properties of strictly positive inductive operators are well
known.

'

'

-7-

3 Two alternative hierarchies
In this section we will consider two restricted hierarchies with more

structure to the individual types. In the E~hierarchy we take equality

between objects of a given type into consideration. This leads to a

restriction in the definition of dependent types and the two interpretations

of one type-term will in general be quite incomparable.

3.1 Definition

We define the set Ea together with the interpretation I(f) for each f e Ea

and the equivalence relation =f on I(f) as follows, assuming the

definitions given for J3 < a:
i) Ea is the largest set satisfying

he Ea if and only if

or

or

or

h = 10 (the constant zero)

h = < 1 , f , g > or h = < 2 , f, g > for some f, g e Ea

h = < 3 1 f 1 g > or h = < 4 1 f 1 g >
where f e E.13 for some J3 < a and g is an associate such that

* F gC x) e Ea whenever x e I(f)

** I(FgC X)) I =pg(X) =I(FgC y) I =pg(y)
whenever x , y e I(f) and x =f y

h = < 5 , f > for some f e Ea.

ii) We define {I(h) }he E in the same way as for the B-hierarchy, with
a.

one important difference

h = < 4 , f , g >: J(h) = { < 3 , x > I x is an associate, for all y e I(f)

we have that Fx(y) E J(Fg(y)) and for all y I z E I(f), if y =f z
then Fx(y) =p (y) Fx(z) }

iii) We define =h oR I(h) in the obvious way.

This hierarchy is actually closer to the type structures defined by Kleene

and Kreisel. There is however one main difference, we accept the empty

set as a type. This is of course natural when we want to interpret

propositions as types.

We will now describe another hierarchy, where we make sure that all

types are nonempty. The objects of this hierarchy, called the D-hierarchy

-8-

will be similar to the objects of the B-hierarchy, we just happen to know

in some effective way that they are nonempty. As we will see, this requires

a restriction on the functions in the product type.

In formulating the hierarchy we need a concept about the B-hierarchy that

will be equally meaningful for the D-hierarchy:

3.2 Definition

Let f e Ba. for some ex..
We define the tree Tf of indexed subtypes as follows, using a for an
arbitrary sequence, using comma for concatenation and identifying an

object f with the corresponding sequence of length one:

T f is a set of finite sequences with f e T f·
If a , g is in T f then

i) if g = < 1, g1, g2 > or ·g = < 2, g1, g2 >,then 0', g, g1 and
0', g ,g2 are in Tf.

ii) if g = < 3, g1, g2 > or g = < 4, g1, g2 > then 0', g, h, Fg2< h) e Tf
for each h e I(g1)

iii) if g = < 5 , g1 > then 0' , g , g1 e T f·

The tree Tf contains codes for all the subtypes of I(f), and in case of
dependent sums or products, also an information about the parameter of
the node.

3.3 Definition

By simultaneous recursion on the ordinal ex. we define the set Da. of
indices together with

The set ~'f c FUN for each f e D ex.
The function ef,B for each f e Da. and Be d[
The interpretation I(f) for all f e D ex.·

We define the relation f e Da. from the set of D13 for (3 <ex. as we

defined Ba. from B13 with one restriction:
If x1, x2, ... is an infinite branch in Tf then for arbitrarily large n we

have that Xn = < 1, g1, g2 > and Xn+1 = g2.

This is a restriction of the non-wellfoundednes accepted, any such non­

wellfoundednes must arise from infinitely often going through the right

part of a disjoint union. We will see that this ensures in an effective way

-9-

that all types will be nonempty.

Let f e Da. Uniformly recursive in f we <;:onstruct a set .6-t of finite

partial functions on N and for each B e .1f a function extending B.
The point will be that ea,f e I(f) and that for all g e I(f) and finite sets X

in N there is a subfunction B e .6f of g defined for all n e X .

.1f will always contain the empty function.

We will use the recursion theorem to compute .1f and the extension

maps e(),f for () E .1f.
We consider the six possible cases:

o) f = 10. Then .1f contains all finite functions that are constant 0, and

e(),f = 10 for all () E .1f.

i) f = < 1, g, h >. Let .1f be the empty function together with the

functions < 1 , 0 , B > for B e .1g and the functions < 1 , 1 , B > for

B e .1h, where < 1 , 0 , B >(0) = 1, < 1 , 0 , o >(1) = 0 and
< 1 , 0 , B >(n + 2) = ()(n) whenever ()(n) is defined. < 1 , 1 , o > is
defined similarily. We will use this kind of notation freely later.

The definition of ea,f is obvious except when () is the empty function.
Then ea,f = < 1 , 0 , ea,g > , i.e. we use the extension in the left adend.

ii) f = < 2, g, h >.The construction is obvious and trivial in this case, and

is left for the reader.

iii) f = < 3, g, h >.Let .1f be the empty function together with all

< 3 , <>1 , <>2 > such that <>1 e .1g and o2 e .1h(01) (i.e. the part of
.1 that we can compute from h(<>1)).

If () is the empty function then ea,f = < 2 , ea,g, ea,Fh (ea,g> >

If () = < 3 I ()1 , ()2 > let ea,f = < 2, eal,g, eaziFh(eallg) >

iv)f = < 4, g I h >.Let .1f be the set of finite maps B satisfying:

* if ()(cr) = 't , and cr e FUN then 't e FUN

* * B is consistent and monotone as a partial function on FUN

* * * for each cr1 , ... , crk of the domain of B, if cr1 u ... u crk e .1f

then 'tt u ... u 'tk e .1h(cr1) u ... u h(o1)·
If Be .1f we compute ea,f as follows:

Let B = { (cr1 , 'tt) , . · · , (crn, 'tn) }

-10-

We will construct a continuous function E8,f computable in f, and we

will let e8,f be the corresponding associate.

Let x e NN. Let X= { k I cri(k) = o"j< k) for some i, j ~ n}

Let Yx = { i I if cri(n) is defined then cri(n) = x(n)}

Let 1t e .6Fh(x) be minimal w.r.t. code numbers such that 'tic 1t for

all i E Yx· Then let E8,f(X)= e1t,Fh(X)· We let e8,f be an associate for

Eo,f extending 8.

v) f = < 5, g >. Let .6f be the empty function together with all < 5, 8 >

where 8 e .6g.
H 8 is the empty function, we let e8 f = e8 g· , ,
H 8 = < 5, 81 >,we let e0,f = e81,g·

Finally we will define I(f) as for the B-hierarchy with one important

restriction.

H f = < 4, g, h > then f1 e I(f) if f1 is an associate, Ff1 (x) e I(Fh(x))

whenever x e I(g) and finally for all 81, ... , 8k, if 81 u ... u 8k e .6g

then f1 (81) U · · · U f1 (Ok) E .6h(81) U ... U h(8k)

3.4 Theorem

Let D be the union of all Da. defined above. Then

i) .6f is uniformly recursive in f for each f e D

ii) ea,f E I(f) for each f E D and 8 E .6f
iii) H f e D, if g e I(f) and if X is a finite set, then there is a subfunction

8 of g in .6f with X c domain(8)

Proof

The proof is tedious, but in most cases trivial.

First we notice that the relation 8e .6f is uniformly recursive in f by

recursion on the code number of 8. This is trivial.

Then we have to prove that if f E D and 8 E ~ then e8,f extends 8 and

is an element of I(f). If 8 is the empty function, e8,f is defined by
recursion over the subtype-ordering, using only the left branch in the case

of disjoint unions. By the definition of D this ordering is well-founded,

so e8,f is well defined. To verify that e8,f E I(f) in this case is trivial.

The rest of the proof is by induction on the code number of 8 still with six
subcases. The proofs are easy and are left for the reader.

-11-

The proof of the density property iii) is primarily by induction on a, by
subinduction on the cardinality of X and by subsubinduction on the

largest element of X. The only involved case is case 4, where the

definition of I is carefully manufactured in order to make the proof work.

In Normann [6] the notion of a Kleene-space was introduced. In a

Kleene-space the virtues of the B and D-hierarchies are combined, we

identify associates representing the same object and we have full recursive

control over the nonempty neighborhoods. Unfortunately we had to give

up to include dependent sums; together with recursively defined families

of types they seem to break out of the class of Kleene-spaces.

4 A recursion-scheme for B a
We see our type-streams as a minor generalization of types defined by

strict positive inductive definitions. One advantage is that the connection

between the type and the defining formula is loosened. This gives us the

opportunity to view recursion in a more general way. It also makes it

easier to define useful types.

In this section we will prove two recursion theorems on purely semantical

grounds. It remains to see if they have some natural syntactical or logical

counterparts. They seem however to be more general than recursion

theorems proved or axiomatised within traditional type theory.

In defining recursion, the type of an object is essential. Thus the notion of

recursion will be developed with respect to the set of pairs (f , g) with

g e B and f e I(g)

In this section we will use the symbols e , x , I and II for disjoint
unions, cartesian products,dependent sums and dependent products as

they were technically defined in section 2. We let No be the initially

defined one-point type.

4.1 Definition

a) Let P a be the set of pairs (f , g) where g e Ba and f e I(g). Let P be
the union of the P a's

b) Let (fIg) E P.

We define the support-type S(f, g) of (f, g) by the following set of

equations, of which we take the minimal solution; and

simultaneously, to each x e S(f, g) we define the predecessor

-12-

(p(f I g I X) I R(f I g ,X))

of (f , g) with index x giving recursion equations for p and R:

I(g) = No and f = Io:

S(fIg)= 0.

There is no need to define p and R.

I(g)= I(g1) GH(g2), f = < 1, o, f1 >:

S(f, g) = N0 e S(f1 , g1).

x = <1, o , 1o > : p(f, g, x) = f1 and R(f, g, x) = g1.

x = < 1, 1, y > : p(f, g, x) = p(f1, g1, y) and R(f, g, x) = R(f1 , g1, y)

I(g)= I(g1) e I(gz), f = < 1, 1, f1 >:
S(f, g > = S(f1 , g2).

The definitions of p and R are in analogy with the definition above.

I(g) = I(g1 > x I(g2 > , f = < 2 , f1 , f2 > :

s< f, g > = <No e s< f1 , g1 > > e < N0 e s< f2 , g2 >).
The definitions of p and R are left for the reader.

I(g)= I.< I(Fg2< x > 1 x e I(g1 > >, f = < 2, f1 , f2 >:

S(f, g >=NoeS(f2 , Fg2< f1 >)

X=< 1, 0 I 1o >: p(fIg I X)= f2 and R(fIg I X)= Fg2< f1).

X=< 1, 1, y >: p(fIg I X)= p(f2, Fgz< f1) I y) and
R(f , g , x > = R(f2 , F g2 < f1 > , y >

I(g)= II< Fg2< x > 1 x e 1(g1)), f = < 3, h >:

s(f, g) = I(g1 > <:a I.< s(Fh < x) , F gz < x)) 1 x e I(g1) >
The definitions of p and R are left for the reader.

g = < 5 I g1 >I f E I(g):
S(f, g) = S(f, g1), using the< 5, ->-construction.

The definitions of p and R are left for the reader.

4.2 Theorem

a) Uniformly recursive in g e Ba and f e I(g) there is a he Ba such
that

S(f I g) = I(h)

will satisfy the equations above. Moreover the solution is unique up to

. I

!

-13-

I(h).

b) If g e Ba , f e I(g) and x e S(f , g) then p(f , g , x) and R(f, g , x)

are well defined, R(f, g, x) e Ba and p(f, g, x) e I(R(f, g, x)).

Proof

a) The defining equations for S(f , g) can be transfered to defining

equations for a partial function F:NN ~ NN on the indices, and by the

recursion theorem they have a solution H.

By induction on the rank of (f, g) as an element of P we prove that

H(f, g) e Ba and that I(H(f, g)) is the unique solution to the
original equations.

In this construction we are using type-streams in constructing the types

S(f I g).

b) Both p and R are defined by recursion on the rank of (f, g) e P.

The fact that (p(f , g , x) , R(f , g , x) e P for all 2'. e ~(f , g) is proved
by induction on the same rank.

4.3 Remark

The set P is inductively defined, so if (f, g) e P then (f, g) has a set of
predecessors. This set of predecessors cannot in general be represented as
the elements of some type. The type S(f , g) is a type of the same

"structure" as the set of predecessors, and A.x(p(f, g, x) , R(f, g, x))
mapping S(f, g) onto the true predecessors.

4.4 Definition

Let F:P a ~ Ba be continuous and let h:NN ~ NN be a partial,
continuous function.

We say that h matches F on S(f, g) if

h(x) e I(F(p(f, g, x), R(f, g, x))) for all x e S(f, g).

4.5 Theorem (Semantical recursion scheme)

Let F:P a ~ Ba be continuous.
Assume that G is continuous (of type 3, in the sense of e.g. Kleene [2])

such that if (f , g) e P a and h matches F on S(f , g) then

G(f I g I h) E I(F(f I g))

Then there is a unique continuous function H defined on P a such that

for each (f , g) e P a=

H(f, g) E I(F(f, g))
and

H(f, g) = G(f , g , H'(f, g))

where

-14-

H'(f, g)(x) = H(p(f , g , x) , R(f, g , x))

Proof

H' is defined recursively from H so the equation

H(f, g) = G(f , g , H'(f, g))

has a solution by the recursion theorem.

By induction on the rank of (f , g) e P a. we then show that

H(f, g) e I(F(f, g)) and that H'(f , g) matches F on S(f, g)
(a consequence of the-induction hypothesis).

Finally by a standard induction on the rank of (f, g) e P a. we show that
H(f, g) is unique. The details are routine.

Theorem 4.5 is general in the sense that we may define H by induction

not just knowing H on the immediate predecessors, but on any set of

predecessors we may choose. The disadvantage of the result is that it aims

at defining H on all of P <X' but for many applications of recursion this
will be requiring too much. We will now prove a slightly more general

result.

4.6 Definition

a) Let X be a subset of P <X' let K:X ~ Ba. be continuous and let
T:I,(I(K(x) I x e X) ~ NN be continuous such that Tx(f) = T(x , f)

is a 1-1 map from I(K(x)) to S(x).

We say that (X, K, T) is an inductive system if

(p(Tx(y)), R(Tx(y))) e X

for all X E X and y e I(K(X))

b) If (X , K , T) is an inductive system, F : X -7 Ba. is continuous,

h:NN ~ NN is a partial, continuous function and x e X, we say that

h matches F on K(x) if h(y) e I(F(p(Tx< y)), R(Tx(y)))) for
ally E K(X).

An inductive system is in a sense a substructure of P, { S(f, g) }(f, g) e p

where we replace P by a subset X and we permit a restricted set of

-15-

predecessors of x indexed by the type K(x). Via Tx the type K(x) can be

embedded in the full set of predecessors of x. The predecessors of x in the

view of the system will then both be in X . and be true predecessors.

4.7 Theorem (Extended semantical recursion scheme)

Let (X , K , T) be an inductive system, F:X ~ Ba be continuous.

Assume that G is continuous such that if x e X and h matches F on
K(x), then G(x, h) e I(F(x)).
Then there is a unique continuous function H defined on X such that

for each x e X we have
H(X) E I(F(X))

and
H(X) = G(X , H'(X))

where

H'(x) = A.yH(p(Tx(y), R(Tx(y))).

Proof
The proof is basicly the same as the proof of theorem 4.5, and is left for the
reader.

We will give two important examples on how to use theorem 4.7, both
concerned with strictly positive inductive definitions.

If X = r(X) is the least fix-point of a strictly positive inductive definition,
we have shown that there is a real g such that X= I(g). We will in the

two examples assume that g is the real obtained from this proof.

4.8 Example

If r is a strictly positive inductive operator, we define the canonical
index-set Kr(x) for the immediate predecessors of x e r(X) by recursion
on r:
r(X) = A : Kr(x) = 0 (A a constant)

r(X) = x: Kr(x) = N0
r< x) = r 1 < x) <:a r 2< x) : Kr(< 1, o, y >) = Kr 1 < y) etc.

r< x > = r 1 < x) x r 2< x > : Kr< < 2 , x , y > > = Kr 1 < x > <:a Kr 2 < y).
r(X)=I(r1(y)(X) I ye A):Kr(<2,x,y>)=Kr1(x)(y)

r< x > =II< r 1 < y >< x > 1 y e A):

Kr(< 3, x, z >) =I< Kr 1 (y >< Fz< y)) I y e A)

-16-

We construct an inductive system using { (x, g) I xis in the least fixpoint

of r } as X and the function Kr. It is trivial to define the map T.

4.9 Example

We let r and X be as in example 4.8. By a similar construction as the one
in 4.8 we may isolate the type of all predecessors of x in X, indexed by K'r·

The definition is as in 4.8 with the following changes:

We define K'r for all subformulas r' of r.

In the case r'(X)= X we let K'r(x) = No e K'r(x)
This gives us a recursion-equation for K'r that can be solved. It is then

simple to define the corresponding function T'.

These two examples show that our notion of recursion covers recursion on

a set defined by strictly positive induction, both with respect to immediate

predecessors and with respect to general predecessors.

5 The complexity of the hierarchy
It is clear that there will be an ordinal a. such that Ba.+ 1 = Ba.·
In this section we will show that this ordinal is the first ordinal not
recursive in 3E and any f e NN.

It is remarkable that our hierarchy goes that far, since it is based on

continuity and 3E is a highly discontinuous object. 3E was introduced by

Kleene in [1] and is defined as the following object of type 3:

3E(F) = 0 if F(f) = 0 for all f e NN
3E(F) = 1 if F(f) ;t 0 for some f e NN .

We assume F to be total.

We will have to assume some familiarity with recursion in 3E in this

section. In Sacks(7] all properties of 3E that we need are proved in the

setting of E-recursion.

5.1 Theorem

There are two partial functions p1 and p2 both recursive in 3E such that

i) P1 (f) = 0 <=> f E B

ii) P2< f, x)J. <=> f e B (where J. means 'is defined')
If f e B then

P2(f I X) = 1 if X E I(f)

-17-

P2C f, x) = o if x e I(f)

Proof
We define P1 and P2 simultaneously using the recursion theorem for 3E.

We describe informally the algorithms represented by P1 and P2 and
leave for the reader to verify that these algorithms will work.

Computing p1: Given f that looks like an index for a type A, we may start
to develope the tree of subtypes of A. If we in that tree find a function that

is not on one of the basic forms of the indices, we reject f, e.g. let P1 (f)= 1.
If we in that tree find a function looking like the index of a dependent sum

or a dependent product, we use p1 to check if the domain really is one of

our types, and then p2 to compute the branching at the respective node.

Computing p2: If p1 accepts f, and x is given, we give a top-down
construction of the tree of pairs (y , g) where y is a predecessor of x and

g is the index of the corresponding subtype. If we somewhere in this tree

find that y is not on the basic form of the elements of I(g) , we reject x.

Otherwise we accept x as an element of I(f) if and only if the tree

constructed above is wellfounded. We may use 3E to test this.

To complete the proof we must show by induction on a that if f e Ba

then P1 (f) = 0, and by induction on the length of the computation that if

P1 (f)= 0 then f e B and p2(f,-) is as desired. There will be no surprises
in any of the proofs.

Of course this theorem is valid for the two other hierarchies we defined in
section 3. We will now prove the converse of theorem 5.1, i.e that our

hierarchy captures the full complexity of recursion in 3E. We will not need

non-wellfounded types except for the empty type in this argument, and we

may even avoid using dependent sums.

This proof can be adjusted to the E-hierarchy, but the empty type is
essential, and the proof does not work for the D-hierarchy. We will leave

an estimation of the complexity of the D-hierarchy as an open problem.

In fact the proof will work for many natural semantics for type theory. Of

course the type corresponding to NN must essentially be interpreted as

NN. Moreover we will need the empty type, and we will need that there is

a uniform function mapping the empty type represented by any term into

-18-

the empty type. Finally the semantics must accept that the constructions we
perform are uniform. It is likely that if we are given a natural basis for a

semantics for type theory, and if families of types constructed by recursion

over some inductively defined type is a dependent family in the sense of
the semantics, then the families constructed in this proof will also be

dependent families in the sense of the semantics. This general claim can of

course not be supported by a precise proof.

In the rest of this paper we will let f denote a finite sequence from N and
NN.

5.2 Theorem
Let { e }(f) denote the Kleene-computation relative to 3E with index e

and input f.

Then uniformly recursive in e , f we can define
i) an object T(e , f) e NN

ii) a partial continuous function t(e, f):NN -7 N

such that

{ e }(f).j, ¢::> T(e , f) e B and I(T(e , f)) ;t: 0
and when { e }(f).j, then t(e, f) is defined and constant { e }(f) on
I(T(e, f))

Proof
We construct T(e , f) and t(e , f) using the recursion theorem.

There will be nine cases following Kleene's schemata 51 -59. We will

omit case 5, primitive recursion, since this can be reduced to the other cases.

We will use terms for types in the proof, though it is to be understood that
we use the coded versions in the B-hierarchy.

1. { e }(X, f) =X+ 1

2.

3.

T(e , x , f) = N 0 (The canonical one-point type)
t(e, x, f)(y) = x+l

{ e }(f)= q

T(e, f)= No
t(e , f)(y) = q

{e}{x,f)=x

T(e , x , f) = No

t(e 1 X 1 f)(Y) = X

4. { e }(f) = { e1 }({ e2 }(f) , f)

-19-

T(e , f) = l(T(e1 , t(e2 , f)(x) , f) I x e T(e2 , f))
t(e 1 f)(< X 1 Y >) = t(e1, t(e2 1 f)(X) 1 f)(Y)

6. { e }(f) = { e1 }(cr(f)) where cr is a permutation.

T(e , f) = T(e1 , cr(f)) , where we use the < 5 , - > -construction.

t(e , f)(y) = t(e1, cr(f))(y)

7. { e }(X 1 f 1 f) = f(X)

T(e , x , f, f) = No

t(e 1 X 1 f 1 f)(Y) = f(X)

8. { e }(f) = 3E(A£{ e1 }(f , f))
Let T 1 (f, y) be No if t(e1, f, f)(y) > 0, and let it be empty otherwise.

Let T2(f, y) be No if t(e1, f, f)(y) = 0, and let it be empty otherwise.

Let

T(e , f) = II((T(e1 , f , f) ~ 0) ~ 0) I f e NN) x

[(l(l(T 1 (f, y) I y e T(e1, f , f)) I f e NN) Ei)

(II(II(T2(f, y) I y e T(e1, f, f)) I f e NN)]

Let t(e , f)(< x , r(y) >) = 1

t(e 1 f)(< X 1 1(Y) >) = Q

9. { e }(e1 , f) = { e1 }(f)

T(e , e1 , f) = T(e1 , f) , where we use the <5, - > -construction.

t(e, e1 , f)(y) = t(e1 , f)(y)

Claim 1

If { e }(f) J, then T(e , f) e B and I(T(e , f)) * 0.
Moreover, t(e , f) is constant { e }(f) on I(T(e , f)).

Proof
We use induction on the length of the computation { e }(f). All cases but

two are trivial.

-20-

In case 4 we observe that I(T(e , f)) will be the cartesian product of

I(T(e1, f)) and I(T(ez, { e1 }(f), f)), which will be nonempty.

Moreover t(e , f) will be constant t(ez , { e1 }(f) , f)) on I(T(e , f)) ,

which is the right value.

In case 8 we first show that I(rrc (T(el If If) --7 0) --7 0) I f E NN)) is

nonempty. But since I(T(e1 , f, f)) is nonempty by the induction

hypothesis, I(rrc (T(el I f I f) --7 0) --7 0) I f E NN)) will contain all

associates. for partial continuous functionals.
If { e }(f) = 1 there is an f e NN such that { e1 }(f, f) > 0. For this f,

T(e1 , f, f) is nonempty and T1(f, y) =No while. Tz(f, y) is empty for

y e T(e1 , f, f). This shows that L(L(T 1 (f, y) I y e T(e1 , f, f)) I f e NN)

is nonempty while TIC TIC Tz(f, y) I y e T(e1, f, f)) I f e NN) is empty.

Thus the construction works in this case.
If { e }(f) = 0 we see that L(L(T 1 (f, y) I y e T(e1 , f, f)) I f e NN is

empty. On the other hand T2C f, y) =No for all f e NN and
y e T(e1, f, f). Then TIC TIC T2(f, y) I y e T(e1, f, f)) I f e NN) is

nonempty, and the construction still works.

Claim 2

If T(e, f) e Ba for some a and y e I(T(e, f)), then { e }(f)..!..

Proof

We use induction on a and subinduction on the rank of
y e I(T(e , f)) (in the inductive definition of { I(h) }he B)

a
Again there will be nine cases, following 51- 59, where case 5 is omitted
and cases 1, 2, 3 and 7 are trivial.

Cases 6 and 9: We use that the ranks of the elements in I(< 5, f >) are

one higher than the ranks of the same objects as elements of I(f).

Case 4: If I(T(e, f)) ::1: 0, then I(T(e2 , f)) ::1:0. Moreover, if T(e, f) e Ba

then T(ez , f) e B13 for some J3 < a. By the induction hypothesis
{ e2 }(f)..!. and then { e2 }(f) = t(e2 , f)(y) for any y e I(T(e2 , f)).

Now let < y, x > e I(T(e, f)). Then x e (T(e1 , t(e2 , f)(y), f) with

lower rank, and by the subinduction hypothesis { e1 }({ e2 }(f), f)..!., so
{ e }(f)..!..

Case 8: Assume that T(e, f) e Ba· Then for all f e NN we have that

-21-

T(e1, f, f) e B~ for some ~<a, since it occurs negatively in the
definition. Assume further that I(T(e , f)) '* 0.
Then in particular I(TIC (T(e1 , f, f)~ 0) ~ 0) I f e NN)) is nonempty.

It follows that for all f e NN, I(T(e1 , f, f)) is nonempty. By the

induction hypothesis (e1 }(f, f).!. for all f e NN so { e }(f).!..

This ends the proof of theorem 5.2.

In the proof of Theorem 5.2 we did not use the non-wellfounded types at

all, it was sufficient to use a subhierarchy of well-founded types constructed

by finite or continuous infinite sums and products. It is in fact possible to

prove this theorem avoiding infinite sums. The reason is that in the proofs

we did not use the sums themselves, only the facts that they were

nonempty. The following observation shows that we everywhere in the

construction can replace the use of infinite sums with a use of infinite

products:

5.3 Lemma

Let f e Ba and let for each x e I(f) , let gx e Ba be continuous in x.
Then there is a type P using only products such that

P '* 0 <=> L,(I(gx) I x e I(f)) '* 0

Proof

Let P = II (I(gx) ~ 0 I x e I(f)) ~ 0

We leave the verification of the desired property of P for the reader.

6 Second order type-theory, a possible semantics
In section 2 we defined a model for types with induction, and in section 5

we showed the correspondence between this model and recursion in 3E. In

this section we will extend the hierarchy so that we also capture types

constructed by universal quantification over a family of types

parameterised over all types. The idea is to capture

rl rc x)
X type

for reasonably uniform r. Using the same methods it is possible to model
other forms of second order constructions, e.g. the set of uniform functions

which to X gives an element of r(X).

-22-

First we notice that the constructions of section 2 and the proofs of section

5 can be relativised to any X c NN, i.e. we may let X represent some

ground type with fixed index and then uniformly recursive in X and 3E

we may generate types from X and compute the content of each type. It is
.-

even so that uniformly in X this hierarchy is equivalent to recursion in

X , 3E. This is a consequence of the following lemma, left without proof:

6.1 Lemma

Let X c NN, T(n) c NN be nonempty for each n e N, and let t(n , y) be
a continuous function such that tn (y) = t(n , y) is constant on each

T(n) . Let Yn e T(n) for each n.
Then using a uniform type-constructor we find independently of the choice

of Yn a set S * 0 and a function s such that s is constant 1 on S if

A.nt(n, Yn) e X, and s is constant 0 on S otherwise.

Our objective is to isolate a class of type-operators r that is sufficiently
general to be useful as a model of second order type theory, but where the

relation 'X type => r(X) type' is verified by some object recursive in 3E.

Lemma 6.1 then indicates that operators of the form

rf(X)= I(f, X)

for f where f e B(X) for all X c NN, are not uniform enough, since the

class of such rf will not even be semirecursive in 3E.

If we try to restrict ourselves to those rf where for some fixed a. recursive

in 3E and for all X we have f e Ba.(X) we may still find that the
intersection of the sets I(f, X) will not be semirecursive in 3E.

Our solution will more or less be that we require rf(X) to be a type within

any reasonable countable model (.9l.; X) , and for g to be in AX r(X) we

require that .9l. I= g e r(X) for the same class of models. We will
essentially restrict ourselves to sets X which are recursive in 3E and some
fe NN.

6.2 Definition

A model is a structure

.9l.=<N,A>
where A is a countable subset of NN, such that

i) .9l. I = A is closed under recursion in 3E.

ii) If X c A is recursive in 3E5l and some f e A and if

-23-

.91. I = X wellfounded, then X is wellfounded.

6.3 Lemma
We may code the models as elements of NN such that the relation

f codes a model .91.
is recursive in 3E.

Proof
The p:z:oofis trivial and the complexity can actually be seen to be rr12·

6.4 Definition

Let .91. be a model.
We say that .91. is a 3E -model if for all e , m e N and for all

f1 , ... , fk e A we have
{ e }(3E , f1 , ... , fk) = m ~ .91. I = { e }(3E , f1 , ... , fk) = m.

If a is an ordinal, we say that .91. is a 3E , a -model if for all e , m e N

and for all f1 , ... , fk e A we have
{ e }(3E , f1 , ... , fk) = m with the length of computation bounded by a
~ .91. I = { e }(3E , f1 , ... , fk) = m.

We observe that the relation
f is a code for a 3E-model

is uniformly co-r.e. in 3E, and that the relation

f is a code for a 3E , a - model

is uniformly recursive in 3E and a.

6.5 Lemma
Let .91. be a 3E - model

Then the 3E- computations relative to elements f of An will form an

initial segment of the .91.- computations relative to 3E5! under the 'length­

of-computation'- prewellordering. We call this initial segment the

standard computations in .91..

Proof
Assume that { e }(3E , f) = m and let { d }(3E , g) be any computation,

where f and g are sequences from .9L
Since 3E may decide if <d , g > ::;; < e , f > by a convergent computation,

the answer will be the same in .91. as in the real world.

-24-

We are now ready to give the main definition:

6.6 Definition

Let B c N be finite, B = { i1 , ... , ik }.
Let { Xi he B be a family of subsets of NN , each Xi recursive in 3E and

some fi.

We define the set S({ Xi he B) and for each f e S({Xi he B) we define the
set I(f; {Xi }ieB).
Simultaneously we use the recursion theorem for 3E to find indices for

recursive functions Pl and P2 such that
f e S({ xi he B) <=> Pl (3E If,{ xi he B I { fi he B) = 0

and if f e S({xi he B) then A.gp2(g If I 3E I {xi lie B I {fi he B) is the
characteristic function of I(f ; { Xi he B).

Now for the definition:
The set S({Xi he B) has the closure properties of the B-hierarchy, and in

addition two more:

< 6 , i , to > e S({ Xi he B) for i e B and then
I(< 6, i, to> ; {xi he B) =xi.
< 7 , m , f > e S({ Xi he B) if m e B and for all 3E - models

5I. with f e A and fie A for all i e B we have that

5I. I= 'v'X(X recursive in 3E and some g ---7 f e S({Xi }i e B'), and the

length of the computation Pl (3E , { Xi he B' , { fi he B') in 51. is
bounded by some standard computation in 5I.) , where B' = B v { m }

Xm =X and fm =g.

(In order to be formally correct we should replace Xi by Xi n A in the

definition above. This will in a sense be the interpretation of Xi in 51..)

We let he I(< 7, m, f >; {Xi lie B) if there is a finite set Y c NN such

that for all 3£ -models 5I. with Y c A , h e A, f e A and fie A for all i e B

and for all X c A recursive in 3E and some g e A in the sense of 5I. we
have that

5I. I= P2(h , f, X , { Xi he B , { fi he B) = 1 with a computation bounded by
some standard computation in YL
The definition of p1 in this case is easy, we notice that the co-r.e. statement
that 5I. is a 3E-model occurs negatively and that the rest is trivially r. e. in
3E. In order to show how to compute p2 we must notice that there is a
uniform bound on the length of the standard parts we need in order to

-25-

compute the values P1 (f, {Xi lie B' , { fi lie B') in the various models Yl.
and for the various subsets X and elements g of A. Moreover we can

compute an upper bound for the length of

{ P2(hI f I {xi he B I { fi he B) lheNN when the length of

Pl (f, {Xi he B , { fi lie B) is known. We use this to find an a such that we
can replace the use of 3E-models in the definition of

h e I(< 7 , m , f > ; { Xi he B) with 3E , a - models.

We will not prove that we have constructed a model for any second order

type theory, since we are not concerned with formal theories here. We will

however formulate a few lemmas that might be helpful in such a venture.

First we should notice that although we have used the notation

S(x 1 , ... , Xn), the set is dependent on the choice of f1 , ... , fn· There

seem to be no natural way to avoid this breach of elegancy. The definition

of I in case 7 is however designed so that the value of I(f; x 1 , ... , Xn)

will be independent of the choice of f1 , ... , fn. We leave the verification

of this for the reader.

6.7 Lemma

If f e S({ Xi he B) then for all 3E - models Yl. with f, fi e A we have that

Yl. I = f e S({ Xi lie B) by a computation in the standard part, and we have

g e I(f; { Xi he B) ¢::> Yl. I = g e I(f; { Xi he B) for all such Yl. with g e A.

Proof
Immediate from the definition

This means that if r is a type and X is a type variable not occurring in r

then AX.r is a type with the same elements as r.

6.8 Lemma

a) Let f and {Xi he B be given, where Xi is recursive in 3E and fi.
If for all 3E- models Yl. and for all Xm c A recursive in 3E)il and

some g e A we have Yl. I = f e S({ Xi he Bu{ml) then
f e S({ Xi he Bu{ml) for all Xm c NN that are recursive in 3E and

some g.

b) If f, { Xi he B are as above, if Y c NN is finite and if

Yl. I = g e I(f; { Xi he Bu{m}) for all Yl., Xm as above with Y c A, then

-26-

g e I(f ; { Xi }i e Bu{m}) for all Xm c NN that are recursive in 3E and

some h.

Proof
Both a) and b) are proved by a simple Lowenheim-Skolem argument.

6.9 Lemma

Let .91.. be a 3E - model.

Let '13 be a model with a code in .9f.
If .91.. I = '13 is a 3E - model, then '13 is a 3E - model.

The proof is trivial.

6.10 Lemma (Substitution)

There is a recursive function p with the following property:

Let B c N and C c N be finite sets.
Let { Zj lje c be a family of subsets of NN, Zj recursive in 3E and uj.

Assume that fi e S({ zj lje c) for each i e B, with yi =I(fi ; { zj }j e c).
Yi will be recursive in fi and { uj lje c , and this will be the representation
we will use below.

For technical reasons we will assume that fi is not the canonical code for

the inductive type J.l.X(X = X).

Assume further that g e S({ Yi he B) with X= I(g; { Yi lie B }.

Then h = p(g I B I c I {fdie B) e S({ zj lje c) and
X = I(h ; { 21 }j e c)

Proof

We will construct p using the recursion theorem. p will be constructed so
that g will be recursive in p(B, C, { fi he B, g) , 3E and if

< 6, i, 10 > occur in the subtype-tree of g, then fi is recursive in

p(g , B , C, { fi he B) , 3E.

What p does is rewriting g substituting fi for < 6, i, 10 >.In order to

recover g we must be able to tell where in the subtype-tree of

p(g , B , C, { fi he B) a substitution has been made. The trick used for that
will be useful when we want to compute fi from p(g, B , C, { fi he B) , 3E

as well.

We assumed that fi is not the canonical code for the empty type, and we

-27-

may as well assume that fi is not of the form < 5, f >.

In the proof we will let < 5n , f > denote < 5 , < 5 , ... ,< 5 , f > ... > > with

n occurrences of 5.

Let T g be the tree of subtypes of g.
If < 5n, f > is a node in Tg we call it maximal if< 5n+l, f > is not a

node and f is not on the form < 5, f' >.We call n the length of this

node, the length will in many cases be 0.

Using primitive recursion we may rewrite g to a recursively equivalent g'

such that a maximal < 5n , f > is replaced by

a maximal < 52n+1, f' > if f = < 6, i, 10 > for some i e B

a maximal < 52n , f' > if f ;¢: < 6 , i lo > for all i e B,

and such that I(g' i { Yi he B) = I(g i { Yi he B).
Below we will assume that g is obtained from such a shift.

p is actually going to be primitive recursive. The definition is divided into

cases, following the type-constructors. In all cases but two p will simply
commute with the top type-constructor in g. This means in particular that

p will preserve maximality and commute with 5n. -

The two remaining cases will be

p(< 7, m , f > , B , C, { fi lie B > = < 7, m1 , p(f, B1 , Cv { fi he B1) >
where m1 is the least ordered pair < m, m2 > not in C, B1 = B u { m},
c1 = c u { m1 } and fm = < 6 , m1 , 1o >.

We can obtain g from p(g, B, C, { fi he B) by reversing the recursive
definition of p. From the length of the maximal nodes we can tell when
the recursion is to be continued and when we shall insert < 6, i, 10 >.

In case 7 we defined m1 so that m is uniformly primitive recursive in

m1. Thus g is actually primitive recursive in p(g, B, C, { fi he B).

To recover fi is a bit more delicate. From 3E and p(g , B , C, { fi he B) we

may compute the subtype tree T p(g, B, c , {fi he B ,) of
p(g , B , C , { fi he B ,) . We may also compute the set { f I ::In(< 52n + 1, f >

is a maximal node in T p(g , B , c { fi he B ,)) This set is finite, so the
elements can be computed using 3E. This will be the fi's.

We will now prove that if g e S({ Yi he B) and

fiE S({ zj lje c) then p(g, B, c, { fi he B) e S({ zj lje c).

-28-

Simultaneously we will prove that I(p(g I B I c I { fi lie B) ; { zj lje c) = X.

We will use induction on the length of the verification of g e S({ Yi lie B).
The proof can also be carried out inside any 3E-model .91. and a part of the

induction hypothesis at a will be that the claim holds within .91. for the

standard computations bounded by a in the real world.

For both, case 7 is the only nontrivial case.

So let X = I(< 7, m , f > ; { Yi lie B) and

h = < 7 I m1 , p(f, Bl , cl, { fi }i e Bl) >.
We first show that h e S({ 21 lje c). Let .91. be a 3E- model with he .91.,

uj e .91. for j e C, and let Xm 1 be .91.-recursive in 3E and a f' e A. Then f
and the fi's will be elements of .91. since they are recursive in h, 3E at a

finite level. We now use the induction hypothesis inside .91., so

.91. I= p(f, Bl, cl , {fi he Bl) e S({ zj lje c u { Xml l)
This is exactly what is required for h to be in S({ Zj lje c).

We can use the induction hypothesis inside .91. since we have to verify that

f e S({ Yi lie Bl) with Ym = Xm1 holds in Jl bounded by a standard
computation.

We will now prove that

I(h ; { Xj lje c) = I(< 7, m , 10 > ; { Yi lie B)
by proving the inclusion both ways. We will use the special notation
introduced above.

Let g e I(h; { Xj lje c). Let Y be finite such that for all 3E-models .91. with

Y c A, uj e A for j e C, g e A and he A, and for all relevant Xm1 we
have

.91. I= g e I(p(f, B , C , { fi he Bl) ; { Xj lje c 1)
By the induction hypothesis in .91., and letting Ym = Xm1, we have

Jl I= g e I(f; { yi he Bl). .

Let Y' = Y u { uj l je C·
If .91. contains Y', g and { fi he B we are in the situation above. This

shows that g e I(< 7, m , f > ; { Yi lie B).

Conversely, let g e I(< 7, m , f > ; { Yi he B).

Let Y be finite such that for all models .91. containing Y, { fi lie B ,

-29-

{ uj lje c, g and f and for all relevant Ym we have

.9l I = g e I(f i { Yi lie B1).
Using the induction hypothesis inside .9l we have that

.9l I= g e I(p(f, B1 , C1 , { fi he B1) i { Xj }je c1)
with Xm1 = Ym and as above fm = < 6, m1, 10 >.
Using the same Y we see that this demonstrates that

g e I(p(f , B , C , { fi he B) i { Xj } je C) ·

This ends the proof of the substitution lemma.

REFERENCES
[1] Kleene, S. C.: Recursive functionals and Quantifiers of finite

types, T.A.M.S. 91 (1959), 1-52

[2] Kleene, S.C.: Countable functionals, in A. Heyting (ed.)
Constructivity in mathematics, North-Holland (1959), 81-100

[3] Kreisel, G. : Interpretation of analysis by means of functionals of

finite type, in A. Heyting (ed.) Constructivity in mathematics,

North-Holland (1959), 101 - 128.

[4] Normann, D.: Recursion on the Countable Functionals, Springer
Lecture Notes in Mathematics 811, Springer-Verlag (1980).

[5] Normann, D. : Characterizing the continuous functionals,

JSL 48 (1983) , 965-969.

[6] Normann, D. : Kleene-spaces,In Ferro & al. Logic Colloquium '88

Elsevier (1989), 91-109.

[7] Sacks, G. E. : Higher Recursion Theory, Springer-Verlag (1990).

