
Agentless Inspection of Virtual
Hosts Configuration by
Interaction Through The Virtual
Hardware
Andreas Liaker
Master’s Thesis Autumn 2014

Agentless Inspection of Virtual Hosts
Configuration by Interaction Through The

Virtual Hardware

Andreas Liaker

12th December 2014

ii

Abstract

In this thesis the possibility to interact with the virtual machine without
traversing the network or using monitoring agents are explored. Instead of
using this traditional approach the intention are to exploit the possibilities
which are present when a System Administrator does control the hardware
that host the virtual machine. In the research community this has been dis-
cussed under the topic of introspection, and there has been considerable
research in this area.

The contribution don by this thesis is the creation of tool that can ana-
lyze the memory of a targeted virtual machine from the virtual machine
monitor. The focus of this analyzes is to determine if the targeted vir-
tual machine is compliant according to a predefined configuration stored
in more secure location.

In addition to the development of the tool, the performance impact on
the targeted virtual machine is investigated. One of the intentions of the
development of the tool in this thesis is to remove the load caused by a tra-
ditional agent. Instead these workloads are transferred to server that has
privileged access to the targeted virtual machines hardware.

In the end the results are discussed and it is concluded that a prototype
is developed and the performance impact on the targeted virtual machine
are acceptable. Because there is only a prototype that is developed im-
provements are suggested in additions to future work.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Scope and Problem statement 4

1.2.1 Problem statement . 5
1.3 Challenges . 5

2 Background and Literature 7
2.1 Server Virtualization . 7

2.1.1 VMM type 1 . 7
2.1.2 VMM type 2 . 8

2.2 Protection ring . 8
2.3 CPU virtualization . 9

2.3.1 Full virtualization . 10
2.3.2 Paravirtualization . 10
2.3.3 Hardware assisted virtualization 11

2.4 Xen Server Architecture . 12
2.5 Virtual Machine Introspection 13
2.6 Semantic Gap . 13
2.7 Related Work . 13

3 Planning the Project 17
3.1 The prototype . 19
3.2 Test Plan . 19

3.2.1 Experiment 1: Accuracy 19
3.2.2 Experiment 2: Performance impact on virtual guest. . 20
3.2.3 Experiment 3: Performance LibVMI vs Volatility. . . . 21
3.2.4 Experiment 4: Performance impact with LibVMI. . . 22

4 Approach 23
4.1 Installing and configuring the dom0 23
4.2 Installing and configuring libvmi 24
4.3 Installing and configuring Volatility 24
4.4 Creating the prototype. Compliant.pl 25
4.5 Creating the scheduler. schedule.pl 30
4.6 Creating the resource consuming process. rescons.pl 31

v

5 Results 33
5.1 Experiment 1 . 33
5.2 Experiment 2 . 34
5.3 Experiment 3 . 35
5.4 Experiment 4 . 36

6 Analysis 39
6.1 Experiment 1. 39
6.2 Experiment 2. 39
6.3 Experiment 3. 40
6.4 Experiment 4. 40

7 Discussion and Future Work 43
7.1 Retrieving the data . 43
7.2 The collected data . 44
7.3 The construction of the prototype. 44
7.4 The Selected Approach . 45
7.5 Repeat the project. 46
7.6 Relation to Existing Work . 46
7.7 The Intended Consumer . 47
7.8 Conclusion . 47
7.9 Future work . 48

Appendix A Setting up the environment 49
A.1 Installation Dom0 . 49
A.2 Install and configure the network bridge 51
A.3 Install a Paravirtualized guests 52
A.4 Install hardware assisted virtual host 53
A.5 Configure Libvmi . 55
A.6 Install Volatility and dependencies 57

A.6.1 Create a Profile for Volatility 58
A.7 Install PyVMI . 60

Appendix B Compliant script compliant.pl 61

Appendix C Resource consuming process Script. rescons.pl 67

Appendix D Scheduling Script. schedule.pl 71

Appendix E Data from the experiments 75
E.1 Data Experiment 1 . 75
E.2 Data Experiment 2 . 75
E.3 Data Experiment 3 . 78
E.4 Performance Resource consuming process. 78

vi

List of Figures

2.1 Type 1 VMM . 7
2.2 Type 2 VMM . 8
2.3 Protection Ring . 8
2.4 Without virtualization . 9
2.5 Full virtualization . 10
2.6 Paravirtualization . 10
2.7 Hardware assisted virtualization 11
2.8 Xen Server Architecture . 12

3.1 The project environment . 18
3.2 Experiment 2: Performance impact on virtual guest. 21

4.1 The Environment . 23

5.1 Performance impact on target GVM 35
5.2 60 LibVMI tests/minute . 36
5.3 Performance impact on target GVM usin LibVMI 37

vii

viii

List of Tables

3.1 Expected result for compliant test. 20

5.1 Experiment 1: Compliant Result. 34
5.2 Experiment 2: Performance impact on target GVM 34
5.3 Experiment 3: Result . 36
5.4 Experiment 4: Performance impact on target GVM 37
5.5 Experiment 4: Summarized performance impact on target

GVM . 37

E.1 Experiment 2: Baseline Control Sample 75
E.2 Experiment 2: 1 test / min . 76
E.3 Experiment 2: 2 test / min . 76
E.4 Experiment 2: 3 test / min . 76
E.5 Experiment 2: 4 test / min . 77
E.6 Experiment 3: Performance Volatility Process List. 78
E.7 Experiment 3: Performance libvmi Prosess list. 78
E.8 Experiment 4: Performance Resource consuming process at

60 interrupt a minute. 78
E.9 Experiment 4: Performance Resource consuming process at

120 interrupt a minute. 79
E.10 Experiment 4: Performance Resource consuming process at

180 interrupt a minute. 79
E.11 Experiment 4: Performance Resource consuming process at

240 interrupt a minute. 79
E.12 Experiment 4: Performance Resource consuming process at

300 interrupt a minute. 80
E.13 Experiment 4: Performance Resource consuming process at

360 interrupt a minute. 80

ix

x

Acknowledgements

I would like to express my gratitude to the following people:

• My supervisor Andrew Seely for his valuable advice, guidance,
enthusiasm for my thesis, keep me motivated when things went
wrong and reviewing my final work.

• My Company Statsbygg and my Manager Hanne Flostrand for
supporting my education with necessary equipment and time to
study.

• My coworker Kenneth Gudem for valuable advice with problem-
solving and interesting discussions.

• My Wife and two kids for patiently supporting my work and still
loving me.

xi

xii

Chapter 1

Introduction

The internet is no longer a place where friendly scientists are sharing ideas
and information. Today this friendly society is turned into a place where
nations are waging secrets wars, and international terrorist and criminal or-
ganizations are coordinating their illegal efforts. The enemy is hidden and
the motivation of his actions is unknown. The victims can in many cases
seem to be arbitrary, so any organization or person could be the next victim.

As the attacker has changed so has also the actual attack. In the be-
ginning when the attacker was a kid still living at his parents place, the
attack was to penetrate the security of a system and take it down or change
a webpage to something completely else. This kind of attack was easier
to defend against, or at least you knew that you ware compromised. Now
that the attacker has evolved into a well-financed organization the attack
has become more sophisticated as well. Today an attack can penetrate a
system and lay dormant until the right opportunity arises.

This new attack often has the capability to hide from security solutions
like intrusion detection systems [13]. The first step of an attack is in many
cases a port scan, but instead of rapidly going through all the ports, attack-
ers have learned to camouflage an attack by blending into legitimate traffic
like using more time between trying each port. This approach is difficult for
a network intrusion detection system (NIDS) to detect, which has resulted
in the creation of host intrusion detection systems (HIDS). But the HIDS
is only capable of defending against attacks after a system is affected, so
the attacker mask their presence by installing root kits which hide the ma-
licious processes.

When a person investigates the threats that are out there, and how fast
the malicious attacks are adapting to new security solutions, it is easy to
draw the conclusion that resistance to attacks is futile. For instance for a se-
curity company to develop a signature against a virus, some systems first
need to be infected. And when a new vulnerability is discovered there is
first a need to develop a patch and then the patch need to be tested before
it can be implemented. The length of time from when the vulnerability [12]

1

is discovered to a successful patch can be significant. In addition there is
a valid point that the requirements for testing malicious code that will ex-
ploit a vulnerability is not always as important as testing the actual patch
that will seal that vulnerability.

Counteracting these threats requires a significant amount of resources.
And there are often conflicting interests when the subject about using re-
sources on security is discussed. One of the reasons for this is that it can
be hard for non-technical decision takers to see the benefits of investing in
security when it is weighted against new functionality that has promises
of increased profit. Due to this a system administrator has a difficult task
when it comes to decide on security solutions.

A technology that has released a considerable amount of resources for
the system administrator in the past is virtualization [35]. Virtualization
has simplified the management of the server infrastructure, and enabled
the system administrator to utilize more of the potential of the already pur-
chased hardware. One of the objectives of this thesis is to enlighten and
prove that there is more potential in this technology than is commonly in
use today.

A topic in the virtualization paradigm that has received a considerable
amount of scientific attention is the concept of virtual machine introspec-
tion (VMI). VMI is to directly analyze the state of virtual machine hard-
ware like memory and disk, from a secure location, without using an agent
or rely on the guest operation system API. This secure location is in most
cases the virtual machine monitor (VMM), or a virtual machine that has
privileged access to the guest virtual machines hardware like the Dom0
server in a Xen architecture. The concept of VMI is described in detail in
section Virtual Machine Introspection 2.5 on page 13.

1.1 Motivation

A legitimate question when it comes to VMI is why is it interesting to use
this technique when it is clearly much more complicated than the tradi-
tional way with using an agent or directly run system calls to the Operation
System Application Programming Interfaces (OSAPIs)? The answer to this
is yes there is more complicated but it also enables new capabilities that are
not possible with the standard techniques. And there are reasons to believe
that some of these capabilities are not yet discovered.

The first benefit of using virtual machine introspection is that it is dif-
ficult for the guest operation system (GOS) to be aware that it is actually
being monitored. There are some indications that might be taking place,
but this is mostly based on the assumption that if the OS is running on a
virtual machine it might also be monitored with VMI techniques. For the

2

operation system to detect if it is actually a virtual machine or a physical
one, it is often enough to investigate the hardware. Like virtual hardware
has in many cases specific virtual hardware drivers, or virtual CPU will
actually reveal it is virtual if asked. But even if the GOS knows it is a vir-
tual machine, it can only assume it is being monitored, and it is difficult to
know in which way.

The VMI capability of hiding from the GOS is also valid for hiding from
malicious code that has infected the GOS on the virtual machine. This cap-
ability has resulted in research on numbers of VMI security solutions which
is explained more thoroughly in Related Work section 2.7 on page 13. The
idea is that it is difficult for the malicious code to hide from the VMI monit-
oring tool when the VMI tool does not depend on any code in the environ-
ment the malicious code controls. For instance it is common for malicious
code to install a stealth root kit on the machine it controls, to hide the mali-
cious processes. So when you execute a code that will list all processes like
this command in an Ubuntu OS.

sudo ps aux

The code usually list all processes, but with a stealth root kit it lists
all processes except the processes that the malicious code wants to hide.
This might be a listening process which intends to keep a backdoor open
for later use. The VMI monitoring tool do not depend on executing the
command that are compromised, instead it analyze the memory where the
malicious code need to run in order to work.

This is not only valid for processes, but also for anything that needs to
be in memory, like the running configuration of an application. A simple
example is if you run this command in an Ubuntu OS.

sudo i f c o n f i g

This will list your active network configuration. There is a simple task
for a malicious code to tamper with output to show something different
than what is actually the running configuration. But even if the output is
altered, the running configuration needs to be in memory. And this is true
for all processes running on an OS, and a VMI monitoring tool should be
able to detect this.

In many IDS and VMIIDS solutions the detection methods are based
on recognizing patterns and malicious behavior. In order for the IDS or
VMIIDS solution to detect this patterns or malicious behavior it is neces-
sary to have some knowledge about this up front, and this is not neces-
sary a trivial task to accomplish. A thing that is more trivial is to gather
knowledge about the configuration of a system. So a VMI configuration
compliance system which detected drifting configurations cud be a god

3

supplement to a VMIIDS solution.

A known malicious code that has used the ability to report the wrong
state to the user is the computer worm stuxnet [27]. Simply explained, this
computer worm is believed to be designed for attacking the Iranian nuclear
program, by destroying the centrifuges used for separating nuclear mater-
ials. The computer worm destroyed the centrifuges by letting the centri-
fuge spin outside their thresholds and tear them self apart. This was done
without the control software reporting any failures. With a VMI tool this
should in theory be possible to detect that the control software did not use
the correct parameters.

In addition to the security benefits of a VMI monitoring tool, there are
other factors that can motivate the development of this kinds of tool. Some
of these factors are in-guest performance, and the way it is deployed. By
deploying the VMI monitoring tool somewhere outside the virtual guest,
most of the code execution will happen outside the virtual machine, and
free up in guest resources. This will in most cases be executed on the same
physical hardware, but the resources dedicated to a virtual machine can be
used by the guest operation system and it applications instead of security
tool agent.

When a tool is abstracted from the virtual guest operation system and
deployed on a machine that has privileged access to the physical hardware
like the VMM or Dom0 in Xen, the design is simpler. A VMM can host
multiple virtual machines on one physical machine, so the VMI tool will
only need to be deployed one time for each physical machine. The VMI
tool can then be configured to interact with all the virtual machines that
are running on the given VMM. This simple design will also simplify the
process of updating the tool, like new definition files.

1.2 Scope and Problem statement

In this thesis I will develop a prototype for a tool that can be used to identify
if a virtual machine is compliant according to a pre-defined set of configur-
ations. The prototype will use VMI to analyze the memory of the targeted
virtual machine, and then compare it with the desired configuration stored
on a secure place accessible by the prototype. There is only the running con-
figuration or the memory that will be analyzed and not the actual config-
uration file. To analyze the actual configuration files might be interesting,
but is left out of scope because there is only the running configuration that
are considered criteria to determine if a virtual machine is compliant or not.

If a virtual machine complies with the desired configuration, the vir-
tual machine will be reported to be compliant. But if the virtual machine
does not comply with one of the parameters described in the desired con-

4

figuration, it should be reported as an uncompliant machine. Based on this
result the virtual machine can be connected to the network if it is compliant
and disconnected if it is not compliant. The prototype can be executed on
a schedule to do compliant test regularly in case the configuration on the
virtual host has changed and then correct actions can be performed.

The idea of this behavior is to not only to protect against malicious code.
In addition this can be used to protect against misconfiguration as well.
There might be reasons for other behaviors in case for misconfigurations,
but this is considered out of scope for this thesis.

In addition to this functionality the prototype should not impact the
guest virtual machine performance. As described in the Motivation section
1.1 on page 2, one of the reasons for using VMI tools is to free up guest
virtual machine resources.

To summarize the capabilities of the prototype:

• Determine if a virtual machine is compliant with the desired config-
uration.

• Connect or disconnect the virtual machine according to it compliance
status.

• The ability to re-run the test in case of a compliance change.

• Negligible performance impact on the guest virtual machine.

1.2.1 Problem statement

Using Virtual Machine Introspection (VMI) to validate if a virtual machine
is complaint with respect to confirmation management and malicious soft-
ware standards before being allowed to access a production environment.

1.3 Challenges

The first of the challenges that will be addressed in this thesis is how to
interpret the memory from the virtual guest. When you are operating from
inside of a virtual machine, the operation system has a set of commands
and APIs that is available to help identify where in the memory the data
is located. When you are operating from the VMM or a server that has
direct access to another machines memory the memory is just a stream of
continuous data. This behavior is named the Semantic Gap [36][8], and is
explained in more detail in the Semantic Gap section 2.6 on page 13. To
bridge this gap is not only a challenge for this thesis but also for most other
VMI research.

5

Another challenge that needs to be address is the performance impact
the prototype will have on the virtual machine. In this thesis the Xen server
will be used, and the VMI tool will be implemented in the dom0 server as
described in Planning the Project chapter 3 on page 17. This will have an
additional performance impact, due to the fact that the dom0 server needs
to contact the VMM to get access to the virtual machine memory. So for this
thesis it will be important to design the prototype with the goal of having
a small as possible performance impact of the monitored virtual machine.

In addition to these challenges it is important to consider the state of
a virtual machine during a boot. When a virtual machine is powered off
it has no configuration located in the memory. So it needs to be decided
if a machine should be allowed access to the production environment ini-
tially, or if it should wait until the first analysis of the virtual machine is
performed. The last option will of course result in a longer time before the
virtual machine is available during a boot, depending on the frequency the
prototype performs a compliance check on the virtual machine.

6

Chapter 2

Background and Literature

2.1 Server Virtualization

The idea of sever virtualization is to abstract the operating system from
the physical hardware, and instead put in place a Virtual Machine Mon-
itor (VMM) which will control the hardware and make it available for one
or more guest operating systems (GOS). Because most systems only use
a portion of the resources available [30], this architecture of serving more
than one operation system makes for a more efficient use of the available
hardware resources. Generally there is to types of virtual environment
[26][18][1]:

• Type 1. The VMM runs directly on the hardware

• Type 2. The VMM runs on top of another operating system

2.1.1 VMM type 1

Hardware

GOS

VMM

GOSGOSManagment

Figure 2.1: Type 1 VMM

For type 1 VMM, a layer of abstraction is removed and the VMM runs
directly on the hardware as illustrated in figure 2.1 on page 7. When a
VMM runs in a type 1 environment it is often referred to as a hypervisor
[1], and is the architecture used by VMware ESX, XEN Server and Microsoft
Hyper-V. This is commonly used for enterprises production environments,

7

and with the use of paravirtualized or native drivers this also gives the best
performance. See Paravirtualization section 2.3.2 on page 10 and Hardware
assisted virtualization section 2.3.3 on page 11.

2.1.2 VMM type 2

Hardware

OS

GOS

VMM

GOSGOS

Managment

Figure 2.2: Type 2 VMM

In a type 2 environment the VMM does not run directly on the hard-
ware, but runs on top of an operating system. See 2.2. This type of envir-
onment does generally not perform as well as a type 1 because the VMM
needs to use the underlying operating system as an interface to the hard-
ware. Sometimes a type 2 VMM is referred to as desktop virtualization,
and some examples of a type 2 VMM are VMWare workstation [31] and
Virtual Box [21].

2.2 Protection ring

Ring0
Kernel

Ring1

Ring2

Ring3

Ap
plic

atio
n

Most privileged

Least privileged

Figure 2.3: Protection Ring

To explain how virtual machines get access to the hardware it is helpful
to first explain the concept of protection rings. The protection rings are in
the x86 architecture a mechanism enforced by the CPU to protect the sys-
tem from failure [4]. The x86 architecture consists of four protection rings
usually numbered from zero to three, where ring zero has the most priv-
ileges and then the privileges decrease until the third ring which has the

8

least privileges. See 2.3. For an ordinary operating system ring 1 and 2 is
not used, while the kernel runs in ring 0 and the applications runs in ring 3.

The concept of protection rings is to protect against arbitrary usages
of inner rings resources, and instead provide a predefined gateways for
accessing these resources. This will prevent an application from a less priv-
ileged ring to mis-use resources from a more privileged ring.

Because type1 VMM and guest operation system kernel both expect to
run in ring0, recent CPUs from Intel and AMD have implemented hard-
ware virtualization assisting capabilities. Intel implemented Intel VT-x and
AMD implemented AMD-V. Both of this technologies implement a Ring -1
layer which enables a VMM to control ring0 access, which then enables op-
eration system to run ring0 natively without interfering with other virtual
hosts.

2.3 CPU virtualization

Hardware

OS / Kernel

ApplicationRing 3

Ring 2

Ring 1

Ring 0

Figure 2.4: Without virtualization

As mentioned in 2.2, an operation system is designed to run directly on
the hardware and need to run it most privileged instructions in ring0. The
instructions that do not need to be executed in ring0 are usually carried out
in ring3 such as user applications. This is illustrated in figure 2.4. With
the operating systems need for owning the ring0 becomes a challenge for
virtualization when this depends on putting a VMM underneath the guest
operation system. To overcome this challenge the different virtualization
vendors have embraced different approaches, including: [22][35].

• Full Virtualization

• Paravirtualization

• Hardware assisted virtualization

9

Hardware

OS / Kernel

ApplicationRing 3

Ring 2

Ring 1

Ring 0 VMM

Figure 2.5: Full virtualization

2.3.1 Full virtualization

In a fully virtual environment the guest OS kernel is not aware of it run-
ning in a virtualized environment, and all the guest systems hardware is
virtualized. As illustrated in figure 2.5 the VMM is running in ring0 and
the guest operation systems privileged kernel instructions are executed in
ring 1. Because these instructions expect to be executed in ring0 the nonvir-
tualizeble instructions are binary translated to new sets of instructions that
have the intended effects on the gust operation systems virtualized hard-
ware. Fore higher performance the user mode application instructions are
executed directly on the processor. This type of virtualization does not re-
quire any modification of the guest operation system kernel, and may trade
some performance for maintainability.

2.3.2 Paravirtualization

Hardware

Guest OS / Paravirtualized Kernel

ApplicationRing 3

Ring 2

Ring 1

Ring 0

VMM

Figure 2.6: Paravirtualization

With paravirtualization the kernel is made aware that it is running on a
virtualized environment, which allows it to run in ring0. Because most op-
erating systems are not designed to run in a virtualized environment this
requires some deep modifications of the OS kernel. This modification en-
ables the guest operating system to do system calls that are difficult or slow
to virtualize, directly to the VMM/hypervisor (hypercalls) [6]. The paravir-
tualization architecture of doing the privileged system calls with hypercalls

10

is faster than the fully virtualized architecture [35]of doing this call with bit
translations or fully software emulation.

While development of bit translation is considered to be very complic-
ated, to modify the guest operation system kernel and develop the VMM
to accept hypercalls is a simpler task. The drawback of this approach is
that the Guest operation system needs to be modified, and this has its chal-
lenges when it comes to proprietary operating systems like Microsoft Win-
dows.

2.3.3 Hardware assisted virtualization

Hardware

Guest OS / Kernel

ApplicationRing 3

Ring 2

Ring 1

Ring 0

VMM
Ring -1
Root Mode

Figure 2.7: Hardware assisted virtualization

In 2006 Intel released VT-X and AMD released AMD-V which enables
the concept of hardware assisted virtualization for the x86 architecture [9].
When one of these features is enabled a new CPU execution mode beneath
ring0 is available. See figure 2.7. This level is often named ring-1 or root
mode, and when this mode is enabled all the privileged and sensitive calls
are sent directly to the VMM. When the VMM runs in root mode the need
for paravirtualized OS kernels or binary translation is eliminated.

Hardware assisted virtualization has a range of different names. It is
known as accelerated virtualization, Hardware virtual machine (HVM),
and native virtualization. HVM is the name that is used by the Xen techno-
logy that will be used in this thesis. The benefit of using hardware assisted
virtualization is that the need for modifying the kernel and bit translation
is reduced. The first attempts to use hardware assisted virtualization gave
little performance advantages over software emulated hardware, and in
some cases the performance was worse [9] [22]. To improve this a hybrid
solution is used where optimized paravirtualized drivers boost perform-
ance while hardware assisted virtualization eliminates the need for modi-
fying the kernel. In Xen this is called PVHVM or PV-on-HVM [35].

11

DomUDom0

VMM

Hardware

GOS
FE-Drivers

GOS
FE-Drivers

GOS
FE-Drivers

BE-Drivers

Driver Domain
BE-Drivers

ToolStack

Dom0 Kernel

Figure 2.8: Xen Server Architecture

2.4 Xen Server Architecture

Xen server is a type 1 open source VMM, and it supports both paravirtu-
alization PV and hardware assisted virtualization which they have named
hardware virtual machines (HVM). The VMM or hypervisor are one of the
smallest type 1 VMM that is available today, and has a size of about 1 MB
[35]. One of the reasons for this small size is that it does not contain any
device drivers, instead the drivers are present in a special virtual machine
known as Domain 0 or a driver domain server [5].

Xen server has servers running in two types of domains, which each
has a separate set of privileges. First there is the control domain or Dom0,
which is a special virtual machine that has the highest privileges. The
Dom0 server has direct access to the hardware and handles all the interac-
tions with the systems I/0. It also handles all the communication between
the guest virtual machines, and the outside world. This architecture results
in the Dom0 server being essential, and the VMM will not work without
this server.

The control domain requires a server that has a Xen-enabled kernel, and
most Linux distributions that are based on the recent Linux kernels have
this support. Because the Dome0 server that controls the drivers is based
on a Linux system the support for hardware is quite large. As indicated
earlier the driver control can be delegated to a driver domain server, which
will only have the privilege to control the hardware it has been delegated.
This design will free capacity on the Dom0 server to lower the risk of it be-
ing a bottleneck. In addition this will enhance reliability because the driver
that may be more prone to failure then the rest of the OS is isolated in a
separate unprivileged server.

In addition to the control Domain the Xen architecture consists of a
domu domain which contains all the guest virtual machines. All the guest
virtual machines has a set of front-end drivers witch are given access to the
hardware through the back end drivers in dom0 or driver domain. See fig-
ure 2.8. To deploy and control the virtual machines in domain U the dom0
server uses the tool Stack.

12

2.5 Virtual Machine Introspection

Virtual Machine Introspection (VMI) is used in most cases to passively or
actively monitor an exposed unsecure guest virtual machine (GVM) from
a secure isolated machine, by tapping into the GVMs virtual hardware like
memory, CPU register and disk. When VMI is performed there is no need
for the typical agents, because the monitoring occurs directly to the virtual
hardware from the entity that controls this hardware. In the case of a Xen
server it will typically be the VMM or the Dom0 server that will monitor
the guest virtual machines.

2.6 Semantic Gap

The Semantic Gap [36][8] is the difference between how the Operation Sys-
tem on a virtual machine can access the systems resources and how it is
represented for the VMM. Inside a virtual machine the Operation System
can access the systems resources through the virtual interface in the same
way it access the physical hardware if the machine that is not virtualized.
From the VMM the same resources are presented as a raw stream of data,
and the VMM has little understanding of the semantics of this data.

It is to bridge this Semantic Gap problem much of the VMI research
tries to solve. The VMI applications develop is either semantically aware or
unaware [18]. A semantically aware VMI application has an initial know-
ledge about the Operation System [13][10], like LibVMI [14] which uses the
system.map file see Configure Libvmi Appendix A.5 page 55. If the VMI
application is semantically unaware it builds the knowledge about the vir-
tual host over time[8].

2.7 Related Work

The concept of virtual machine introspection was first investigated by T.
Garfinkel [23]. He presented the idea of moving an IDS solution out of
the guest operation system and down on the virtual machine monitoring
(VMM) level. By this approach he manage to get much of the host HIDS
visibility without the vulnerability of running the IDS on the same host that
it is inspecting.

It is possible to divide the research that has been done about VMI into
two categories. One of the two categories is pure monitoring or read only.
The second one is the interactive one, that not only monitors the guest VM
but interact with it as well. The first category is the most common one, but

13

the recent years I have seen more research that belongs to the second cat-
egory as well.

One example that falls under the category of pure monitoring is Ant-
farm [10], which is technique that can be used to track processes inside a
virtual machine. The process inspection have been taken a step further in
lycosid [11] where they are trying to find hidden processes by using hypo-
theses testing. Many samples are taken over time, in a busy system, and
the probability for hidden processes is calculated.

Another example of monitoring-only solutions is VMI-Honymon [13]
which is an intrusion detection system that uses memory based introspec-
tion for monitoring honeypots. The monitoring with VMI is also transfer-
able into the cloud, and this is explored in NFM [28], which is a solution for
monitoring in the cloud. The idea is to enable subscription on monitored
data even if the actual system is down.

In the category of more interactive VMI techniques, the level of inter-
action is varied. Like in Manitou [16] the solution inspects the code that is
going to be executed inside a guest virtual machine. Then Manitou runs
on the VMM and uses the per-page-permission bit to determine if the code
that is going to be executed corresponds to the authorized code. To author-
ize the code Manitou uses a cryptographic hash of the code in the moment
before it is going to be executed.

Another approach is explored in IntroVirt [12]. This tool uses predicts
to discover vulnerabilities and prevent them. A predict is a type of virtual
patch that is developed by a person with the same skill set as the person
that develop the actual patch. This predict can then be used to protect a
system until the system is tested and updated with the new patch.

A solution that have taken the level of interaction on step further is Ex-
terior [7]. Exterior is a prototype that can execute a command from a secure
virtual machine (SVM) and through VMI insert the code to a guest virtual
machine (GVM). The code can then be executed on the GVM without any
privileges on the GVM. This demonstrates the possibilities that are possible
with VMI as well as the security concerns.

When the interaction with the machine is moved from the operating
system inside the virtual machine to the VMM layer, the challenge about
the “Semantic Gap“ rises. When inside the virtual machine there are sys-
tem calls and API‘s [15], while at the VMM layer there is only a bit struc-
ture to interact with. This Semantic Gap is a great challenge, and in order
to overcome this, a great understanding of the operating system is needed
[3]. And with the wide variety of operating systems that exist today, there
is a good deal of operating systems to have a great understanding about.

Fortunately there has been some work done to decrease the Semantic

14

Gap. The common denominator for many of the approaches is that in some
way the behavior of the operating system is inspected and recorded when
it is exposed for specific event. This event may be for instance an execu-
tion of a command. In Virtuoso [3] they automatically create introspection
tools, by analyzing traces of small in guest programs/commands that com-
pute the desired introspection information. This small program can then
be executed on a secure virtual host to retrieve the given information. Ex-
terior has another approach [7] to accomplish the introspection. Instead
of recording the behavior of the operation system up front, exterior per-
forms the analyzing of the OS behavior real-time from a secure VM. The
drawback of this approach is that an identical machine to the guest VM is
needed to serve as the secure VM for each different guest operating system.

Another approach that is suggested is [2] to combine forensics memory
analyzing (FMA) with VMI to overcome the challenges of the Semantic
Gap. The suggested technique is to make a WMI tool access the live
memory of a guest VM as memory dump file. This “ live memory dump
file“ can then be used by the FAM tools to do its analyzing. This approach
limits the possibilities, but the gain is that many of the already complete
FMA tools can be, with some modification, used in a VMI solution.

The main motivation for much of the research that has been done in
the field of VMI is the different security possibilities it enables. One of the
features that attract attention is the possibility to monitor virtual host, with
almost no footprint. It is suggested [18] that it might be possible for an
attacker to discover that the host is being monitored by processes using
more time than expected, but this is a difficult task. An IDS solution was
suggested with the prototype Livewire [23], which explored the benefits
of taking an HISD out of the VM, and instead monitor with VMI. The IDS
solution honeymoon [13] uses this stealthy VMI monitoring capability to
deeply honeypots which they monitor in the intention to learn the beha-
vior and tactics of the attacker.

One of the indications a VDI-IDS solution is searching for is the pres-
ence of a stealth root kit. One method to detect rootkits is to investigate
what is called a cross view. On view is the one you get from the operating
system, or the untrusted view. The other is the one is obtained from VMI
techniques which in unlikely that is tempered with by the attacker. These
techniques are used by both Livewire [23] and honeymoon [13], but they
do not take into an account that this is a small time delay between the cap-
ture of the two views. In this small time difference a process may spawn
or vanish. As mentioned earlier in lycosid [11] they trade accuracy for time
and calculate probability with hypotheses testing.

In addition to IDS solutions there is also other security solution that is
interesting in a VMI perspective. One of these solutions is the one explored
in introvert [12] where they create predictions which can be used to pre-
vent a system from known vulnerabilities until the system has received the

15

necessary security updates. There is also one commercial counterpart to
introvert named Deep Security from Trend Micro[29]. This solution has a
number of functionalities, including IDS/IPS, web application protection,
application control and firewall protection. Deep security is designed to
run on VMware, and depends on vshield [19][32] which is a tool from VM-
ware that can be used for virtual machine inspection.

16

Chapter 3

Planning the Project

The goal of this project is to use virtual machine introspection to validate if
a virtual machine is complaint to a given policy. To have proof of concept I
will first need a virtual environment. To keep the environment as simple as
possible and still be able to prove the concept it will be sufficient to deploy
only one physical host. In a true production environment there is in most
cases more than one physical host, but then it should be sufficient do du-
plicate the prototype on each physical host. In the case of multiple physical
host architecture there will most likely be a need of a central administration
point, but this is out of scope of this thesis. With minor modification to the
prototype presented here, it should be possible to make this a part of an
existing monitoring tool like Nagios.

For the selection of a virtualization technology I will use Xen Server
4.4.0, with an Ubuntu 14.04 Ubuntu server as dom0. There are multiple
reasons for using Xen server as the virtualization technology. For example
there is a widely used open source type 1 VMM, and there has been consid-
erable research on VMI on Xen Server. To select a type 1 VMM are preferred
because there is the most common solution for production systems, and in
a production environment the need exists for VMI compliance tool. In ad-
dition to the research that has been don on VMI for Xen, the Semantic Gap
bridging tools are available on this platform.

The tool that will be used in this thesis to bridge the semantic gap is
libwmi [14]. This tool is mainly developed to analyze the memory of the
virtual machines. This will apply to the solution very well because when
the configuration is analyzed in memory it will in most cases bee the active
configuration that is analyzed. It is possible for malicious code to camou-
flage the running configuration, but the running configuration needs to be
in memory.

The libvmi tool is designed to be implemented in the dom0 server, and
not in the VMM which is another option for a VMI tool. The drawback of
the dom0 placement is that there is some performance delay due to the VMI
tool needs to contact the VMM to get access to the memory, and cannot do

17

it directly. But for this architecture there is no need to modify the VMM and
the code of the VMM can be simpler and smaller. When the code is kept
small and simple there is less chance for bugs and vulnerabilities, and by
this a more secure VMM.

To directly use libvmi to analyze the guest virtual machines memory
requires significant knowledge about how the operation system and how
it takes advantage of its memory. This is considered difficult knowledge to
acquire, and will limit the possible candidates to further develop the pro-
totype. Ideally it would be desirable that a system administrator could be
able to customize and adapt the prototype to cover his needs.

A solution to this challenge is to use Volatility [33] with the PyVMI [24]
plugin which enables Volatility to interact with virtual guests through the
LibVMI library as suggested in [25]. Volatility is a well-developed open
source memory forensics tool, whit easy to use and an active development
community. The drawback of using this is that Volatility is design to ana-
lyze a memory dump, and is not able to take advantage of all the capabil-
ities that libvmi provides. This drawback is considered secondary because
the main purpose of this thesis is to prove that there is possible to investig-
ate if a virtual guest is compliant with the use of VMI techniques.

DomUDom0

VMM

Hardware

LibVMI

Page
Directory

Page
Table

Kernel
Datavolatility

System
Map

vguest1
VMI Application

Figure 3.1: The project environment

In figure 3.1 the designed is illustrated. LibVMI is installed on the
dome0 server. In addition the system.map file from the guest virtual ma-
chine in DomU need to be copied to the Dom0 server. This file will be used
to find the virtual address of the kernel symbol [17] in the guest virtual ma-
chine. Libvmi will inspect the kernel page directory to find the page table
which contains the requested data, so it can be returned from LibVMI to
Volatility which then can supply the prototype with the running configur-
ation of the inspected virtual host in DomU.

18

3.1 The prototype

The prototype that will be developed in this thesis will be written in the
Perl programming language. Perl was selected because it is widely known
among system administrators. Perl has also good features to manipulate
the feedback form the volatility application, and will probably solve the
needed task in satisfying matter. The functions that the prototype will need
to solve are the following.

• Read the desired configuration from a configuration file.

• Test if the virtual guest is compliant according to the desired
configuration.

• Give a feedback if a virtual host is compliant or not.

In the problem statement I stated that the prototype will detect if a vir-
tual host is compliant or not to be allowed access to the network. The pro-
totype will only report on the status, and will not do the actual attach to
and detach from the network. The reason for this is that during the exper-
iments that will be conducted in this thesis it is necessary to have network
access, and the compliance status will be interesting as well. There should
be quite easy to adapt this behavior by calling on this to commands in the
xl tool stack.

x l network−a t a c h
x l network−d e t a c h

The primary objective of developing this prototype is to prove that it is
possible to test if a guest machine is compliant, by using VMI techniques.
In addition it is important to prove that there is possible to test the running
configuration in the memory. The parameters I have selected to test is lis-
ted below.

• Test if a GVM has the correct IP configuration.

• Test if a specific process is running on the actual GVM.

• Test if the GVM has the desired kernel version.

3.2 Test Plan

3.2.1 Experiment 1: Accuracy

When the prototype is developed there will be necessary to determine the
accuracy of the application. I will go through the different parameters the
prototype is intending to test, and provoke a failure and then validate that

19

the prototype acts accordingly. One of qualities of the prototype is that it
only will test against the running configuration, and not any configuration
files. To validate this behavior I will change the in memory configuration
and the configuration file. Then I will validate that the prototype only re-
acts when the in memory configuration is changed. In the table 3.1 I have
added the expected results when a parameter is changed to an undesired
configuration.

In memory File
IP address Not Compliant Compliant
Running process Not Compliant NA
Kernel version NA NA

Table 3.1: Expected result for compliant test.

To test the IP address I will first edit the network configuration file and
make sure the prototype still reports the virtual machine to be compliant.
Then I will remove the changes in the network configuration file, before I
use the ifconfig command to force another IP configuration on the virtual
guest. Then the prototype is expected to report an uncompliant virtual host
even though the network configuration file is correct. This can be related
to any application which gets it configuration from a configuration file. By
doing this simulation I simulate a malicious code altering the running con-
figuration even it cannot be detected by a monitoring tool that reads the
configuration file. This will also simulate a stressed system administrator
changing a configuration without following the correct change procedures.

For a running process I will only test to stop the running process to de-
termine if the prototype report this as an uncompliant virtual machine. To
provoke a change to the kernel it would be possible to upgrade the virtual
host to a newer version. The problem whith this is that the System.map
file will be changed and then LibVMI and Volatility will not be able to read
the memory and analyze it. The prototype will still report the virtual host
as not compliant, but this will be because all the tests are failing, and not
because it detected an undesired kernel version.

3.2.2 Experiment 2: Performance impact on virtual guest.

In addition to testing the accuracy, it is also important to measure the per-
formance impact inside the guest virtual machine. In most production en-
vironments it may be enough to run the compliance test once every five
minutes or so. A test running in this pace should ideally have almost no
performance impact on the guest virtual machine, but it would be interest-
ing to find an estimate of what the actual performance impact would be.

It is possible that in some scenarios the one compliance test for every
five minutes is not enough, and it might be necessary to have a more real

20

time compliance test. It is difficult to know up front how fast it is possible
to do the compliance test, but during the experiments I should try to get
close to this threshold. In addition to getting close to the threshold of pos-
sible test, it will be interesting to see if there is any breaking point on the
guest virtual machine. The breaking point in performance will be if there
is a rapid increase in the performance impact on the guest virtual machine
for a specific amount of compliance testing per minute.

In addition, I will not tax the Dom0 to much so I will need to measure
the execution time on the dom0 machine as well.

DomUDom0

VMM

Hardware

LibVMI

Compliance
tests

Volatility

vguest1
resource
consuming
process

VMI Prototype

Scheduler

Figure 3.2: Experiment 2: Performance impact on virtual guest.

To perform the experiment I will create a resource consuming process
on the guest virtual machine and then measure the time it do take to com-
plete the test. First I will create a baseline by running the resource consum-
ing process with no compliance test being done by the prototype. Then I
will re-run the resource consuming process but simultaneously I will run
the compliance test against the guest virtual machine. This procedure will
be repeated with different numbers of compliance tests. First the frequency
will be one for every five minutes, and then the frequency will be gradually
increased until it reaches the maximum possible.

3.2.3 Experiment 3: Performance LibVMI vs Volatility.

There is expected that the execution time for Volatility on top of LibVMI
is higher than running a test directly from LibVMI. To determine if there
will be much increase in performance by porting from a Volatilety/LibVMI
architecture to a clean LibVMI, there will be interesting to test the potential.

To test this potential there is possible to use some example code
provided with LibVMI. One of these codes is to list the running processes,
and the same functionality is also provided with volatility. If I measure the

21

time to execute this code a given number of times for each of the solutions,
I will have an indication of the potential performance gain.

3.2.4 Experiment 4: Performance impact with LibVMI.

If the expectation of the pure LibVMI architecture is executing faster than
the LibVMI Volatility architecture, and the difference is significant. Then
there will be interesting to investigate the maximum frequency that is pos-
sible with the pure LibVMI architecture. In addition if the performance
impact revealed in Experiment 2: Performance impact on virtual guest sec-
tion 3.2.2 on page 20 is insignificant, there will be possible to investigate if
this architecture will provoke a higher performance impact on the virtual
guest.

If this conditions are met the experiment with LibVMI can use the same
approach as in Experiment 2: Performance impact on virtual guest. If this
experiment will result in an insignificant performance impact on the guest
virtual machine, this can be used as evidence to support the theory that
VMI techniques can remove some of the performance impact from monit-
oring agents running on the virtual machine.

22

Chapter 4

Approach

Hardware
VMM

Dom0

LibVMI
Volatility

CompTool

DomU

ResCon

Scheduler

Figure 4.1:
The Envir-
onment

In this chapter I will explain how I have construc-
ted the environment to support the prototype, and the
way it is designed. If you want more detail about
the environment than is given in this chapter, the com-
plete procedure is described in Setting up the envir-
onment appendix A on page 49. In an attempt to
make the description of the environment and the rela-
tions between the different modules more understand-
able I have provided a readers map as illustrated in fig-
ure 4.1

4.1 Installing and configuring the dom0

To install Xen Project server with Ubuntu as dom0 server are a bit differ-
ent that installing Citrix Xen server or VMWare ESX sever. First I had to
perform a standard Ubuntu 14.04 server installation, and then I was able
to install the Xen 4.4.0 hypervisor. Then after the installation of the hyper-
visor I could restart the system and boot into the hypervisor. Due to the
fair amount of memory (512GB) on the physical server I had some prob-
lems on the first boot, but after restricting the dom0 server to only use 4 GB
of memory it worked perfectly. This is also considered best practice [34].

Hardware
VMM

Dom0

LibVMI
Volatility

CompTool

DomU

ResCon

Scheduler

To verify the installation I used the tools provided
with Xen to list running virtual machines. In this list
the Ubuntu server I had installed was listed as a virtual
machine. Before I could start installing virtual machines
on Xen I also needed to install and configure a network
bridge.

First I deployed some paravirtualized host with the in-
tention of performing the experiments on them. Later in the process I dis-
covered that there were some issues with creating profiles for volatility on
paravirtualized hosts, so I also deployed hardware assisted virtual host to

23

counter this problem. To deploy hardware assisted virtual machines you
need a graphical environment, and to install a graphical environment on a
dom0 server is not recommended. A solution to this is to export the console
to another server or machine with a graphical environment.

4.2 Installing and configuring libvmi

Hardware
VMM

Dom0

LibVMI
Volatility

CompTool

DomU

ResCon

Scheduler

Before I could install LibVMI I needed to install all the de-
pendencies which are listed in Setting up the environment
section A on page 49. After the installation there is some steps
and configuration that needs to be done. LibVMI do need
the debug symbols which are located in the System.map file
located on the /boot directory on the virtual host which are
going to be monitored. In addition Libvmi needed some off-

sets addresses which I collected with running a script on the same virtual
host. The offset addresses and the path to the system.map file is gathered
in configuration file with a pointer to the name of the virtual guest.

To verify the installation I ran the example code provided by the tool,
and I was actually performing VMI. Lbvmi supported the paravirtualized
host and I did successfully run the code on PV and HVM machines.

4.3 Installing and configuring Volatility

Hardware
VMM

Dom0

LibVMI
Volatility

CompTool

DomU

ResCon

Scheduler

To use Volatility [33] it is not necessary to do an installation,
as long as you download the content from the github repos-
itory it is possible to run the python code directly from the
Volatility directory. In this way it is possible to uses differ-
ent versions of volatility from the same machine. Volatility is
ordinary design to analyze a memory dump file, and not op-
erate directly on the live memory of a virtual host. In order

to make Volatility to work it is necessary to install a plugin named pyvmi
[24], which is provided with LibVMI, and copy the pyvmiaddressspace.py
to the volatility/plugins/addrspaces/ directory of the volatility installa-
tion.

Because the target virtual machine in my environment is an Ubuntu
virtual machine, I needed to create a Linux profile for volatility. To create
the profile I created a module.dwarf file which contain the structure of the
target virtual machine. Then I compressed this file and the system.map of
the target virtual machine into a zip file. These procedure did not work
for my attempts on paravirtualized virtual machines, but for the hardware
assisted machines it worked as expected.

24

4.4 Creating the prototype. Compliant.pl

The prototype is created in Perl, and the entire script can be located in Com-
pliant script compliant.pl section B on page 61. The prototype main faces
is listed below.

• Control the input variable provided by the executer.

• Read the configuration from the configuration file.

• Do the compliant test provided from the configuration file.

• Create and populate a log file if specified.

• Determine and report if the monitored virtual host is compliant.

Hardware
VMM

Dom0

LibVMI
Volatility

CompTool

DomU

ResCon

Scheduler

To list the help use this command:

p e r l c o m p l i a n t . p l −h

Then the help menu is listed.

−h for help
−v for verbose (more output)
−d for debug (even more output)
−c <filename > for the c o n f i g u r a t i o n f i l e
− l <fi lename > for the log f i l e

In the current environment there are many dependencies and
things that can go wrong. With this in mind I have provided
a verbose and debug mode. A particular debug message that

might be handy is the actual volatility command that actually is executed
from the prototype.

To make the script run it is mandatory to provide the configuration file.
Below I have listed a configuration file example.

Listing 4.1: Example Configuration File

1 [vguest4]
2 p r o f i l e =Linuxubuntu1204x64−3_13_0−32−gener icx64
3 eth0 = 1 7 2 . 2 4 . 2 0 1 . 8 3
4 ps1=apache2
5 kernel =3.13.0−32− gener ic

The first line in this configuration file is the actual name on the target
virtual machine. This name needs to be the same name which is given in the
configuration file for LibVMI. All of the lines listed after the name in square
brackets belong to this host. If you do want to monitor more than one host

25

you may add another after all the parameters for the first is entered. There
is no mandatory order for the rest of the parameters belonging to a host. In
addition to the name the prototype need a Linux profile for volatility, and
this is given with the profile parameter.

In the third line in the example configuration file the network interface
is listed. The prototype expects the network interface to start with “eth“
and a number. The number can vary from 0 to 9. The prototype only sup-
ports compliance testing for ipv4. In line five a definition for a complaint
test for a running process is listed. This definition starts with “ps“ and a
number. It is possible to list more than one process with a maximum of ten
(0-9). In the last line the kernel I will test against is given.

When the script is executed, after it has validated parameters, it starts
collecting the configuration given in the configuration file. Below I have
listed the part form the prototype that contains the collecting configuration
part.

1 open (CONF, " $CFILE ") or die " Error opening $CFILE $!\n
↪→ " ;

2
3 my %guestconf ;
4 my $guest ;
5 # Read t h e c o n f i g u r a t i o n from t h e c o n f i g f i l e .
6 verbose (" Read the c o n f i g u r a t i o n f i l e \n") ;
7 while (my $ l i n e = <CONF>) {
8 i f ($ l i n e =~ /^\[(\w+) \]/ i)
9 {

10 $guest = $1 ;
11 $guestconf { $guest } { ’ compliant ’ } = ’ compliant ’ ;
12 verbose (" Reading conf ig guest = $guest \n") ;
13 } # i f
14 e l s i f ($ l i n e =~ /(^ eth\d) =(\d { 1 , 3 } \ . \ d { 1 , 3 } \ . \ d

↪→ { 1 , 3 } \ . \ d { 1 , 3 }) /)
15 {
16 $guestconf { $guest } { $1 } = $2 ;
17 debug (" Host = $guest A t t r i b u t = $1 Value = $guestconf {

↪→ $guest } { $1 } \n") ;
18 }
19 e l s i f ($ l i n e =~ /(ps\d) =(\S *) /)
20 {
21 $guestconf { $guest } { $1 } = $2 ;
22 debug (" Host = $guest A t t r i b u t = $1 Value = $guestconf {

↪→ $guest } { $1 } \n") ;
23 }
24 e l s i f ($ l i n e =~ /(kernel) =(\d { 1 , 2 } \ . \ d { 1 , 2 } \ . \ d

↪→ {1 ,2}−\d{1 ,2}−\S *) /)

26

25 {
26 $guestconf { $guest } { $1 } = $2 ;
27 debug (" Host = $guest A t t r i b u t = $1 Value = $guestconf {

↪→ $guest } { $1 } \n") ;
28 }
29 e l s i f ($ l i n e =~ /(p r o f i l e) =(\S *) /)
30 {
31 $guestconf { $guest } { $1 } = $2 ;
32 debug (" Host = $guest A t t r i b u t = $1 Value = $guestconf {

↪→ $guest } { $1 } \n") ;
33 }
34 }

In the start of this part I open the file, and then then each line of the file
is read. The data is collected in a two dimensional hash variable, which has
this format.

{ Hostname } { What to t e s t } { Value i t should be l i k e }

All the values are retrieved from the configuration file with regular expres-
sions, but the expressions do not validate the value is 100 present. This
however will probably not make the prototype fail, but the host will in the
end be reported as a non-compliant host. To give an example there is pos-
sible to create an IP address in the configuration file like 999.999.999.999,
and the script will accept it. But finding this configuration in a virtual ma-
chine memory is very unlikely and the tested virtual machine will not be
compliant.

After the configuration is gathered from the configuration file it is time
to do the testing. The two dimensional hash that now contain the configur-
ation is traversed with the help of two while loops.

1 foreach my $prguest (keys %guestconf) {
2 foreach my $ p r a t t r i b u t (keys $guestconf { $prguest }) {

Then depending on the “prattribut“ variable which contains the in-
formation of which test to perform, one of three tests are executed. If prat-
tribut is equal to eth and a number the test for IPaddress are executed. To
save some space and enhance the readability I have removed the lines con-
taining feedback messages like debug.

1 i f ($ p r a t t r i b u t =~ /(eth\d) /) {
2 my $prnic = $1 ;
3 open (VCMD, " python vol . py − l vmi:// $prguest −−

↪→ p r o f i l e =$guestconf { $prguest } { ’ p r o f i l e ’ }
↪→ l i n u x _ i f c o n f i g |") ;

4 while (my $vcmdline = <VCMD>) {

27

5 # T e s t f o r i p on n i c
6 i f ($vcmdline =~ /(eth\d) \s * (\d { 1 , 3 } \ . \ d { 1 , 3 } \ . \ d

↪→ { 1 , 3 } \ . \ d { 1 , 3 }) /) {
7 i f ($guestconf { $prguest } { $prnic } ne $2) {
8 $guestconf { $prguest } { ’ compliant ’ } = ’ not

↪→ compliant ’ ;
9 } # i f

10 } # i f ($vcmdl ine =~ / (e t h \d) \s * (\ d { 1 , 3 } \ . \ d { 1 , 3 } \ . \
↪→ d { 1 , 3 } \ . \ d { 1 , 3 }) /)

11 } # w h i l e (my $vcmdl ine = <VCMD>)
12 c l o s e (VCMD) ;
13 } # i f ($ p r a t t r i b u t =~ / (e t h \d) /)

First the actual NIC that will be tested are collected. According to the
configuration file example this will be eth0. Then a Volatility command
is executed and the feedback from this command is stored in VCMD. Then
the result from this command is traversed line by line to see if there is a line
containing the interface I are processing. If the line is found, the prototype
tests if the current in memory IP-address matches the desired ip-address
from the configuration file. The prototype expects the network interface to
be listed in the feedback from Volatility, which should be fixed in a later
version.

The next test that is possible is to test for a running process. This time I
have also removed the feedback messages to save space.

1 #Running t e s t f o r d e s i e r d p r o s e s s e s .
2 e l s i f ($ p r a t t r i b u t =~ /(ps\d) /) {
3 my $prps = $1 ;
4 my $pscompliant = " not compliant " ;
5 open (VCMD, " python vol . py − l vmi:// $prguest −−

↪→ p r o f i l e =$guestconf { $prguest } { ’ p r o f i l e ’ }
↪→ l i n u x _ p s l i s t |") ;

6 while (my $vcmdline = <VCMD>) {
7 i f ($vcmdline =~ /0x[0−9a−f] *\ s (\S *) /) {
8 my $ p r t e s t v a l u e = $1 ;
9 i f ($guestconf { $prguest } { $prps } eq $ p r t e s t v a l u e)

↪→ {
10 $pscompliant = ’ compliant ’ ;
11 } # i f ($ g u e s t c o n f { $ p r g u e s t } { $prps } eq

↪→ $ p r t e s t v a l u e)
12 } # i f ($vcmdl ine =~ / 0 x[0−9a−f] *\ s (\S *) /)
13 } # w h i l e (my $vcmdl ine = <VCMD>)
14 c l o s e (VCMD) ;
15 i f ($pscompliant eq ’ not compliant ’) # i f t h e p r o s e s s

↪→ was not running t h e g u e s t i s not c o p l i a n t . {
16 $guestconf { $prguest } { ’ compliant ’ } = ’ not compliant

↪→ ’ ;

28

17 } # i f ($ p s c o m p l i a n t eq " not c o m p l i a n t " ;)
18 } #The p r o t o t y p e e x p e c t t h e network i n t e r f a c e t o be

↪→ l i s t e d in t h e f e e d b a c k from V o l a t i l i t y , which
↪→ s h o u l d be f i x e d in a l a t e r v e r s i o n

First the process number is collected, before a temporary variable is set
to “not compliant“. Then the prototype calls Volatility to return all running
processes. Then the list is traversed line by line to detect if the running
process is running. If the desired process is fount the temporary variable is
set to “compliant“. Then in the end if the temporary variable is not set to
“compliant“ the global hash variable is set to “not compliant“ for the cur-
rent host.

In the end I will also test for the desired kernel version. The part of the
prototype that is performing this task is listed below without the user feed-
back messages.

1 #Running t e s t f o r d e s i e r d k e r n e l
2 e l s i f ($ p r a t t r i b u t =~ /kernel /) {
3 while (my $vcmdline = <VCMD>) {
4 i f ($vcmdline =~ /Linux\svers ion\s (\d { 1 , 2 } \ . \ d

↪→ { 1 , 2 } \ . \ d{1 ,2}−\d{1 ,2}−\S *) /) {
5 my $pskernelvr = $1 ;
6 i f ($guestconf { $prguest } { ’ kernel ’ } ne

↪→ $pskernelvr) {
7 $guestconf { $prguest } { ’ compliant ’ } = ’ not

↪→ compliant ’ ;
8 } # i f ($ g u e s t c o n f { $ p r g u e s t } { ’ k e r n e l ’ } ne

↪→ $ p s k e r n e l v r)
9 } # i f

10 } # w h i l e (my $vcmdl ine = <VCMD>)
11 c l o s e (VCMD) ;
12 } # e l s i f ($ p r a t t r i b u t =~ / (k e r n e l) /)

Because it is not possible to run more than one kernel for each host,
this test is a bit simpler. The prototype does call for Volatility to return the
running kernel version, and then it is compared with the desired kernel
version. In most cases Volatility will not be able to run the test if the ker-
nel is changed on the target virtual machine, but if the kernel structure and
debug symbols is not changed then it is possible the new kernel version
is retuned. In both cases the test will correctly fail and the prototype will
report the host as “not compliant“.

The only thing that is left is to list the compliant status of the hosts that
are tested. The code is listed below.

1 i f ($guestconf { $prguest } { ’ compliant ’ } eq ’ compliant ’) {

29

2 p r i n t ’ Guest ’ , $prguest , ’ i s ’ , colored [’ green
↪→ on_black ’] , ’ compliant ’ , "\n" ;

3 }
4 e lse {
5 p r i n t ’ Guest ’ , $prguest , ’ i s ’ , colored [’ red on_black

↪→ ’] , ’ not compliant ’ , "\n" ;
6 }

Instead of listing the status of the hosts, it would be possible to change
this code to attach or detach the host from the network.

4.5 Creating the scheduler. schedule.pl

Hardware
VMM

Dom0

LibVMI
Volatility

CompTool

DomU

ResCon

Scheduler

To perform the experiments planned for this thesis I needed
to create a script that would trigger the prototype with
a given frequency and a given number tries. To ac-
complish this I created the schedule.pl script. If this
script is executed with the h parameter this is the res-
ult.

Usage :
−h for help
−v for verbose (more output)
−d for debug (even more output)
− l <fi lename > for the log f i l e
−n number of loops
−f number of loops/min

The important parameters from this script is the f which determine the
number of executions that will be done per minute, and the n which de-
termines the total number of executions. The script expects that total num-
ber divided by the frequency is a real number. If this is not the case the
script will run the command some more until the condition is met. This is
better explain if I investigate the script.

Listing 4.2: schedule.pl

1 open (LOG, ">$LFILE ") ;
2 my $count =0;
3 my $fcount =0;
4 my $ t s l e e p = 60 / $FLOOP ;
5 while ($count++ < $NLOOP) {
6 while ($fcount++ < $FLOOP) {
7 my $ p t s t a r t = time ;
8 my $ p s t a r t = [Time : : HiRes : : gett imeofday ()] ;
9 system (" p e r l compliant . pl −c des . c fg ") ;

30

10 my $pelapsed = Time : : HiRes : : t v _ i n t e r v a l ($ p s t a r t) ;
11 p r i n t LOG "PROSESSELAPST = $pelapsed \n" ;
12 my $ptelapsed = time − $ p t s t a r t ;
13 s leep ($ t s l e e p − $ptelapsed) ;
14 # p r i n t " $ p t e l a p s e d \n " ;
15 $count ++;
16 } # w h i l e
17 $fcount =0;
18 $count−−;
19 } # w h i l e

To make sure the tests are evenly distributed I calculate the time it takes
to execute the prototype one time. And then the script calls on a sleep
routine for the reminding of the time that was allocated for that execution.
To give an example: If the frequency is 4 per minute each of the execution
have 15 minutes to execute. If the execution only last for 13 seconds then
the script will sleep for 2 seconds before the next execution is executed.

4.6 Creating the resource consuming process. rescons.pl

Hardware
VMM

Dom0

LibVMI
Volatility

CompTool

DomU

ResCon

Scheduler

One of the main objectives of the experiments that will be
conducted in this thesis is to estimate the performance im-
pact on the target virtual host when a VMI test is conducted
from the dom0 machine. In order to obtain data on this per-
formance impact, the idea is to have a resource consuming
process executing on the targeted virtual machine, and meas-
ure how the performance of this process is changing with dif-

ferent amount of VMI test conducted against it. To perform this test I have
created another Perl script. The main part of this script is listed below.

1 my $ s t a r t = [Time : : HiRes : : gett imeofday ()] ;
2 open (LOG, ">$LFILE ") ;
3 my $count =0;
4 while ($count++ < $NLOOP) {
5 my $ z i p s t a r t = [Time : : HiRes : : gett imeofday ()] ;
6 system (" zip $ZFILE . zip $ZFILE ") ;
7 my $zipelapsed = Time : : HiRes : : t v _ i n t e r v a l ($ z i p s t a r t)

↪→ ;
8 p r i n t LOG "ZIPELAPST = $zipelapsed \n" ;
9 system ("rm $ZFILE . zip ") ;

10 } # w h i l e
11 my $elapsed = Time : : HiRes : : t v _ i n t e r v a l ($ s t a r t) ;
12 p r i n t LOG "TOTALELAPST = $elapsed \n" ;
13 c l o s e (LOG) ;

The script takes a file as an in parameter, and then the file is compressed
and then the compressed file is deleted. This process is repeated a number

31

of times equal to a number provided as another parameter. To compress a
file uses a fair amount of processing power, and will suite our needs suf-
ficiently. I addition to compress and delete the file the script measure the
time it takes to compress the file. This measurement is stored in a log file.

32

Chapter 5

Results

In this chapter I will present the result from the experiments I have conduc-
ted. I have collected a large amount of data, so it would be impractical to
display the complete collection in this paper. Instead I have extracted and
presented the most interesting data related to my analysis and discussion
in this chapter. For a dedicated reader the complete data is presented in
“Data from the experiments“ Appendix E on page 75.

5.1 Experiment 1

In this experiment I have tested the accuracy of my clam that the prototype
in the environment I have designed will only consider the in memory con-
figuration. The first test I did in this experiment was to validate that the
prototype was reporting the target virtual guest as compliant when it did
corresponded correctly with the configuration file. The configuration file
used in this experiment is “Example Configuration File“ appendix 4.1 on
page 25.

After I had validated that a compliant system was reported correctly
as a compliant system I started to change the conditions on the targeted
virtual machine. First I edited the configuration on the targeted virtual ma-
chine, and then I executed a compliant test from the prototype. The next
step was to change back the configuration file, before I changed the IP-
address in the memory running configuration. To accomplish this I used
this command on the target virtual machine.

sudo i f c o n f i g e t h 0 1 7 2 . 2 4 . 2 0 1 . 8 5

In the end I changed back the ip address before the apache2 service was
stopped on the target virtual machine. The result of this experiment is lis-
ted in the table below.

33

IP-Address File IP-Address Running Apache2 Service Kernel result
ok ok ok ok Compliant
not ok ok ok ok Compliant
ok not ok ok ok Not Compliant
ok ok not ok ok Not Compliant

Table 5.1: Experiment 1: Compliant Result.

5.2 Experiment 2

In this experiment I investigated how the performance was degrading as
a result of the test the prototype was conducting against this virtual ma-
chine. On the targeted machine I was running the resource consuming pro-
cess described in “Creating the resource consuming process. rescons.pl“
section 4.6 on page 31. First I ran the resource consuming process with no
constraints caused by the prototype, in order to create a baseline.

After the baseline was created I did some initial testing and discovered
that my prototype used slightly less than 15 seconds to finish a full compli-
ance test. Below is an example result of this testing.

1 13 .024194
2 12 .957368
3 13 .028284
4 13 .006828
5 12 .98066
6 12 .983966
7 12 .995092

Because it was desirable to have evenly distributed tests executed by the
scheduler the maximum number of test per minute was set to 4. This resul-
ted in the lode was set from 1 to 4 executions. It is important to remember
that one execution of the prototype do result in tree test being performed
against the target virtual host. The result is summarized in the table below.

Base 1/min 2/min 3/min 4/min
Mean 48.17942 47.98267 47.47755 47.46589 47.09673
Standard
deviation

0.7525777 0.6214402 0.6041725 0.5885031 0.6203022

Total Time 2411.050474 2401.534411 2375.311718 2374.905427 2356.355373

Table 5.2: Experiment 2: Performance impact on target GVM

To give a visual impression about how the guest virtual machine are
affected by the tests that is being performed I have provided a graph
representing the mean as the frequency varies.

34

0 1 2 3 4
0

10

20

30

40

50

60

Test/second

Se
co

nd
s

Performance impact on target GVM

Mean Execution time sec

Figure 5.1: Performance impact on target GVM

5.3 Experiment 3

In this experiment I measure how fast a LibVMI and Volatility was able to
conduct there test. To measure this I used the scheduler script with some
modifications. For this test I did not want any delay, so I commented out
the sleep command in line 13 listing 4.2 page 30. In addition I changed the
command that should be executed in line 9 with the appropriate command.
In the listings below I have extracted some examples from the data collec-
ted.

Listing 5.1: Examples Volatility test in seconds.

4 .797579
4 .809241
4 .828273
4 .836781
4 .840397

Note that this is one test with Volatility and the prototype uses tree test that
are similar.

Listing 5.2: Examples LibVMI test in seconds.

0 .141318
0 .131922
0 .133965
0 .125096
0 .132217

35

In the table below you may see the most important findings. The results
are based on 49 executions for each of the methods.

Volatility LibVMI
Mean 4.890695 0.1306795
Test/minute 459.1387 12.26819
Standard deviation 0.1555095 0.002283577

Table 5.3: Experiment 3: Result

5.4 Experiment 4

Due to the findings in experiment 3, I continued with experiment 4. In this
experiment I am investigating how large a performance degradation it is
possible to inflict on the virtual guest by conducting VMI test with Libvmi.
One of the intentions is to investigate if the performance degradation is lin-
ear or exponential.

To perform the test I did some more modification to the schedule script.
To be able to execute more than 60 tests per second I removed the part that
spread the test evenly through the minute. The result of this is that some
loops of the resource consuming process might be more affected by the Lib-
VMI test than other. I have given a rough illustration on how this will play
out in time for a 60 LibVMI tests/minute.

Sleep

LibVMI Test

Resource Consuming
Process

Figure 5.2: 60 LibVMI tests/minute

When I conducted the test I started with 60 LibVMI tests a second, be-
fore I increased it with a step of 60 until I reached 360. This was the last
step I could have a controlled experiment without future modification of
the schedule script. In the table below I have extracted some example data.

For this experiment I first started the scheduler with the LibVMI test,
and made sure it would last until the resource consuming process was fin-
ished. The resource consuming process was executing 50 times for each of

36

Base 60/min 120/min 180/min 240/min 300/min 360/min
47.761761 49.846953 57.463015 72.734258 88.73857 103.219395 113.797553
47.06424 50.672137 59.573163 62.943288 71.683805 80.691867 113.440477
47.637454 48.804827 59.836314 71.731202 88.468576 93.175022 111.486272
48.758873 49.536628 60.029929 63.97184 71.433961 89.773232 116.040363
49.03947 49.840646 57.974503 65.159445 86.419854 84.337993 113.915695

Table 5.4: Experiment 4: Performance impact on target GVM

0 60 120 180 240 300 360
0

10
20
30
40
50
60
70
80
90

100
110
120

Test/second

Se
co

nd
s

Performance impact on target GVM usin LibVMI

Mean Execution time sec

Figure 5.3: Performance impact on target GVM usin LibVMI

the LibVMI frequencies. I have summarized the result in the table below.

Base 60/min 120/min 180/min 240/min 300/min 360/min
Mean 48.18 50.04 59.14 66.89 77.87 91.85 112.64
Standard
deviation

0.753 1.053 0.878 3.162 6.591 6.298 2.162

Total Time 2411.1 2504.0 2959.0 3347.0 3896.2 4595.8 5635.5

Table 5.5: Experiment 4: Summarized performance impact on target GVM

To illustrate the changes in the performance impact on the targeted vir-
tual machine I have created this graph.

37

38

Chapter 6

Analysis

6.1 Experiment 1.

In this thesis the most important part was to prove that there is possible
to build a tool that uses VMI techniques to determine if a virtual machine
has a running configured according to a desired stated. In the first experi-
ment this assumption was tested by validating that it was actually the run-
ning configuration that was tested. By validating that it was only when I
changed the actual in use IP address and not the configuration file I created
evidence that support the claim that it is possible to create a VMI tool that
investigates the running configuration. When this is true for the IP-address
this will also be true for any configuration existing in memory. This does
however not prove it is in impossible for malicious code to camouflage and
hide from the VMI tool.

6.2 Experiment 2.

When the evidence for the possibility for a VMI compliance tool was
gathered, it was interesting to investigate the performance impact the tool
had on the targeted virtual host. It was claimed in the Motivation section
1.1 on page 2 that VMI techniques can free up capacity on the targeted host
by removing the traditional agent located on the virtual host. In order for
this to be true the impact on the targeted host should be insignificant.

If I investigate the number displayed for Experiment 2 in table 5.2 page
34 I can see the mean of the different experiment is about the same. I can ac-
tually see the mean is actually decreasing, which also is illustrated in graph
5.1. Up front I expected a slightly increase in mean as the frequency of test
conducted against the targeted virtual host. When the mean is decreasing
instead this suggests that there are other factors that are more dominate for
the local performance on the virtual host than the VMI tests.

If I investigate the Standard deviation it is not very large related to the
mean. This does indicate that most of the data that was collected is not

39

far from the mean. Which does indicate there has not been a large vari-
ance in the load on the targeted virtual machine. With this observation I
can assume that the unknown factors discussed with the decreasing mean
in the previous paragraph are small as well. I can argue that this count as
evidence supporting the clam of a light performance impact on the targeted
virtual host.

6.3 Experiment 3.

In experiment 3 I assumed that the dom0 execution was faster if I conduc-
ted test only using LibVMI instead of LibVMI Volatility architecture. With
this assumption there was interesting to investigate potentially how much
faster the change of architecture could be. If I use the mean execution time
for both architectures I can calculate the difference.

mean(volatility)
mean(LibVMI) = 4.890695

0.1306795 = 37.43
This is a rather significate difference, and this result supports as a good

evidence that LibVMI is faster than Volatilety/LibVMI.

6.4 Experiment 4.

In this experiment the intention was to investigate the possibility to pro-
voke significant performance degradation on the target virtual machine by
exposing it to a high frequency of LibVMI tests. In addition it was interest-
ing to see if there was a breaking point in the performance degradation at
a specific frequency.

In this experiment the result was more as expected up front, like the
mean execution time is increasing as the LibVMI test frequency increase as
displayed in table 5.5 on page 37. But if I investigate the graph 5.3 on
page 37 I can see there is no obvious breaking point in the graph. The rate
the graph is growing is increasing as the frequency getting closer to the
maximum, but it is interesting that a clear breaking point is not there.

The absence of a breaking point can be explained with how the LibVMI
interacts with the targeted virtual machine. When LibVMI retrieves the
information it needs from the targeted virtual machine it actually pauses
the virtual machine to get a concise extraction of the part of the memory it
needs. After this information is extracted the virtual guest is resumed, and
there has actually not happened anything on the targeted virtual machine
except it has lost some time. To clarify some ground for misinterpretation,
the clock on the virtual machine is not a virtual clock but a representation
of the host physical clock.

40

Given the interpolation about the pausing and resuming of the targeted
virtual host does not explain way the graph is curved. To explain this I
may assume there is some overhead that is actually affecting the virtual
machine in addition to the lost time. Given the data that is collected in this
experiment, there is an indication that there will not be a breaking point
even if the experimented was supplemented with data from even higher
frequencies.

Another possible observation is the great variance in the standard de-
viation given in table 5.5. There is hard to explain conclusively why this
is happening, but one explanation might be the distribution in time of the
test illustrated in 5.2 36. On a low frequency the test window is in most
cases only affecting one resource consuming process. When the frequency
is increasing there is more variation on how many resource consuming pro-
cesses are affected by the test window and the standard deviation is in-
creasing. In the highest frequencies the sleep window is so small that the
LibVMI tests do affect the resource consuming process in more equal de-
gree. Based on this assumption being correct the standard deviation would
be kept lover for all frequencies if the LibVMI test was evenly distributed
true the experiment.

41

42

Chapter 7

Discussion and Future Work

In this chapter the different aspects of this thesis will be discussed, before
the conclusion and future work is presented.

7.1 Retrieving the data

In this thesis most of the important data is collected by a tool that specific-
ally was developed specifically for this project. Free tools are available that
would solve the task satisfyingly, but when the tool was created in house it
was easy to get control on how the data was collected and presented. The
main purpose was to create a large workload and measure the execution
time. The workload as described was created by compressing and deleting
the newly compressed file a given number of times. This approach is some-
what simple, but given the desired date, the result should be sufficient.

There are however some uncertainties in this approach, as it is for many
systems with shared resources. One of these uncertainties is that the virtual
disk, the virtual machine used is located on the same physical disk as the
dom0 server are using. A consequence of this architecture is that disk activ-
ity on the dom0 server can impact the reading and writing speed on the tar-
geted virtual machine. Because the targeted virtual machine need to read
the file before it can compress it, and then it will write the compressed file
back to the disk. Simultaneously the test that was executed on the dom0
machine did created a log which was written to the same physical disk.
However all the tests done in this thesis were executed in a strictly con-
trolled environment with no other humanly initiated task being executed.
This controlled environment will help ensure that the influence caused by
the dom0 activities to the read and write activities on the targeted virtual
machine is about the same for the entire experiment. This is ok because the
part I wanted to investigate was how the performance on the targeted ma-
chine was influenced by VMI tests. Another factor that protects the quality
of the results is that the file being compressed was significantly larger than
the log file on the dom0 machine. The compressed file was about 1 GB
while the dom0 log file was less than 1KB.

43

In addition to the issues described with the sheared resources, there are
also some uncertainties with the start time on for the processes on dom0
and targeted virtual machine. To make sure the process on the targeted vir-
tual machine always was exposed to the activities from the VMI process on
the dom0, the dom0 VMI process was started first and made sure it lasted
longer than the process on the targeted virtual machine. Because the pro-
cess was manually started there was some room for uneven execution. But
given the large number of tests done and the small standard deviation the
data collected can be considered reliable.

7.2 The collected data

If the thesis had lasted for a longer period of time, there would be interest-
ing to collect a wider selection of data. Especially for the unexpected result
in “Experiment 2“ section 5.2 page 34, where the mean execution time de-
creased instead of increasing. For instance if the disk waits and data rate
transfer was collected there would be possible to investigate if the strange
result was caused by disk issues. In addition the same types of data could
be collected for the CPU like CPU wait and CPU load, to see if the ex-
planation was CPU related. It would also be interesting to run this entire
experiment one more time and see if the resulted reoccurred, or if the next
test revealed a more horizontal or slightly increasing graph.

The data retrieved is sufficient to conclude if there was a significant per-
formance impact on the targeted virtual machine, but if this additional data
was collected this might be used to design a more efficient VMI tool.

If the experiment was reproduced it would be expected to have some
sort of similar result. This would of course depend on the hardware that
would host the environment, but the large lines should be about the same.
An exception to this is as partly discussed the unexpected result in experi-
ment 2, which might be closer to what was expected.

7.3 The construction of the prototype.

One of the challenges in this thesis was to find the proper tools to be used
to construct the prototype. Evan though the field of VMI is a rather new re-
search area, there has been a considerable amount of research on the topic.
This research has resulted in large amount of tools available, and to find
proper tools with the desired maturity required a large amount of back-
ground research.

When the tool was selected the model did not look too complicated, but
it turned out to have a lot of dependencies required to make it work. One

44

of the largest obstacles in this thesis was the lack of support for paravirtu-
alized host for Volatility. This was not easily obtainable information, and
this combined with the fact that almost all problems related with making
Volatility work is caused by incorrectly created profiles, resulted in a sig-
nificant amount of effort being used to solve the issue. This issue is now
being addressed by the Volatility development team and is considered a
work in progress.

After the environment was created, the construction of the prototype
was more according to what was expected, and required average scripting
skills. The largest division from the initial plan was the decision to not in-
clude a capability to connect and disconnect the virtual machines from the
network and instead report on the compliance status. This was due to the
practical concerns about the experiments that were going to be executed,
and an instruction on how this should be developed was considered an ac-
ceptable tradeoff. In addition there was not desired to modify the script
after the experiments were executed so uphold the integrity of the experi-
ments data by the scripts being represented in their original form.

7.4 The Selected Approach

The approach selected in this thesis is so far the only approach available to
answer the questions that are asked. An un-mentioned but strong charac-
teristic of this thesis is the use of open software, which is the case for all the
software that has been used for this project. The same solution should be
possible to create with other virtualization platforms and tools, like VM-
ware and there vshield solution [32].

Another solution that might have solved the problem statement, and
even with fewer difficulties, would be to use a Microsoft window oper-
ating system on the virtual host. If this approach had been selected there
would be no need to create the Volatility profiles, and probably saved some
development time. In addition it would be possible to use Citrix Xen server
instead of the Ubuntu dom0. With this solution there would be more man-
agement tools available out of the box, but the drawback would be the
hardened dom0 server. The hardened Dom0 is more secure, but it is more
challenging to install additional software like LibVMI with its dependen-
cies. And most likely with the additional software installed, the solution
would probably not be supported by Citrix.

With some changes to the problem statement the approach would
change drastically. The most obvious change that would change the ap-
proach considerably is if I should not use VMI. Then the model would be
based on interacting with the VMs using the network. This would also
most likely result in the use of other tools and would result in other chal-
lenges and solutions.

45

7.5 Repeat the project.

If it became relevant to redo the project it would probably be possible to
do without the use of considerable resources. First of all the software is
freely available as open source. In addition all the steps are documented in
Setting up the environment appendix A page 49. There should be possible
to replicate the whole environment only by cutting and pasting the com-
mand listen in this appendix. There might be necessary to correct some of
the commands, and the installations of the operation system are not doc-
umented. In addition to the instruction all the scripts is also listed in ap-
pendix B, C and D.

Looking at the approach in retrospect there is some changes that could
be done in order to increase the quality of the project. First of all if a new
version of Volatility is available that supports paravirtualized machines
that should be used to expand the supported hosts. In addition to the new
support there could be extracted more parameters from the experiments as
described earlier in the discussion.

While the performance impact on the targeted virtual machine has been
investigated, the performance impact on the Dom0 server has not been de-
voted much attention. Potentially if the Dom0 machine is taxed too much
the result can be that the whole infrastructure will be suffering. It was not
necessary to collect this data to answer the problem statement, but the data
collected would be a great asset to justify future research to overcome this
challenge.

7.6 Relation to Existing Work

As mention earlier there has been conducted a considerable amount of re-
search on the VMI problem domain and most of this work has been explor-
atory research on how to develop deferent security tools. But in most of
the cases the security tool does try to detect or protect against some form of
malicious code. What is relatively unique about the tool developed in this
thesis is that it does not only address the danger about this malicious code.
I addition it intends to protect against well-meaning system administrators
doing configurations without following the correct process.

The tool created in this thesis can actually be illustrated as the first step
into creating a datacenter “immune system“. Imagine the way as the white
blood cells isolate and encapsulate foreign particles or cell in the body, be-
fore it kills it or pushes it out. In this same way this prototype are making
way for a computer white cell that can isolate and either kill or reset the
server with a foreign object (not compliant configuration). An important

46

notification is that this diagnostic can be done before the server is even al-
lowed into the network. Just like the body‘s immune system protect the
body form foreign objects even entering the body.

In addition to being an immune system the prototype also frees up re-
sources on the targeted machine because with this design there is no need
for an agent running locally on the virtual machine. There has been some
research on how the targeted systems are affected, but in most cases this
has been left out it is the execution of the VMI tool that has been investig-
ated. This thesis complements this part of the research..

7.7 The Intended Consumer

The main target user for this prototype was the system administrator of
a virtual infrastructure. This also includes the system administrators for
cloud providers, which provide services as rely on a specific configuration.
But there are other potential consumers as well. This tool given it is be-
ing developed future, can be used by process manages responsible for the
configuration process. If a configuration manager can report on the state of
the datacenter with only a few minute delay this can be of great value. And
this can be done even if the virtual machine is not connected to the network.

7.8 Conclusion

In this thesis a prototype that uses VMI techniques to investigate if tar-
geted virtual machines are compliant according to a predefined configura-
tion stored in a more secure location. The tool has these capabilities.

• Control the input variable provided by the executer.

• Read the configuration from the configuration file.

• Do the compliant test provided from the configuration file.

• Create and populate a log file if specified.

• Determine and report if the monitored virtual host is compliant.

In addition the tools necessary to measure the performance impact on
the targeted virtual machine was created.

The performance impact on the targeted virtual machine was investig-
ated. The conclusion from the data collected was that the performance im-
pact on the targeted virtual machine was insignificant if the test frequency
was small.

47

The result from the experiment also revealed that there is a great per-
formance potential in developing the tool with only LIbVMI instead of us-
ing Volatility on top of LiBVMI. In the experiment conducted the pure Lib-
VMI architecture was 37,43 times faster.
The final discovery was that there is possible to provoke significant per-
formance degradation by using a large test frequency.

7.9 Future work

Given the result form the experiment there would be great potential in de-
veloping a similar tool like the on developed in this thesis, but based on
a pure LibVMI architecture. This would significantly reduce the resource
taxation of the dom0 server.

The fact that the prototype developed in this thesis is running on the
dom0 server raises some concerns. It would be a large problem if the load
on the dom0 server would be too large because this may result in the whole
virtual infrastructure suffering. To counteract this, it can be investigated the
possibility to move the VMI tool from the dom0 to another virtual server.
In theory there should be possible to delegate the necessary privileges to
a domU server, but with this approach the security aspect is essential. In
the newest version of Xen it comes with the support of deploying a Secure
Domain server instead. This server can be used to host VMI security ap-
plications, and could be used as an approach.

To future enhance the capabilities of the prototype to be a true datacen-
ter immune system there should be developed more functionality. In many
cases a server can be reverted back to a specific state in time, without los-
ing any data. An example is a web server connected to a database. If all the
data are saved in the database, and nothing on the web server, it is safe to
revert the web server into it initial state. To future develop the prototype
with a capability to revert a server with a drifting configuration back to a
desired state, this could be proven to be valuable.

48

Appendix A

Setting up the environment

A.1 Installation Dom0

For my environment I installation Ubuntu 14.04 on a Dell PowerEdge r810
with 2 x 12 cores and 512GB RAM. First I installed the xen hypervisor by
using this command.

sudo apt−g e t i n s t a l l xen−h y p e r v i s o r−amd64

There is considered best practice to dedicate a fixed amount of memory to
the Dom0 server, and to do this you will need to edit the grub loader. To do
this in Ubuntu you can edit /etc/default/grub with your favorite editor. I
used nano.

sudo nano / e t c / d e f a u l t / grub

And I added

GRUB_CMDLINE_XEN_DEFAULT="dom0_mem=min :4096M, max
↪→ : 4096M"

In addition you need to install this packet.

sudo apt−g e t i n s t a l l g e d i t

To make Ubuntu update the grub loader you need to run this command.

sudo update−grub

If you are using an older version of Ubuntu than 14.04 you also need to
edit the grub loader so it boots into the hypervisor as default. But because
I have used this version I are now ready to boot the server by running this
command.

49

sudo r e b o o t

To be able to use hardware assisted virtualization the vt-x or ADM-v need
to be enabled in the bios, and this boot might be a good time to ensure this.
After the boot the VMM are running and the Dom0 is running beside the
VMM. Now it is time to install the libvmi [14] tool. As documented on the
project web site there are some dependencies, but in my experience I do
need some more packages are needed as well. First of all I need autoconf
and make to be able to install packages that are not distributed with apt-
get. To do this I ran these commands.

sudo apt−g e t i n s t a l l a u t o c o n f
sudo apt−g e t i n s t a l l make

For the first dependency libxc that also need libtool run these commands.

sudo apt−g e t i n s t a l l l i b t o o l
apt−g e t i n s t a l l l i b x c−dev

In addition I installed bison and flex.

sudo apt−g e t i n s t a l l b i s o n
sudo apt−g e t i n s t a l l f l e x

In addition I experienced that this installations was needed.

sudo apt−g e t i n s t a l l g f o r t r a n
sudo apt−g e t i n s t a l l l i b x e n−dev

According to the project webpage libxenstore is also needed, but this was
installed together with the hypervisor. So now I are ready to install the lib-
vmi. First I download the version I would like, and unpack it.

#Sudo wget h t t p s : / / c o d e . g o o g l e . com / p / v m i t o o l s /
↪→ downloads / d e t a i l ?name= l i b v m i −0 . 1 0 . 1 . t a r . gz&can
↪→ =2&q=

t a r −xf libvmi −0 . 1 0 . 1 . t a r . gz

Then I enter the libvmi directory and run autogen and configure and
make.

cd l i b v m i −0.10 .1
./ autogen . sh
./ conf igure
make

50

Then I install libvmi by running this commands.

make i n s t a l l
l d c o n f i g

In addition I need to create a configuration file that contains the inform-
ation libvmi need to bridge the semantic gap to do VM inspection. How to
do this is explained in section Configure Libvmi section A.5 on page 55.

A.2 Install and configure the network bridge

For the virtual machines to be able to connect to the network I need to set
up and configure a network bridge. First I need to log in on the Dom0
server and then I install the bridge-utils packet by running this command.

sudo apt−g e t i n s t a l l b r i d g e−u t i l s

In the case the Dom0 computer is a desktop installation, which is not re-
commended, the Network Manager need to be disabled by running these
two commands.

sudo update−r c . d network−manager d i s a b l e
sudo / e t c / i n i t . d / network−manager s t o p

Then I are ready to configure the network bridge by editing this file
/etc/network/interfaces. I ran this command.

sudo nano / e t c / ne twork / i n t e r f a c e s

My file looked like this.

The l o o p b a c k network i n t e r f a c e
auto lo
i f a c e lo i n e t loopback

The pr imary network i n t e r f a c e
auto em1
i f a c e em1 i n e t manual

auto xenbr0
i f a c e xenbr0 i n e t s t a t i c

address 1 7 2 . 2 4 . 2 0 1 . 1 3 8
netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
gateway 1 7 2 . 2 4 . 2 0 1 . 1
br idge_ports em1
dns−nameservers 1 7 2 . 2 4 . 2 0 1 . 5 1 1 7 2 . 2 4 . 2 0 1 . 5 0

51

Then I need to take down and up the em1 networking interface and enable
the xenbr0 by running this command.

sudo i fdown em1 && sudo i f u p xenbr0 && sudo i f u p em1

Note to restart the actual networking service is no longer supported in
Ubuntu 14.04.

A.3 Install a Paravirtualized guests

There is many methods to deploy virtual machines on Xen, but in my case
I selected do build them manually. First I ran this command to find the
volume groupe.

sudo pvs

In my case I got this result.

PV VG Fmt Attr PSize PFree
/dev/sda5 s02tvm01−vg lvm2 a−− 135 .26 g 106 .64 g

From this I find that s02tvm01-vg is my volume group. Then I can create
the LVM volume for the new VM by running this command.

sudo l v c r e a t e −L 4G −n v g u e s t 1 / dev / s02tvm01−vg

Then I created a directory and downloaded the necessary files from an
archive mirror [20], by running this commands.

sudo mkdir −p /var/ l i b /xen/images/netboot/ubuntu/
cd /var/ l i b /xen/images/netboot/Ubuntu
sudo wget h t t p : / / f t p . u n i n e t t . no / ubuntu / ubuntu / d i s t s /

↪→ p r e c i s e / main / i n s t a l l e r −amd64 / c u r r e n t / images /
↪→ n e t b o o t / xen / i n i t r d . gz

sudo wget h t t p : / / f t p . u n i n e t t . no / ubuntu / / ubuntu / d i s t s
↪→ / p r e c i s e / main / i n s t a l l e r −amd64 / c u r r e n t / images /
↪→ n e t b o o t / xen / vmlinuz

Then I need to create a config file for the virtual machine /etc/x-
en/vguest1.cfg

name = " vguest1 "
memory = 1024
disk = [’ phy :/ dev/s02tvm01−vg/vguest1 , xvda ,w’]

52

v i f = [’ bridge=xenbr0 ’]
kernel = "/var/ l i b /xen/images/netboot/ubuntu/vmlinuz "
ramdisk = "/var/ l i b /xen/images/netboot/ubuntu/ i n i t r d .

↪→ gz "
e x t r a = " debian−i n s t a l l e r / e x i t /always_halt=true −−

↪→ console=hvc0 "

Now I are ready to start and install the guest operating system by using
this command.

sudo x l c r e a t e / e t c /xen/vguest1 . c fg −c

The c switch is used to connect to the console. After the installation the
vm is powered off, and I can set the pygrub as the bootloader by using this
command.

sudo ln −s /usr/ l i b /xen−4.1/ bin/pygrub /usr/bin/pygrub

Then I need to do some changes to the cfg file I created. My /etc/x-
en/vguest1.cfg file locked like this.

name = " vguest1 "
memory = 1024
disk = [’ phy :/ dev/s02tvm01−vg/vguest1 , xvda ,w’]
v i f = [’ bridge=xenbr0 ’]
boot loader = " pygrub "
k e r n e l = " / var / l i b / xen / images / n e t b o o t / ubuntu / vmlinuz "
ramdi sk = " / var / l i b / xen / images / n e t b o o t / ubuntu / i n i t r d .

↪→ gz "
e x t r a = " deb ian− i n s t a l l e r / e x i t / a l w a y s _ h a l t = t r u e −−

↪→ c o n s o l e =hvc0 "

To start the vm you use this command

sudo x l c r e a t e / e t c / xen / v g u e s t 1 . c f g −c

I am using putty to connect with ssh to my dom0 server, and then from the
console to vguest1 and back to the dom0 server I uses the <ctr>+5 to exit.

A.4 Install hardware assisted virtual host

Another method to install a host in a Xen environment is hardware assisted
virtual host or a hardware virtual machine (HVM) which it is named when
I run on Xen. To be able to deploy hardware assisted virtual machines the
physical CPU needs to support this technology and it need to be enabled
in BIOS. The approach to deploy a HVM is similar to PV guest. If I will use
a LVM volume for the disk I need to determine the LVM volume group.

53

sudo pvs

In my case I got this result.

PV VG Fmt Attr PSize PFree
/dev/sda5 s02tvm01−vg lvm2 a−− 135 .26 g 106 .64 g

From this I find that s02tvm01-vg is my volume group. Then I can cre-
ate the LVM volume for the new vm by running this command.

sudo l v c r e a t e −L 10G −n vgues41 / dev / s02tvm01−vg

Then I created a directory and downloaded the iso file for Ubuntu
Server 14.04.1. by running this commands.

sudo mkdir −p /var/ l i b /xen/images/ i s o
cd /var/ l i b /xen/images/ i s o
sudo wget h t t p : / / r e l e a s e s . ubuntu . com / 1 4 . 0 4 . 1 / ubuntu

↪→ −14.04.1− s e r v e r−amd64 . i s o

Then I need to create a config file for the virtual machine /etc/x-
en/vguest4.cfg

bui lder = "hvm"
name = " vguest4 "
memory = " 1024 "
vcpus = 1
v i f = [’ bridge=xenbr0 ’]
disk = [’ phy :/ dev/s02tvm01−vg/vguest4 , hda ,w’ , ’ f i l e :/

↪→ var/ l i b /xen/images/ i s o /ubuntu−14.04.1− server−
↪→ amd64 . iso , hdc : cdrom , r ’]

vnc = 1
vncconsole =1
boot=" dc "
stdvga = 0

Now I are ready to start and install the guest operating system by using
this command.

sudo x l c r e a t e / e t c /xen/vguest4 . c fg
sudo vncviewer l o c a l h o s t : 0

The last command is used to connect to the console, but this does need a
graphical environment. A graphical environment is not always the case of
a dom0 server. In theory you could connect to the virtual host with VNC,
but for security reasons vnc on xen only listens on the loopback interface

54

127.0.0.0. There are different ways to work around this problem. One of
them is to export the display to a computer with graphical environment.
To do these open a terminal on the computer with a graphical environment
and enter the command under.

x h o s t +

On the dom0 Server you enter these commands.

DISPLAY=< i p a d d r e s s >
e x p o r t DISPLAY
sudo v n c v i e w e r l o c a l h o s t : 0

The ip address is the address of the host with a graphical environment.
After the installation you should power off the new virtual guest and edit
the /etc/xen/vguest4.cfg file to remove the cd. Mine looked like this.

bu i lder = "hvm"
name = " vguest4 "
memory = " 1024 "
vcpus = 1
v i f = [’ ’]
v i f = [’ bridge=xenbr0 ’]
d i s k = [’ phy : / dev / s02tvm01−vg / vgues t4 , hda , w’ , ’ f i l e : /

↪→ home / admanl / i s o / ubuntu−14.04.1− s e r v e r−amd64 . i s o ,
↪→ hdc : cdrom , r ’]

disk = [’ phy :/ dev/s02tvm01−vg/vguest4 , hda ,w’]
vnc = 1
vncconsole =1
boot=" dc "

To start the vm you use this command

sudo x l c r e a t e / e t c / xen / v g u e s t 4 . c f g

A.5 Configure Libvmi

After the guest virtual machine in installed there is time to configure lib-
vmi. In order for libvmi to find the guest virtual machine and be able to
introspect it, I need to create a configuration file named /etc/libvmi.conf.
To populate this file you will first need the virtual machine name that was
given during the creation of the virtual machine. To fine this name you can
run this command.

sudo x l l i s t

My result was.

55

Name ID Mem
↪→ VCPUs S t a t e Time (s)

Domain−0 0 4093
↪→ 24 r−−−−− 2373 .5

ubuntu 2 1024
↪→ 1 −b−−−− 118 .5

vguest1 7 1024
↪→ 1 −b−−−− 8 4 . 5

In addition for a linux machine you need to find [14]

• sysmap = this is the path to the guest virtual machine which you need
to copy from the guest virtual machine to some place on the Dom0
server.

• ostype = “Linux“ or “Windows“

• linux_mm = Is the Offset to the task_struct->mm.

• linux_pid = Is the Offset to the task_struct->pid.

• Linux_pgd = is the offset to the task_struct->pgd.

To collect this information libvmi has provided a tool that can be copied
from$Home/libvmi-0.10.1/tools/linux-offset-finder/ to the guest virtual
machine. When you have copied the tool to the guest virtual machine you
first run.

sudo make

Then you will get a findoffsets.ko file and you can run this command.

sudo insmod f i n d o f f s e t s . ko

You will then find the necessary information in $dmesg or /var/lo-
g/syslog. Example from my syslog.

Nov 5 1 6 : 0 7 : 4 6 vguest1 kernel : [3953 .223721] Module
↪→ FindOffse t s loaded .

Nov 5 1 6 : 0 7 : 4 6 vguest1 kernel : [3953 .223725]
Nov 5 1 6 : 0 7 : 4 6 vguest1 kernel : [3953 .223744] [domain

↪→ name] {
Nov 5 1 6 : 0 7 : 4 6 vguest1 kernel : [3953 .223749]

↪→ ostype = " Linux " ;
Nov 5 1 6 : 0 7 : 4 6 vguest1 kernel : [3953 .223755]

↪→ sysmap = " [i n s e r t path here] " ;
Nov 5 1 6 : 0 7 : 4 6 vguest1 kernel : [3953 .223763]

↪→ linux_name = 0 x470 ;

56

Nov 5 1 6 : 0 7 : 4 6 vguest1 kernel : [3953 .223769]
↪→ l i n u x _ t a s k s = 0 x248 ;

Nov 5 1 6 : 0 7 : 4 6 vguest1 kernel : [3953 .223775]
↪→ linux_mm = 0 x280 ;

Nov 5 1 6 : 0 7 : 4 6 vguest1 kernel : [3953 .223781]
↪→ l inux_pid = 0 x2bc ;

Nov 5 1 6 : 0 7 : 4 6 vguest1 kernel : [3953 .223787]
↪→ linux_pgd = 0x58 ;

Nov 5 1 6 : 0 7 : 4 6 vguest1 kernel : [3953 .223792] }

The resulting /etc/libvmi.conf looked like this.

vguest1 {
ostype = " Linux " ;
sysmap = " [/ e t c /vm/System . map−3.2.0−70− gener ic] " ;
linux_name = 0 x470 ;
l i n u x _ t a s k s = 0 x248 ;
linux_mm = 0 x280 ;
l inux_pid = 0 x2bc ;
linux_pgd = 0x58 ;

}

A.6 Install Volatility and dependencies

To install volatility [33] I first need to install the dependencies and some
useful tools. To do this first run this command.

sudo apt−get i n s t a l l subversion pcregrep l i b p c r e++−dev
↪→ python−dev make g i t zip unzip −y

Then I need to install PyCrypto.

sudo wget ht tps :// f t p . d l i t z . net/pub/ d l i t z /crypto/
↪→ pycrypto/pycrypto − 2 . 6 . 1 . t a r . gz

t a r −zxvf pycrypto − 2 . 6 . 1 . t a r . gz
cd pycrypto −2.6.1/
sudo python setup . py bui ld
sudo python setup . py bui ld i n s t a l l
cd . .

Then I install Distrom

sudo wget ht tps :// distorm . googlecode . com/ f i l e s /
↪→ distorm3 . zip

sudo apt−get i n s t a l l unzip −y
sudo unzip distorm3 . zip

57

cd distorm3/
sudo python setup . py bui ld
sudo python setup . py bui ld i n s t a l l
cd . .

Then I install Yara.

sudo wget ht tp :// yara−p r o j e c t . googlecode . com/ f i l e s /
↪→ yara −1.4 . t a r . gz

sudo t a r −zxvf yara −1.4 . t a r . gz
cd yara−1.4/
sudo ./ conf igure
sudo make
sudo make i n s t a l l
cd . .

Then I install Yara Python.

wget ht tps :// yara−p r o j e c t . googlecode . com/ f i l e s /yara−
↪→ python−1.4a . t a r . gz

sudo t a r −zxvf yara−python−1.4a . t a r . gz
cd yara−python−1.4a/
sudo python setup . py bui ld
sudo python setup . py bui ld i n s t a l l
cd . .

And I need to edit the file /etc/ld.so.conf

include / e t c /ld . so . conf . d / * . conf
‘ ‘/ usr/ l o c a l / l i b ‘ ‘

And in the end I get a copy of the volatility repository from github.

g i t c lone ht tps :// github . com/ v o l a t i l i t y f o u n d a t i o n /
↪→ v o l a t i l i t y . g i t

For the uses I need in this thesis there is no need for actually install volat-
ility, I only need the directory with a copy of volatility. If I do not install
volatility then it is possible to use different versions of the product sim-
ultaneously, just cep the different versions in different folders. To use the
different versions just run the vol.py file from the desired versions direct-
ory.

A.6.1 Create a Profile for Volatility

To be able to analyze a memory dump from a Linux system with Volatil-
ity there is necessary to create a Linux profile for that particular system. A
profile is a zipped file that contains to files, on with the debugging symbols
and one with the kernels data structure. This information is then used by

58

volatility to locate and parse the desired information from the memory. It
is necessary for Volatility to work properly that the profile is created on a
system with the same Linux version and kernel version as the system that
will be analyzed. For this thesis the profile need to be created on the virtual
guest. (vguest4). To create this profile I fist need to install dwarfdump by
using this command.

sudo apt−g e t i n s t a l l dwarfdump −y

And I need GCC/make.

sudo apt−g e t i n s t a l l b u i l d−e s s e n t i a l −y

Then I need to find the kernel version by using this command.

1 # sudo uname −a

Then I have the needed information to install the headers for building ker-
nel modules. This is in my experience usually installed, but to be sure it
should be apt-get installed. And be specific. This is a general command
that should work in most cases.

sudo apt−g e t i n s t a l l l inux−h e a d e r s−$ (uname −r) −y

In addition to this volatility need to be downloaded to this computer as
well.

g i t c lone ht tps :// github . com/ v o l a t i l i t y f o u n d a t i o n /
↪→ v o l a t i l i t y . g i t

Now I will create vtypes or a file that contains the kernels data structure.
To do this I only need to run a make command in the tools/linux directory.
This sometimes does fail if I are not the owner of this directory. It is also
possible it will fail if I use sudo to run the make command. This commands
should result in a successful creation of a module.dwarf file.

sudo chown <user > v o l a t i l i t y / t o o l s / l i n u x
cd v o l a t i l i t y / t o o l s / l i n u x
#make

The debug symbols are percent in the System.map file located in the /boot
folder. The System.map file and the module.dwarf file should then be
zipped into one file and copied into the volatility/volatility/plugins/over-
lays/ directory. This command should work with some editing on most
Ubuntu systems.

59

sudo z i p ~/ v o l a t i l i t y / v o l a t i l i t y / p l u g i n s / o v e r l a y s /
↪→ l i n u x /

ubuntu1204x64−$ (uname −r) . zip ~/ v o l a t i l i t y / t o o l s /l inux
↪→ /module . dwarf /boot/System . map−$ (uname −r)

For the thesis this file needed to be copied to the volatility/volatil-
ity/plugins/overlays/ directory on the dom0 server. Example command.

sudo s c p ~/ v o l a t i l i t y / v o l a t i l i t y / p l u g i n s / o v e r l a y s /
↪→ l i n u x /

ubuntu1204x64−$ (uname −r) . zip <user >@/home/<user >/
↪→ v o l a t i l i t y / v o l a t i l i t y /plugins/over lays/l inux /.

To verify that the profile is present in the system you can run this com-
mand.

sudo python v o l . py −− i n f o | grep Linux

Then al the linux profiles will be listed.

A.7 Install PyVMI

To make volatility able to read the memory provided by libvmi I need to
install a plugin named PyVMI [24]. The plugin is downloaded as a part of
libvmi, and is located in /libvmi-0.10.1/tools/pyvmi directory. Enter the
directory and install the plugin by using these commands.

cd / l i b v m i −0 . 1 0 . 1 / t o o l s / pyvmi
sudo python s e t u p . py b u i l d
sudo python s e t u p . py i n s t a l l

When this is done you only need to copy the pyvmiaddressspace.py into
the volatility/plugins/addrspaces/ directory.

sudo cp p y v m i a d d r e s s s p a c e . py v o l a t i l i t y / p l u g i n s /
↪→ a d d r s p a c e s / .

Now it is ready to start introspecting the virtual guest by using
volatility. The syntax is like this.

python vol . py − l vmi://< VirtualGuest > −−p r o f i l e =<
↪→ p r o f i l e f o r v i r t u a l g u e s t > <command>

60

Appendix B

Compliant script compliant.pl

1 # ! / usr / b in / p e r l
2
3 # our n eed ed p a c k a g e s
4 use s t r i c t " vars " ;
5 use Getopt : : Std ;
6 use Term : : ANSIColor ;
7 use Time : : HiRes ;
8 # G l o b a l v a r i a b l e s
9 my $VERBOSE = 0 ;

10 my $DEBUG = 0 ;
11 my $LFILE ;
12
13 # commandline o p t i o n s
14
15 my $ o p t _ s t r i n g = " vdhc : l : " ; # p r i n t out h e l p message
16 getopts (" $ o p t _ s t r i n g " , \my %opt) or usage () and e x i t

↪→ (1) ; # or d i e " Read t h e manual\n " ;
17
18 $VERBOSE = 1 i f $opt { ’v ’ } ;
19 $DEBUG = 1 i f $opt { ’d ’ } ;
20 i f ($opt { ’h ’ }) {
21 usage () ;
22 e x i t 0 ;
23 }
24
25 my $CFILE = $opt { ’ c ’ } ;
26 debug (" Config f i l e was $CFILE\n") ;
27
28 (usage () and die " P lease supply a conf ig f i l e name\n"

↪→) unless s t a t ($CFILE) ;
29 i f ($opt { ’ l ’ }) {
30 $LFILE = $opt { ’ l ’ } ;
31 debug (" L o g f i l e f i l e was $LFILE\n") ;
32 }

61

33
34 # ####################
35 # Main p a r t #
36 # ####################
37 my $ s t a r t = [Time : : HiRes : : gett imeofday ()] ;
38 i f ($opt { ’ l ’ }) {
39 open (LOG, ">>$LFILE ") or die " Error opening

↪→ $LFILE $!\n" ;
40 }
41 open (CONF, " $CFILE ") or die " Error opening $CFILE $!\n

↪→ " ;
42
43 my %guestconf ;
44 my $guest ;
45 # Read t h e c o n f i g u r a t i o n from t h e c o n f i g f i l e .
46 verbose (" Read the c o n f i g u r a t i o n f i l e \n") ;
47 while (my $ l i n e = <CONF>) {
48 i f ($ l i n e =~ /^\[(\w+) \]/ i)
49 {
50 $guest = $1 ;
51 $guestconf { $guest } { ’ compliant ’ } = ’ compliant ’ ;
52 verbose (" Reading conf ig guest = $guest \n") ;
53 } # i f
54 e l s i f ($ l i n e =~ /(^ eth\d) =(\d { 1 , 3 } \ . \ d { 1 , 3 } \ . \ d

↪→ { 1 , 3 } \ . \ d { 1 , 3 }) /)
55 {
56 $guestconf { $guest } { $1 } = $2 ;
57 debug (" Host = $guest A t t r i b u t = $1 Value =

↪→ $guestconf { $guest } { $1 } \n") ;
58 }
59 e l s i f ($ l i n e =~ /(ps\d) =(\S *) /)
60 {
61 $guestconf { $guest } { $1 } = $2 ;
62 debug (" Host = $guest A t t r i b u t = $1 Value =

↪→ $guestconf { $guest } { $1 } \n") ;
63 }
64 e l s i f ($ l i n e =~ /(kernel) =(\d { 1 , 2 } \ . \ d { 1 , 2 } \ . \ d

↪→ {1 ,2}−\d{1 ,2}−\S *) /)
65 {
66 $guestconf { $guest } { $1 } = $2 ;
67 debug (" Host = $guest A t t r i b u t = $1 Value =

↪→ $guestconf { $guest } { $1 } \n") ;
68 }
69 e l s i f ($ l i n e =~ /(p r o f i l e) =(\S *) /)
70 {
71 $guestconf { $guest } { $1 } = $2 ;
72 debug (" Host = $guest A t t r i b u t = $1 Value =

↪→ $guestconf { $guest } { $1 } \n") ;

62

73 }
74 }
75
76
77 foreach my $prguest (keys %guestconf) {
78 foreach my $ p r a t t r i b u t (keys $guestconf { $prguest })
79 {
80 debug (" Prosess ing Hist=$prguest A t t r i b u t = $ p r a t t r i b u t

↪→ Value=$guestconf { $prguest } { $ p r a t t r i b u t } \n") ;
81 #Running t e s t f o r d e s i e r d network c o n f i g u r a t i o n .
82 i f ($ p r a t t r i b u t =~ /(eth\d) /)
83 {
84 my $prnic = $1 ;
85 debug (" Prosess ing nic = $prnic \n") ;
86 debug (" Running command python vol . py − l vmi://

↪→ $prguest −−$guestconf { $prguest } { ’ p r o f i l e ’ }
↪→ l i n u x _ i f c o n f i g |\n") ;

87 print "INFO : Framework used to run t e s t = " ;
88 open (VCMD, " python vol . py − l vmi:// $prguest −−

↪→ p r o f i l e =$guestconf { $prguest } { ’ p r o f i l e ’ }
↪→ l i n u x _ i f c o n f i g |") ;

89
90 while (my $vcmdline = <VCMD>)
91 {
92 # T e s t f o r i p on n i c
93 i f ($vcmdline =~ /(eth\d) \s * (\d { 1 , 3 } \ . \ d { 1 , 3 } \ . \ d

↪→ { 1 , 3 } \ . \ d { 1 , 3 }) /)
94 {
95 debug (" t e s t $guestconf { $prguest } { $prnic } != $2\n")

↪→ ;
96 i f ($guestconf { $prguest } { $prnic } ne $2)
97 {
98 $guestconf { $prguest } { ’ compliant ’ } = ’ not

↪→ compliant ’ ;
99 } # i f

100 # p r i n t " n i c = $1 i p = $2 " ;
101 } # i f ($vcmdl ine =~ / (e t h \d) \s * (\ d { 1 , 3 } \ . \ d

↪→ { 1 , 3 } \ . \ d { 1 , 3 } \ . \ d { 1 , 3 }) /)
102 } # w h i l e (my $vcmdl ine = <VCMD>)
103 c lose (VCMD) ;
104
105 } # i f ($ p r a t t r i b u t =~ / (e t h \d) /)
106 #Running t e s t f o r d e s i e r d p r o s e s s e s .
107 e l s i f ($ p r a t t r i b u t =~ /(ps\d) /)
108 {
109 my $prps = $1 ;
110 debug (" Prosess ing prosess = $prps \n") ;

63

111 debug (" Running command python vol . py − l vmi://
↪→ $prguest −−p r o f i l e =$guestconf { $prguest } { ’
↪→ p r o f i l e ’ } l i n u x _ p s l i s t |\n") ;

112 print "INFO : Framework used to run t e s t = " ;
113 my $pscompliant = " not compliant " ;
114 open (VCMD, " python vol . py − l vmi:// $prguest −−

↪→ p r o f i l e =$guestconf { $prguest } { ’ p r o f i l e ’ }
↪→ l i n u x _ p s l i s t |") ;

115 while (my $vcmdline = <VCMD>)
116 {
117 i f ($vcmdline =~ /0x[0−9a−f] *\ s (\S *) /)
118 {
119 my $ p r t e s t v a l u e = $1 ;
120 i f ($guestconf { $prguest } { $prps } eq $ p r t e s t v a l u e)
121 {
122 $pscompliant = ’ compliant ’ ;
123 } # i f ($ g u e s t c o n f { $ p r g u e s t } { $prps } eq

↪→ $ p r t e s t v a l u e)
124 } # i f ($vcmdl ine =~ / 0 x[0−9a−f] *\ s (\S *) /)
125 } # w h i l e (my $vcmdl ine = <VCMD>)
126 c lose (VCMD) ;
127 i f ($pscompliant eq ’ not compliant ’) # i f t h e

↪→ p r o s e s s was not running t h e g u e s t i s not
↪→ c o p l i a n t .

128 {
129 $guestconf { $prguest } { ’ compliant ’ } = ’ not

↪→ compliant ’ ;
130 } # i f ($ p s c o m p l i a n t eq " not c o m p l i a n t " ;)
131 } # e l s i f ($ p r a t t r i b u t =~ / (ps\d) /)
132 #Running t e s t f o r d e s i e r d k e r n e l
133 e l s i f ($ p r a t t r i b u t =~ /kernel /)
134 {
135 debug (" Prosess ing $ p r a t t r i b u t = $guestconf { $prguest

↪→ } { ’ kernel ’ } \n") ;
136 debug (" python vol . py − l vmi:// $prguest −−p r o f i l e =

↪→ $guestconf { $prguest } { ’ p r o f i l e ’ } l inux_banner "
↪→) ;

137 open (VCMD, " python vol . py − l vmi:// $prguest −−
↪→ p r o f i l e =$guestconf { $prguest } { ’ p r o f i l e ’ }
↪→ l inux_banner |") ;

138 while (my $vcmdline = <VCMD>)
139 {
140 i f ($vcmdline =~ /Linux\svers ion\s (\d { 1 , 2 } \ . \ d

↪→ { 1 , 2 } \ . \ d{1 ,2}−\d{1 ,2}−\S *) /)
141 {
142 my $pskernelvr = $1 ;
143 debug ("Run t e s t $guestconf { $prguest } { ’ kernel ’ } ne

↪→ $pskernelvr \n") ;

64

144 i f ($guestconf { $prguest } { ’ kernel ’ } ne $pskernelvr
↪→)

145 {
146 $guestconf { $prguest } { ’ compliant ’ } = ’ not

↪→ compliant ’ ;
147 } # i f ($ g u e s t c o n f { $ p r g u e s t } { ’ k e r n e l ’ } ne

↪→ $ p s k e r n e l v r)
148 } # i f
149 } # w h i l e (my $vcmdl ine = <VCMD>)
150 c lose (VCMD) ;
151 } # e l s i f ($ p r a t t r i b u t =~ / (k e r n e l) /)
152 } # f o r e a t c h
153 debug (" t e s t $guestconf { $prguest } { ’ compliant ’ } = 1\n

↪→ ") ;
154 i f ($guestconf { $prguest } { ’ compliant ’ } eq ’ compliant ’

↪→)
155 {
156 print ’ Guest ’ , $prguest , ’ i s ’ , colored [’ green

↪→ on_black ’] , ’ compliant ’ , "\n" ;
157 }
158 e lse
159 {
160 print ’ Guest ’ , $prguest , ’ i s ’ , colored [’ red

↪→ on_black ’] , ’ not compliant ’ , "\n" ;
161 }
162 } # f o r e a c h my $ p r g u e s t (k e y s %g u e s t c o n f)
163 my $elapsed = Time : : HiRes : : t v _ i n t e r v a l ($ s t a r t) ;
164 print LOG " $elapsed \n" ;
165
166
167 # p r i n t " Tee s c r i p t e x e c u t e d in $ e l a p s e d m i c r o s e c o n d s

↪→ \n " ;
168
169 i f ($opt { ’ l ’ }) {
170 c lose LOG;
171 }
172 c lose CONF;
173
174 debug (" S c r i p t i n g i s f in i shed , e x i t i n g . . . \ n") ;
175
176 e x i t 0 ;
177
178
179
180 # #####################
181 # s u b r o u t i n e s #
182 # #####################
183

65

184 sub usage {
185 print " Usage :\n" ;
186 print "−h f o r help\n" ;
187 print "−v f o r verbose (more output) \n" ;
188 print "−d f o r debug (even more output) \n" ;
189 print "−c <filename > f o r the c o n f i g u r a t i o n f i l e \n"

↪→ ;
190 print "− l <fi lename > f o r the log f i l e \n" ;
191 }
192
193 sub verbose {
194 print "VERBOSE : " . $_ [0] i f ($VERBOSE or $DEBUG

↪→) ;
195
196 }
197
198 sub debug {
199 print "DEBUG: " . $_ [0] i f ($DEBUG) ;
200
201 }

66

Appendix C

Resource consuming process
Script. rescons.pl

1
2
3
4 # ! / usr / b in / p e r l
5
6 # our n eed ed p a c k a g e s
7 use s t r i c t " vars " ;
8 use Getopt : : Std ;
9 use Time : : HiRes ;

10
11 # G l o b a l v a r i a b l e s
12 my $VERBOSE = 0 ;
13 my $DEBUG = 0 ;
14 my $NLOOP = 1 ;
15
16 # sommandline o p t i o n s
17
18 my $ o p t _ s t r i n g = " vdhn : l : z : " ; # p r i n t out h e l p message
19 getopts (" $ o p t _ s t r i n g " , \my %opt) or usage () and e x i t

↪→ (1) ; # or d i e " Read t h e manual\n " ;
20
21 $VERBOSE = 1 i f $opt { ’v ’ } ;
22 $DEBUG = 1 i f $opt { ’d ’ } ;
23 i f ($opt { ’h ’ }) {
24 usage () ;
25 e x i t 0 ;
26 }
27
28 i f ($opt { ’n ’ }) {
29 $NLOOP = $opt { ’n ’ } ;
30 }
31

67

32 my $LFILE = $opt { ’ l ’ } ;
33 debug (" LogFi le was $LFILE\n") ;
34 my $ZFILE = $opt { ’ z ’ } ;
35 debug (" F i l e to zip was $ZFILE\n") ;
36
37 (usage () and die " P lease supply a f i l e to zip \n")

↪→ unless s t a t ($ZFILE) ;
38
39
40 # #########################
41 # #
42 # #
43 # Main p a r t #
44 # #
45 # #
46 # #########################
47
48 my $ s t a r t = [Time : : HiRes : : gett imeofday ()] ;
49 open (LOG, ">$LFILE ") ;
50 my $count =0;
51
52 while ($count++ < $NLOOP) {
53 my $ z i p s t a r t = [Time : : HiRes : : gett imeofday ()] ;
54 system (" zip $ZFILE . zip $ZFILE ") ;
55 my $zipelapsed = Time : : HiRes : : t v _ i n t e r v a l (

↪→ $ z i p s t a r t) ;
56 print LOG "ZIPELAPST = $zipelapsed \n" ;
57 system ("rm $ZFILE . zip ") ;
58 } # w h i l e
59
60
61
62 my $elapsed = Time : : HiRes : : t v _ i n t e r v a l ($ s t a r t) ;
63 print LOG "TOTALELAPST = $elapsed \n" ;
64 c lose (LOG) ;
65 debug (" S c r i p t i n g i s f in i shed , e x i t i n g . . . \ n") ;
66 e x i t 0 ;
67
68
69
70 # #####################
71 # s u b r u t i n e s #
72 # #####################
73
74 sub usage {
75 print " Usage :\n" ;
76 print "−h f o r help\n" ;
77 print "−v f o r verbose (more output) \n" ;

68

78 print "−d f o r debug (even more output) \n" ;
79 print "− l <fi lename > f o r the log f i l e \n" ;
80 print "−z <filename > to f i l to zip\n" ;
81 print "−n number of loops \n" ;
82 }
83
84 sub verbose {
85 print "VERBOSE : " . $_ [0] i f ($VERBOSE or $DEBUG

↪→) ;
86
87 }
88
89 sub debug {
90 print "DEBUG: " . $_ [0] i f ($DEBUG) ;
91
92 }

69

70

Appendix D

Scheduling Script. schedule.pl

1 # ! / usr / b in / p e r l
2
3 # our n eed ed p a c k a g e s
4 use s t r i c t " vars " ;
5 use Getopt : : Std ;
6 use Time : : HiRes ;
7
8 # G l o b a l v a r i a b l e s
9 my $VERBOSE = 0 ;

10 my $DEBUG = 0 ;
11 my $NLOOP = 1 ;
12 my $FLOOP = 1 ;
13 # sommandline o p t i o n s
14
15 my $ o p t _ s t r i n g = " vdhn : f : l : " ; # p r i n t out h e l p message
16 getopts (" $ o p t _ s t r i n g " , \my %opt) or usage () and e x i t

↪→ (1) ; # or d i e " Read t h e manual\n " ;
17
18 $VERBOSE = 1 i f $opt { ’v ’ } ;
19 $DEBUG = 1 i f $opt { ’d ’ } ;
20
21 i f ($opt { ’h ’ }) {
22 usage () ;
23 e x i t 0 ;
24 }
25
26 i f ($opt { ’n ’ }) {
27 $NLOOP = $opt { ’n ’ } ;
28 }
29
30 i f ($opt { ’ f ’ }) {
31 $FLOOP = $opt { ’ f ’ } ;
32 }
33

71

34 my $LFILE = $opt { ’ l ’ } ;
35 debug (" LogFi le was $LFILE\n") ;
36
37 # #########################
38 # #
39 # #
40 # Main p a r t #
41 # #
42 # #
43 # #########################
44
45
46 my $ s t a r t = [Time : : HiRes : : gett imeofday ()] ;
47 open (LOG, ">$LFILE ") ;
48 my $count =0;
49 my $fcount =0;
50 my $ t s l e e p = 60 / $FLOOP ;
51 while ($count++ < $NLOOP) {
52 while ($fcount++ < $FLOOP) {
53 my $ p t s t a r t = time ;
54 my $ p s t a r t = [Time : : HiRes : :

↪→ gett imeofday ()] ;
55 system (" p e r l compliant . pl −c des . c fg "

↪→) ;
56 my $pelapsed = Time : : HiRes : :

↪→ t v _ i n t e r v a l ($ p s t a r t) ;
57 print LOG "PROSESSELAPST = $pelapsed \

↪→ n" ;
58 my $ptelapsed = time − $ p t s t a r t ;
59 sleep ($ t s l e e p − $ptelapsed) ;
60 # p r i n t " $ p t e l a p s e d \n " ;
61 $count ++;
62 } # w h i l e
63 $fcount =0;
64 $count−−;
65 } # w h i l e
66
67
68
69 my $elapsed = Time : : HiRes : : t v _ i n t e r v a l ($ s t a r t) ;
70 print LOG "TOTALELAPST = $elapsed \n" ;
71 c lose (LOG) ;
72 debug (" S c r i p t i n g i s f in i shed , e x i t i n g . . . \ n") ;
73 e x i t 0 ;
74
75
76
77 # #####################

72

78 # s u b r u t i n e s #
79 # #####################
80
81 sub usage {
82 print " Usage :\n" ;
83 print "−h f o r help\n" ;
84 print "−v f o r verbose (more output) \n" ;
85 print "−d f o r debug (even more output) \n" ;
86 print "− l <fi lename > f o r the log f i l e \n" ;
87 print "−n number of loops\n" ;
88 print "−f number of loops/min \n" ;
89 }
90
91 sub verbose {
92 print "VERBOSE : " . $_ [0] i f ($VERBOSE or $DEBUG

↪→) ;
93
94 }
95
96 sub debug {
97 print "DEBUG: " . $_ [0] i f ($DEBUG) ;
98
99 }

73

74

Appendix E

Data from the experiments

E.1 Data Experiment 1

Example network configuration file. /etc/network/interfaces

i f a c e eth0 i n e t s t a t i c
address 1 7 2 . 2 4 . 2 0 1 . 8 5
netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
gateway 1 7 2 . 2 4 . 2 0 1 . 1
dns−nameservers 1 7 2 . 2 4 . 2 0 1 . 5 1 1 7 2 . 2 4 . 2 0 1 . 5 0

E.2 Data Experiment 2

47.761761 48.673629 48.436537 47.449149 48.676068
47.06424 48.393583 48.510077 47.675399 49.277353
47.637454 47.233528 49.292919 47.452949 49.379888
48.758873 47.334911 48.281828 48.302791 47.966527
49.03947 47.406834 48.35909 49.119929 47.244834
49.226746 47.539088 48.642393 49.078148 47.559358
47.08533 48.93096 47.602828 48.884824 47.190709
49.79394 47.839685 48.247879 47.579723 47.284758
48.41433 47.84694 48.76632 49.366785 48.796458
47.218244 48.21756 48.296392 47.739699 47.092072

Table E.1: Experiment 2: Baseline Control Sample

75

47.454471 47.937916 48.066164 48.151241 49.075062
47.491533 47.59132 48.292201 47.91982 48.851663
46.771776 48.297171 47.549821 47.820402 47.423816
48.743196 47.286723 47.986503 49.215293 47.28157
48.299666 47.503254 47.872113 48.674127 47.108775
48.987687 47.10709 47.41061 47.685822 48.333484
47.313125 47.529352 48.969366 47.571536 49.040809
47.35318 48.245409 48.954029 46.990614 48.31121
47.513019 47.995368 48.631588 47.53765 48.307207
47.639704 48.260211 48.0943 47.974323 48.71104

Table E.2: Experiment 2: 1 test / min

47.50316 47.738229 49.819227 47.258294 48.523667
46.571925 47.601103 46.933805 47.47359 47.303402
47.927472 46.827176 46.875655 47.454315 46.472014
48.207588 46.836022 47.584819 47.507105 47.31375
47.710461 47.47127 47.7165 47.49331 47.499902
47.341948 47.123104 47.223047 48.683462 46.503461
47.239606 47.215106 47.823663 47.355603 47.565556
47.645448 48.314218 46.712412 48.361928 47.037207
47.457129 48.428765 47.112992 47.073549 47.201932
47.562757 47.170382 47.802442 46.968339 47.329637

Table E.3: Experiment 2: 2 test / min

46.891185 48.928168 46.332371 47.905114 47.301139
48.036501 47.542456 48.400814 46.273667 48.254983
46.765992 47.759924 47.523362 48.679044 47.361048
47.983696 46.885332 47.863652 47.616058 48.195861
47.143221 47.489797 46.761929 47.699706 47.061547
47.903794 46.701512 46.983753 47.810413 46.765693
48.258159 47.324259 47.439066 47.411794 47.612629
48.015506 47.074336 47.374155 47.15397 47.609163
46.685609 48.037735 47.079752 47.821692 46.756021
47.318515 47.641179 47.845502 46.593105 47.420625

Table E.4: Experiment 2: 3 test / min

76

46.562385 47.852243 46.611621 46.883082 47.091203
46.391071 46.768588 47.676529 46.541507 46.693917
46.705503 46.60567 47.001847 46.981602 46.370436
47.047143 47.073911 46.486825 46.422632 46.934454
47.150423 46.93365 47.135628 47.38684 47.226514
46.474936 46.71525 46.977861 47.083291 47.485774
46.898286 48.179528 46.815653 48.358582 46.446543
48.541468 46.861018 49.014328 46.40236 48.694171
46.577788 47.442013 47.506804 46.537776 47.662722
47.110569 47.47577 46.719857 47.285444 47.033288

Table E.5: Experiment 2: 4 test / min

77

E.3 Data Experiment 3

4.797579 4.809241 4.828273 4.836781 4.840397
4.83321 4.814599 4.869325 4.790027 4.830524
4.878967 4.831715 4.823304 4.905062 4.831158
4.851802 4.851571 4.832396 4.822973 4.82912
4.848443 4.838408 4.837767 4.859769 4.860369
4.852312 4.853774 4.853134 4.844499 4.887942
4.848591 4.829867 5.270561 5.289274 4.826391
4.839661 5.406341 5.13644 4.83129 4.876589
4.857804 4.848966 4.817508 4.90517 4.829175
4.832373 4.811563 4.837398 4.854046 5.54132

Table E.6: Experiment 3: Performance Volatility Process List.

0.131922 0.133965 0.125096 0.132217 0.132877
0.129779 0.133419 0.131282 0.129941 0.129595
0.131827 0.130093 0.138299 0.129648 0.131734
0.136421 0.127076 0.130902 0.128363 0.128507
0.129099 0.129458 0.129291 0.131467 0.128844
0.12994 0.129396 0.131464 0.129715 0.131552
0.13138 0.128991 0.127931 0.130868 0.13203
0.129716 0.13535 0.128142 0.131405 0.131497
0.128576 0.132028 0.132117 0.130025 0.130287
0.130453 0.130609 0.130124 0.128576

Table E.7: Experiment 3: Performance libvmi Prosess list.

E.4 Performance Resource consuming process.

49.846953 52.182269 48.967622 49.487107 50.430052
50.672137 51.616574 50.662909 48.952976 49.856644
48.804827 50.727033 50.233826 50.726492 50.098972
49.536628 50.348717 50.235335 49.87225 51.624058
49.840646 50.691398 48.677032 48.18498 48.797462
48.590696 48.869346 50.017258 49.850488 48.9247
50.420325 51.036269 50.227535 48.129617 50.823237
49.651466 50.672091 49.747063 50.411376 51.013217
50.553519 51.144716 50.017074 49.141522 51.094471
48.545863 49.772129 47.977078 51.409851 52.701591

Table E.8: Experiment 4: Performance Resource consuming process at 60
interrupt a minute.

78

57.463015 58.852671 59.476685 57.572822 59.737042
59.573163 60.080721 59.781118 59.144315 60.556481
59.836314 59.002631 58.023553 59.766966 60.50039
60.029929 59.729923 58.947662 59.825212 59.829398
57.974503 59.003986 57.916768 59.664481 59.263697
60.111073 58.639836 59.276279 60.740703 59.06033
59.375331 58.435146 57.477703 58.787827 58.093023
60.572501 56.977618 58.508955 59.55781 60.037519
59.028995 58.672216 59.608968 59.950713 58.724172
58.716035 59.024913 58.030031 58.838024 59.072785

Table E.9: Experiment 4: Performance Resource consuming process at 120
interrupt a minute.

72.734258 70.253542 68.17171 65.136669 64.631862
62.943288 66.060292 65.635658 66.546737 72.046329
71.731202 66.396613 63.714913 64.719045 64.137432
63.97184 65.228439 67.771699 71.522405 71.35151
65.159445 64.598772 66.055241 64.427392 65.710647
64.563254 68.221273 70.573493 73.37364 63.738532
62.921897 65.163702 64.643233 64.687701 64.775357
68.599715 74.035134 70.417433 65.271492 64.370269
65.583827 65.955791 64.321054 64.120511 72.879448
72.505999 67.295417 65.468217 65.263887 64.915537

Table E.10: Experiment 4: Performance Resource consuming process at 180
interrupt a minute.

88.73857 76.89636 70.202496 82.569784 83.125389
71.683805 78.4402 86.385807 70.943457 72.835241
88.468576 75.357286 70.254922 82.113924 82.471432
71.433961 76.779996 88.086622 70.432444 70.811157
86.419854 78.628507 71.594937 78.486308 85.33365
70.263938 72.824242 85.413028 76.904734 69.770777
81.358191 84.442342 70.447295 72.739251 89.729221
73.448772 70.831516 82.771949 81.256602 71.531394
77.05528 87.598071 71.592883 76.57183 88.60263
72.273971 71.510966 86.734697 78.468791 70.931852

Table E.11: Experiment 4: Performance Resource consuming process at 240
interrupt a minute.

79

103.219395 83.656075 101.504258 82.54433 99.179459
80.691867 97.505189 85.042491 98.170028 86.644256
93.175022 88.015218 92.630428 88.719199 91.150997
89.773232 92.238778 90.740126 90.687814 98.441581
84.337993 98.910622 83.291694 102.718798 82.179905
99.749892 85.581016 97.536277 87.887231 94.269737
91.459928 90.976704 91.147361 89.456094 94.239937
87.342391 96.071854 85.862699 103.043992 84.007375
102.418969 87.492086 94.527782 89.90048 93.187904
96.291633 87.738028 97.850085 81.990925 97.539459

Table E.12: Experiment 4: Performance Resource consuming process at 300
interrupt a minute.

113.797553 109.775641 111.601199 111.547135 109.865061
113.440477 108.116212 116.117576 114.262647 111.486272
111.594907 113.28485 114.283764 114.046268 115.371431
113.454608 113.27793 113.460296 116.040363 116.108266
108.243761 113.71759 112.972115 113.915695 113.75621
112.611201 116.371403 110.864881 111.049944 111.592666
109.815897 109.384353 113.933158 114.198314 111.72956
116.085729 108.858078 109.480623 112.359313 114.90916
113.078547 113.84938 115.139603 110.415952 114.096058
110.86694 112.84468 112.197091 110.214499 112.547694

Table E.13: Experiment 4: Performance Resource consuming process at 360
interrupt a minute.

80

Bibliography

[1] Benjamin Armstrong. VMMs versus Hypervisors. July 2006. URL: http:
//blogs.msdn.com/b/virtual_pc_guy/archive/2006/07/10/661958.
aspx.

[2] Brendan Dolan-Gavitt, Bryan Payne and Wenke Lee. Leveraging
Forensic Tools for Virtual Machine Introspection. 2011.

[3] Brendan Dolan-Gavitt et al. ‘Virtuoso: Narrowing the Semantic Gap
in Virtual Machine Introspection’. In: Security and Privacy (SP), 2011
IEEE Symposium on (May 2011), pp. 297–312.

[4] Lawrence D’Oliveiro et al. Protection ring. URL: http://en.wikipedia.
org/wiki/Protection_ring.

[5] Driver Domain. URL: http://wiki.xen.org/wiki/Driver_Domain.

[6] George Dunlap. An Introduction to Full Virtualization With Xen. Oct.
2012. URL: http : / / www . linux . com / news / enterprise / systems -
management/655446-an-introduction-to-paravirtualization-and-xen.

[7] Yangchun Fu and Zhiqiang Lin. ‘EXTERIOR: Using Dual-VM Based
External Shell for Guest-OS Introspection, Configuration, and Recov-
ery’. In: VEE ’13 Proceedings of the 9th ACM SIGPLAN/SIGOPS inter-
national conference on Virtual execution environments (2013), pp. 97–110.

[8] Yangchun Fu and Zhiqiang Lin. ‘Space Traveling across VM: Auto-
matically Bridging the Semantic Gap in Virtual Machine Introspec-
tion via Online Kernel Data Redirection’. In: Security and Privacy (SP),
2012 IEEE Symposium on (May 2012), pp. 586–600. ISSN: 1081-6011.

[9] Hardware-assisted virtualization. URL: http : // en .wikipedia . org/wiki /
Hardware-assisted_virtualization.

[10] S. T. Jones, A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Antfarm:
tracking processes in a virtual machine environment. In Proceedings of
the annual conference on USENIX 06 Annual Technical Conference,
Mar. 2006.

[11] S. T. Jones, A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. ‘VMM-
based Hidden Process Detection and Identification using Lycosid’.
In: Proceeding VEE 08 Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments (2008), pp. 91–
100.

81

http://blogs.msdn.com/b/virtual_pc_guy/archive/2006/07/10/661958.aspx
http://blogs.msdn.com/b/virtual_pc_guy/archive/2006/07/10/661958.aspx
http://blogs.msdn.com/b/virtual_pc_guy/archive/2006/07/10/661958.aspx
http://en.wikipedia.org/wiki/Protection_ring
http://en.wikipedia.org/wiki/Protection_ring
http://wiki.xen.org/wiki/Driver_Domain
http://www.linux.com/news/enterprise/systems-management/655446-an-introduction-to-paravirtualization-and-xen
http://www.linux.com/news/enterprise/systems-management/655446-an-introduction-to-paravirtualization-and-xen
http://en.wikipedia.org/wiki/Hardware-assisted_virtualization
http://en.wikipedia.org/wiki/Hardware-assisted_virtualization

[12] Ashlesha Joshi et al. ‘Detecting Past and Present Intrusions through
Vulnerability-Specific Predicates’. Version Volume 39 Issue 5. In:
SOSP 05 Proceedings of the twentieth ACM symposium on Operating
systems principles (Dec. 2005). Volume 39 Issue 5, pp. 91–104.

[13] Tamas K. Lengyel et al. Virtual Machine Introspection in a Hybrid
Honeypot Architecture. 2012. URL: https://www.usenix.org/conference/
cset12/workshop-program/presentation/Lengyel.

[14] ‘LibVMIIntroduction’. In: (). URL: https : / / code . google . com / p /
vmitools/wiki/LibVMIIntroduction.

[15] Zhiqiang Lin, Xiangyu Zhang and Dongyan Xu. Automatic Reverse
Engineering of Data Structures from Binary Execution. Feb. 2010. URL:
https://www.utdallas.edu/~zxl111930/file/Rewards_NDSS10.pdf.

[16] Lionel Litty and David Lie. ‘Manitou: a layer-below approach to
fighting malware’. In: ASID 06 Proceedings of the 1st workshop on
Architectural and system support for improving software dependability
(2006), pp. 6–11.

[17] name1, name2 et al. System.map. URL: http://en.wikipedia.org/wiki/
System.map.

[18] K. Nance, M. Bishop and B. Hay. Virtual Machine Introspection:
Observation or Interference. Sept. 2008, pp. 32–37.

[19] Jason Nash. vSphere Security: A Tour of the vSphere vShield Suite. URL:
http://blog.pluralsight.com/vsphere-vshield.

[20] ‘Official Archive Mirrors for Ubuntu’. In: (). URL: https://launchpad.
net/ubuntu/+archivemirrors.

[21] Oracle. VirtualBox. URL: https://www.virtualbox.org/.

[22] White Paper. ‘Understanding Full Virtualization, Paravirtualization,
and Hardware Assist’. In: (2007). URL: http://www.vmware.com/files/
pdf/VMware_paravirtualization.pdf.

[23] B. D. Payne, M. Carbone and W. Lee. Secure and flexible monitoring
of virtual machines. In Proceedings of the 23rd Annual Computer
Security Applications Conference, Dec. 2007.

[24] Bryan D. Payne. PyVMI. URL: https://github.com/libvmi/libvmi/tree/
master/tools/pyvmi.

[25] Bryan D. Payne. ‘Simplifying Virtual Machine Introspection Using
LibVMI’. In: Sandia Report (2012).

[26] Danielle Ruest. Virtualization hypervisor comparison: Type 1 vs. Type 2
hypervisors. URL: http://searchservervirtualization.techtarget.com/tip/
Virtualization-hypervisor-comparison-Type-1-vs-Type-2-hypervisors.

[27] Stuxnet. URL: http://en.wikipedia.org/wiki/Stuxnet.

[28] Sahil Suneja et al. ‘Non-intrusive, Out-of-band and Out-of-the-
box Systems Monitoring in the Cloud’. In: ACM SIGMETRICS
Performance Evaluation Review - Performance evaluation review (June
2014). Volume 42 Issue 1, pp. 249–261.

82

https://www.usenix.org/conference/cset12/workshop-program/presentation/Lengyel
https://www.usenix.org/conference/cset12/workshop-program/presentation/Lengyel
https://code.google.com/p/vmitools/wiki/LibVMIIntroduction
https://code.google.com/p/vmitools/wiki/LibVMIIntroduction
https://www.utdallas.edu/~zxl111930/file/Rewards_NDSS10.pdf
http://en.wikipedia.org/wiki/System.map
http://en.wikipedia.org/wiki/System.map
http://blog.pluralsight.com/vsphere-vshield
https://launchpad.net/ubuntu/+archivemirrors
https://launchpad.net/ubuntu/+archivemirrors
https://www.virtualbox.org/
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
https://github.com/libvmi/libvmi/tree/master/tools/pyvmi
https://github.com/libvmi/libvmi/tree/master/tools/pyvmi
http://searchservervirtualization.techtarget.com/tip/Virtualization-hypervisor-comparison-Type-1-vs-Type-2-hypervisors
http://searchservervirtualization.techtarget.com/tip/Virtualization-hypervisor-comparison-Type-1-vs-Type-2-hypervisors
http://en.wikipedia.org/wiki/Stuxnet

[29] Trend Micro Deep Security 7.5. URL: https : / / ca - uat1 . insight . com /
content/dam/ insight/en_US/pdfs/ trend-micro/Deep- Security - 75 -
Datasheet.pdf.

[30] vmware. Virtualization. URL: http://www.vmware.com/virtualization.

[31] vmware. VMware Workstation. URL: https : / / www . vmware . com /
products/workstation/.

[32] VMware vShield. Virtualization-Aware Security for the Cloud. URL: http:
//www.vmware.com/files/pdf/vmware-vshield_br-en.pdf.

[33] Volatility Foundation. URL: http://www.volatilityfoundation.org.

[34] Xen Project Best Practices. URL: http://wiki.xenproject.org/wiki/Xen_
Project_Best_Practices.

[35] Xen Project Software Overview. URL: http://wiki .xen.org/wiki/Xen_
Overview#PV_on_HVM.

[36] Haiquan Xiong et al. ‘Libvmi: A Library for Bridging the Semantic
Gap between Guest OS and VMM’. In: (2012), pp. 549–556.

83

https://ca-uat1.insight.com/content/dam/insight/en_US/pdfs/trend-micro/Deep-Security-75-Datasheet.pdf
https://ca-uat1.insight.com/content/dam/insight/en_US/pdfs/trend-micro/Deep-Security-75-Datasheet.pdf
https://ca-uat1.insight.com/content/dam/insight/en_US/pdfs/trend-micro/Deep-Security-75-Datasheet.pdf
http://www.vmware.com/virtualization
https://www.vmware.com/products/workstation/
https://www.vmware.com/products/workstation/
http://www.vmware.com/files/pdf/vmware-vshield_br-en.pdf
http://www.vmware.com/files/pdf/vmware-vshield_br-en.pdf
http://www.volatilityfoundation.org
http://wiki.xenproject.org/wiki/Xen_Project_Best_Practices
http://wiki.xenproject.org/wiki/Xen_Project_Best_Practices
http://wiki.xen.org/wiki/Xen_Overview#PV_on_HVM
http://wiki.xen.org/wiki/Xen_Overview#PV_on_HVM

	Introduction
	Motivation
	Scope and Problem statement
	Problem statement

	Challenges

	Background and Literature
	Server Virtualization
	VMM type 1
	VMM type 2

	Protection ring
	CPU virtualization
	Full virtualization
	Paravirtualization
	Hardware assisted virtualization

	Xen Server Architecture
	Virtual Machine Introspection
	Semantic Gap
	Related Work

	Planning the Project
	The prototype
	Test Plan
	Experiment 1: Accuracy
	Experiment 2: Performance impact on virtual guest.
	Experiment 3: Performance LibVMI vs Volatility.
	Experiment 4: Performance impact with LibVMI.

	Approach
	Installing and configuring the dom0
	Installing and configuring libvmi
	Installing and configuring Volatility
	Creating the prototype. Compliant.pl
	Creating the scheduler. schedule.pl
	Creating the resource consuming process. rescons.pl

	Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Analysis
	Experiment 1.
	Experiment 2.
	Experiment 3.
	Experiment 4.

	Discussion and Future Work
	Retrieving the data
	The collected data
	The construction of the prototype.
	The Selected Approach
	Repeat the project.
	Relation to Existing Work
	The Intended Consumer
	Conclusion
	Future work

	Appendix Setting up the environment
	Installation Dom0
	Install and configure the network bridge
	Install a Paravirtualized guests
	Install hardware assisted virtual host
	Configure Libvmi
	Install Volatility and dependencies
	Create a Profile for Volatility

	Install PyVMI

	Appendix Compliant script compliant.pl
	Appendix Resource consuming process Script. rescons.pl
	Appendix Scheduling Script. schedule.pl
	Appendix Data from the experiments
	Data Experiment 1
	Data Experiment 2
	Data Experiment 3
	Performance Resource consuming process.

