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1 Introduction and summary 
When Kreisel [ 3] introduced the continuous functionals, the main 

motivation was to find an absolute notion of 'constructibly true' for 

statements of analysis. A statement of analysis can be represented as a type, 

which again can be seen as a set of functionals at a certain level, and the 

statement is constructibly true if this type has a recursive element. 
It turns out that any statement of analysis proved in a constructive formal 

logic will be constructibly true in Kreisel's sense. 

Kleene [ 2] introduced the equivalent hierarchy of countable functionals 

as a subhierarchy of the hierarchy of all functionals of finite types. The 

countable functionals are closed under Kleene's [ 1 ] notion of 

computability, and are thus natural from a recursion-theoretic point of 

view. 

We see type theory as an attempt to extend constructive analysis to a 

constructive set theory. Intype theory we deal with function spaces, 

infinite product spaces and variants of second order constructions. It is 
well known that in order to get a full set-theoretic model of transfinite 

first order type theory one need an inaccessible cardinal or some other 

high-power set-theoretical axioms. Naive models for type-theory with 

universes require even stronger principles. 

Such results show that the set-theoretical principles on which type theory 

is based are very strong and that the constructivity-aspect of the theory 

must be reflected in the semantics if the semantics is going to be 
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manageable. 
The question trigging off the writing of this paper was as follows: 

If we construct a model for transfinite type theory where each object is 

countable and where 'constructive' is replaced by 'continuous', what 

will the complexity of the full model be? 

Since it is the nature of the underlying intuition and not of the formal 

theory we are investigating, it is important that the semantics must be 

based on a natural interpretation of the type-constructors themselves and 

not of the various formal theories for them. 

In this paper we will use a simplified version of Kreisel's continuous 
functionals as the base for such investigations. 

The many characterisateons of the continuous or countable functionals of 

finite types (see Normann [ 4] or [ 5] for a survey of such 

characterisateons ) show that the concept is a natural one. It may then be 

expected that a continuation of the hierarchy based on the same idea of 

construction will form a possible source for semantics for type theories, 
and that the investigation of this hierarchy gives back some information 
about the nature of type theory. 

Although we are not constructing models for specific theories, we expect 
that when a statement can be represented as a type, and if this statement is 

proved in any reasonable constructive logic, the type will have a recursive 
element. 

We will first define the basic hierarchy, where we do not take matters as 

equality between objects or effectivity of the structures into consideration. 

Then we will discuss how to restrict the constructions in various ways 

giving more structure to the objects constructed. 

Our hierarchy of 'types' will be based on the standard constructions of type 

theory, such as finite and infinite sums and products of continuously 

parameterised families of types. In addition we generalize the introduction 
of types via strict positive inductions. We will accept types with non­

wellfounded trees of subtypes, but where each element will have a 

wellfounded basis. We call such objects type-streams. 

The results are in three groups. 
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The first results show that there are natural recursion theorems in this 

setting. The advantage of type-streams to strictly positive operators is that 

the predecessor relation is not so rigid. Thus the recursion theorem will 

cover recursive definitions of functions f where the calculation of f(x) 

requires the knowledge of f(y) for objects y at some depth below x, and 

not necessarily at the immediate predecessors. Type-streams also makes it 

possible to represent more relevant sets of predecessors as types. 

Using Baire-space ( NN) makes it easy to view inductively defined types 

as a special case of nonwellfounded types, but there are of course possible 

to model such types with domains, with categories or using any other 

standard way of modelling type theory. 

The next group of results shows a close connection between the hierarchy 
at hand and the hierarchy for recursion in the functional 3E. Forming 

dependent types is more or less a continuous collection, while recursion 
in 3E is based on a highly discontinuous collection principle. The proof of 

the equivalence of those two hierarchies supports to some extent the view 

that the notion of a transfinite type is a complex and non-constructive 

one. 

At the end we use 3E to extend the hierarchy to a hierarchy accepting 

certain second order constructions, and we prove some basic properties of 

these constructions. This shows that we do not need to increase the 
complexity in order to model second order phenomena. 

A full account of these results will require several long, tedious and 

unexciting proofs. We will leave out many details, in order to make the 

underlying ideas more transparent. Some proofs will be left entirely for 

the reader, while for others we outline the main steps. It may sometimes 
take some effort to fill in the details. 

2 The basic hierarchy 
We are going to define a hierarchy of types, where the elements of the 
types will be Kleene-type associates. At each level the hierarchy will be 

closed under strictly positive inductions. These inductively defined types 

will be special cases of what we may call type-streams. 
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Example 1 
Consider the equation 

X=NE9N-7X. 
In our semantics we will let 

X = N E9 ( N --7 ( N E9 ( N --7 ( N E9 ""in£ ... )))) 

and for an object a to be an element of X we require that the evaluation 
tree of a is well founded. 

Example 2 

Consider the type stream 

X = N ffi ( N --7 ( NN E9 ( N --7 ( N(NN) E9 ( N --7 ... ))))) 

This does not correspond to a single type-equation. Still we may define the 

elements of X in a precise way. Our definition of types will capture types 

like X in example 2. 

We are now ready to give the formal definitions. We will let FUN be a 

recursive set of code numbers of finite functions from N to N I 

identifying them with the functions themselves. An associate will be a 

function from N to N that maps FUN monotonuously into FUN. Any 

associate 'Y will define a partial continuous function Fy. NN--7 NN in the 
canonical way. 

2.1 Definition 
By induction on the ordinal a we define the class Ba c N N together 

with the interpretation I( f) c NN for f e Ba· The elements of Ba will 

be indices for the basic a-types. 

Assume that B13 is defined for J3 <a and that I( f) is defined for f e Bp. 

i) Ba is the largest set satisfying 

h e Ba if and only if 

or 

or 

h = 10 ( the constant zero ) 

h = < 1 , f I g > or h = < 2 I f I g > for some f 1 g e Ba 

h = < 3 I f I g > or h = < 4 , f, g > 

where f e Bp for some p <a and g is an associate such that 

Fg( x) e Ba whenever x e I( f) 
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ii) We define {I( h) }he B as the minimal solution to 
a 

the following equations in { J( h) }he B : 
a 

h = 1o: J< h > = Po } -
h = < 1 , f, g >: J( h) = { < 1 , 0 I X > I X e J( f) } u { < 1 I 1 , X > I X e J( g) } 

h = < 2 , f, g >: J( h ) = { < 2 , x , y > I x e J( f) and y e J( g ) } 

h = < 3, f, g >: J( h)= { < 2, x, y > I x e I( f) andy e J( Fg( x))} 

h = < 4 , f , g >: J( h ) = { < 3 , x > I x is an associate and for all y e I( f) 

we have that FxC y) e J( FgC y )) } 
h = < 5 , f >: J( h ) = J( f ). 

2.2 Remarks 

Using the existence of largest fixpoints and lea.St fixpoints of monotone 

operators we see that the concepts of Definition 2.1 are well defined. The 

types constructed will contain a unit type and will be closed under disjoint 

unions, finite products and certain dependent infinite sums and products. 

The case h = < 5 , f > is mainly a dummy case, but it will be of technical 

use besides providing us with the empty type as the least solution to the 

equation X = X. 

We will show in some detail that these definitions capture the fixpoints of 

strictly positive inductive definitions. 

2.3 Definition 

We define the strictly positive operators r:~ NN) ~ P( NN) , and for 

each r the set of indices 'Y for r as follows: 

r( X ) = X has index < 5 , - > where - is the totally undefined function. 

r( X ) = I( f ) has index < 0 , f > when f e Ba. 

If r1 and rz have indices 'Y1 and 'Y2 resp. then r( X)= r1( X) E!1 r2( X) 

has index < 1 , 'Y1 I 'Y2 > and rc X ) = r 1 ( X ) X r 2 ( X ) has index 

< 2 I 'Y1 I 'Y2 >. 
If f e Bf3 for some f3 e On, if g is an associate and if for each x e I( f) we 

have that Fg( X) is an index for r X then < 3, f, g > is an index for 

L,(r x< X) I x e I( f)) and < 4, f, g > is an index for II< r x< X) I x e I( f)). 

2.4 Theorem 

If r is a strictly positive operator, then there is an ordinal a and an 

element Fixr e Ba such that r( I( Fixr ) ) = I( Fixr ) and this is the least 
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fixpoint of r. 

Proof 
Let r be given. In r there may be suboperators that are constant I( f) for 

some f e B13 for some ordinal (3. Let a be an upper bound for the set of 

such (3. 
Uniformly recursive in an index 1 for r there is a monotone continuous 
operator G on the set of partial functions from N to N mapping total 

objects into total objects and such that if f e Ba then G( f ) e Ba and 
I( G( f))= r( I( f)) for sufficiently large a. G is constructed by a routine 
application of the recursion theorem in such a way that G has a total 

fixpoint. This will be our Fixr. We leave the details for the reader. 

2.5 Remark 
In the definition of strictly positive inductive definitions we omitted one 

possible case 

rc x > = .I:C r 2< x, x > 1 x e r 1 c x > > 
where both r1 and r2 are strictly positive. 
There are several reasons for this. One reason is that we would have to 

restrict r 2 to cases where r 2( X , X ) will be meaningful for all X E r 1 ( X ) 
throughout the induction. This is technically unpleasant, but possible. , 

Another reason is that Theorem 2.4 will fail. It is however possible to alter 

the definition of Ba in order to recover the theorem. 

A third reason is that certain structural results concerning strictly positive 
inductive definitions will fail. We will mention one result ( without 

proof) which will fail if we extend the definition in any nontrivial way: 

2.6 Theorem ( Functoriality ) 

Let r be strictly positive with index y. 

Uniformly in 1 there is a recursive operator r* such that if g:X ---? Y is 
continuous, then r*( g ):r( X ) ---? r( Y) is continuous. 

Moreover r* commutes with composition of functions. 

The functorial properties of strictly positive inductive operators are well 
known. 

' 

' 
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3 Two alternative hierarchies 
In this section we will consider two restricted hierarchies with more 

structure to the individual types. In the E~hierarchy we take equality 

between objects of a given type into consideration. This leads to a 

restriction in the definition of dependent types and the two interpretations 

of one type-term will in general be quite incomparable. 

3.1 Definition 

We define the set Ea together with the interpretation I( f) for each f e Ea 

and the equivalence relation =f on I( f) as follows, assuming the 

definitions given for J3 < a: 
i) Ea is the largest set satisfying 

he Ea if and only if 

or 

or 

or 

h = 10 ( the constant zero ) 

h = < 1 , f , g > or h = < 2 , f, g > for some f, g e Ea 

h = < 3 1 f 1 g > or h = < 4 1 f 1 g > 
where f e E.13 for some J3 < a and g is an associate such that 

* F gC x ) e Ea whenever x e I( f) 

** I( FgC X)) I =pg( X) =I( FgC y) I =pg( y) 
whenever x , y e I( f ) and x =f y 

h = < 5 , f > for some f e Ea. 

ii) We define {I( h) }he E in the same way as for the B-hierarchy, with 
a. 

one important difference 

h = < 4 , f , g >: J( h ) = { < 3 , x > I x is an associate, for all y e I( f) 

we have that Fx( y) E J( Fg( y )) and for all y I z E I( f), if y =f z 
then Fx( y ) =p ( y ) Fx( z ) } 

iii) We define =h oR I( h) in the obvious way. 

This hierarchy is actually closer to the type structures defined by Kleene 

and Kreisel. There is however one main difference, we accept the empty 

set as a type. This is of course natural when we want to interpret 

propositions as types. 

We will now describe another hierarchy, where we make sure that all 

types are nonempty. The objects of this hierarchy, called the D-hierarchy 
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will be similar to the objects of the B-hierarchy, we just happen to know 

in some effective way that they are nonempty. As we will see, this requires 

a restriction on the functions in the product type. 

In formulating the hierarchy we need a concept about the B-hierarchy that 

will be equally meaningful for the D-hierarchy: 

3.2 Definition 

Let f e Ba. for some ex.. 
We define the tree Tf of indexed subtypes as follows, using a for an 
arbitrary sequence, using comma for concatenation and identifying an 

object f with the corresponding sequence of length one: 

T f is a set of finite sequences with f e T f· 
If a , g is in T f then 

i) if g = < 1, g1, g2 > or ·g = < 2, g1, g2 >,then 0', g, g1 and 
0', g ,g2 are in Tf. 

ii) if g = < 3, g1, g2 > or g = < 4, g1, g2 > then 0', g, h, Fg2< h) e Tf 
for each h e I( g1 ) 

iii) if g = < 5 , g1 > then 0' , g , g1 e T f· 

The tree Tf contains codes for all the subtypes of I( f), and in case of 
dependent sums or products, also an information about the parameter of 
the node. 

3.3 Definition 

By simultaneous recursion on the ordinal ex. we define the set Da. of 
indices together with 

The set ~'f c FUN for each f e D ex. 
The function ef,B for each f e Da. and Be d[ 
The interpretation I( f ) for all f e D ex.· 

We define the relation f e Da. from the set of D13 for (3 <ex. as we 

defined Ba. from B13 with one restriction: 
If x1, x2, ... is an infinite branch in Tf then for arbitrarily large n we 

have that Xn = < 1, g1, g2 > and Xn+1 = g2. 

This is a restriction of the non-wellfoundednes accepted, any such non­

wellfoundednes must arise from infinitely often going through the right 

part of a disjoint union. We will see that this ensures in an effective way 
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that all types will be nonempty. 

Let f e Da. Uniformly recursive in f we <;:onstruct a set .6-t of finite 

partial functions on N and for each B e .1f a function extending B. 
The point will be that ea,f e I( f) and that for all g e I( f) and finite sets X 

in N there is a subfunction B e .6f of g defined for all n e X . 

.1f will always contain the empty function. 

We will use the recursion theorem to compute .1f and the extension 

maps e(),f for () E .1f. 
We consider the six possible cases: 

o) f = 10. Then .1f contains all finite functions that are constant 0, and 

e(),f = 10 for all () E .1f. 

i) f = < 1, g, h >. Let .1f be the empty function together with the 

functions < 1 , 0 , B > for B e .1g and the functions < 1 , 1 , B > for 

B e .1h, where < 1 , 0 , B >( 0 ) = 1, < 1 , 0 , o >( 1 ) = 0 and 
< 1 , 0 , B >( n + 2 ) = ()( n ) whenever ()( n ) is defined. < 1 , 1 , o > is 
defined similarily. We will use this kind of notation freely later. 

The definition of ea,f is obvious except when () is the empty function. 
Then ea,f = < 1 , 0 , ea,g > , i.e. we use the extension in the left adend. 

ii) f = < 2, g, h >.The construction is obvious and trivial in this case, and 

is left for the reader. 

iii) f = < 3, g, h >.Let .1f be the empty function together with all 

< 3 , <>1 , <>2 > such that <>1 e .1g and o2 e .1h( 01 ) ( i.e. the part of 
.1 that we can compute from h( <>1 ) ). 

If () is the empty function then ea,f = < 2 , ea,g, ea,Fh (ea,g> > 

If () = < 3 I ()1 , ()2 > let ea,f = < 2, eal,g, eaziFh( eallg) > 

iv)f = < 4, g I h >.Let .1f be the set of finite maps B satisfying: 

* if ()( cr ) = 't , and cr e FUN then 't e FUN 

* * B is consistent and monotone as a partial function on FUN 

* * * for each cr1 , ... , crk of the domain of B, if cr1 u ... u crk e .1f 

then 'tt u ... u 'tk e .1h( cr1) u ... u h(o1)· 
If Be .1f we compute ea,f as follows: 

Let B = { ( cr1 , 'tt ) , . · · , ( crn, 'tn) } 
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We will construct a continuous function E8,f computable in f, and we 

will let e8,f be the corresponding associate. 

Let x e NN. Let X= { k I cri( k) = o"j< k) for some i, j ~ n} 

Let Yx = { i I if cri( n) is defined then cri( n) = x( n)} 

Let 1t e .6Fh( x) be minimal w.r.t. code numbers such that 'tic 1t for 

all i E Yx· Then let E8,f( X)= e1t,Fh( X)· We let e8,f be an associate for 

Eo,f extending 8. 

v) f = < 5, g >. Let .6f be the empty function together with all < 5, 8 > 

where 8 e .6g. 
H 8 is the empty function, we let e8 f = e8 g· , , 
H 8 = < 5, 81 >,we let e0,f = e81,g· 

Finally we will define I( f ) as for the B-hierarchy with one important 

restriction. 

H f = < 4, g, h > then f1 e I( f) if f1 is an associate, Ff1 ( x) e I( Fh( x) ) 

whenever x e I( g) and finally for all 81, ... , 8k, if 81 u ... u 8k e .6g 

then f1 ( 81 ) U · · · U f1 ( Ok ) E .6h( 81 ) U ... U h( 8k ) 

3.4 Theorem 

Let D be the union of all Da. defined above. Then 

i) .6f is uniformly recursive in f for each f e D 

ii) ea,f E I( f) for each f E D and 8 E .6f 
iii) H f e D, if g e I( f) and if X is a finite set, then there is a subfunction 

8 of g in .6f with X c domain( 8) 

Proof 

The proof is tedious, but in most cases trivial. 

First we notice that the relation 8e .6f is uniformly recursive in f by 

recursion on the code number of 8. This is trivial. 

Then we have to prove that if f E D and 8 E ~ then e8,f extends 8 and 

is an element of I( f). If 8 is the empty function, e8,f is defined by 
recursion over the subtype-ordering, using only the left branch in the case 

of disjoint unions. By the definition of D this ordering is well-founded, 

so e8,f is well defined. To verify that e8,f E I( f ) in this case is trivial. 

The rest of the proof is by induction on the code number of 8 still with six 
subcases. The proofs are easy and are left for the reader. 
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The proof of the density property iii) is primarily by induction on a, by 
subinduction on the cardinality of X and by subsubinduction on the 

largest element of X. The only involved case is case 4, where the 

definition of I is carefully manufactured in order to make the proof work. 

In Normann [ 6] the notion of a Kleene-space was introduced. In a 

Kleene-space the virtues of the B and D-hierarchies are combined, we 

identify associates representing the same object and we have full recursive 

control over the nonempty neighborhoods. Unfortunately we had to give 

up to include dependent sums; together with recursively defined families 

of types they seem to break out of the class of Kleene-spaces. 

4 A recursion-scheme for B a 
We see our type-streams as a minor generalization of types defined by 

strict positive inductive definitions. One advantage is that the connection 

between the type and the defining formula is loosened. This gives us the 

opportunity to view recursion in a more general way. It also makes it 

easier to define useful types. 

In this section we will prove two recursion theorems on purely semantical 

grounds. It remains to see if they have some natural syntactical or logical 

counterparts. They seem however to be more general than recursion 

theorems proved or axiomatised within traditional type theory. 

In defining recursion, the type of an object is essential. Thus the notion of 

recursion will be developed with respect to the set of pairs ( f , g ) with 

g e B and f e I( g ) 

In this section we will use the symbols e , x , I and II for disjoint 
unions, cartesian products,dependent sums and dependent products as 

they were technically defined in section 2. We let No be the initially 

defined one-point type. 

4.1 Definition 

a) Let P a be the set of pairs ( f , g ) where g e Ba and f e I( g ). Let P be 
the union of the P a's 

b) Let ( fIg) E P. 

We define the support-type S( f, g) of ( f, g) by the following set of 

equations, of which we take the minimal solution; and 

simultaneously, to each x e S( f, g) we define the predecessor 



-12-

( p( f I g I X ) I R( f I g ,X ) ) 

of ( f , g ) with index x giving recursion equations for p and R: 

I( g ) = No and f = Io: 

S( fIg)= 0. 

There is no need to define p and R. 

I( g)= I( g1 ) GH( g2 ), f = < 1, o, f1 >: 

S( f, g) = N0 e S( f1 , g1 ). 

x = <1, o , 1o > : p( f, g, x) = f1 and R( f, g, x) = g1. 

x = < 1, 1, y > : p( f, g, x) = p( f1, g1, y) and R( f, g, x ) = R( f1 , g1, y ) 

I( g)= I( g1 ) e I( gz ), f = < 1, 1, f1 >: 
S( f, g > = S( f1 , g2 ). 

The definitions of p and R are in analogy with the definition above. 

I( g ) = I( g1 > x I( g2 > , f = < 2 , f1 , f2 > : 

s< f, g > = <No e s< f1 , g1 > > e < N0 e s< f2 , g2 > ). 
The definitions of p and R are left for the reader. 

I( g)= I.< I( Fg2< x > 1 x e I( g1 > >, f = < 2, f1 , f2 >: 

S( f, g >=NoeS( f2 , Fg2< f1 >) 

X=< 1, 0 I 1o >: p( fIg I X)= f2 and R( fIg I X)= Fg2< f1 ). 

X=< 1, 1, y >: p( fIg I X)= p( f2, Fgz< f1) I y) and 
R( f , g , x > = R( f2 , F g2 < f1 > , y > 

I( g)= II< Fg2< x > 1 x e 1( g1 )), f = < 3, h >: 

s( f, g ) = I( g1 > <:a I.< s( Fh < x ) , F gz < x )) 1 x e I( g1 ) > 
The definitions of p and R are left for the reader. 

g = < 5 I g1 >I f E I( g): 
S( f, g) = S( f, g1 ), using the< 5, ->-construction. 

The definitions of p and R are left for the reader. 

4.2 Theorem 

a) Uniformly recursive in g e Ba and f e I( g) there is a he Ba such 
that 

S( f I g ) = I( h ) 

will satisfy the equations above. Moreover the solution is unique up to 

. I 

! 
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I( h). 

b) If g e Ba , f e I( g ) and x e S( f , g ) then p( f , g , x ) and R( f, g , x) 

are well defined, R( f, g, x) e Ba and p(f, g, x) e I( R(f, g, x )). 

Proof 

a) The defining equations for S( f , g ) can be transfered to defining 

equations for a partial function F:NN ~ NN on the indices, and by the 

recursion theorem they have a solution H. 

By induction on the rank of ( f, g) as an element of P we prove that 

H( f, g) e Ba and that I( H( f, g)) is the unique solution to the 
original equations. 

In this construction we are using type-streams in constructing the types 

S(f I g). 

b) Both p and R are defined by recursion on the rank of ( f, g) e P. 

The fact that ( p( f , g , x ) , R( f , g , x ) e P for all 2'. e ~( f , g ) is proved 
by induction on the same rank. 

4.3 Remark 

The set P is inductively defined, so if ( f, g) e P then ( f, g) has a set of 
predecessors. This set of predecessors cannot in general be represented as 
the elements of some type. The type S( f , g ) is a type of the same 

"structure" as the set of predecessors, and A.x( p( f, g, x) , R( f, g, x) ) 
mapping S( f, g) onto the true predecessors. 

4.4 Definition 

Let F:P a ~ Ba be continuous and let h:NN ~ NN be a partial, 
continuous function. 

We say that h matches F on S( f, g) if 

h( x) e I(F( p(f, g, x), R( f, g, x))) for all x e S( f, g). 

4.5 Theorem ( Semantical recursion scheme ) 

Let F:P a ~ Ba be continuous. 
Assume that G is continuous (of type 3, in the sense of e.g. Kleene [ 2]) 

such that if ( f , g ) e P a and h matches F on S( f , g ) then 

G( f I g I h ) E I( F( f I g )) 

Then there is a unique continuous function H defined on P a such that 

for each ( f , g ) e P a= 



H( f, g ) E I( F( f, g ) ) 
and 

H( f, g ) = G( f , g , H'( f, g ) ) 

where 
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H'( f, g )( x ) = H( p( f , g , x ) , R( f, g , x ) ) 

Proof 

H' is defined recursively from H so the equation 

H( f, g ) = G( f , g , H'( f, g) ) 

has a solution by the recursion theorem. 

By induction on the rank of ( f , g ) e P a. we then show that 

H( f, g ) e I( F( f, g ) ) and that H'(f , g ) matches F on S( f, g ) 
(a consequence of the-induction hypothesis). 

Finally by a standard induction on the rank of ( f, g ) e P a. we show that 
H( f, g) is unique. The details are routine. 

Theorem 4.5 is general in the sense that we may define H by induction 

not just knowing H on the immediate predecessors, but on any set of 

predecessors we may choose. The disadvantage of the result is that it aims 

at defining H on all of P <X' but for many applications of recursion this 
will be requiring too much. We will now prove a slightly more general 

result. 

4.6 Definition 

a) Let X be a subset of P <X' let K:X ~ Ba. be continuous and let 
T:I,( I( K( x ) I x e X) ~ NN be continuous such that Tx( f) = T( x , f) 

is a 1-1 map from I( K( x ) ) to S( x ). 

We say that (X, K, T) is an inductive system if 

( p( Tx( y)), R( Tx( y))) e X 

for all X E X and y e I( K( X ) ) 

b) If ( X , K , T ) is an inductive system, F : X -7 Ba. is continuous, 

h:NN ~ NN is a partial, continuous function and x e X, we say that 

h matches F on K( x) if h( y) e I( F( p( Tx< y)), R( Tx( y)))) for 
ally E K( X). 

An inductive system is in a sense a substructure of P, { S( f, g) }(f, g) e p 

where we replace P by a subset X and we permit a restricted set of 
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predecessors of x indexed by the type K( x ). Via Tx the type K( x) can be 

embedded in the full set of predecessors of x. The predecessors of x in the 

view of the system will then both be in X . and be true predecessors. 

4.7 Theorem ( Extended semantical recursion scheme ) 

Let ( X , K , T ) be an inductive system, F:X ~ Ba be continuous. 

Assume that G is continuous such that if x e X and h matches F on 
K( x ), then G( x, h) e I( F( x )). 
Then there is a unique continuous function H defined on X such that 

for each x e X we have 
H( X ) E I( F( X )) 

and 
H( X ) = G( X , H'( X ) ) 

where 

H'( x) = A.yH( p( Tx( y), R( Tx( y)) ). 

Proof 
The proof is basicly the same as the proof of theorem 4.5, and is left for the 
reader. 

We will give two important examples on how to use theorem 4.7, both 
concerned with strictly positive inductive definitions. 

If X = r( X ) is the least fix-point of a strictly positive inductive definition, 
we have shown that there is a real g such that X= I( g). We will in the 

two examples assume that g is the real obtained from this proof. 

4.8 Example 

If r is a strictly positive inductive operator, we define the canonical 
index-set Kr( x ) for the immediate predecessors of x e r( X ) by recursion 
on r: 
r( X) = A : Kr( x) = 0 ( A a constant) 

r(X) = x: Kr(x) = N0 
r< x) = r 1 < x) <:a r 2< x) : Kr(< 1, o, y >) = Kr 1 < y) etc. 

r< x > = r 1 < x ) x r 2< x > : Kr< < 2 , x , y > > = Kr 1 < x > <:a Kr 2 < y ). 
r(X)=I(r1(y)(X) I ye A):Kr(<2,x,y>)=Kr1(x)(y) 

r< x > =II< r 1 < y >< x > 1 y e A): 

Kr( < 3, x, z >) =I< Kr 1 (y >< Fz< y)) I y e A) 
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We construct an inductive system using { ( x, g) I xis in the least fixpoint 

of r } as X and the function Kr. It is trivial to define the map T. 

4.9 Example 

We let r and X be as in example 4.8. By a similar construction as the one 
in 4.8 we may isolate the type of all predecessors of x in X, indexed by K'r· 

The definition is as in 4.8 with the following changes: 

We define K'r for all subformulas r' of r. 

In the case r'( X)= X we let K'r( x) = No e K'r( x) 
This gives us a recursion-equation for K'r that can be solved. It is then 

simple to define the corresponding function T'. 

These two examples show that our notion of recursion covers recursion on 

a set defined by strictly positive induction, both with respect to immediate 

predecessors and with respect to general predecessors. 

5 The complexity of the hierarchy 
It is clear that there will be an ordinal a. such that Ba.+ 1 = Ba.· 
In this section we will show that this ordinal is the first ordinal not 
recursive in 3E and any f e NN. 

It is remarkable that our hierarchy goes that far, since it is based on 

continuity and 3E is a highly discontinuous object. 3E was introduced by 

Kleene in [ 1 ] and is defined as the following object of type 3: 

3E( F ) = 0 if F( f) = 0 for all f e NN 
3E( F) = 1 if F( f) ;t 0 for some f e NN . 

We assume F to be total. 

We will have to assume some familiarity with recursion in 3E in this 

section. In Sacks( 7 ] all properties of 3E that we need are proved in the 

setting of E-recursion. 

5.1 Theorem 

There are two partial functions p1 and p2 both recursive in 3E such that 

i) P1 ( f ) = 0 <=> f E B 

ii) P2< f, x )J. <=> f e B ( where J. means 'is defined' ) 
If f e B then 

P2( f I X ) = 1 if X E I( f) 



-17-

P2C f, x) = o if x e I( f) 

Proof 
We define P1 and P2 simultaneously using the recursion theorem for 3E. 

We describe informally the algorithms represented by P1 and P2 and 
leave for the reader to verify that these algorithms will work. 

Computing p1: Given f that looks like an index for a type A, we may start 
to develope the tree of subtypes of A. If we in that tree find a function that 

is not on one of the basic forms of the indices, we reject f, e.g. let P1 (f)= 1. 
If we in that tree find a function looking like the index of a dependent sum 

or a dependent product, we use p1 to check if the domain really is one of 

our types, and then p2 to compute the branching at the respective node. 

Computing p2: If p1 accepts f, and x is given, we give a top-down 
construction of the tree of pairs ( y , g ) where y is a predecessor of x and 

g is the index of the corresponding subtype. If we somewhere in this tree 

find that y is not on the basic form of the elements of I( g ) , we reject x. 

Otherwise we accept x as an element of I( f ) if and only if the tree 

constructed above is wellfounded. We may use 3E to test this. 

To complete the proof we must show by induction on a that if f e Ba 

then P1 ( f ) = 0, and by induction on the length of the computation that if 

P1 (f)= 0 then f e B and p2( f,-) is as desired. There will be no surprises 
in any of the proofs. 

Of course this theorem is valid for the two other hierarchies we defined in 
section 3. We will now prove the converse of theorem 5.1, i.e that our 

hierarchy captures the full complexity of recursion in 3E. We will not need 

non-wellfounded types except for the empty type in this argument, and we 

may even avoid using dependent sums. 

This proof can be adjusted to the E-hierarchy, but the empty type is 
essential, and the proof does not work for the D-hierarchy. We will leave 

an estimation of the complexity of the D-hierarchy as an open problem. 

In fact the proof will work for many natural semantics for type theory. Of 

course the type corresponding to NN must essentially be interpreted as 

NN. Moreover we will need the empty type, and we will need that there is 

a uniform function mapping the empty type represented by any term into 
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the empty type. Finally the semantics must accept that the constructions we 
perform are uniform. It is likely that if we are given a natural basis for a 

semantics for type theory, and if families of types constructed by recursion 

over some inductively defined type is a dependent family in the sense of 
the semantics, then the families constructed in this proof will also be 

dependent families in the sense of the semantics. This general claim can of 

course not be supported by a precise proof. 

In the rest of this paper we will let f denote a finite sequence from N and 
NN. 

5.2 Theorem 
Let { e }(f) denote the Kleene-computation relative to 3E with index e 

and input f. 

Then uniformly recursive in e , f we can define 
i) an object T( e , f) e NN 

ii) a partial continuous function t( e, f ):NN -7 N 

such that 

{ e }( f ).j, ¢::> T( e , f ) e B and I( T( e , f )) ;t: 0 
and when { e }( f ).j, then t( e, f) is defined and constant { e }(f) on 
I( T( e, f)) 

Proof 
We construct T( e , f ) and t( e , f) using the recursion theorem. 

There will be nine cases following Kleene's schemata 51 -59. We will 

omit case 5, primitive recursion, since this can be reduced to the other cases. 

We will use terms for types in the proof, though it is to be understood that 
we use the coded versions in the B-hierarchy. 

1. { e }(X, f) =X+ 1 

2. 

3. 

T( e , x , f ) = N 0 ( The canonical one-point type ) 
t( e, x, f)( y) = x+l 

{ e }(f)= q 

T( e, f)= No 
t( e , f )( y ) = q 

{e}{x,f)=x 



T( e , x , f) = No 

t( e 1 X 1 f)( Y ) = X 

4. { e }( f ) = { e1 }( { e2 }( f ) , f ) 
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T( e , f ) = l( T( e1 , t( e2 , f)( x ) , f ) I x e T( e2 , f )) 
t( e 1 f)( < X 1 Y >) = t( e1, t( e2 1 f)( X) 1 f)( Y) 

6. { e }( f ) = { e1 }( cr( f ) ) where cr is a permutation. 

T( e , f ) = T( e1 , cr( f ) ) , where we use the < 5 , - > -construction. 

t( e , f )( y) = t( e1, cr( f) )( y ) 

7. { e }( X 1 f 1 f) = f( X ) 

T( e , x , f, f) = No 

t( e 1 X 1 f 1 f )( Y ) = f( X ) 

8. { e }( f ) = 3E( A£{ e1 }( f , f )) 
Let T 1 ( f, y) be No if t( e1, f, f)( y) > 0, and let it be empty otherwise. 

Let T2( f, y) be No if t( e1, f, f)( y) = 0, and let it be empty otherwise. 

Let 

T( e , f ) = II(( T( e1 , f , f) ~ 0 ) ~ 0 ) I f e NN ) x 

[ ( l( l( T 1 ( f, y ) I y e T( e1, f , f)) I f e NN) Ei) 

(II( II( T2( f, y) I y e T( e1, f, f)) I f e NN)] 

Let t( e , f )( < x , r( y ) > ) = 1 

t( e 1 f)( < X 1 1( Y ) > ) = Q 

9. { e }( e1 , f) = { e1 }( f) 

T( e , e1 , f ) = T( e1 , f ) , where we use the <5, - > -construction. 

t( e, e1 , f)( y) = t( e1 , f)( y) 

Claim 1 

If { e }( f) J, then T( e , f) e B and I( T( e , f)) * 0. 
Moreover, t( e , f ) is constant { e }( f ) on I( T( e , f) ). 

Proof 
We use induction on the length of the computation { e }(f). All cases but 

two are trivial. 
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In case 4 we observe that I( T( e , f ) ) will be the cartesian product of 

I( T( e1, f)) and I( T( ez, { e1 }(f), f)), which will be nonempty. 

Moreover t( e , f ) will be constant t( ez , { e1 }( f ) , f ) ) on I( T( e , f ) ) , 

which is the right value. 

In case 8 we first show that I( rrc ( T( el If If) --7 0 ) --7 0 ) I f E NN ) ) is 

nonempty. But since I( T( e1 , f, f)) is nonempty by the induction 

hypothesis, I( rrc ( T( el I f I f) --7 0 ) --7 0 ) I f E NN ) ) will contain all 

associates. for partial continuous functionals. 
If { e }( f) = 1 there is an f e NN such that { e1 }( f, f ) > 0. For this f, 

T( e1 , f, f) is nonempty and T1( f, y) =No while. Tz( f, y) is empty for 

y e T( e1 , f, f). This shows that L( L( T 1 ( f, y) I y e T( e1 , f, f) ) I f e NN ) 

is nonempty while TIC TIC Tz( f, y) I y e T( e1, f, f)) I f e NN) is empty. 

Thus the construction works in this case. 
If { e }( f) = 0 we see that L( L( T 1 ( f, y ) I y e T( e1 , f, f) ) I f e NN is 

empty. On the other hand T2C f, y) =No for all f e NN and 
y e T( e1, f, f). Then TIC TIC T2( f, y) I y e T( e1, f, f)) I f e NN) is 

nonempty, and the construction still works. 

Claim 2 

If T( e, f) e Ba for some a and y e I( T( e, f)), then { e }(f)..!.. 

Proof 

We use induction on a and subinduction on the rank of 
y e I( T( e , f ) ) ( in the inductive definition of { I( h ) }he B ) 

a 
Again there will be nine cases, following 51- 59, where case 5 is omitted 
and cases 1, 2, 3 and 7 are trivial. 

Cases 6 and 9: We use that the ranks of the elements in I(< 5, f >) are 

one higher than the ranks of the same objects as elements of I( f). 

Case 4: If I( T( e, f)) ::1: 0, then I( T( e2 , f)) ::1:0. Moreover, if T( e, f) e Ba 

then T( ez , f) e B13 for some J3 < a. By the induction hypothesis 
{ e2 }( f)..!. and then { e2 }( f) = t( e2 , f)( y) for any y e I( T( e2 , f) ). 

Now let < y, x > e I( T( e, f)). Then x e ( T( e1 , t( e2 , f)( y), f) with 

lower rank, and by the subinduction hypothesis { e1 }( { e2 }(f), f)..!., so 
{ e }(f)..!.. 

Case 8: Assume that T( e, f) e Ba· Then for all f e NN we have that 
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T( e1, f, f) e B~ for some ~<a, since it occurs negatively in the 
definition. Assume further that I( T( e , f ) ) '* 0. 
Then in particular I( TIC ( T( e1 , f, f)~ 0) ~ 0) I f e NN)) is nonempty. 

It follows that for all f e NN, I( T( e1 , f, f) ) is nonempty. By the 

induction hypothesis ( e1 }( f, f).!. for all f e NN so { e }( f ).!.. 

This ends the proof of theorem 5.2. 

In the proof of Theorem 5.2 we did not use the non-wellfounded types at 

all, it was sufficient to use a subhierarchy of well-founded types constructed 

by finite or continuous infinite sums and products. It is in fact possible to 

prove this theorem avoiding infinite sums. The reason is that in the proofs 

we did not use the sums themselves, only the facts that they were 

nonempty. The following observation shows that we everywhere in the 

construction can replace the use of infinite sums with a use of infinite 

products: 

5.3 Lemma 

Let f e Ba and let for each x e I( f ) , let gx e Ba be continuous in x. 
Then there is a type P using only products such that 

P '* 0 <=> L,(I( gx ) I x e I( f) ) '* 0 

Proof 

Let P = II (I( gx) ~ 0 I x e I( f) ) ~ 0 

We leave the verification of the desired property of P for the reader. 

6 Second order type-theory, a possible semantics 
In section 2 we defined a model for types with induction, and in section 5 

we showed the correspondence between this model and recursion in 3E. In 

this section we will extend the hierarchy so that we also capture types 

constructed by universal quantification over a family of types 

parameterised over all types. The idea is to capture 

rl rc x) 
X type 

for reasonably uniform r. Using the same methods it is possible to model 
other forms of second order constructions, e.g. the set of uniform functions 

which to X gives an element of r( X ). 
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First we notice that the constructions of section 2 and the proofs of section 

5 can be relativised to any X c NN, i.e. we may let X represent some 

ground type with fixed index and then uniformly recursive in X and 3E 

we may generate types from X and compute the content of each type. It is 
.-

even so that uniformly in X this hierarchy is equivalent to recursion in 

X , 3E. This is a consequence of the following lemma, left without proof: 

6.1 Lemma 

Let X c NN, T( n) c NN be nonempty for each n e N, and let t( n , y ) be 
a continuous function such that tn ( y ) = t( n , y ) is constant on each 

T( n ) . Let Yn e T( n ) for each n. 
Then using a uniform type-constructor we find independently of the choice 

of Yn a set S * 0 and a function s such that s is constant 1 on S if 

A.nt( n, Yn) e X, and s is constant 0 on S otherwise. 

Our objective is to isolate a class of type-operators r that is sufficiently 
general to be useful as a model of second order type theory, but where the 

relation 'X type => r( X ) type' is verified by some object recursive in 3E. 

Lemma 6.1 then indicates that operators of the form 

rf( X)= I( f, X) 

for f where f e B( X) for all X c NN, are not uniform enough, since the 

class of such rf will not even be semirecursive in 3E. 

If we try to restrict ourselves to those rf where for some fixed a. recursive 

in 3E and for all X we have f e Ba.( X ) we may still find that the 
intersection of the sets I( f, X) will not be semirecursive in 3E. 

Our solution will more or less be that we require rf( X) to be a type within 

any reasonable countable model ( .9l.; X ) , and for g to be in AX r( X ) we 

require that .9l. I= g e r( X) for the same class of models. We will 
essentially restrict ourselves to sets X which are recursive in 3E and some 
fe NN. 

6.2 Definition 

A model is a structure 

.9l.=<N,A> 
where A is a countable subset of NN, such that 

i) .9l. I = A is closed under recursion in 3E. 

ii) If X c A is recursive in 3E5l and some f e A and if 
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.91. I = X wellfounded, then X is wellfounded. 

6.3 Lemma 
We may code the models as elements of NN such that the relation 

f codes a model .91. 
is recursive in 3E. 

Proof 
The p:z:oofis trivial and the complexity can actually be seen to be rr12· 

6.4 Definition 

Let .91. be a model. 
We say that .91. is a 3E -model if for all e , m e N and for all 

f1 , ... , fk e A we have 
{ e }( 3E , f1 , ... , fk) = m ~ .91. I = { e }( 3E , f1 , ... , fk) = m. 

If a is an ordinal, we say that .91. is a 3E , a -model if for all e , m e N 

and for all f1 , ... , fk e A we have 
{ e }( 3E , f1 , ... , fk ) = m with the length of computation bounded by a 
~ .91. I = { e }( 3E , f1 , ... , fk ) = m. 

We observe that the relation 
f is a code for a 3E-model 

is uniformly co-r.e. in 3E, and that the relation 

f is a code for a 3E , a - model 

is uniformly recursive in 3E and a. 

6.5 Lemma 
Let .91. be a 3E - model 

Then the 3E- computations relative to elements f of An will form an 

initial segment of the .91.- computations relative to 3E5! under the 'length­

of-computation'- prewellordering. We call this initial segment the 

standard computations in .91.. 

Proof 
Assume that { e }( 3E , f ) = m and let { d }( 3E , g ) be any computation, 

where f and g are sequences from .9L 
Since 3E may decide if <d , g > ::;; < e , f > by a convergent computation, 

the answer will be the same in .91. as in the real world. 



-24-

We are now ready to give the main definition: 

6.6 Definition 

Let B c N be finite, B = { i1 , ... , ik }. 
Let { Xi he B be a family of subsets of NN , each Xi recursive in 3E and 

some fi. 

We define the set S( { Xi he B ) and for each f e S( {Xi he B ) we define the 
set I(f; {Xi }ieB ). 
Simultaneously we use the recursion theorem for 3E to find indices for 

recursive functions Pl and P2 such that 
f e S( { xi he B) <=> Pl ( 3E If,{ xi he B I { fi he B) = 0 

and if f e S( {xi he B) then A.gp2( g If I 3E I {xi lie B I {fi he B ) is the 
characteristic function of I( f ; { Xi he B ). 

Now for the definition: 
The set S( {Xi he B) has the closure properties of the B-hierarchy, and in 

addition two more: 

< 6 , i , to > e S( { Xi he B ) for i e B and then 
I(< 6, i, to> ; {xi he B) =xi. 
< 7 , m , f > e S( { Xi he B ) if m e B and for all 3E - models 

5I. with f e A and fie A for all i e B we have that 

5I. I= 'v'X( X recursive in 3E and some g ---7 f e S( {Xi }i e B'), and the 

length of the computation Pl ( 3E , { Xi he B' , { fi he B' ) in 51. is 
bounded by some standard computation in 5I.) , where B' = B v { m } 

Xm =X and fm =g. 

(In order to be formally correct we should replace Xi by Xi n A in the 

definition above. This will in a sense be the interpretation of Xi in 51..) 

We let he I(< 7, m, f >; {Xi lie B ) if there is a finite set Y c NN such 

that for all 3£ -models 5I. with Y c A , h e A, f e A and fie A for all i e B 

and for all X c A recursive in 3E and some g e A in the sense of 5I. we 
have that 

5I. I= P2( h , f, X , { Xi he B , { fi he B ) = 1 with a computation bounded by 
some standard computation in YL 
The definition of p1 in this case is easy, we notice that the co-r.e. statement 
that 5I. is a 3E-model occurs negatively and that the rest is trivially r. e. in 
3E. In order to show how to compute p2 we must notice that there is a 
uniform bound on the length of the standard parts we need in order to 
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compute the values P1 ( f, {Xi lie B' , { fi lie B' ) in the various models Yl. 
and for the various subsets X and elements g of A. Moreover we can 

compute an upper bound for the length of 

{ P2( hI f I {xi he B I { fi he B) lheNN when the length of 

Pl ( f, {Xi he B , { fi lie B ) is known. We use this to find an a such that we 
can replace the use of 3E-models in the definition of 

h e I( < 7 , m , f > ; { Xi he B ) with 3E , a - models. 

We will not prove that we have constructed a model for any second order 

type theory, since we are not concerned with formal theories here. We will 

however formulate a few lemmas that might be helpful in such a venture. 

First we should notice that although we have used the notation 

S( x 1 , ... , Xn ), the set is dependent on the choice of f1 , ... , fn· There 

seem to be no natural way to avoid this breach of elegancy. The definition 

of I in case 7 is however designed so that the value of I( f; x 1 , ... , Xn) 

will be independent of the choice of f1 , ... , fn. We leave the verification 

of this for the reader. 

6.7 Lemma 

If f e S( { Xi he B ) then for all 3E - models Yl. with f, fi e A we have that 

Yl. I = f e S( { Xi lie B ) by a computation in the standard part, and we have 

g e I(f; { Xi he B ) ¢::> Yl. I = g e I( f; { Xi he B) for all such Yl. with g e A. 

Proof 
Immediate from the definition 

This means that if r is a type and X is a type variable not occurring in r 

then AX.r is a type with the same elements as r. 

6.8 Lemma 

a) Let f and {Xi he B be given, where Xi is recursive in 3E and fi. 
If for all 3E- models Yl. and for all Xm c A recursive in 3E)il and 

some g e A we have Yl. I = f e S( { Xi he Bu{ml ) then 
f e S( { Xi he Bu{ml ) for all Xm c NN that are recursive in 3E and 

some g. 

b) If f, { Xi he B are as above, if Y c NN is finite and if 

Yl. I = g e I( f; { Xi he Bu{m} ) for all Yl., Xm as above with Y c A, then 
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g e I( f ; { Xi }i e Bu{m} ) for all Xm c NN that are recursive in 3E and 

some h. 

Proof 
Both a) and b) are proved by a simple Lowenheim-Skolem argument. 

6.9 Lemma 

Let .91.. be a 3E - model. 

Let '13 be a model with a code in .9f. 
If .91.. I = '13 is a 3E - model, then '13 is a 3E - model. 

The proof is trivial. 

6.10 Lemma (Substitution) 

There is a recursive function p with the following property: 

Let B c N and C c N be finite sets. 
Let { Zj lje c be a family of subsets of NN, Zj recursive in 3E and uj. 

Assume that fi e S( { zj lje c ) for each i e B, with yi =I( fi ; { zj }j e c ). 
Yi will be recursive in fi and { uj lje c , and this will be the representation 
we will use below. 

For technical reasons we will assume that fi is not the canonical code for 

the inductive type J.l.X(X = X). 

Assume further that g e S( { Yi he B) with X= I( g; { Yi lie B }. 

Then h = p( g I B I c I {fdie B) e S( { zj lje c) and 
X = I( h ; { 21 }j e c ) 

Proof 

We will construct p using the recursion theorem. p will be constructed so 
that g will be recursive in p( B, C, { fi he B, g ) , 3E and if 

< 6, i, 10 > occur in the subtype-tree of g, then fi is recursive in 

p( g , B , C, { fi he B ) , 3E. 

What p does is rewriting g substituting fi for < 6, i, 10 >.In order to 

recover g we must be able to tell where in the subtype-tree of 

p( g , B , C, { fi he B ) a substitution has been made. The trick used for that 
will be useful when we want to compute fi from p( g, B , C, { fi he B ) , 3E 

as well. 

We assumed that fi is not the canonical code for the empty type, and we 
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may as well assume that fi is not of the form < 5, f >. 

In the proof we will let < 5n , f > denote < 5 , < 5 , ... ,< 5 , f > ... > > with 

n occurrences of 5. 

Let T g be the tree of subtypes of g. 
If < 5n, f > is a node in Tg we call it maximal if< 5n+l, f > is not a 

node and f is not on the form < 5, f' >.We call n the length of this 

node, the length will in many cases be 0. 

Using primitive recursion we may rewrite g to a recursively equivalent g' 

such that a maximal < 5n , f > is replaced by 

a maximal < 52n+1, f' > if f = < 6, i, 10 > for some i e B 

a maximal < 52n , f' > if f ;¢: < 6 , i lo > for all i e B, 

and such that I( g' i { Yi he B) = I( g i { Yi he B). 
Below we will assume that g is obtained from such a shift. 

p is actually going to be primitive recursive. The definition is divided into 

cases, following the type-constructors. In all cases but two p will simply 
commute with the top type-constructor in g. This means in particular that 

p will preserve maximality and commute with 5n. -

The two remaining cases will be 

p( < 7, m , f > , B , C, { fi lie B > = < 7, m1 , p( f, B1 , Cv { fi he B1 ) > 
where m1 is the least ordered pair < m, m2 > not in C, B1 = B u { m}, 
c1 = c u { m1 } and fm = < 6 , m1 , 1o >. 

We can obtain g from p( g, B, C, { fi he B) by reversing the recursive 
definition of p. From the length of the maximal nodes we can tell when 
the recursion is to be continued and when we shall insert < 6, i, 10 >. 

In case 7 we defined m1 so that m is uniformly primitive recursive in 

m1. Thus g is actually primitive recursive in p( g, B, C, { fi he B). 

To recover fi is a bit more delicate. From 3E and p( g , B , C, { fi he B ) we 

may compute the subtype tree T p( g, B, c , {fi he B , ) of 
p( g , B , C , { fi he B , ) . We may also compute the set { f I ::In( < 52n + 1, f > 

is a maximal node in T p( g , B , c { fi he B , ) ) This set is finite, so the 
elements can be computed using 3E. This will be the fi's. 

We will now prove that if g e S( { Yi he B ) and 

fiE S( { zj lje c) then p( g, B, c, { fi he B) e S( { zj lje c). 
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Simultaneously we will prove that I( p( g I B I c I { fi lie B ) ; { zj lje c ) = X. 

We will use induction on the length of the verification of g e S( { Yi lie B). 
The proof can also be carried out inside any 3E-model .91. and a part of the 

induction hypothesis at a will be that the claim holds within .91. for the 

standard computations bounded by a in the real world. 

For both, case 7 is the only nontrivial case. 

So let X = I( < 7, m , f > ; { Yi lie B ) and 

h = < 7 I m1 , p( f, Bl , cl, { fi }i e Bl ) >. 
We first show that h e S( { 21 lje c). Let .91. be a 3E- model with he .91., 

uj e .91. for j e C, and let Xm 1 be .91.-recursive in 3E and a f' e A. Then f 
and the fi's will be elements of .91. since they are recursive in h, 3E at a 

finite level. We now use the induction hypothesis inside .91., so 

.91. I= p( f, Bl, cl , {fi he Bl) e S( { zj lje c u { Xml l) 
This is exactly what is required for h to be in S( { Zj lje c). 

We can use the induction hypothesis inside .91. since we have to verify that 

f e S( { Yi lie Bl ) with Ym = Xm1 holds in Jl bounded by a standard 
computation. 

We will now prove that 

I( h ; { Xj lje c ) = I( < 7, m , 10 > ; { Yi lie B ) 
by proving the inclusion both ways. We will use the special notation 
introduced above. 

Let g e I( h; { Xj lje c). Let Y be finite such that for all 3E-models .91. with 

Y c A, uj e A for j e C, g e A and he A, and for all relevant Xm1 we 
have 

.91. I= g e I( p( f, B , C , { fi he Bl ) ; { Xj lje c 1 ) 
By the induction hypothesis in .91., and letting Ym = Xm1, we have 

Jl I= g e I( f; { yi he Bl ). . 

Let Y' = Y u { uj l je C· 
If .91. contains Y', g and { fi he B we are in the situation above. This 

shows that g e I( < 7, m , f > ; { Yi lie B ). 

Conversely, let g e I( < 7, m , f > ; { Yi he B ). 

Let Y be finite such that for all models .91. containing Y, { fi lie B , 
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{ uj lje c, g and f and for all relevant Ym we have 

.9l I = g e I(f i { Yi lie B1 ). 
Using the induction hypothesis inside .9l we have that 

.9l I= g e I( p( f, B1 , C1 , { fi he B1 ) i { Xj }je c1 ) 
with Xm1 = Ym and as above fm = < 6, m1, 10 >. 
Using the same Y we see that this demonstrates that 

g e I( p( f , B , C , { fi he B ) i { Xj } je C ) · 

This ends the proof of the substitution lemma. 
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