
Security Regression Testing
Framework for Web
Application Development

Usman Waheed
Master’s Thesis Autumn 2014

Security Regression Testing Framework for Web
Application Development

Usman Waheed

December 12, 2014

Abstract

Securing web applications from malicious intruders is high priority for many com-
panies and organizations. The prime reasons to protect your assets on the World
Wide Web is to deter internet identity theft, minimize monetary loss and most im-
portantly to keep the trust of your clients who transact through your web portals and
services [43]. Web developers should incorporate security testing in the Software
Development Life-cycle (SDLC) [34] to catch the flaws early. Security testing of
web applications can be tedious because there are numerous input attack vectors
which, if executed manually, will be time consuming and less efficient. To make
this process efficient, this paper proposes a framework based on Open Source Soft-
ware Tools that can be jigsawed together to achieve automation, regression testing
and catching security flaws early in the software development cycle. Identifying
the security flaws early will circumvent embarrassment imposed by hackers, loss
of credibility in the business community and provide protection against some of
the very basic security principles that are overlooked during the development of
web applications. The idea is to create awareness about web applications security
testing and let it traverse through your software development centers in order to
create high quality products that are not just robust but also secure.

Acknowledgements

I would like to Thank Opera Software ASA / Oslo - Norway for giving me the
opportunity to conduct this research. The support given to me by my employer and
specifically my ex-manager Espen Myhre at Opera Software ASA deserves the
first gratitude. I would also like to thank the senior management of Opera Software
ASA who gave me permission to submit my work on Web Application Security
Regression Testing at Opera as a master thesis topic. [1].

Next, I would like to thank all my professors at UiO, HiOA and specifically my
thesis supervisor Andrew Seely for his valuable time, guidance and support.

Last but not the least, my family and friends for their love and support.

1

Contents

1 Introduction 10
1.1 Motivation . 13
1.2 Problem Statement . 14
1.3 Thesis Structure . 14

2 Background 15
2.1 Three Tier Architecture . 15
2.2 WebApp Anatomy . 16
2.3 Classes Of Vulnerabilities . 17

2.3.1 Cross Site Scripting - XSS 17
2.3.2 Information Leakage . 18
2.3.3 Content Spoofing . 18
2.3.4 Cross Site Request Forgery - CSRF 19
2.3.5 Brute Force . 19
2.3.6 Insufficient Transport Layer Protection 20
2.3.7 Insufficient Authorization 21
2.3.8 SQL Injection - SQLi . 21
2.3.9 Session Management . 21
2.3.10 Software Package Updates 22

2.4 Tools . 22
2.4.1 Commercial Tools . 23
2.4.2 Open Source Tools . 23
2.4.3 Performance And Price 23

2.5 Auto Regression Testing . 25
2.5.1 Blackbox Testing . 26
2.5.2 Whitebox Testing . 26
2.5.3 What Is The Goal? . 26

2.6 Literature Review . 27
2.6.1 OWASP . 27
2.6.2 ZAP . 28
2.6.3 Nessus . 29
2.6.4 Metasploit . 29
2.6.5 Threat Modeling . 30

2

3 Approach 32
3.1 Setup And Installation . 33

3.1.1 Hardware . 33
3.1.2 Software . 33
3.1.3 Webserver . 33
3.1.4 GIT . 34
3.1.5 Jenkins Continuous Integration Server 34
3.1.6 MySQL Database . 34
3.1.7 Java Application . 34
3.1.8 ZAP . 35
3.1.9 Apache2 . 35
3.1.10 Developer Sandbox . 35
3.1.11 Configurations . 35
3.1.12 Load URLs Into MySQL DB 36

3.2 Data Analysis . 37
3.2.1 ZAP Log . 37
3.2.2 Access Log . 38
3.2.3 Request Dumper Log . 38
3.2.4 Results Log . 38

3.3 Experiments . 38
3.3.1 Test Case: 1(a) . 38
3.3.2 Test Case: 1(b) . 39
3.3.3 Test Case: 2(a) . 39
3.3.4 Test Case: 2(b) . 39
3.3.5 Test Case: 2(c) . 40

3.4 Return On Investment (ROI) . 40
3.5 Process Flow Chart . 42

4 Results 43
4.1 Setup And Installation . 43

4.1.1 Install Webserver (t09-09.oslo.osa) 43
4.1.2 Install GIT (ahs-s1.ams.osa) 44
4.1.3 Install Jenkins (ahs-m1.ams.osa) 44
4.1.4 SSH Access From Jenkins To GIT 45
4.1.5 Test SSH Access From Jenkins To GIT 46
4.1.6 Create Bodgeit Store Project In Jenkins 46
4.1.7 Install MySQL (ahs-db1.ams.osa) 46
4.1.8 Java Application On Jenkins 48
4.1.9 Install ZAP (owasp-t01.oslo.osa) 49
4.1.10 Install Apache2 (ahs-m1.ams.osa) 51
4.1.11 Developer Access To GIT 51
4.1.12 Developer Access To Webserver 51
4.1.13 Test SSH Access From Developer To GIT And Webserver 52
4.1.14 Clone bodgeit.git On Developer Node 53

3

4.1.15 Configurations . 54
4.1.16 Load URLs Into MySQL DB 55

4.2 Data Analysis . 57
4.2.1 ZAP Log . 57
4.2.2 Access Log . 58
4.2.3 Request Dumper Log . 59
4.2.4 Results Log . 60

4.3 Experiments . 61
4.3.1 Test Case: 1(a) . 61
4.3.2 Test Case: 1(b) . 62
4.3.3 Test Case: 2(a) . 63
4.3.4 Test Case: 2(b) . 66
4.3.5 Test Case: 2(c) . 68

4.4 Return On Investment (ROI) . 70

5 Analysis 71
5.1 Test Case: 1(a) . 71
5.2 Test Case: 1(b) . 72
5.3 Test Case: 2(a) . 73

5.3.1 Verification Of High Risk Alerts 73
5.3.2 Plugins Execution Time And Fuzzing 74
5.3.3 Requests To Proxied URLs 74
5.3.4 Fuzzing HTTP Headers And FORM Payload Parameters . 75

5.4 Test Case: 2(b) . 76
5.4.1 Verification Of High Risk Alerts 76
5.4.2 Plugins Execution Time And Fuzzing 77
5.4.3 Requests To Proxied URLs 78
5.4.4 Fuzzing HTTP Headers And FORM Payload Parameters . 79

5.5 Test Case: 2(c) . 80
5.6 Return On Investment (ROI) . 81

6 Discussion 82
6.1 Setup . 82
6.2 Enhancements . 83
6.3 Catching Vulnerabilities . 84
6.4 Benefits . 84
6.5 Future Work . 84

7 Conclusion 86

Bibliography 88

4

Appendix 92

A Approval Letter From Opera Software ASA 92

B Java Code 93

C Launcher Shell Script 99

D Log Parsing Perl Scripts 101

5

List of Figures

1.1 Software Development Life-cycle (SDLC) [2] 10
1.2 Overall Window Of Exposure To Serious Vulnerabilities 2012 [41] 12
1.3 Overall Vulnerability Population 2012. Percentage Breakdown Of

All Serious Vulnerabilities Discovered [41] 13

2.1 Three Tier Architecture [37] . 15
2.2 Web Application Anatomy [45] 16
2.3 Reflected Cross-Site Scripting Vulnerability [14] 18
2.4 Passwords Popularity [17] [21] 20
2.5 Blackbox And Whitebox Penetration Testing 26
2.6 OWASP Risk Rating Scheme [36] 27
2.7 ZAP In Action [3] . 28

3.1 Architecture . 32
3.2 Process Flow Chart . 42

4.1 Triggered By Manual Click . 62
4.2 Manual Test Build . 62
4.3 Code Commit Triggered Build 63
4.4 Build Through SCM Change . 63

5.1 XSS Vulnerability In search.jsp 73
5.2 Tamper Quantity Parameter In basket.jsp 73
5.3 ZAP Plugins Execution Time And Fuzzing Of Requests, Test Case

2(a) . 74
5.4 Distribution Of GET And POST Requests, Test Case 2(a) 75
5.5 # Of Unique HTTP Header And FORM Parameter Strings, Test

Case 2(a) . 76
5.6 SQL Injection In login.jsp, Test Case 2(b) 77
5.7 XSS Vulnerability In contact.jsp, Test Case 2(b) 77
5.8 ZAP Plugins Execution Time And Fuzzing Of Requests, Test Case

2(b) . 78
5.9 Distribution Of GET And POST Requests, Test Case 2(b) 79
5.10 # Of Unique HTTP Header And FORM Parameter Strings, Test

Case 2(b) . 80

6

5.11 Return On Investment . 81

7

List of Tables

2.1 Commercial Web Application Scanners 23
2.2 Open Source Web Application Scanners 23
2.3 WIVET Score, Detection Rate (%) For Classes Of Vulnerabilities

And Price [7] . 24
2.4 False Positive Rate (%) For Classes Of Vulnerabilities [7] 24

3.1 Hardware Setup . 33
3.2 ZAP Attack Strength . 36
3.3 ZAP Alert Threshold . 36
3.4 ZAP Risk Alert . 36
3.5 Settings Test Case 1(a) . 39
3.6 Settings Test Case 1(b) . 39
3.7 Settings Test Case 2(a) . 39
3.8 Settings Test Case 2(b) . 40
3.9 Settings Test Case 2(c) . 40

4.1 Tomcat7 Server Configuration Settings 54
4.2 ZAP Plugin Execution Times In Seconds 58
4.3 ZAP Active Scan Generated # Of GET and POST Requests 59
4.4 Metrics from request dumper log 60
4.5 Summary Of Alerts . 61
4.6 ZAP Plugin Execution Times, Test Case 2(a) 64
4.7 ZAP Active Scan Generated # Of GET And POST Requests, Test

Case 2(a) . 64
4.8 Summary Of Alerts, Test Case 2(a) 64
4.9 Metrics From Request Dumper Log, Test Case 2(a) 65
4.10 ZAP Plugin Execution Times, Test Case 2(b) 66
4.11 ZAP Active Scan Generated # Of GET And POST Requests, Test

Case 2(b) . 66
4.12 Summary Of Alerts, Test Case 2(b) 67
4.13 Metrics From Request Dumper Log, Test Case 2(b) 67
4.14 ZAP Plugin Execution Times, Test Case 2(c) 68
4.15 ZAP Active Scan Generated # Of GET and POST Requests, Test

Case 2(c) . 68

8

4.16 Summary Of Alerts, Test Case 2(c) 69
4.17 Metrics From Request Dumper Log, Test Case 2(c) 69
4.18 ROI Calculations . 70

9

Chapter 1

Introduction

Computer and Internet Security has many layers. It starts at client interfaces,
through proxies in the middle and finally the back-end servers where information
gets processed and returned to the interacting users. The network connects these
various pieces together in order for data to flow back and forth. All these pieces
including the transport medium needs to be secure from hacking, exploits, infor-
mation and identity theft. This paper focuses on web applications and their security.

Web applications are autonomous pieces of software that interact with users or
clients in the Internet. When you purchase a travel package to an exotic destination
using a website, you as the user transact with software in the Internet by providing
both personal (name, date of birth, etc) and financial credentials (credit card num-
bers, online banking, etc). Security in web applications is the aspect that ensures
your information is not exploited by others, transactions you commit are safe and
the trust between the users and services in the Internet are upheld and maintained.

The waterfall [11] model is a sequential process comprising of five stages. It starts
with gathering requirements, followed by design, then development, unit functional
testing and the final implementation.

Figure 1.1: Software Development Life-cycle (SDLC) [2]

10

CHAPTER 1. INTRODUCTION

During the test phase it is possible that the requirements change which will result
in an iteration of the process. Where does security testing fall in this apparatus?
Security testing of web applications should become an early part of this process so
that the final product is at least immune to trivial vulnerabilities. The Security Re-
gression Testing Framework approach will add value by improving the quality of
the product and addressing security concerns early during the design and develop-
ment stages. Security testing can run in parallel during the design and development
phases instead of being a separate additional step. Often websites are published to
the public without much concern for security and inadequate security testing will
leave security holes in web properties. Sometimes an entire website can become
compromised via a trivial attack vector which could have been detected and pre-
vented if security testing was incorporated early in the process.

“Web applications change and are upgraded frequently due to security attacks, fea-
ture updates, or user preference changes. These fixes often involve small patches
or revisions, but still, testers need to perform regression testing on their products to
ensure that the changes have not introduced new faults” [26]. Security regression
testing plays a vital role in the software development process because code changes
are committed frequently to apply fixes, patches or even feature enhancements by
developers. Whenever new code is pushed or existing code is modified a series of
security test cases should execute to ensure that all cases which passed previously
continue to do so and no new security bugs got introduced. This is the concept of
security regression testing which is expensive in both time and labor. By automat-
ing security regression testing which is what this paper discusses, one can reduce
cost and close the release gaps.

Data and metrics are required to measure the state of web applications security.
According to the website Security Statistics Report (May2013) [41] one of the key
performance indicators for measuring website security is “Window-of-Exposure”.
By definition: Window-of-Exposure is the number of days in a year a website
is exposed to at least one serious vulnerability [41]. According to the horizontal
stacked bar chart in Figure 1.2 noted below, 33% of all websites across all cate-
gories (Banking, Education, IT, Insurance, etc) are always vulnerable to at least
one serious vulnerability in one full year. For the retail industry this Key Perfor-
mance Indicator (KPI) stands at 54%, which is alarming because online commerce
has become more prevalent over the years.

11

CHAPTER 1. INTRODUCTION

Figure 1.2: Overall Window Of Exposure To Serious Vulnerabilities 2012 [41]

There are various kinds of vulnerabilities where each is composed of different vari-
ations in attack vectors. The Open Web Application Security Project [36] top 10
for 2013 will be introduced in more detail in a latter section but some key vectors
are mentioned below:

• Cross Site Scripting (XSS)

• Information Leakage

• Content Spoofing

• Cross Site Request Forgery (CSRF)

• Brute Force

• Insufficient Transport Layer Protection

• Insufficient Authorization

• SQL-Injection (SQLi)

WhiteHat Security published in the same report mentioned above statistics that il-
lustrate prevalence by class in overall vulnerability population [41]. This distribu-
tion can change yearly so the list is not static. According to this report "Cross Site
Scripting" accounts for 43% of the overall vulnerability population which means
web applications are not sanitizing inputs properly. Content Spoofing stands at
11%, followed by Information Leakage, Cross-Site Request Forgery and so forth.
The results are depicted in Figure 1.3.

12

CHAPTER 1. INTRODUCTION

Figure 1.3: Overall Vulnerability Population 2012. Percentage Breakdown Of All
Serious Vulnerabilities Discovered [41]

According to the global internet report for 2014 [42], over 3 billion users will be
online accessing the Internet by 2015. The growth rate will triple since September
2013. This means the number of web application transactions will also increase
and the need for websites to be secure will become more important. Automated
Security Regression Testing of web applications is part of a process that uses a
framework of open source tools to achieve the objective to publish secure web
properties. Hackers and users with malicious intent are looking to exploit holes in
websites for personal gains or whatever reasons. This paper will demonstrate how
you can successfully fit security regression testing within a software development
process in order to produce good quality Internet products and services. You cannot
be 100% secure but you can take the right steps to have an early warning system
against some of the well-known exploits and security holes that exist out there. At
times you are dependent on the tools in the framework that fall short because of
lack of functionality and support but at the same time it opens up more avenues to
explore tools you have not considered yet. Web Applications Security is a process
that will need to evolve over time in order to keep up to date against sophisticated
attacks. This is a never ending journey that requires us to be more proactive and
resilient.

1.1 Motivation

This research was inspired by testing Opera’s web properties for security holes and
perform quality assurance. Opera had numerous websites which were public with
continuous development and feature enhancements done by software developers

13

CHAPTER 1. INTRODUCTION

working on these web properties. Security testing was a manual task which was te-
dious. All security flaws were discovered and reported through this manual process
which was time consuming. The need was to research and investigate for a more
efficient solution that could perform security regression testing using automation.

The idea was to setup a framework that could become part of the software develop-
ment life-cycle in our department at Opera. One additional goal was to create web
application security awareness within Opera’s web developer work-force. At the
time and even now there was a lot of ongoing cybercrime activity and Opera took
the initiative to protect and secure its web properties from malicious intruders.

1.2 Problem Statement

Web applications security is a process that needs to be part of the SDLC of an
organization in order to close trivial security holes in the early stages of software
development. This process is explained by constructing a framework using Open
Source Software Tools. The research conducted for this paper will address the
following questions:

1. Why should security testing of web applications become a part of the SDLC?

2. What are the advantages of building an automated security regression test
setup?

3. Which open source tools can be utilized to construct a framework to achieve
this automation?

4. What are the measurable benefits of this process?

1.3 Thesis Structure

This thesis is organized into seven chapters. Chapter 1 provides an introduction to
the topic, author’s motivation and problem statement. Chapter 2 provides a more
detailed explanation on the background and prior work in the field of web appli-
cations security. It discusses the foundation that made it possible to construct an
automated security regression test framework. Chapter 3 explains the approach and
open source software tools that can be used to construct the setup. Test cases are
also outlined in this section. Chapter 4 covers the results from the test experiments.
The results are analyzed in chapter 5. Chapter 6 is a discussion on the benefits and
advantages of testing your web application for security holes early in the SDLC.
In this chapter we also look at future work and possible extension to the proposed
open source framework. Chapter 7 is the author’s conclusion of the topic and sum-
marizes what we achieve from creating early awareness about web applications
security. Supporting sections include the references used for this research paper,
appendix and documentation on the framework setup.

14

Chapter 2

Background

2.1 Three Tier Architecture

A 3-tier client-server application consists of a front-end client (e.g. browsers),
middle-tier application servers (e.g. web servers) where the business logic runs,
and the back-end databases [13]. The front-end is where the user interacts by sub-
mitting inputs, the middle-tier applies the business logic on the requests it receives
and databases are used to store information. The figure below depicts a 3 tier ap-
plication.

Figure 2.1: Three Tier Architecture [37]

From a web application security perspective you can apply testing to these three
tiers separately. The focus of this paper is on the middle-tier web servers and back-
end databases. The primary reason we will not focus on client-side validation is
that we assume that all kinds of inputs both valid and tainted can be injected by
clients. Client side form validation is usually done using JavaScript but there are
ways to go around it. Our goal is to show how in a process you can perform robust
security testing for the middle and back-end tiers.

15

CHAPTER 2. BACKGROUND

2.2 WebApp Anatomy

Web Applications can be built with various technologies and programming lan-
guages. There are two paradigms, imperative (such as C, Java, and JavaScript) and
declarative (such as CSS, HTML, and SQL). Declarative languages specify what a
program should do rather than the intricacies of the algorithms needed to achieve
desired results. Imperative languages are harder to use and understand but have
more expressive power. When you want to define the structure, styling of a web
page or managing data stored in a relational database you are using a more declara-
tive language that is solving domain-specific problems, while imperative languages
are more general purpose and applicable for solving a variety of problems [45].

Website development requires a combination of both imperative and declarative
languages as technology has evolved so rapidly [25]. The point to note is that
during the development of web applications regardless of which programming lan-
guages you choose it is important to identify injection points within your web ap-
plications. Injection points are basically entry doors from where client requests
come through with a payload. A payload is the actual data the user has sent to
the middle-tier and will be processed by the web server. This information in the
payload can further be used to communicate with a database or other sub-routines
in the business logic layer. Web application developers should check and sanitize
these inputs. It is through these user inputs that malicious attacks are initiated
which can exploit either flaw in the business logic or a vulnerability in the under-
lying software libraries being used by the web application.

Figure 2.2: Web Application Anatomy [45]

Building secure web applications is an iterative step in the software development
process. Sometimes developers will place code and data on the client side in order
to improve interactive performance [48]. This is done because web apps are client-
server applications so there is a latency cost associated when you send requests to
the middle and back-ends for processing. We know cookies which are widely used

16

CHAPTER 2. BACKGROUND

to track user sessions, are stored on the client side browser. Later we will see an
example of session hijacking where a hacker might try to capture a user’s session
cookie information to gain access to their information (e.g. online banking). It is
good practice to always deploy security-critical code and data on the server and
back-ends [48] rather than on the client side.

Running automated security regression tests against a three tier web application is
not trivial. We have to assume that the user can submit both a mix of good and
bad data inputs. The security testing process should account for such scenarios and
perform validation checks to ensure that the data injected is sanitized properly on
the server side.

2.3 Classes Of Vulnerabilities

Recent study conducted by the SANS Institute estimates that up to 60% of Inter-
net attacks target web applications [22]. The complexity of the attacks have not
changed much given that many of the web problems are simple in nature. Or-
ganizations like MITRE [8], SANS [18] and OWASP [36] have helped to create
web application security awareness through their programs but the average web
developer seems either unaware of classes of vulnerabilities or does not know how
to protect against exploits effectively [22]. This section explains classes of vul-
nerabilities and some common mistakes web application developers make during
design and implementation.

2.3.1 Cross Site Scripting - XSS

In a reflected XSS attack the victim is lured into sending malicious code to the
trusted site and the trusted server will echo back the clients input at the clients
browser. For example, take the hyperlink noted below which could be sent in
the body of an email message to a potential victim who is unaware and pro-
ceeds to click on it. The JavaScript script tag passed to the comment.cgi script
via the mycomment variable will get executed within the page from the trusted
server [14] [46]. This "badfile" could try to steal the victim’s session cookies.

<A HREF="http://example.com/comment.cgi?mycomment=
<SCRIPT SRC=’http://attacker.org/badfile’></SCRIPT>">;Click Here

Bulletin board applications are candidates for stored XSS. In these types of attacks
malicious code is placed at the trusted site by the attacker [14] [46]. For example,
a victim will click on a hyperlink on a bulletin board website and it will execute
the stored XSS which in turn will try to access the victim’s session cookie.

17

CHAPTER 2. BACKGROUND

Figure 2.3: Reflected Cross-Site Scripting Vulnerability [14]

2.3.2 Information Leakage

There are many web scanners that can be used to fingerprint websites and perform
reconnaissance to obtain information about the services running. At times web
servers are left configured with default settings from first installation and as a result
they end up disclosing information that should be private. For example, failing to
disable directory traversal in your Apache Web Server will allow a user to view all
files and sub-directory listings in their browser [36]. Another common case is error
message configuration that give away information about the underlying web server
version, operating system and database schema.

2.3.3 Content Spoofing

Content Spoofing is similar to XSS but it does not use the <SCRIPT> tags to exe-
cute JavaScript. Take the example of Text Injection where we have a URL that is
called using the "GET" method and takes in two parameters. One is stockid and
the other is recommendation message [31].

http://example.com/stock_info.php?stockid=1234&rec="We recommend you to buy these stocks"

The above PHP script will display the following in the browser when executed:

Stock ID: 1234
We recommend you to buy these stocks

If the URL is malformed to:

http://example.com/stock_info.php?stockid=1234&rec="We recommend you to sell these stocks"

We now get:

18

CHAPTER 2. BACKGROUND

Stock ID: 1234
We recommend you to sell these stocks

The victim can be influenced to make a bad decision which will result in selling
stocks. The web developer should have sanitized the inputs in their PHP applica-
tion script to not allow text injection that would mislead a user.

2.3.4 Cross Site Request Forgery - CSRF

Web applications can receive requests that may have been forged by another web
page opened in the same browser [32]. This malicious web page can assume the
identity of the unaware user and send requests to other websites on their behalf.
These attacks are known as CSRF.

Take the example below where we have a GET request to change a user’s password
within a web application:

GET http://example.com/changePassword?value=newpassword HTTP/1.1

Assume that we have a malicious web page which has some standard HTML in it
including the markup tag.

When this IMG tag gets loaded in the browser it will send a request to example.com
and execute changePassword. The password will get modified. One way to miti-
gate is to generate a random token string and pass it with the request. Now it will be
hard for the attacker because they have to guess the token value which is randomly
generated and not easily predictable. The cross site request forgery will now fail to
execute.

GET http://example.com/changePassword?value=newpassword
&token=933a96f6ea1c8abf9cc103a7ff02df77 HTTP/1.1

2.3.5 Brute Force

"Brute-force attacks are often used for attacking authentication and discovering
hidden content/pages within a web application. These attacks are usually sent via
GET and POST requests to the server. In regards to authentication, brute force
attacks are often mounted when an account lockout policy in not in place" [36].

A brute force attack can use a dictionary where the source is a list of words. These
words can be permutations of alphanumeric characters. Figure 2.4 shows some
popular password strings and their frequency collected from a breach that lead to
the release of 32 million passwords to the internet in 2009 [17] [21].

19

CHAPTER 2. BACKGROUND

Figure 2.4: Passwords Popularity [17] [21]

Based on the data in the table above over 290,000 password strings were just the
digits 123456. If a user’s password is set to ’123456’ it becomes relatively easy
to crack the account. As web developers we can make it difficult for such attacks
to work by implementing CAPTCHA’s, password strength detectors and also in-
corporate account lockdown if failed login attempts exceed a set threshold. It is
good practice to use a combination of alphanumeric and special characters in your
password strings with both lower and uppercase letters. The acronym CAPTCHA
stands for "Completely Automated Public Turing test to tell Computers and Hu-
mans Apart" [15]. This is a challenge-response test used in computing to deter-
mine if a user is a human or a machine. Brute force attacks are performed by
automated computer programs, thus CAPTCHA’s provide a mechanism to thwart
such penetration attacks.

2.3.6 Insufficient Transport Layer Protection

There are websites in the Internet that transact login credentials over HTTP and
not HTTPS. SSL which stands for Secure Socket Layer provides data encryption,
server authentication, message integrity check, and optional client authentication
for a transmission control protocol TCP/IP connection [9]. SSL transforms HTTP
requests to HTTPS and makes them more secure by encrypting the data before it is
sent.

Web applications that use HTTPS transfer private user data over the network in an
encrypted form back and forth between client browsers and web servers. Authenti-
cation over HTTP (non-secure) will transmit in plain text and someone sniffing in
the middle can capture the credentials. This makes the website vulnerable to what
is called Man In The Middle Attack [23].

20

CHAPTER 2. BACKGROUND

2.3.7 Insufficient Authorization

This problem surfaces where web applications do not enforce adequate access con-
trol policies on users. After a user authenticates to a website it does not mean they
should have access to all resources on the server. The web application developer
has to enforce restrictions so that access to sensitive information on the web server
are prohibited [14].

2.3.8 SQL Injection - SQLi

"An SQL Injection attack is when a web page allows users to enter text into a text
box that will be used to run a query against a back-end database" [29].

This attack gives a hacker the ability to take control of the back-end database and
the data that resides within. SQL injections are a prevalent exploit and frequently
make it in the OWASP top10 vulnerabilities list every year [36]. An attacker will
piggy-back on a legitimate SQL query by injecting code that will help to leak more
information from the database tables. Take the SQL query below:

select ProductName from products where ProductID = 40;

If the hacker submits "40 or 1=1" for the ProductID then the query will become:

select ProductName from products where ProductID = 40 or 1=1;

This resultant query will return all the product names and not just the one for the
ProductID=40. The best protection against such attacks is to never use dynamic
SQL statements in your code, user input should be filtered, use query parameteri-
zation and limit database privileges by context.

2.3.9 Session Management

HTTP is a stateless protocol. Web applications can create sessions on top of HTTP
by generating session identifiers (SID) and send them to clients via the HTTP re-
sponse headers. The client will include these session identifiers in subsequent re-
quests so that the user does not have to re-authenticate for every request. Remem-
ber HTTP is stateless. It is important these session identifiers are unpredictable and
they should also be stored in a safe place [14].

If cookies are used for access control then it must be ensured that the client is not
able to elevate security permissions by modifying the session identifiers. These
kind of attacks are known as Cookie Poisoning. Using a complex attack with XSS
an attacker can steal a victim’s session cookie to gain access to the victim’s re-
sources (e.g. bank account details).

21

CHAPTER 2. BACKGROUND

2.3.10 Software Package Updates

It is important to ensure that the underlying software libraries are always up to
date and security patches are applied routinely on the hosts that run the software.
Sometimes the exploit is not in the web application but in the supporting libraries.
One of the most recent cases was the Heartbleed security bug in the OpenSSL li-
brary [47]. This problem had to do with a buffer over-read which essentially means
that the library allowed more data to be read than should be allowed.

"At the time of disclosure, some 17% (around half a million) of the Internet’s se-
cure web servers certified by trusted authorities were believed to be vulnerable to
the attack, allowing theft of the servers’ private keys and users’ session cookies
and passwords" [30].

It became imperative for businesses to patch their servers and re-generate and re-
voke certificates. In general it is best to keep both hardware and software up to
date with the latest security updates and advisories in order to prevent any sort of
compromise.

2.4 Tools

There are many Web Application Security Testing tools in the market which can
be classified into two respective categories:

• Commercial Tools

• Open Source Tools

Commercial tools come with a licensing fee per deployment and the user receives
some sort of service level agreement and support. At times the software compa-
nies that design these tools will also provide technical support and customization
to meet the needs of the client but this is usually provided with an additional cost.

Open Source tools are free to use and fall under the GNU General Public Li-
cense [12]. There is a development community associated with them which provide
updates and enhancements. The source code to these tools is readily available and
can be modified by anyone who uses them granted the changes they make are pub-
lished so others can share and build upon each other’s work. In this section we
will explore some of these web application security testing tools and their capabil-
ities. We will also see what they bring to the table as far as cost and functionality
are concerned keeping in mind that our focus is on the process of web application
security regression testing.

22

CHAPTER 2. BACKGROUND

2.4.1 Commercial Tools

There are numerous commercially available web application scanners in the mar-
ket. Listed below are some of them:

Scanner Vendor
AppScan IBM
Burp Suite Professional PortSwigger
Nessus Tenable Network Security
NetSparker Mavituna Security
WebInspect HP

Table 2.1: Commercial Web Application Scanners

2.4.2 Open Source Tools

Listed below are some of the open source web application scanners.

Scanner Vendor
Arachni Tasos Laskos
Skipfish Michal Zalewski
Wapiti Nicolas Surribas
ZAP OWASP
Paros Chinotec

Table 2.2: Open Source Web Application Scanners

2.4.3 Performance And Price

WIVET is an open source benchmarking project that aims to statistically analyze
web link extractors and adopted as an extension to the WAVSEP - The Web Appli-
cation Vulnerability Scanner Evaluation Project [36]. The WIVET score is a KPI
metric used to evaluate the performance and coverage of a web application scan-
ner [36]. The data in the tables below are from tests conducted on Oct 31st 2014
by WAVSEP. Product prices are subject to change and are from the year 2012 for
single user license.

23

CHAPTER 2. BACKGROUND

Scanner WIVET Score SQLi RXSS LFI RFI Redirect Price
AppScan 92 100 100 100 100 36.67 $4500
Burp 16 100 96.97 56.13 72.22 30.0 $300
NetSparker 92 100 100 96.32 100 36.67 $6000
WebInspect 96 100 100 91.18 100 50.0 $1500
Arachni 19 100 66.67 100 100 50.0 Free
Skipfish 48 76.47 93.94 82.35 31.48 36.67 Free
Wapiti 44 100 66.67 51.47 57.41 N/A Free
ZAP 73 100 100 75 100 16.67 Free
Paros 19 93.38 98.48 12.75 N/A N/A Free

Table 2.3: WIVET Score, Detection Rate (%) For Classes Of Vulnerabilities And
Price [7]

Scanner SQLi RXSS LFI RFI Redirect
AppScan 0 0 0 0 11.11
Burp 0 0 0 0 0
NetSparker 30 0 0 0 0
WebInspect 0 0 0 0 0
Arachni 20 0 0 0 0
Skipfish 0 0 2.0 16.67 0
Wapiti 20 42.86 12.5 0 N/A
ZAP 30 0 0 16.67 0
Paros 0 0 37.5 N/A N/A

Table 2.4: False Positive Rate (%) For Classes Of Vulnerabilities [7]

Abbreviations:

• SQLi = Structured Query Language Injection

• RXSS = Reflected Cross Site Scripting

• LFI = Local File Injection

• RFI = Remote File Injection

• Redirect = Redirect used in phishing attacks

• WIVET = Web Input Vector Extractor Teaser

Based on the results from Figure 2.3 above all commercial scanners except Burp
have a higher WIVET Score compared to the open source tools. The commercial
scanners have a higher detection and lower false positive rate compared to the

24

CHAPTER 2. BACKGROUND

open source tools. ZAP (Zed Attack Proxy) performs well compared to others in
the free of cost category and will be used as one of the components in the Security
Regression Testing Framework.

2.5 Auto Regression Testing

"Testing is a destructive task in which the goal is to find relevant defects as early
as possible. It requires automation to reduce cost and ensure high regression, thus
delivering determined quality." [10]

Automation will minimize labor hours and money. Regression testing is the pro-
cess of re-testing the modified parts of the software application thus ensuring that
no new errors have been introduced into previously tested code [19]. Web devel-
opers fix bugs, implement new features and submit code periodically to production
systems. Whenever new code is introduced an automated regression test should
run to ensure that new bugs are not introduced and test cases that ran prior to the
change also pass in this process.

Web Application Security Regression Testing should be an automated process that
runs a series of security tests against the web application to determine a pass or fail
outcome. The focus is to test the web application for security holes. These secu-
rity tests should check the web application for XSS, SQLi, RFI, LFI, Redirect and
other classes of vulnerabilities in an automated manner. It is not possible to cover
all kinds of security tests but the basic vulnerabilities should be addressed in the
setup. The web application should be screened and quarantined every time a web
developer submits code to the projects source code control system. A source code
control system is a repository that stores revisions of software code implemented
by a group of developers who work together on the same project.

General software testing can consume 30 to 60 percent of all software life-cycle
cost depending upon the complexity of the product [10]. Security testing is not
trivial but a specialized skill that requires in-depth knowledge of application pro-
tocols like HTTP and networking protocols like TCP/IP. As a tester you need to
identify all entry points to the web application and adequately perform security
testing on them. Running a series of automated security tests that check the web
application for security holes will improve the quality of the product. Two meth-
ods which can be used to security test web applications are blackbox and whitebox
testing.

25

CHAPTER 2. BACKGROUND

2.5.1 Blackbox Testing

Blackbox security testing or black-box penetration testing is where the ethical
hacker has no knowledge of the web application he or she is attacking. The ob-
jective is to simulate a cyber attack and analyze the outcome through the responses
and results [44].

2.5.2 Whitebox Testing

Whitebox security testing or glass box penetration testing is where the ethical
hacker has internal perspective of the web application. The objective here is to
simulate a malicious insider who has knowledge of the target web application. In
this scenario, the tester knows the source code and will inject attack vectors that
are specially crafted to test the internals for security flaws [44].

2.5.3 What Is The Goal?

"The fundamental argument is zero or full knowledge - which is best?" [28]. A
penetration test regardless of its nature should generate a report that details the
test cases, vulnerabilities, exploits discovered and recommendations on how to im-
prove security. Blackbox and Whitebox are different methods that should be both
incorporated in the automated security test regression suite. New attack vectors and
vulnerabilities are reported on a daily basis and repeating tests using both ways is
essential to keep your web applications secure.

Figure 2.5: Blackbox And Whitebox Penetration Testing

26

CHAPTER 2. BACKGROUND

2.6 Literature Review

2.6.1 OWASP

"OWASP is an international organization and the OWASP Foundation supports
OWASP efforts around the world. OWASP is an open community dedicated to
enabling organizations to conceive, develop, acquire, operate, and maintain appli-
cations that can be trusted" [36].

Open Web Application Security Project is one of the best resources for those in-
terested in software security. The foundation established itself as a not-for-profit
charitable organization in the United States on April 24th 2004. This global group
has over 42,000 participants where all its material is available under a free and
open license.

When it comes to web applications security, OWASP plays a significant role in pro-
viding both tools and information on how to secure software. All OWASP projects
fall under the following four categories:

• Documentation: Seek to communicate information or raise awareness about
topics in application security.

• Tools: Create software that allows users to test, detect, protect or educate
themselves using a facet of application security.

• Code Library: Libraries and frameworks that can be used by developers to
enhance the security of their applications.

• Operational: Provide operational support in order to develop media content
for the foundation.

Currently there are over 100 projects that fall into one of the four categories noted
above. OWASP also publishes an awareness document on the most critical top 10
web application security flaws for the year. This report provides a description for
each risk, example attacks, how to avoid and related references to other resources.

Figure 2.6: OWASP Risk Rating Scheme [36]

27

CHAPTER 2. BACKGROUND

2.6.2 ZAP

ZAP is an OWASP project, available to download for free and use within a frame-
work to test websites for security holes. ZAP provides an API a program can use
to operate it. Developers can automate security testing of their web application
using this API. The tool is written in the JAVA programming language and latter
this paper shall demonstrate how the JAVA API can be used to communicate with
ZAP in order to run security tests [4].

Figure 2.7: ZAP In Action [3]

In Figure 2.7 ANT which is a JAVA build tool starts ZAP and then uses Selenium to
load a set of URLs using the Firefox browser. These URLs will be proxied through
the ZAP scanner by the Firefox browser. The ZAP scanner will send requests to
the target webserver and return responses back to the browser through it. As you
can see, one can use ZAP to proxy requests and responses through it using a web
browser and selenium software. Later we shall demonstrate how to extend this
setup using a GIT repository, Jenkins Continuous Integration Server and MySQL
database in order to achieve an automated web application security regression test
process.

Noted below are some of the features in ZAP:

• Intercepting Proxy - Analyze requests and responses

• Active and Passive Scanners - Discover and detect vulnerabilities

• Spider - Crawl a target website

• Report Generation - Scan results

28

CHAPTER 2. BACKGROUND

• Brute Force - Perform dictionary style attacks

• Fuzzing - Input of random data strings in request headers and form parame-
ters

• Extensibility - Customized scripts to detect security flaws

ZAP has gained much support over the past few years and was reported as the
best security tool for 2013 [33]. It is easy to use and can run as a stand-alone
JAVA application or in daemon mode on a remote server. ZAP is designed for an
audience that encompass experienced penetration testers and novices both.

2.6.3 Nessus

Nessus is a proprietary comprehensive vulnerability scanner developed by the com-
pany Tenable Network Security. It is free of charge for personal use in a non-
enterprise environment. For enterprise environments there is a licensing fee. Nes-
sus received the most popular network security tool award in 2000, 2003 and 2006
according to the security tools survey conducted by sectools.org [39].

On Linux you can run the Nessus daemon which performs the scanning and the
Nessus client controls the scan and presents the results to the operator. Nessus
starts with a port scan with one of its four internal portscanners, or it can optionally
use amap or nmap port scanners to determine which ports are open on the target
host. Once it has determined which ports are open it can then try exploits on
these available ports. The vulnerability tests are available as subscriptions and are
written in Nessus Attack Scripting Language (NASL). This is a scripting language
optimized for custom network interaction. Tenable Network Security produces
several dozen new vulnerability check plugins each week, usually on a daily basis.
These checks are available for free to the general public but the professional feed
is not free of cost and also provides access to support and additional scripts (e.g.
audit files, compliance tests, and additional vulnerability detection plugins). Scan
reports can be generated in various formats, such as plain text, XML, HTML and
LaTeX. The results can also be saved in a knowledge base for debugging. On
Linux, the scanning step can be automated through a command-line client [40].

2.6.4 Metasploit

Metasploit is another computer security project that provides information about se-
curity vulnerabilities and aids in penetration testing. It is owned and developed by
the company Rapid7 LLC. There is a sub-project called the Metasploit Framework
which can downloaded free of cost and is open source, and is delivered with a lim-
ited set of known exploits. Also there is no direct support available for the free
version. With this tool you can develop and execute code against a remote target
machine in order to exploit it. The Metasploit Project is famous for its anti-forensic

29

CHAPTER 2. BACKGROUND

and evasion tools, some of which are built into the Metasploit Framework [24].

This framework uses the following steps to exploit a system:

1. Choose and configure an exploit.

2. Check the intended target system is susceptible to the exploit chosen above.

3. Choose and configure a payload to send to the target host.

4. Choose encoding technique in order to bypass the intrusion-prevention sys-
tem (IPS) on the target host.

5. Execute the exploit.

This framework provides a modular approach, allowing the combination of any ex-
ploit with any payload. This is the major advantage of this framework. It facilitates
the tasks of attackers, exploit writers and payload writers.

Metasploit runs on Unix (including Linux and Mac OSX) and also on Windows.
Before choosing an exploit and payload, information about the target system is re-
quired. It is good to fingerprint the target system for information like operating
system version and installed network services. Nmap is one tool that can be used
to get this fingerprint information. The commercial versions of this framework are
Metasploit Express and Metasploit Pro. The free edition comes with capabilities
like command line interface, third-party import, manual exploitation and manual
brute force [24]. There are a set of developers from Rapid7 LLC that interface
with users from the open source community and provide them with support and
information.

2.6.5 Threat Modeling

"Threat modeling, an engineering technique you can use to shape your software de-
sign, will help inform and rationalize your key security engineering decisions. In
its simplest form, a threat model is an organized representation of relevant threats,
attacks and vulnerabilities in your system" [27].

During the design phase it is best to ask various "what if" questions related to the
security of your web application. These questions will help evaluate the security
concerns in your web applications and also partition infrastructure versus applica-
tion threats. When you partition by network, servers, desktops and applications it
helps to identify key areas and their ownership. There will also be intersections
where the application and infrastructure both require security hardening. An in-
frastructure threat can become the source of inputs to the application resulting into

30

CHAPTER 2. BACKGROUND

a compromise [27].

Threat modeling is a more sophisticated way of creating test cases to test specific
vulnerabilities. During the modeling phase a list of vulnerabilities that your web
application is most susceptible to should be created. You can then use data-flow
analysis or question-driven approaches to identify and test for specific cases. This
is a method that should be used for web application security testing.

31

Chapter 3

Approach

In order to demonstrate the actual automated process of web application security
regression testing both hardware and software components will be setup according
to the architecture diagram noted below. The software components will be de-
ployed on different servers. Once the construction of the framework is complete a
series of experiments will be conducted to demonstrate the process and discovery
of vulnerabilities. The setup will use Linux as the underlying operating system
and open source software. This framework will be called SRT (Security Regres-
sion Tester). The idea is to show the automated build process where a sequence of
web application security regression tests are executed when a developer performs
a commit. The focus is to analyze the advantages from the automated process ver-
sus conventional manual testing. The results from the experiments will be saved
to flat text files and made available on the continuous integration server for pe-
rusal. The Bodgeit Store is an Open Source Vulnerable Web Application that can
be downloaded for free and installed within Tomcat7 which is the version used in
this setup.

Figure 3.1: Architecture

32

CHAPTER 3. APPROACH

3.1 Setup And Installation

3.1.1 Hardware

Role Host OS CPU RAM DISK
Jenkins ahs-m1.ams.osa Debian6 4 vCPUs 1.7GHz 16GB 100GB
MySQL ahs-db1.ams.osa Debian6 4 vCPUs 1.7GHz 16GB 100GB
GIT ahs-s1.ams.osa Debian6 4 vCPUs 1.7GHz 16GB 100GB
Webserver t09-09.oslo.osa Debian6 16 Cores 2.27GHz 24GB 450GB
ZAP owasp-t01.oslo.osa Debian7 2 vCPUs 2.2GHz 8GB 100GB
Sandbox rumi.oslo.osa Debian7 Core 2 Duo 2.3GHz 4GB 200GB

Table 3.1: Hardware Setup

Openstack will be used to host the Jenkins Server, MySQL DB and the GIT server.
The target web application will run on a physical rack server and ZAP will be
configured on a KVM instance. Openstacks graphical web interface will be used
to build three VM’s using an image. This standard VM image that will be used shall
provide 100GB of disk in the root partition. Security TCP rules will be deployed
on the VM instances to open up ports in order to allow connectivity to and from
the rest of the servers in the architecture. Both ams.osa and oslo.osa are domains
pre-configured in private internal subnets. The Sandbox is a developer workstation
where implementation and testing of the Bodgeit Store project is conducted in a
local environment before pushing changes to the staging server which in this setup
is the Webserver for the Bodgeit Store web application.

3.1.2 Software

3.1.3 Webserver

Tomcat7 will be installed on t09-09.oslo.osa. This node is the staging server
for the Bodgeit Store web application. A GIT code commit from the sandbox
machine will rsync code changes via a GIT hook to this staging server. The
Bodgeit Store vulnerable web application will be downloaded and installed on t09-
09.oslo.osa. The web application which be accessible through the link http://t09-
09.oslo.osa:8080/bodgeit. Post installation of the web application the directory
/var/lib/tomcat7/webapps and its contents will be constructed in a GIT repository
on the GIT server. This can be done by creating a tarball which can then be ex-
tracted on the GIT server latter. Tomcat7 will also need to be configured so it can
perform detailed logging such as request headers and GET/POST payloads (request
body). This is explained in the experiments section.

33

CHAPTER 3. APPROACH

3.1.4 GIT

GIT [6] software will be used for source code management. The GIT server will
reside on the node ahs-s1.ams.osa. A repository called bodigeit.git will be created.
The version of GIT that will be used is 1.7 and a user git will also be created on
the GIT server. The tarball created earlier will be untarred and added into the
GIT repository. This ensures the structure of the Bodgeit Store web application
on the staging Webserver and GIT repository are in sync with the same files and
directories to start with.

3.1.5 Jenkins Continuous Integration Server

Jenkins Continuous Integration Server [20] will be installed and configured on ahs-
m1.ams.osa to run the builds and communicate with the rest of the nodes in the
setup. Workspace for the project Bodgeit Store [35] will be created on the Jenkins
server which shall run on port 8080. Binaries for the Java program, launcher shell
script and Java libraries will be installed and deployed on the Jenkins Server under
the directory /home/jenkins. Jenkins version 1.588 will be installed. A public
and private key pair will be generated for the user jenkins using ssh-keygen on
the Jenkins server under the directory /home/jenkins/.ssh. The public key for the
user jenkins will be added to the authorized_keys file on the GIT server under the
directory /home/git/.ssh. This public key authorization is needed for Jenkins to poll
the GIT server.

3.1.6 MySQL Database

MySQL database will be installed and configured on the node ahs-db1.ams.osa.
All web URLs to be proxied through ZAP for the Bodgeit Store project will be
stored in this MySQL database. A database called SRT will be setup with two
tables. These table are projects and urls. They will be populated with the nec-
essary meta data and corresponding urls to webpages that need to be tested. A
database user db_read will also be created which will have read only permissions.
DB connections from the Jenkins Server will be allowed using the credentials of
this user db_read. The bind-address for the MySQL database in the config file
/etc/mysql/my.conf will need to be changed to the ipaddress of ahs-db1.ams.osa.
MySQL Server version 5.1 will be used.

3.1.7 Java Application

A software application using the Java programming language will be written, com-
piled and tested on the Jenkins server (ahs-m1.ams.osa). This application will con-
trol the run of the regression build and security testing apparatus. It will use various
available Java packages, Selenium Web Driver, HtmlUnit (headless browser), ZAP
API calls and MySQL connectors to perform its functions. This component will

34

CHAPTER 3. APPROACH

act as the central intelligence piece in the setup. The behavior of the Java applica-
tion and settings in ZAP will be controlled by passing command line arguments to
this program. Open JDK (Java Development Kit) version 1.7.0_03 will be used for
development and execution.

3.1.8 ZAP

ZAP version 2.2.2 will be downloaded and installed as the attack proxy on owasp-
t01.oslo.osa. It will be configured to run as a daemon in the background. A root
certificate for ZAP will need to be generated. This can be done by launching ZAP
in standalone graphical user interface mode or after startup in daemon mode. ZAP
will listen on port 8080.

3.1.9 Apache2

Apache2 will be installed on the Jenkins server ahs-m1.ams.osa. It will run on
port 80. A directory called srt will be created under /var/www. Below the direc-
tory /var/www/srt a project specific directory called bodgeit will also be created.
The path will look like /var/www/srt/bodgeit and the user jenkins will be given per-
mission to write to this directory. This directory is where all the security testing
results will deposit.

3.1.10 Developer Sandbox

A sandbox will be created on rumi.oslo.osa which is a developer workstation used
for development purposes. This machine will need access to both the GIT server
and Webserver. The GIT repository bodgeit.git will be cloned on this node. This
is required so that anytime a developer commits a change to the Bodgeit Project
via their local GIT sandbox an rsync initiates to push the changes to the Web-
server as well. The rsync will run via a GIT hook which will be setup on the
developers local GIT repository on their development machine. As stated ear-
lier, the developer’s public ssh-key will need to be added on both the GIT server
(/home/git/.ssh/authorized_keys) and the Webserver (/root/.ssh/authorized_keys).

3.1.11 Configurations

The Bodgeit Store is a set of Java Server Pages running in Tomcat7 on t09-09.oslo.osa.
Tomcat7 will be configured to dump request headers and payload to the file: ’re-
quest_dumper.DATE.log’. It will also be configured to log HTTP GET and POST
request information to the ’access.DATE.log’ file. Once these configuration changes
have been applied, Tomcat7 will need to be restarted.

ZAP’s Active Scan runs with different ATTACK STRENGTH settings. This will
be controlled by the launcher shell script /home/jenkins/bodgeit/bin/run_bodgeit.sh

35

CHAPTER 3. APPROACH

on the Jenkins Server. ZAP can be run in 4 different levels which are noted below:

ATTACK STRENGTH DESCRIPTION
LOW Limit to around 6 requests per scan call
MEDIUM Limit to around 12 requests per scan call
HIGH Limit to around 24 requests per scan call
INSANE No real limit, can go into thousands.

Table 3.2: ZAP Attack Strength

ZAP’s ALERT THRESHOLD [5] determines how strictly to check for vulnerabil-
ities. This threshold value will be set to MEDIUM for all test cases.

ALERT THRESHOLD DESCRIPTION
LOW More false positives
MEDIUM Default
HIGH More false negatives

Table 3.3: ZAP Alert Threshold

ZAP’s RISK [5] reporting indicates the gravity of the alert.

RISK ALERT DESCRIPTION
INFO Informational
LOW Low level vulnerability
MEDIUM Medium level vulnerability
HIGH High level vulnerability

Table 3.4: ZAP Risk Alert

The RELIABILITY [5] is an indication of how likely the alert that is reported is a
real problem. There are two values that can be reported and they are listed below:

• SUSPICIOUS - A lower level of confidence

• WARNING - A higher level of confidence

3.1.12 Load URLs Into MySQL DB

The following URL’s will be inserted into the projects table in the SRT MySQL
database on ahs-db1.ams.osa.

1. http://t09-09.oslo.osa:8080/bodgeit/ (GET home page)

36

CHAPTER 3. APPROACH

2. http://t09-09.oslo.osa:8080/bodgeit/login.jsp (POST login form with user-
name=cosmicrhyhm@hotmail.com, password=123456 and submit)

3. http://t09-09.oslo.osa:8080/bodgeit/contact.jsp (POST contact form with textarea
and submit)

4. http://t09-09.oslo.osa:8080/bodgeit/about.jsp (GET about page)

5. http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid=28 (POST prodid form
with quantity=empty and submit)

6. http://t09-09.oslo.osa:8080/bodgeit/product.jsp?typeid=3 (GET typeid)

7. http://t09-09.oslo.osa:8080/bodgeit/search.jsp (POST search form with q=search_string
and submit)

8. http://t09-09.oslo.osa:8080/bodgeit/register.jsp (POST register form with user-
name, password1, password2 and submit)

9. http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid=14 (GET prodid=14)

10. http://t09-09.oslo.osa:8080/bodgeit/logout.jsp (GET logout)

3.2 Data Analysis

A session is defined as one complete security regression build starting from a de-
veloper GIT commit till the end when we collect the scan results. The request
dumper, access and ZAP logs will be saved for each test and will be processed by
Perl scripts to generate data and statistics for analysis. This step will be repeated
for each of the test cases.

The logfiles request_dumper.DATE.log , access.DATE.log, zap.log and bodgeit-
srt.DATE_TIME.txt are parsed to generate results and statistics. All Active Scan
requests initiated by ZAP are logged to the request_dumper and access logs. The
zap.log stores information on active scan session and the bodgeit-srt.DATETIME.txt
file provides the scan results and ZAP recommended resolutions. All logs will be
parsed using scripts written in Perl. There will be 3 scripts called zap.pl, access.pl
and request.pl for each respective log type. The contents from the results log will
not need parsing as the log itself will have the summary of alerts at the very bot-
tom. By parsing the contents in these log files metrics will be generated which are
described individually for each log type below.

3.2.1 ZAP Log

The ZAP log will provide the execution time taken by each ZAP plugin and the
overall execution time for the entire scan. The results from this log are compiled
and presented in a table. The metrics extracted from this log are:

37

CHAPTER 3. APPROACH

• Execution time for each ZAP plugin

• Total Execution Time by ZAP Active Scanner

3.2.2 Access Log

The access logs record all the GET and POST requests received by the Tomcat7
server. The log entries are parsed and the following metrics will be compiled:

• Total scan requests to proxied URLs

• # of scan requests broken down by method (GET/POST) under each proxied
URL

• # of Requests by each ZAP plugin using plugin execution time (This is a
function metric calculated using total scan requests)

3.2.3 Request Dumper Log

The request dumper logs store headers and POST payload parameter information.
The log entries are parsed and the following metrics will be compiled:

• # of times a unique header was fuzzed by ZAP

• # of times a unique parameter was fuzzed by ZAP

3.2.4 Results Log

The results log follow the naming convention bodgeit-srt.DATE_TIME.txt and are
generated by the Java Application running on the Jenkins Server. The information
in this log is retrieved from ZAP via an API call by the Java application. This
log will provide a summary of results from the Active Scan and also resolution
recommendations by ZAP which is one of its built in feature. These logs will
deposit in the Apache directory /var/www/srt/bodgeit/. No parsing of these logs is
required.

3.3 Experiments

Here we outline experiments and some configuration changes needed before con-
ducting the tests. The web application to test here is the Bodgeit Store which runs
on the staging Webserver t09-09.oslo.osa.

3.3.1 Test Case: 1(a)

Execute manual test to run build and check for any setup errors. Click on "Build
Now" under the Bodgeit Store project on the Jenkins Server to initiate test.
Check Jenkins Server project Bodgeit Store for build results.

38

CHAPTER 3. APPROACH

TEST SETTING VALUE
ATTACK STRENGTH LOW
ALERT THRESHOLD MEDIUM

Table 3.5: Settings Test Case 1(a)

3.3.2 Test Case: 1(b)

Execute automated test by performing GIT commit to the repository bodgeit.git
from developer sandbox.

TEST SETTING VALUE
ATTACK STRENGTH LOW
ALERT THRESHOLD MEDIUM

Table 3.6: Settings Test Case 1(b)

Check Jenkins Server project Bodgeit Store for build results.

3.3.3 Test Case: 2(a)

Execute automated test by performing GIT commit to the repository bodgeit.git
from developer sandbox.

TEST SETTING VALUE
ATTACK STRENGTH MEDIUM
ALERT THRESHOLD MEDIUM

Table 3.7: Settings Test Case 2(a)

Check Jenkins Server project Bodgeit Store for build results. Collect data from
request_dumper.DATE.log, access.DATE.log and zap.log for analysis.

3.3.4 Test Case: 2(b)

Execute automated test by performing GIT commit to the repository bodgeit.git
from developer sandbox.

39

CHAPTER 3. APPROACH

TEST SETTING VALUE
ATTACK STRENGTH HIGH
ALERT THRESHOLD MEDIUM

Table 3.8: Settings Test Case 2(b)

Check Jenkins Server project Bodgeit Store for build results. Collect data from
request_dumper.DATE.log, access.DATE.log and zap.log for analysis.

3.3.5 Test Case: 2(c)

Execute automated test by performing GIT commit to the repository bodgeit.git
from developer sandbox.

TEST SETTING VALUE
ATTACK STRENGTH INSANE
ALERT THRESHOLD MEDIUM

Table 3.9: Settings Test Case 2(c)

Check Jenkins Server project Bodgeit Store for build results. Collect data from
request_dumper.DATE.log, access.DATE.log and zap.log for analysis.

3.4 Return On Investment (ROI)

The Return on Investment for this specific paper is a metric that will be calculated
to show expected gains or losses for using test automation versus traditional manual
testing [38]. In order to calculate this ratio which is expressed below variables,
equations have to be defined and some assumptions have to be set.

ROI =
Benefits

Investment
[38] (3.1)

All the tools used in this automation setup are Open Source so the cost of software
= 0. The learning cost is 80 hours (2 weeks) multiplied by $50/hour which gives
us = $4000. This learning cost is the same for both manual and automated testing.
The hardware cost for manual testing is just 1 server = $1000 whereas for auto-
mated testing it is 5 servers = $5000.

(eq1) Manual Investment Cost = Softwarecost + Learningcost + Hardwaremanual

(eq2) Automation Investment Cost = Softwarecost + Learningcost + Hardwareauto

There is also an initial implementation cost for both manual and automated. The
time spent to implement the automated = 80 hours and for the manual = 8 hours

40

CHAPTER 3. APPROACH

the first time. The total number of test cases = 10 (URLs loaded in the MySQL
DB) and the tester is paid $50/hour.

(eq3) Manual Implementation Cost = TestCases * Testerhourlyrate * TimeSpentmanual

(eq4) Automated Implementation Cost = TestCases * Testerhourlyrate * TimeSpentauto

Next is to calculate the manual and automated cost of testing 10 URLs. It takes 4
hours for a tester to manually test 10 URLs and it takes 1 hour via automation. The
tester is paid $50/hour.

(eq5) Manual Testing 10 urls Cost = TestCases * Testerhourlyrate * Timemanual

(eq6) Automated Testing 10 urls Cost = TestCases * Testerhourlyrate * Timeauto

Total Manual Cost = eq1 + eq3 + (Builds - 1) * eq5
Total Automated Cost = eq2 + eq4 + (Builds - 1) * eq6

Builds is defined as the number of times code commits are performed by the de-
veloper. Our assumption is that with every code commit a tester has to perform a
manual security test of the 10 URLs (test cases). In case of the automation the 10
URLs are security tested through the automated setup.

Calculations will be performed for total manual and automated cost using the as-
sumptions, variables and their values noted above. We shall start with Builds = 1
and increment by 10 till we get to 100. The manual and automated costs for the
Builds variable will be calculated and provided as a table in the Results section.
The analysis of these results will be performed in Chapter 5.

41

CHAPTER 3. APPROACH

3.5 Process Flow Chart

Figure 3.2: Process Flow Chart

42

Chapter 4

Results

This chapter shows the installation commands executed on servers used in the
setup. The edits to configuration files, Java libraries that are used and log results
are all highlighted. The data collected from the experiments is also tabulated into
tables and presented in this section so it can be analyzed later on.

4.1 Setup And Installation

4.1.1 Install Webserver (t09-09.oslo.osa)

Install Tomcat7

apt-get install tomcat7

Download Bodgeit Store Vulnerable Web Application and install in Tomcat7 /var/lib/tomcat7/webapps
directory.

wget http://bodgeit.googlecode.com/�les/bodgeit.1.4.0.zip

mv bodgeit.1.4.0.zip /var/lib/tomcat7/webapps/
cd /var/lib/tomcat7/webapps/
unzip bodgeit.1.4.0.zip

Restart Tomcat7, open browser and surf to Bodgeit Store main page

/etc/init.d/tomcat7 restart

http://t09-09.oslo.osa:8080/bodgeit/

Tarball /var/lib/tomcat7/webapps to deploy on GIT Server repository latter on.

43

CHAPTER 4. RESULTS

tar -cvf /var/tmp/bodgeit.tar /var/lib/tomcat7/webapps/bodgeit

4.1.2 Install GIT (ahs-s1.ams.osa)

Create Linux user git on GIT server.

adduser git

Install GIT, create bodgeit.git directory under /home/git as user git.

apt-get install git
su git
mkdir /home/git/bodgeit.git

Copy bodgeit.tar file from Webserver to GIT server and untar in /home/git/bodgeit.git
Initialize GIT repository and add all files and directories to new GIT repo bodgeit.git.

cd /home/git/bodgeit.git
tar -xvf /path/to/bodgeit.tar .
git init
git add --all
git commit -am "Adding Bodgeit Store to GIT repo"
git push origin master

4.1.3 Install Jenkins (ahs-m1.ams.osa)

Install Jenkins and also install GIT (git commands are needed by the Jenkins Con-
tinous Integration Server).

apt-get update
apt-get install jenkins
apt-get install git

Check Jenkins is installed by opening webpage in browser

http://ahs-m1.ams.osa:8080

Generate public and private keys for user jenkins using ssh-keygen. The public key
will be added to the authorized_keys file on GIT server latter.

44

CHAPTER 4. RESULTS

su jenkins
cd /home/jenkins

Save keys to /home/jenkins/.ssh
ssh-keygen

jenkins@ahs-m1:~/.ssh$ ls
id_rsa id_rsa.pub

Create directories under /home/jenkins for Java application binaries, libraries and
launcher script. Please see appendix for list of libraries, Java source files, binaries
and other scripts.

cd /home/jenkins
mkdir lib
cp list_of_java_libraries /home/jenkins/lib

mkdir /home/jenkins/bodgeit
mkdir /home/jenkins/bodgeit/bin
cp java_binaries_and_launcher_script /home/jenkins/bodgeit/bin

jenkins@ahs-m1:~/bodgeit/bin$ ls
run_bodgeit.sh Run_SRT.class ZapperReport.class

4.1.4 SSH Access From Jenkins To GIT

Add user jenkins public key generated on Jenkins Server to /home/git/.ssh/authorized_keys
on GIT server. Then test connection from Jenkins Server.

Public ssh key of user jenkins on ahs-m1.ams.osa
added to /home/git/.ssh/authorized_keys on
ahs-s1.ams.osa

echo "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDSzx
LPd6EcHNCTIJQ3No7nox4iNZNRbDzttt1QqCHsUS8eno1BhK
UhE1/QEpea/5t7Wng8JY7SiyqDT/D68FUhpZA13ahWf5rcgo
XgPy90rOoK5rGQUEgoAwolnIIorxj05BetqPLoTULbwQXa8k
qsxpmkW1ul1Z4HKTHn/2tlP74Jlf3WFiZO279gKEr0F4vSKY
qEP4ycXDIyg1nVJUd/6uE+mu8mOnzRC3mOag3gubHIWJAFeI
NXBhmCkj4HrB2oDK0Lgo7T6YTQR2AwRVcr2mYGtmct50cseP
3plvMqJUL6daQwGjjLfR0lCuEgPgD5Fu1NoCoF4+DJseA3Xb
B3 jenkins@ahs-m1.ams.osa" > /home/git/.ssh/authorized_keys

45

CHAPTER 4. RESULTS

4.1.5 Test SSH Access From Jenkins To GIT

Test ssh connection for user jenkins to GIT server

jenkins@ahs-m1:~$ ssh git@ahs-s1.ams.osa
Linux ahs-s1.ams.osa 3.2.0-0.bpo.4-amd64 #1 SMP
Debian 3.2.46-1+deb7u1~bpo60+1 x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual �les in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY,
to the extent permitted by applicable law.
Last login: Sun Nov 9 19:28:10 2014 from ahs-m1.ams.osa

git@ahs-s1:~$

4.1.6 Create Bodgeit Store Project In Jenkins

Create and configure Bodgeit Store Project on Jenkins Server. Make sure GIT
plugin v2.7.7 is installed on Jenkins Continous Integration Server.

Step 1: Load http://ahs-m1.ams.osa:8080 in web browser
Step 2: Give project Item name Bodgeit Store
Step 3: Select radio button Freestyle Project and click OK
Step 4: Click Project Bodgeit Store -> Con�gure
Step 5: Fill in Project name and Description on top
Step 6: Under Source Code Management select Git
Step 7: Paste git@ahs-s1.ams.osa:/home/git/bodgeit.git into textarea for

�eld Repository URL
Step 7: Under Build Triggers select Poll SCM
Step 8: Paste */1 * * * * into text area for �eld Schedule
Step 9: Click Add Build Step and select Execute Shell
Step 10: Paste /home/jenkins/bodgeit/bin/run_bodgeit.sh

into textarea for Command
Step 11: Click Apply Settings
Step 12: Click Save

4.1.7 Install MySQL (ahs-db1.ams.osa)

Start by installing MySQL server and client and create database SRT

apt-get install mysql-server mysql-client

46

CHAPTER 4. RESULTS

mysql -u root -h localhost -p
mysql> CREATE DATABASE SRT;
mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| SRT |
| mysql |
| performance_schema |
+--------------------+

Change bind-address in /etc/mysql/conf to the IP of ahs-db1.ams.osa
Save con�guration change.
bind-address = 10.210.65.13

Restart MySQL Server
/etc/init.d/mysql restart

Create tables "projects" and "urls" in SRT database

CREATE TABLE `projects` (
`project_id` smallint(6) NOT NULL,
`name` varchar(40) DEFAULT NULL,
`owner` varchar(30) DEFAULT NULL,
`contact` varchar(40) DEFAULT NULL,
`status` tinyint(1) NOT NULL DEFAULT '1',
`email_active` tinyint(1) NOT NULL DEFAULT '1',
`report_active` tinyint(1) NOT NULL DEFAULT '1',
PRIMARY KEY (`project_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `urls` (
`datetime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
`url_id` int(11) NOT NULL AUTO_INCREMENT,
`project_id` smallint(6) NOT NULL,
`active` tinyint(1) NOT NULL DEFAULT '1',
`db_store` tinyint(1) NOT NULL DEFAULT '1',
`url` varchar(255) DEFAULT NULL,
`sort_order` smallint(6) NOT NULL,
`method` varchar(4) NOT NULL DEFAULT 'GET',
`params` varchar(255) DEFAULT NULL,
`submit` varchar(50) DEFAULT NULL,
PRIMARY KEY (`url_id`)

) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=latin1;

Create DB user called "db_read" and provide it read privileges
only to SRT database from jenkins server: ahs-m1.ams.osa
CREATE USER 'db_read'@'ahs-m1.ams.osa' IDENTIFIED BY '5r1r3aD';

47

CHAPTER 4. RESULTS

GRANT SELECT ON SRT.* TO 'db_read'@'ahs-m1.ams.osa';
FLUSH PRIVILEGES;

Results for DB, tables and db_read user.

use SRT;
Reading table information for completion of table and column names
You can turn o� this feature to get a quicker startup with -A

Database changed
show tables;
Tables in SRT
projects
urls

describe projects;
project_id smallint(6)
name varchar(40)
owner varchar(30)
contact varchar(40)
status tinyint(1)
email_active tinyint(1)
report_active tinyint(1)

describe urls;
datetime timestamp
url_id int(11)
project_id smallint(6)
active tinyint(1)
db_store tinyint(1)
url varchar(255)
sort_order smallint(6)
method varchar(4)
params varchar(255)
submit varchar(50)

use mysql;
select Host,User,Password from user;
ahs-m1.ams.osa db_read *C7C82041FDB0B48EE38332...

4.1.8 Java Application On Jenkins

The Java application resides in /home/jenkins/bodgeit/bin on the Jenkins server
ahs-m1.ams.osa. There are two java class files, Run_SRT.class and ZapperRe-
port.class. Listed below are some of the libraries that are used by the Java applica-
tion. Please see appendix for the complete list.

48

CHAPTER 4. RESULTS

jenkins@ahs-m1:~/lib$ ls -l /home/jenkins/lib
...
...
commons-lang3-3.1.jar
selenium-server-standalone-2.35.0.jar
hsqldb.jar
commons-cli-1.2-sources.jar
htmlunit-2.12.jar
htmlunit-core-js-2.12.jar
commons-io-2.4.jar
httpcore-4.2.2.jar
log4j-1.2.17.jar
zap-api-v2-6.jar
commons-jxpath-1.3.jar
httpmime-4.1.3.jar
mysql-connector-java-5.1.18-bin.jar
zaphelp.jar
commons-lang-2.6.jar
httpmime-4.2.3.jar
nekohtml-1.9.15.jar
zap.jar
...
...

4.1.9 Install ZAP (owasp-t01.oslo.osa)

Create Linux user zap

adduser zap

Download ZAP 2.2.2, uncompress file and extract tar ball to directory /home/zap.

http://sourceforge.net/projects/zaproxy/�les/2.2.2/ \
ZAP_2.2.2_Linux.tar.gz/download

As a pre-requisite you need Java 1.7.x.

Java version
java version "1.7.0_65"
OpenJDK Runtime Environment (IcedTea 2.5.1) (7u65-2.5.1-5~deb7u1)
OpenJDK Server VM (build 24.65-b04, mixed mode)

ls /home/zap
ZAP_2.2.2

49

CHAPTER 4. RESULTS

Launch ZAP in GUI mode first in order to generate a root certificate which will be
needed for SSL sites.

Edit /home/zap/.ZAP/config.xml and change the two fields listed below:

<ip>owasp-t01.oslo.osa</ip>
<port>8080</port>

Launch ZAP in daemon mode using the switch noted below and specify port as
well. The zap log resides in the /home/zap/.ZAP directory.

Start ZAP as a daemon
/home/zap/ZAP_2.2.2/zap.sh -daemon -port 8080 &

Run ps -afe and netstat to check it is running and listening on port 8080
ps -afe | grep zap
root 18843 1 0 Sep30 ? 04:00:10 java -Xmx512m \
-XX:PermSize=256M -jar ./zap.jar -daemon -host 10.20.41.13 -port 8080

netstat -nple | grep 8080
tcp6 0 0 10.20.41.13:8080 :::* LISTEN 0 1766873 18843/java

Check Log to ensure no errors were generated

tail -f /home/zap/.ZAP/zap.log
Found Java version 1.7.0_65
Available memory: 8044 MB
Setting jvm heap size: -Xmx512m
0 [main] INFO org.zaproxy.zap.ZAP - OWASP ZAP 2.2.2 started.
331 [main] INFO hsqldb.db.HSQLDB379AF3DEBD.ENGINE - dataFileCache open start
429 [main] INFO hsqldb.db.HSQLDB379AF3DEBD.ENGINE - dataFileCache open end
812 [main] INFO org.parosproxy.paros.network.SSLConnector- Reading supported SSL/TLS protocols...
812 [main] INFO org.parosproxy.paros.network.SSLConnector- Using a SSLEngine...
1025 [main] INFO org.parosproxy.paros.network.SSLConnector- Done reading supported SSL/TLS protocols:

[SSLv2Hello, SSLv3, TLSv1, TLSv1.1, TLSv1.2]
...
...
...
2014-10-25 23:00:40,845 INFO PluginFactory - loaded plugin Path Traversal
2014-10-25 23:00:40,846 INFO PluginFactory - loaded plugin Remote File Inclusion
2014-10-25 23:00:40,846 INFO PluginFactory - loaded plugin Server side include
2014-10-25 23:00:40,846 INFO PluginFactory - loaded plugin Cross Site Scripting (Re�ected)
2014-10-25 23:00:40,846 INFO PluginFactory - loaded plugin Cross Site Scripting (Persistent)
2014-10-25 23:00:40,846 INFO PluginFactory - loaded plugin SQL Injection
2014-10-25 23:00:40,847 INFO PluginFactory - loaded plugin Server Side Code Injection Plugin
2014-10-25 23:00:40,847 INFO PluginFactory - loaded plugin Remote OS Command Injection Plugin
2014-10-25 23:00:40,847 INFO PluginFactory - loaded plugin Directory browsing
2014-10-25 23:00:40,847 INFO PluginFactory - loaded plugin Secure page browser cache
2014-10-25 23:00:40,847 INFO PluginFactory - loaded plugin External redirect
2014-10-25 23:00:40,847 INFO PluginFactory - loaded plugin CRLF injection
2014-10-25 23:00:40,848 INFO PluginFactory - loaded plugin Parameter tampering
2014-10-25 23:00:40,848 INFO PluginFactory - loaded plugin Cross Site Scripting (Persistent) - Prime
2014-10-25 23:00:40,848 INFO PluginFactory - loaded plugin Cross Site Scripting (Persistent) - Spider
2014-10-25 23:00:40,848 INFO PluginFactory - loaded plugin Script active scan rules

50

CHAPTER 4. RESULTS

4.1.10 Install Apache2 (ahs-m1.ams.osa)

Install Apache2 and create sub-directories noted below. Provide user jenkins per-
mission to write to /var/www/srt/bodgeit

Installation of Apache2 on ahs-m1.ams.osa
apt-get install apache2

Create /var/www/srt/bodgeit
mkdir /var/www/srt
mkdir /var/www/bodgeit
chown -R jenkins:jenkins /var/www/srt/bodgeit

All results from the ZAP scan are written to the directory: /var/www/srt/bodgeit

4.1.11 Developer Access To GIT

Add developer’s public key on rumi.oslo.osa to /home/git/.ssh/authorized_keys on
GIT server.

echo "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDTxQMP5W
ULLoWQWkmeK73y9Rnhqmko5vnTB1l/thuypvNQ/zuOOrXDQFd9/n
vFGYPLhQFqPyZ+cvJugNOHEHv6kCVjH1y9SLHlvfEDJ5hD+0TFcr
MbDAIu4Y/EU3wtdz8mIWn2xf5SMxdMycpWtER+drpQvibUAJvFlV
rFXS/WuF3+FbmCMMv4r29MJFTioT00nVuuZ+ArX/9h8qqNxl7Kc3
mI6vSLYDs7BOebw87U+UYRMJuvon9+4Zm5QQw5yLW035OZLFpjHO
C+3NxzLLA7eNvn4ykD4l7XJkQHxNDURLYGA4wiBFCa34S2V/qSNQ
exUUxM+zc2c1rJE38nuKCURcIdL9LjiaGqp6m1inT+kqIkUnE2Fg
xCXjZoMWRpqSzYSi4aCrYBGFIE7urBypZs4nS2wKQV7/NRpqv6CO
FND9viINSXEp6RfSaEqKrZ+teWiPpgx8MSNR5kqJI1VkE9wWWFJ/
l3EnjZxplIFH3OY6w3lYVMaaKKEhRdoghazzqLL847h3aABiqAAb
P/IW8OSGb7s9f2MOCedOd6tOGfVlPHQLxOlg05k+r9oFRnepeDOU
UgBwDIpfGnb+fUiZYBRknwf1HfWnp/qzJa+utgq8fTY1pHFqDc1W
1dvSAX9kIy7FaDB7qLpKgX5JrQbJwdESxsUzY9G1FTjEQowLPzuw
== usmanw@rumi.oslo.osa" \
> /home/git/.ssh/authorized_keys

4.1.12 Developer Access To Webserver

Add developer’s public key on rumi.oslo.osa to /root/.ssh/authorized_keys on Web-
server.

echo "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDTxQMP5W
ULLoWQWkmeK73y9Rnhqmko5vnTB1l/thuypvNQ/zuOOrXDQFd9/n
vFGYPLhQFqPyZ+cvJugNOHEHv6kCVjH1y9SLHlvfEDJ5hD+0TFcr

51

CHAPTER 4. RESULTS

MbDAIu4Y/EU3wtdz8mIWn2xf5SMxdMycpWtER+drpQvibUAJvFlV
rFXS/WuF3+FbmCMMv4r29MJFTioT00nVuuZ+ArX/9h8qqNxl7Kc3
mI6vSLYDs7BOebw87U+UYRMJuvon9+4Zm5QQw5yLW035OZLFpjHO
C+3NxzLLA7eNvn4ykD4l7XJkQHxNDURLYGA4wiBFCa34S2V/qSNQ
exUUxM+zc2c1rJE38nuKCURcIdL9LjiaGqp6m1inT+kqIkUnE2Fg
xCXjZoMWRpqSzYSi4aCrYBGFIE7urBypZs4nS2wKQV7/NRpqv6CO
FND9viINSXEp6RfSaEqKrZ+teWiPpgx8MSNR5kqJI1VkE9wWWFJ/
l3EnjZxplIFH3OY6w3lYVMaaKKEhRdoghazzqLL847h3aABiqAAb
P/IW8OSGb7s9f2MOCedOd6tOGfVlPHQLxOlg05k+r9oFRnepeDOU
UgBwDIpfGnb+fUiZYBRknwf1HfWnp/qzJa+utgq8fTY1pHFqDc1W
1dvSAX9kIy7FaDB7qLpKgX5JrQbJwdESxsUzY9G1FTjEQowLPzuw
== usmanw@rumi.oslo.osa" \
> /root/.ssh/authorized_keys

4.1.13 Test SSH Access From Developer To GIT And Webserver

Test ssh connection from developers machine to Webserver and GIT server.

ssh to GIT Server
usmanw@rumi:~$ ssh git@ahs-s1.ams.osa
Linux ahs-s1.ams.osa 3.2.0-0.bpo.4-amd64

#1 SMP Debian 3.2.46-1+deb7u1~bpo60+1 x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual �les in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY,
to the extent permitted by applicable law.
Last login: Sun Nov 9 21:24:14 2014 from rumi.oslo.osa
git@ahs-s1:~$

ssh to Webserver
usmanw@rumi:~$ ssh root@t09-09.oslo.osa
Linux t09-09 3.2.0-4-amd64 #1 SMP Debian 3.2.63-2+deb7u1 x86_64
Linux t09-09 2.6.32-5-amd64 #1 SMP Sun Sep 23 10:07:46 UTC 2012 x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual �les in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY,
to the extent permitted by applicable law.

Last login: Fri Nov 14 19:56:20 2014 from rumi.oslo.osa
t09-09:~#

52

CHAPTER 4. RESULTS

4.1.14 Clone bodgeit.git On Developer Node

Clone Bodgeit Store GIT repository on developer’s machine.

git clone git@ahs-s1.ams.osa:/home/git/bodgeit.git bodgeit
Cloning into 'bodgeit'...
remote: Counting objects: 97, done.
remote: Compressing objects: 100% (82/82), done.
remote: Total 97 (delta 15), reused 0 (delta 0)
Receiving objects: 100% (97/97), 991.19 KiB, done.
Resolving deltas: 100% (15/15), done.

Create GIT hook script in developer’s local bodgeit cloned repository in order to
rsync changes to the staging Webserver. Make sure rsync is installed on developer
machine, Webserver and GIT server

cd /home/usmanw/bodgeit/.git/hooks

echo "#!/bin/sh" > post-commit
echo "cd /home/usmanw/bodgeit" > post-commit
echo "git pull /home/usmanw/bodgeit" > post-commit
echo "rsync -rvz --delete --exclude '*.git' --exclude '*-INF' \
/home/usmanw/bodgeit/ \
root@t09-09.oslo.osa:/var/lib/tomcat7/webapps/bodgeit" > post-commit

chmod 755 post-commit

Test GIT hook post-commit

sh /home/usmanw/bodgeit/.git/hooks/post-commit
From /home/usmanw/bodgeit
* branch HEAD -> FETCH_HEAD
Already up-to-date.
...
...
sending incremental �le list
deleting tests/
Readme
about.jsp
admin.jsp
advanced.jsp
basket.jsp
contact.jsp
footer.jsp
header.jsp
home.jsp

53

CHAPTER 4. RESULTS

init.jsp
login.jsp
logout.jsp
password.jsp
product.jsp
register.jsp
score.jsp
search.jsp
style.css
js/encryption.js
js/util.js
...
...
sent 2426 bytes received 10005 bytes 24862.00 bytes/sec
total size is 1136353 speedup is 91.41

4.1.15 Configurations

In order to log request headers, GET/POST payloads the following configuration
changes need to be applied. Add the fields listed below to /var/lib/tomcat7/conf/server.xml
so more information is logged in the access log file.

FIELD DESCRIPTION
%t Date Time
%h Remote Hostname
%H Request Protocol
%m Request Method
%q Query String
%U Requested URL Path
%r First Time of Request
%s HTTP Status Code of Response
%b Bytes Sent

Table 4.1: Tomcat7 Server Configuration Settings

/var/lib/tomcat7/conf/server.xml
<Valve className="org.apache.catalina.valves.AccessLogValve"
directory="logs"
pre�x="access_" su�x=".log"
pattern="%t %h %H %m "%{User-Agent}i"

%q %U "%r" %s %b"
/>

Add to /var/lib/tomcat7/conf/web.xml to use Tomcat7s Request Dumper Filter.

54

CHAPTER 4. RESULTS

<�lter>
<�lter-name>requestdumper</�lter-name>
<�lter-class>
org.apache.catalina.�lters.RequestDumperFilter

</�lter-class>
</�lter>
<�lter-mapping>

<�lter-name>requestdumper</�lter-name>
<url-pattern>*</url-pattern>

</�lter-mapping>

Modify /var/lib/tomcat7/conf/logging.properties to create a separate log file for the
Request Dumper Filter output. The POST payloads are not recorded in the access
logs so we create a separate logfile called ’request_dumper.DATE.log’.

handlers = 1catalina.org.apache.juli.FileHandler,
2localhost.org.apache.juli.FileHandler,
java.util.logging.ConsoleHandler,
1request-dumper.org.apache.juli.FileHandler

1request-dumper.org.apache.juli.FileHandler.level = INFO
1request-dumper.org.apache.juli.FileHandler.directory = ${catalina.base}/logs
1request-dumper.org.apache.juli.FileHandler.pre�x = request_dumper.
1request-dumper.org.apache.juli.FileHandler.formatter = \

org.apache.juli.VerbatimFormatter
org.apache.catalina.�lters.RequestDumperFilter.level = INFO
org.apache.catalina.�lters.RequestDumperFilter.handlers = \
1request-dumper.org.apache.juli.FileHandler

Ensure to restart tomcat7 once the above configuration changes have been applied.

/etc/init.d/tomcat7 restart

4.1.16 Load URLs Into MySQL DB

Load project Bodgeit Store data into projects table

INSERT INTO `projects` VALUES (\
4, \
'Bodgeit Store', \
'Usman Waheed', \
'cosmicrhythm@hotmail.com' \
,1 \

55

CHAPTER 4. RESULTS

,1 \
,1 \

);

Load URLs data into table: urls.

INSERT INTO `urls` VALUES \
(default,default,4,1,1,'http://t09-09.oslo.osa:8080/bodgeit/',1,'GET','',''), \
(default,default,4,1,1,'http://t09-09.oslo.osa:8080/bodgeit/login.jsp',2, \
'POST','username=cosmicrhythm@hotmail.com&password=1212','submit'), \
(default,default,4,1,1,'http://t09-09.oslo.osa:8080/bodgeit/contact.jsp', \
3,'POST','comments=empty','submit'), \
(default,default,4,1,1,'http://t09-09.oslo.osa:8080/bodgeit/about.jsp', \
4,'GET','',''), \
(default,default,4,1,1, \
'http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid=28', \
5,'POST','quantity=empty','submit'), \
(default,default,4,1,1, \
'http://t09-09.oslo.osa:8080/bodgeit/product.jsp?typeid=3', \
6,'GET','',''), \
(default,default,4,1,1,'http://t09-09.oslo.osa:8080/bodgeit/search.jsp',7, \
'POST','q=fjord','submit'), \
(default,default,4,1,1,'http://t09-09.oslo.osa:8080/bodgeit/register.jsp',8, \
'POST','username=t@t.com&password1=testing&password2=testing2', \
'submit'), \
(default,default,4,1,1, \
'http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid=14', \
9,'GET','',''), \
(default,default,4,1,1,'http://t09-09.oslo.osa:8080/bodgeit/logout.jsp',10, \
'GET','','');

Box below shows the sort_order and URLs loaded for Bodgeit Store Project into
the urls table in database SRT.

mysql> select sort_order,url from urls where project_id=4;
+------------+---+
| sort_order | url |
+------------+---+
1	http://t09-09.oslo.osa:8080/bodgeit/
2	http://t09-09.oslo.osa:8080/bodgeit/login.jsp
3	http://t09-09.oslo.osa:8080/bodgeit/contact.jsp
4	http://t09-09.oslo.osa:8080/bodgeit/about.jsp
5	http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid=28
6	http://t09-09.oslo.osa:8080/bodgeit/product.jsp?typeid=3
7	http://t09-09.oslo.osa:8080/bodgeit/search.jsp
8	http://t09-09.oslo.osa:8080/bodgeit/register.jsp

56

CHAPTER 4. RESULTS

| 9 | http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid=14 |
| 10 | http://t09-09.oslo.osa:8080/bodgeit/logout.jsp |
+------------+---+

4.2 Data Analysis

This section describes the results collected and compiled for one test run. It also
shows sample output from the logs that are collected and parsed latter on using Perl
scripts to generate the tables with data.

Project: Bodgeit Store
Build #: 33
ATTACK STRENGTH = LOW , ALERT THRESHOLD = MEDIUM
URLs Proxied = 10

4.2.1 ZAP Log
Records from zap.log from one test run

2014-11-15 16:34:40,662 INFO Scanner - scanner started
2014-11-15 16:34:40,679 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \

| TestPathTraversal strength LOW threshold MEDIUM
2014-11-15 16:34:42,627 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \

| TestPathTraversal in 1.947s
2014-11-15 16:34:42,627 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \

| TestRemoteFileInclude strength LOW threshold MEDIUM
2014-11-15 16:34:43,840 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \

| TestRemoteFileInclude in 1.213s
2014-11-15 16:34:43,840 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \

| TestRedirect strength LOW threshold MEDIUM
2014-11-15 16:34:44,886 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \

| TestRedirect in 1.046s
2014-11-15 16:34:44,887 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \

| TestServerSideInclude strength LOW threshold MEDIUM
2014-11-15 16:34:46,067 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \

| TestServerSideInclude in 1.18s
2014-11-15 16:34:46,067 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \

| TestCrossSiteScriptV2 strength LOW threshold MEDIUM
2014-11-15 16:34:47,195 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \

| TestCrossSiteScriptV2 in 1.127s
2014-11-15 16:34:47,196 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \

| TestSQLInjection strength LOW threshold MEDIUM
2014-11-15 16:34:49,085 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \

| TestSQLInjection in 1.889s
2014-11-15 16:34:49,085 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \

| TestDirectoryBrowsing strength LOW threshold MEDIUM
2014-11-15 16:34:50,302 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \

| TestDirectoryBrowsing in 1.217s
2014-11-15 16:34:50,302 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \

| TestInfoSessionIdURL strength LOW threshold MEDIUM
2014-11-15 16:34:50,312 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \

| TestInfoSessionIdURL in 0.01s
2014-11-15 16:34:50,312 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \

| TestClientBrowserCache strength LOW threshold MEDIUM
2014-11-15 16:34:50,321 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \

| TestClientBrowserCache in 0.008s
2014-11-15 16:34:50,321 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \

| TestExternalRedirect strength LOW threshold MEDIUM
2014-11-15 16:34:51,371 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \

| TestExternalRedirect in 1.05s
2014-11-15 16:34:51,371 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \

| TestInjectionCRLF strength LOW threshold MEDIUM
2014-11-15 16:34:53,008 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \

| TestInjectionCRLF in 1.636s
2014-11-15 16:34:53,008 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \

| TestParameterTamper strength LOW threshold MEDIUM

57

CHAPTER 4. RESULTS

2014-11-15 16:34:54,246 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \
| TestParameterTamper in 1.237s

2014-11-15 16:34:54,247 INFO HostProcess - start host http://t09-09.oslo.osa:8080 \
| ScriptsActiveScanner strength LOW threshold MEDIUM

2014-11-15 16:34:55,058 INFO HostProcess - completed host/plugin http://t09-09.oslo.osa:8080 \
| ScriptsActiveScanner in 0.811s

2014-11-15 16:34:55,058 INFO HostProcess - completed host http://t09-09.oslo.osa:8080 in 14.395s
2014-11-15 16:34:55,098 INFO Scanner - scanner completed in 14.436s

Data Extracted from /home/zap/.ZAP/zap.log

ZAP PLUGIN EXECUTION TIME (seconds)
TestInfoSessionIdURL 0.01
ScriptsActiveScanner 0.811
TestCrossSiteScriptV2 1.127
TestServerSideInclude 1.18
TestRemoteFileInclude 1.213
TestSQLInjection 1.889
TestExternalRedirect 1.05
TestPathTraversal,1.947 1.947
TestClientBrowserCache 0.008
TestParameterTamper 1.237
TestRedirect 1.046
TestInjectionCRLF 1.636
TestDirectoryBrowsing 1.217
Total 14.436

Table 4.2: ZAP Plugin Execution Times In Seconds

4.2.2 Access Log
Sample records from access log

...

...
[15/Nov/2014:16:34:41 +0000] 10.20.41.13 HTTP/1.1 GET "Mozilla/4.0 (compatible; MSIE 8.0; \
Windows NT 6.0)" ?q=fjord /bodgeit/search.jsp "GET /bodgeit/search.jsp?q=fjord HTTP/1.1" 200 2011

[15/Nov/2014:16:34:41 +0000] 10.20.41.13 HTTP/1.1 GET "Mozilla/4.0 (compatible; MSIE 8.0; \
Windows NT 6.0)" /bodgeit/register.jsp "GET /bodgeit/register.jsp HTTP/1.1" 200 2485

[15/Nov/2014:16:34:41 +0000] 10.20.41.13 HTTP/1.1 POST "Mozilla/4.0 (compatible; MSIE 8.0; \
Windows NT 6.0)" /bodgeit/register.jsp "POST /bodgeit/register.jsp HTTP/1.1" 200 2562

...

...

...
[15/Nov/2014:16:34:42 +0000] 10.20.41.13 HTTP/1.1 POST "Mozilla/4.0 (compatible; MSIE 8.0; \
Windows NT 6.0)" /bodgeit/login.jsp "POST /bodgeit/login.jsp HTTP/1.1" 200 2530

[15/Nov/2014:16:34:42 +0000] 10.20.41.13 HTTP/1.1 POST "/etc/passwd" \
/bodgeit/login.jsp "POST /bodgeit/login.jsp HTTP/1.1" 200 2530

[15/Nov/2014:16:34:42 +0000] 10.20.41.13 HTTP/1.1 POST "/Windows\system.ini" \
/bodgeit/login.jsp "POST /bodgeit/login.jsp HTTP/1.1" 200 2530

[15/Nov/2014:16:34:42 +0000] 10.20.41.13 HTTP/1.1 POST "/WEB-INF/web.xml" \
/bodgeit/login.jsp "POST /bodgeit/login.jsp HTTP/1.1" 200 2530

[15/Nov/2014:16:34:42 +0000] 10.20.41.13 HTTP/1.1 POST "\etc/passwd" \
/bodgeit/login.jsp "POST /bodgeit/login.jsp HTTP/1.1" 200 2530

[15/Nov/2014:16:34:42 +0000] 10.20.41.13 HTTP/1.1 POST "\Windows\system.ini" \
/bodgeit/login.jsp "POST /bodgeit/login.jsp HTTP/1.1" 200 2530

[15/Nov/2014:16:34:42 +0000] 10.20.41.13 HTTP/1.1 POST "\WEB-INF/web.xml" \
/bodgeit/login.jsp "POST /bodgeit/login.jsp HTTP/1.1" 200 2530

[15/Nov/2014:16:34:42 +0000] 10.20.41.13 HTTP/1.1 POST "thishouldnotexistandhopefullyitwillnot" \

58

CHAPTER 4. RESULTS

/bodgeit/login.jsp "POST /bodgeit/login.jsp HTTP/1.1" 200 2530
[15/Nov/2014:16:34:42 +0000] 10.20.41.13 HTTP/1.1 POST "Mozilla/4.0 (compatible; MSIE 8.0; \
Windows NT 6.0)" /bodgeit/login.jsp "POST /bodgeit/login.jsp HTTP/1.1" 200 2530

...

...

Data Extracted from /var/lib/tomcat7/logs/access.2014-11-15.log

URL GET Reqs POST Reqs
http://t09-09.oslo.osa:8080/bodgeit/ 2 0
http://t09-09.oslo.osa:8080/bodgeit/login.jsp 3 214
http://t09-09.oslo.osa:8080/bodgeit/contact.jsp 3 253
http://t09-09.oslo.osa:8080/bodgeit/about.jsp 3 0
http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid= 2 0
http://t09-09.oslo.osa:8080/bodgeit/product.jsp?typeid= 2 0
http://t09-09.oslo.osa:8080/bodgeit/search.jsp 3 0
http://t09-09.oslo.osa:8080/bodgeit/register.jsp 3 253
http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid= 2 0
http://t09-09.oslo.osa:8080/bodgeit/logout.jsp 3 0

Table 4.3: ZAP Active Scan Generated # Of GET and POST Requests

4.2.3 Request Dumper Log
One sample record (START to FINISH) from request_dumper log

http-bio-8080-exec-2 ==
http-bio-8080-exec-3 START TIME =15-Nov-2014 16:34:41
http-bio-8080-exec-3 requestURI=/bodgeit/login.jsp
http-bio-8080-exec-3 authType=null
http-bio-8080-exec-3 characterEncoding=null
http-bio-8080-exec-3 contentLength=49
http-bio-8080-exec-3 contentType=application/x-www-form-urlencoded
http-bio-8080-exec-3 contextPath=/bodgeit
http-bio-8080-exec-3 cookie=JSESSIONID=37B19BFB810E27FA981C3FE1738F5610
http-bio-8080-exec-3 header=user-agent=Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0)
http-bio-8080-exec-3 header=accept-language=en-us
http-bio-8080-exec-3 header=referer=http://t09-09.oslo.osa:8080/bodgeit/login.jsp
http-bio-8080-exec-3 header=accept=*/*
http-bio-8080-exec-3 header=content-length=49
http-bio-8080-exec-3 header=content-type=application/x-www-form-urlencoded
http-bio-8080-exec-3 header=proxy-connection=Keep-Alive
http-bio-8080-exec-3 header=cookie=JSESSIONID=37B19BFB810E27FA981C3FE1738F5610
http-bio-8080-exec-3 header=host=t09-09.oslo.osa:8080
http-bio-8080-exec-3 locale=en_US
http-bio-8080-exec-3 method=POST
http-bio-8080-exec-3 parameter=username=cosmicrhythm@hotmail.com
http-bio-8080-exec-3 parameter=password=1212
http-bio-8080-exec-3 pathInfo=null
http-bio-8080-exec-3 protocol=HTTP/1.1
http-bio-8080-exec-3 queryString=null
http-bio-8080-exec-3 remoteAddr=10.20.41.13
http-bio-8080-exec-3 remoteHost=10.20.41.13
http-bio-8080-exec-3 remoteUser=null
http-bio-8080-exec-3 requestedSessionId=37B19BFB810E27FA981C3FE1738F5610
http-bio-8080-exec-3 scheme=http
http-bio-8080-exec-3 serverName=t09-09.oslo.osa
http-bio-8080-exec-3 serverPort=8080
http-bio-8080-exec-3 servletPath=/login.jsp
http-bio-8080-exec-3 isSecure=false
http-bio-8080-exec-3 ------------------=--
http-bio-8080-exec-3 ------------------=--
http-bio-8080-exec-3 authType=null

59

CHAPTER 4. RESULTS

http-bio-8080-exec-3 contentType=text/html;charset=ISO-8859-1
http-bio-8080-exec-3 remoteUser=null
http-bio-8080-exec-3 status=200
http-bio-8080-exec-3 END TIME =15-Nov-2014 16:34:41
http-bio-8080-exec-3 ==

Data Extracted from /var/lib/tomcat7/logs/request_dumper.2014-11-15.log

TYPE NAME # of Uniques
header content-length 83
header set-cookie 7
header proxy-connection 1
header content-type 1
header Set-Cookie 32
header accept-language 1
header referer 48
header host 1
header user-agent 39
header cookie 1
header accept 1
parameter anticsrf 35
parameter productid 32
parameter password1 35
parameter password 37
parameter password2 35
parameter username 39
parameter price 30
parameter null 32
parameter typeid 36
parameter q 34
parameter comments 35
parameter prodid 37
parameter quantity 31

Table 4.4: Metrics from request dumper log

4.2.4 Results Log
Sample output from bodgeit-srt_2014-11-15-16-34-37.txt

Project: bodgeit
Filename: bodgeit-srt_2014-11-15-16-34-37
Risks: High, Medium, Low and Informational

URL: http://t09-09.oslo.osa:8080/bodgeit/
URL Params (if any):
Risk: Low
Reliability: Warning
Description: The Anti-MIME-Sni�ng header X-Content-Type-Options was not set to 'nosni�'

60

CHAPTER 4. RESULTS

Reference:
Solution: This check is speci�c to Internet Explorer 8 and Google Chrome. \
Ensure each page sets a Content-Type header and the X-CONTENT-TYPE-OPTIONS if the Content-Type\
header is unknown

URL: http://t09-09.oslo.osa:8080/bodgeit/
URL Params (if any):
Risk: Informational
Reliability: Warning
Description: X-Frame-Options header is not included in the HTTP response to protect against \
'ClickJacking' attacks

Reference: http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/ \
combating-clickjacking-with-x-frame-options.aspx?Redirected=true
Solution: Most modern Web browsers support the X-Frame-Options HTTP header, \
ensure it's set on all web pages returned by your site \
(if you expect the page to be framed only by pages on your server \
(e.g. it's part of a FRAMESET) then you'll want to use SAMEORIGIN, \
otherwise if you never expect the page to be framed, you should use DENY).

...
...
...
Summary of Alerts
High Risk Alerts: 1
Medium Risk Alerts: 0
Low Risk Alerts: 14
Informational Risk Alerts: 12
Total: 27

Alerts Extracted from http://ahs-m1.ams.osa/srt/bodgeit/bodgeit-srt_2014-11-
15-16-34-37.txt

Risk Type # of Alerts
High 1
Medium 0
Low 14
Informational 12
Total 27

Table 4.5: Summary Of Alerts

4.3 Experiments

4.3.1 Test Case: 1(a)

Result from Manual Build Run

No changes.
Started by anonymous user
Revision: 7de6470332b160f78ddceb7646a48dd2cf704bf3
refs/remotes/origin/master

61

CHAPTER 4. RESULTS

Figure 4.1: Triggered By Manual Click

Figure 4.2: Manual Test Build

4.3.2 Test Case: 1(b)

Result from Automated Test Build triggered from source code commit

Changes
1. Testing test case 1b for thesis write up on Nov 15th 2014 at 19:38pm (detail)
Started by an SCM change
Revision: 6e9b2609dd9695b8aeea7b32f9340c0386b24f9c
refs/remotes/origin/master

62

CHAPTER 4. RESULTS

Figure 4.3: Code Commit Triggered Build

Figure 4.4: Build Through SCM Change

4.3.3 Test Case: 2(a)

Build #: 42

63

CHAPTER 4. RESULTS

ZAP PLUGIN EXECUTION TIME (seconds)
TestSQLInjection 4.809
TestServerSideInclude 1.171
ScriptsActiveScanner 1.01
TestExternalRedirect 1.042
TestInfoSessionIdURL 0.01
TestClientBrowserCache 0.014
TestPathTraversal 2.935
TestParameterTamper 1.448
TestRedirect 1.047
TestRemoteFileInclude 2.013
TestDirectoryBrowsing 1.215
TestCrossSiteScriptV2 1.116
TestInjectionCRLF 1.633
Total 19.526

Table 4.6: ZAP Plugin Execution Times, Test Case 2(a)

SORTID URL GET Reqs POST Reqs
1 http://t09-09.oslo.osa:8080/bodgeit/ 3 0
2 http://t09-09.oslo.osa:8080/bodgeit/login.jsp 6 356
3 http://t09-09.oslo.osa:8080/bodgeit/contact.jsp 4 407
4 http://t09-09.oslo.osa:8080/bodgeit/about.jsp 4 0
5 http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid= 3 0
6 http://t09-09.oslo.osa:8080/bodgeit/product.jsp?typeid= 3 0
7 http://t09-09.oslo.osa:8080/bodgeit/search.jsp 4 0
8 http://t09-09.oslo.osa:8080/bodgeit/register.jsp 6 434
9 http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid= 3 0
10 http://t09-09.oslo.osa:8080/bodgeit/logout.jsp 4 0

Total 40 1197

Table 4.7: ZAP Active Scan Generated # Of GET And POST Requests, Test Case
2(a)

Risk Type # of Alerts
High 2
Medium 0
Low 14
Informational 12
Total 28

Table 4.8: Summary Of Alerts, Test Case 2(a)

64

CHAPTER 4. RESULTS

TYPE NAME # of Uniques
header accept 2
header user-agent 70
header content-type 1
header referer 127
header content-length 109
header if-none-match 2
header Set-Cookie 49
header cookie 2
header host 1
header accept-language 2
header proxy-connection 1
header set-cookie 7
header ETag 2
header accept-encoding 1
header Last-Modified 1
header if-modified-since 1
header Accept-Ranges 1
header connection 1
parameter password2 61
parameter prodid 63
parameter anticsrf 61
parameter productid 49
parameter comments 61
parameter quantity 55
parameter password1 61
parameter q 60
parameter null 56
parameter price 56
parameter username 76
parameter password 61
parameter typeid 62

Table 4.9: Metrics From Request Dumper Log, Test Case 2(a)

65

CHAPTER 4. RESULTS

4.3.4 Test Case: 2(b)

Build #: 43

ZAP PLUGIN EXECUTION TIME (seconds)
TestRemoteFileInclude 3.491
ScriptsActiveScanner 0.811
TestDirectoryBrowsing 1.216
TestParameterTamper 1.44
TestClientBrowserCache 0.009
TestInjectionCRLF 1.436
TestPathTraversal 3.781
TestExternalRedirect 1.044
TestRedirect 1.044
TestServerSideInclude 1.144
TestInfoSessionIdURL 0.01
TestSQLInjection 6.855
TestCrossSiteScriptV2 1.316
Total 23.679

Table 4.10: ZAP Plugin Execution Times, Test Case 2(b)

SORTID URL GET Reqs POST Reqs
1 http://t09-09.oslo.osa:8080/bodgeit/ 2 0
2 http://t09-09.oslo.osa:8080/bodgeit/login.jsp 3 521
3 http://t09-09.oslo.osa:8080/bodgeit/contact.jsp 3 557
4 http://t09-09.oslo.osa:8080/bodgeit/about.jsp 3 0
5 http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid= 2 0
6 http://t09-09.oslo.osa:8080/bodgeit/product.jsp?typeid= 2 0
7 http://t09-09.oslo.osa:8080/bodgeit/search.jsp 3 0
8 http://t09-09.oslo.osa:8080/bodgeit/register.jsp 3 632
9 http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid= 2 0
10 http://t09-09.oslo.osa:8080/bodgeit/logout.jsp 3 0

Total 26 1710

Table 4.11: ZAP Active Scan Generated # Of GET And POST Requests, Test Case
2(b)

66

CHAPTER 4. RESULTS

Risk Type # of Alerts
High 4
Medium 0
Low 14
Informational 12
Total 30

Table 4.12: Summary Of Alerts, Test Case 2(b)

TYPE NAME # of Uniques
header content-type 1
header Set-Cookie 48
header host 1
header proxy-connection 1
header set-cookie 7
header cookie 1
header content-length 124
header accept-language 1
header user-agent 100
header accept 1
header referer 196
parameter password1 90
parameter password 85
parameter prodid 88
parameter price 86
parameter productid 69
parameter quantity 91
parameter null 79
parameter q 97
parameter anticsrf 86
parameter comments 86
parameter password2 90
parameter typeid 87

Table 4.13: Metrics From Request Dumper Log, Test Case 2(b)

67

CHAPTER 4. RESULTS

4.3.5 Test Case: 2(c)

Build #: 43

ZAP PLUGIN EXECUTION TIME (seconds)
TestClientBrowserCache 0.008
TestParameterTamper 1.229
TestPathTraversal 21.49
TestServerSideInclude 1.139
TestRedirect 1.244
TestCrossSiteScriptV2 1.112
TestExternalRedirect 1.043
TestRemoteFileInclude 4.48
TestInjectionCRLF 1.431
TestSQLInjection 8.249
TestDirectoryBrowsing 1.218
ScriptsActiveScanner 1.011
TestInfoSessionIdURL 0.008
Total 43.721

Table 4.14: ZAP Plugin Execution Times, Test Case 2(c)

SORTID URL GET Reqs POST Reqs
1 http://t09-09.oslo.osa:8080/bodgeit/ 2 0
2 http://t09-09.oslo.osa:8080/bodgeit/login.jsp 3 1492
3 http://t09-09.oslo.osa:8080/bodgeit/contact.jsp 3 1619
4 http://t09-09.oslo.osa:8080/bodgeit/about.jsp 3 0
5 http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid= 2 0
6 http://t09-09.oslo.osa:8080/bodgeit/product.jsp?typeid= 2 0
7 http://t09-09.oslo.osa:8080/bodgeit/search.jsp 3 0
8 http://t09-09.oslo.osa:8080/bodgeit/register.jsp 3 1839
9 http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid= 2 0
10 http://t09-09.oslo.osa:8080/bodgeit/logout.jsp 3 0

Total 26 4950

Table 4.15: ZAP Active Scan Generated # Of GET and POST Requests, Test Case
2(c)

68

CHAPTER 4. RESULTS

Risk Type # of Alerts
High 4
Medium 0
Low 14
Informational 12
Total 30

Table 4.16: Summary Of Alerts, Test Case 2(c)

TYPE NAME # of Uniques
header host 1
header content-type 1
header set-cookie 7
header content-length 124
header accept 1
header Set-Cookie 225
header proxy-connection 1
header accept-language 1
header cookie 1
header user-agent 306
header referer 443
parameter quantity 291
parameter null 250
parameter prodid 259
parameter productid 240
parameter q 272
parameter price 297
parameter username 310
parameter anticsrf 257
parameter password 256
parameter password1 273
parameter comments 257
parameter password2 273
parameter typeid 258

Table 4.17: Metrics From Request Dumper Log, Test Case 2(c)

69

CHAPTER 4. RESULTS

4.4 Return On Investment (ROI)

eq1 = Manual Investment Cost = 0 + (80 * 50) + $1000 = $5000
eq2 = Automation Investment Cost = 0 + (80 * 50) + $5000 = $9000

eq3 = Manual Implementation Cost = 10 * 50 * 8 = $4000
eq4 = Automated Implementation Cost = 10 * 50 * 80 = $40000

eq5 = Manual Testing 10 urls Cost = 10 * 50 * 4 = $2000
eq6 = Automated Testing 10 urls Cost = 10 * 50 * 1 = $500

Total Manual Cost = eq1 + eq3 + (Builds - 1) * eq5
Total Automated Cost = eq2 + eq4 + (Builds - 1) * eq6

The Investment in Automation = eq2 + eq4 = $49000
For Builds = 1
Total Manual Cost = $5000 + $4000 + (1 - 1) * $2000 = $9000
Total Automated Cost = $9000 + $40000 + (1 - 1) * $500 = $49000

ROI =
TotalManualCost− TotalAutomatedCost

TotalAutomatedCost
(4.1)

ROI =
$9000− $49000

$49000
= −0.8163 (4.2)

Results for Builds = {1,10,20...100} noted in the table below:

Builds Total Manual Cost ($) Total Automated Cost ($) ROI
1 9000 49000 -0.8163
10 27000 53500 -0.5408
20 47000 58500 -0.2347
30 67000 63500 0.0714
40 87000 68500 0.3776
50 107000 73500 0.6837
60 127000 78500 0.9898
70 147000 83500 1.2959
80 167000 88500 1.6020
90 187000 93500 1.9082
100 207000 98500 2.2143

Table 4.18: ROI Calculations

70

Chapter 5

Analysis

5.1 Test Case: 1(a)

The results for this test case show that the manual build which was initiated by
clicking on "Build Now" in the Jenkins GUI executed without any error messages.
In this test the Java application via the shell script /home/jenkins/bodgeit/bin/run_bodgeit.sh
retrieved URLs from the MySQL DB using project= 4 (Bodgeit Store) and proxied
them through ZAP to the staging Webserver. ZAP was set to run with ATTACK
STRENGTH = LOW. The GIT server was not involved in this manual test.

The results from the scan were made available at:
http://ahs-m1.ams.osa/srt/bodgeit/bodgeit-srt_2014-11-15-16-34-37.txt.
This was a successful manual test that ensured the setup excluding GIT works as
intended.

71

CHAPTER 5. ANALYSIS

5.2 Test Case: 1(b)

In this test a code commit was executed from the developer machine rumi.oslo.osa.
The code commit was a change to a Readme file in the Bodgeit Store project. The
GIT commit output obtained from the Jenkins GUI is noted below:

Commit 6e9b2609dd9695b8aeea7b32f9340c0386b24f9c by usmanw
Testing test case 1b for thesis write up on Nov 15th 2014 at 19:38pm

The GIT commit noted above executed a GIT hook post-commit script in the devel-
opers local sandbox. This hook script rsynced the local GIT repository in the devel-
opers sandbox for the Bodgeit Store project to the staging Webserver. A developer
can first test on their local machine and post unit testing, commit their changes
to the GIT server and at the same time rsync to the staging Webserver. Jenkins
polling the GIT server triggers a security regression test build on the changes that
were committed. It reports what changed, runs the execution of URL testing using
ZAP and generates a report. All URLs in the MySQL DB for the project will be
tested with ZAP plugins. If any vulnerability is introduced by the developer it will
be either flagged given ZAP catches it or a regression might be caught. A regres-
sion would mean that some URL that passed the security test before now reports a
vulnerability. The Risk Alerts provide this information.

The results demonstrate a complete automated process using a framework which
has Jenkins, ZAP, MySQL, GIT, staging Webserver and developer sandbox. The
Active Scanner in ZAP performs the security tests using its built in plugins. The
execution times of the plugins are reported to the zap.log. The number of requests
from ZAP can be retrieved from the access log on the staging Webserver. The Tom-
cat7 request dumper log will provide more detailed information about the headers
and GET/POST parameters that were fuzzed. The ATTACK STRENGTH of ZAP
helps determine how much thorough testing can be performed and what results we
obtain. One good feature of ZAP that we see from the results is its ability to provide
a resolution to the reported Risk Alert. These resolutions are also made available in
the scan results txt file that resides on the Jenkins server at /var/www/srt/bodgeit/
directory.

72

CHAPTER 5. ANALYSIS

5.3 Test Case: 2(a)

5.3.1 Verification Of High Risk Alerts

Let us first analyze the results from the Active Scan executed by ZAP with AT-
TACK STRENGTH = MEDIUM. Based on the results two high risk alerts were
reported which are listed below:

1. URL: http://t09-09.oslo.osa:8080/bodgeit/search.jsp?q=hello<script>alert("xss");</script>
vulnerable to XSS

2. URL: http://t09-09.oslo.osa:8080/bodgeit/basket.jsp SQL Injection may be
possible

The first one can be verified easily by loading the search URL into the browser
address bar to see if anything is reflected back. The figure below verifies that the
search page is indeed susceptible to a Cross Site Scripting Attack.

Figure 5.1: XSS Vulnerability In search.jsp

The second alert is not really an SQL Injection but the parameters to basket.jsp can
be tampered. The quantity field can be set to a -1 value and then submitted through
the POST form. This means basket.jsp is not checking the validity of the inputs
correctly. See image below:

Figure 5.2: Tamper Quantity Parameter In basket.jsp

73

CHAPTER 5. ANALYSIS

5.3.2 Plugins Execution Time And Fuzzing

Figure 5.3: ZAP Plugins Execution Time And Fuzzing Of Requests, Test Case 2(a)

From the graph above we can infer that the ZAP plugin TestSQLInjection did most
of the work followed by TestPathTraversal and then TestRemoteFileInclude. The 2
plugin executed approximately 71 fuzzed requests over a duration of 1.16 seconds.
Both plugins TestSQLInjection and TestCrossSiteScriptV2 succeeded in catching 1
high risk vulnerability each.

5.3.3 Requests To Proxied URLs

In the next graph we analyze how ZAP distributed the GET and POST requests
across the 10 URLs that were proxied through it on their way to the staging Web-
server. This should help us identify which URLs were fuzzed more compared to
others.

The SORTIDs {2,3.8} all POST requests received the most number of requests
from ZAP. These three URLs were:

• (2) http://t09-09.oslo.osa:8080/bodgeit/login.jsp

74

CHAPTER 5. ANALYSIS

Figure 5.4: Distribution Of GET And POST Requests, Test Case 2(a)

• (3) http://t09-09.oslo.osa:8080/bodgeit/contact.jsp

• (8) http://t09-09.oslo.osa:8080/bodgeit/register.jsp

All of the three Java Server Pages were input forms where the user had to fill with
information before submitting. The GET URLs were evenly distributed averaging
around 4 fuzzed requests per URL. ZAP did not spend much time fuzzing the GET
URLs as compared to the POST forms.

5.3.4 Fuzzing HTTP Headers And FORM Payload Parameters

The next graph shows how many unique strings each HTTP header and payload
FORM parameter received from ZAP. This data was collected from the request
dumper log on the Tomcat7 staging Webserver. It is interesting to observe that the
FORM payloads (parameters) all average around 60 unique strings which means
that ZAP sent a uniform distribution of input strings to all of them. As far as the
HTTP headers are concerned:

• referrer

• user-agent

Referrer and User-Agent had the highest number of unique strings in the HTTP
Header set. This means these two were probably fuzzed the most out of all. The
content-length HTTP header should be ignored here because that depends on the

75

CHAPTER 5. ANALYSIS

number of characters in the REQUEST BODY of the HTTP Request.

Figure 5.5: # Of Unique HTTP Header And FORM Parameter Strings, Test Case
2(a)

5.4 Test Case: 2(b)

5.4.1 Verification Of High Risk Alerts

The Active Scan was set to ATTACK STRENGTH = HIGH and with this setting
four high risk alerts were reported. These four high risk alerts are noted below:

1. http://t09-09.oslo.osa:8080/bodgeit/search.jsp?q=hello<Script>alert(’XSS’);</Script>
vulnerable to XSS

2. http://t09-09.oslo.osa:8080/bodgeit/login.jsp SQL Injection maybe possible

3. http://t09-09.oslo.osa:8080/bodgeit/basket.jsp SQL Injection maybe possi-
ble

4. http://t09-09.oslo.osa:8080/bodgeit/contact.jsp vulnerable to XSS

Number 1 and 3 were already discussed in test case 2(a) so let’s verify 2 and 4. In
order to check the login.jsp page for SQL injection we shall inject for the Username

76

CHAPTER 5. ANALYSIS

and leave the password empty. Please keep in mind that the Username ’t@t.com’
is a registered user. The SQL injection string is:

t@t.com’ OR ’1’=’1

Figure 5.6: SQL Injection In login.jsp, Test Case 2(b)

The result as we see in the image above shows that we were able to login without
a password. Basically some part of the SQL in login.jsp got bypassed using this
attack vector.

Load contact.jsp in the browser address bar and input the string <Script>alert(’XSS’);</Script>
in the web form to see if anything gets reflected back. One other way to verify is
to look at the source of the HTML page returned.

Figure 5.7: XSS Vulnerability In contact.jsp, Test Case 2(b)

5.4.2 Plugins Execution Time And Fuzzing

With ATTACK STRENGTH set to HIGH we expect ZAP to send more requests to
the Webserver. Basically sending more combinations of input injection strings to
the 10 URLs we are interested in security testing. Let us look at the plugin time
execution and # of requests graph below and see if that is the case.

77

CHAPTER 5. ANALYSIS

Figure 5.8: ZAP Plugins Execution Time And Fuzzing Of Requests, Test Case 2(b)

With a more potent attack setting (HIGH), ZAP increased the number of attack
strings by approximately 65% for TestSQLInjection, 100% for TestRemoteFileIn-
clude and 45% for TestPathTraversal when compared to the MEDIUM settings in
test case 2(a).

5.4.3 Requests To Proxied URLs

The number of requests to the 10 proxied URLs for attack strength = HIGH is
noted in this sub-section. The observation should focus to see if the same URLs
as in test case 2(a) receive a higher number of input injections or not. This can be
analyzed by looking at the graph below:

The SORTIDs {2,3,8} which are the same POST URLs as in test case 2(a) this
time received a higher number of input injection strings. The increase was of the
following magnitude:

• (2) http://t09-09.oslo.osa:8080/bodgeit/login.jsp , increase by 46%

78

CHAPTER 5. ANALYSIS

Figure 5.9: Distribution Of GET And POST Requests, Test Case 2(b)

• (3) http://t09-09.oslo.osa:8080/bodgeit/contact.jsp , increase by 36%

• (8) http://t09-09.oslo.osa:8080/bodgeit/register.jsp , increase by 46%

The GET URLs got an average of approximately around 2 fuzzed requests which
is a slight drop from 4 which we observed for test case 2(a).

5.4.4 Fuzzing HTTP Headers And FORM Payload Parameters

The two HTTP headers that had the most number of unique string inputs where
referrer and user-agent for test case 2(a). With a stronger attack strength = HIGH
we observe the following from the data compiled:

• referrer , increase in unique strings by 54%

• user-agent , increase in unique strings by 43%

There was also an increase in the overall average number of unique strings to the
form parameters by 46%. In test case 2(a) the average was hovering around 60 but
in test case 2(b) the average is approximately 89. The distribution is uniform for
the form parameters just like in test case 2(a). The graph below depicts the picture.

79

CHAPTER 5. ANALYSIS

Figure 5.10: # Of Unique HTTP Header And FORM Parameter Strings, Test Case
2(b)

5.5 Test Case: 2(c)

ZAP running in INSANE mode detected the same number of high risk alerts = 4
as the build run with HIGH. The reported scan results were the same so no impact
with running at the highest ATTACK STRENGTH. The total ZAP plugin execution
time was 43.721 seconds which clearly states that ZAP pounded the staging Web-
server with significantly more requests as compared to test cases 2(a) and 2(b). The
total number of fuzzed requests to all proxied URLs went up by almost 200% com-
paring to test case 2(b) only. Same is the case for the HTTP headers and FORM
parameters. The INSANE setting did not make any impact in discovering more
high risk or medium risk alerts. ZAPs documentation recommends not to run the
Active Scan in INSANE mode but because we are testing in a controlled environ-
ment hitting non-production webservers we could afford to conduct this test. Based
on the results it seems like running ZAP with ATTACK STRENGTH = HIGH is
optimal to catch the trivial security flaws in web applications.

80

CHAPTER 5. ANALYSIS

5.6 Return On Investment (ROI)

The total number of URLs or test cases used for the ROI calculations were = 10.
The developer/tester (just one) was assumed to be paid $50/hour and the assump-
tion we only need 1 server if manual testing is desired versus 5 if the setup needs
to be automated. There is no software cost associated here because all the tools
and software components are open source. The training cost is the same for both
manual and automated. The developer time to implement the automation was set
to 80 hours and if the 10 URLs are tested manually the first time it takes 8 hours.
Subsequent manual testing of the 10 URLs is 4 hours. A Build was defined as a
code commit operation. With these variables, equations and assumptions the ROI
ratio calculations were performed and the results are graphed below:

Figure 5.11: Return On Investment

The red line cuts the X-axis between Build = 27 and Build = 28. This is called
the Break Even Point from where onwards automation starts to produce investment
gains. Initially at Build = 1 automation has a high setup cost and manual test-
ing is more cost effective. As more code commits are performed which translate
into more Builds we see the gains start to go into the positive. So the return on
investment increases in the long run by implementing automation.

81

Chapter 6

Discussion

This chapter will discuss what was explained and demonstrated in this paper per-
taining automated security regression testing of web applications.The observations
that were made from the different sections will be highlighted and how the automa-
tion process achieved its goals using the various open source tools that were used
in the setup. Future work will also be discussed.

6.1 Setup

There are many commercial solutions that work out of the box but getting them to
function synchronously with company proprietary components is not trivial. The
process and framework that was demonstrated in this paper using Open Source
Tools shows how a setup can be constructed that catches security flaws, provides
automation and fits into the Software Development Life-Cycle (SDLC) of an or-
ganization. Web application security testing should be part of the software devel-
opment process so that security bugs can be caught and addressed early on. In
order to achieve this objective this paper integrates the organizations source code
management system (GIT) and uses continuous integration server (Jenkins) in the
setup. All code commits automatically run through a security regression appara-
tus where MySQL stores the test cases and ZAP (Zed Attack Proxy) performs the
penetration testing. All the wheels work together in order to provide a process and
framework for web application security regression testing.

The Java program running on the Jenkins server performed the task of command
and control. Initiated by a shell script on the Jenkins server because of a code com-
mit, it meticulously coordinated all tasks. This task tracker Java application re-
trieved test URLs from the MySQL Database, opened socket connections to ZAP
daemon and started the headless HTMLUnit driver to use ZAP as a proxy. The
Selenium component facilitated automatic web form GET and POST submissions
and the final task of retrieving scan results to save to the local filesystem. Many of
ZAPs internal intricacies were dealt with by this Java program using ZAP Java API

82

CHAPTER 6. DISCUSSION

calls. This small but complex piece of the framework is critical to understanding
of how this framework functions.

The ZAP testing tool plays a fundamental role in the security testing process. It
is the central piece of intelligence that detects, discovers and reports security bugs
found in the web application being tested. Communicating with ZAP running as
a daemon on a remote machine via its Java API enabled the framework to run se-
curity regression test builds in an automated manner. Without the Java API from
ZAP the automation would have been non-existent.

The rest of the components, Jenkins Server, GIT Server, and MySQL DB, also
played important roles for the automated setup to work and function as intended.
Without any of these the framework in this paper would be incomplete. One of the
advantages of this setup was that all the tools and software used was Open Source
with negligible cost. The only associated cost was the time spent learning and
executing in order to demonstrate the process and framework for web application
security regression testing.

This framework is flexible enough to replace individual components with others.
For example, GIT can be replaced by SVN, PostgreSQL can be used instead of
MySQL or even ZAP can be replaced with a commercial web application scanner.
The framework will function the same way if you interchanged some or all of the
components. Open source is not a strict requirement.

6.2 Enhancements

The three components, GIT server, Jenkins Continuous Integration Server and
MySQL DB contributed towards making the setup more robust and provided fea-
tures that were previously not available under the OWASP Security Regression
Testing project. This paper can benefit the OWASP project. The GIT server pro-
vides a mechanism where code changes are used to trigger the builds. The MySQL
Database allows to store test cases for various projects that can easily be tweaked
on the fly, turned ON or OFF and provide the Selenium library meta data on how to
seek HTML elements, fill them with appropriate information before submission to
the staging Webserver. The Jenkins server provides a useful web interface to create
new projects, setup automated build environments and open up more possibilities
for additional security testing tools that can be incorporated into the framework
other than ZAP. This is a major advantage and will be discussed in more detail in
the section Future Work. The Jenkins Server also provides a web interface where
both developers and quality assurance engineers can see the status of the most
current builds and also what is archived. The code changes that introduced secu-
rity bugs can also be easily perused for detailed information. These capabilities
as enhancements have added value to the process and security testing framework

83

CHAPTER 6. DISCUSSION

constructed in this paper.

6.3 Catching Vulnerabilities

No matter how well an automated security framework is designed but if it cannot
catch trivial web application security flaws then it fails at its primary purpose. This
paper demonstrated how proxying a subset (total 10) of URLs for the Bodgeit Store
Vulnerable Web Application some basic XSS, SQL Injection and tampering with
HTML inputs can be discovered and reported via automation. Only the base set of
plugins that come with the ZAP installation were used excluding any updates for
new attack vectors. With just these base set of plugins and ZAP settings (ATTACK
levels: LOW, MEDIUM, HIGH, INSANE) vulnerabilities were discovered and
reported. Two high risk alerts were caught with ATTACK LEVEL = MEDIUM
and a total of 4 with ATTACK LEVEL = HIGH. Metrics were also collected on
ZAP to understand how the input injection attacks are distributed across the 10 urls
(test cases), plugin execution times and which HTTP headers and form parameters
were fuzzed in order to detect security vulnerabilities in the target Bodgeit Store
web application. These metrics become important information for devising new
set of test cases and provide knowledge on how injection strings work with ZAP.
In addition to the detection and discovery of security vulnerabilities in this paper
by ZAP, the reporting provided content explaining the security flaw discovered and
mitigation steps. This is a bonus to the novice tester and helps to create overall
awareness about security in web applications.

6.4 Benefits

This paper not only demonstrated the automation process and framework but also
explained the cost benefit in the long run. Manual testing is needed for web ap-
plication security testing but once the test cases have been devised manually they
should be automated to save time and money. The ROI calculations clearly showed
that over the long run the gains from automation outweigh a fully functional man-
ual process. The initial investment in automation compared to manual is higher in
magnitude but becomes an asset over a longer time period when more builds are
executed.

6.5 Future Work

The Security Regression Testing Framework For Web Application Development
proposed in this paper can be improved and enhanced further. ZAP provides the
functionality to update with the latest scan rule sets and one can add new plugins
for security testing. Plugins can be custom made to suit individual requirements

84

CHAPTER 6. DISCUSSION

and incorporated to be used by ZAP’s Active and Passive scanners.

One can also craft user-defined scripts that will define new input vectors i.e. the
elements of a request that ZAP will attack. This is a powerful feature because as a
tester/developer of your web application you can test with a specific set of attack
vectors. This customization option takes web application security testing from a
generic set of test inputs to a more specific set. It also reduces the overhead of
attack vectors that take up execution time which do not effect the web application
being tested.

ZAP version 2.3.x allows users to tweak individual scanner rules and define scan
policies for different test conditions. There is also more support for the ZAP API
and core functionality has been moved into add-ons which allows to deliver up-
dates dynamically to ZAP [16].

The framework in this paper can be extended to include other tools that can be
used for web application security testing. ZAP is only a component that works
independently and communicates with the Java application running on the Jenkins
server. One can replace ZAP with a commercial scanner and use its API to operate
it from the Java program. If an API exists for a better scanner it can be used in this
framework. One could potentially even add an additional component and have it
perform network security scans.

85

Chapter 7

Conclusion

The problem statement for this paper stated that web application security is a pro-
cess that needs to be part of the SDLC. In order to explain this process a framework
using Open Source tools was used to demonstrate how automated security regres-
sion testing can be performed on web applications. The research that was con-
ducted in this paper addressed the four questions which were part of the problem
statement. The answers to the four questions are stated below:

1. Software development is implemented in stages which is composed of a de-
sign, implement and test phase with n number of iterations. By automating
web application security practices into each of these phases the final product
that comes out will have addressed the basic security flaws. The sooner you
catch the security bugs, the better the quality of the final product in terms of
both security and cost. To catch security bugs in the early stages of software
development one needs to ensure that security testing is considered during
each of the SDLC phases. A final product with security flaws not only dam-
ages the brand name but it also becomes acutely expensive to fix the security
flaws after deployment. SDLC of web applications is a process and security
testing should play an adequate role so it can add value to the quality of the
final product or service.

2. By automating the manual tests, you reduce both human error and expense.
There are thousands of web application attack vectors and growing as cy-
bercrime becomes more prevalent. Testing each attack vector manually will
exhaust the resource and consume too much time. Consider submitting 1000
attack strings that ZAP used in its fuzzing to test one URL manually. This
approach is neither practical nor cost effective. In addition to time savings,
automation also provides a mechanism to test with a broad range of injection
inputs. This way one can test for different security vulnerabilities within web
applications.

3. This paper successfully demonstrated how GIT, Jenkins, Tomcat7, MySQL,
Java Programming Language and ZAP can be used to achieve an automated

86

CHAPTER 7. CONCLUSION

web application security regression testing setup. All the tools used in the
framework are Open Source. The security testing process is functional, auto-
mated and also extendible. In the future a better open source web application
scanner than ZAP can show up but integrating it into this framework is pos-
sible given it has an API for communication and it can be deployed as a
daemon.

4. What are the benefits of this process? First and foremost the framework
and process demonstrated in this paper facilitates to replace manual secu-
rity testing. It provides a mechanism through which the quality of the web
applications are improved by continuously running regression security tests.
The framework makes it easier to add more test cases and cover different
classes of vulnerabilities. The plugins in ZAP conduct various kinds of at-
tacks like fuzzing HTTP headers, form input injections, reflected content
analysis, SQL Injection and more. The return on investment ratios calculated
in this paper clearly support the fact that despite a higher initial investment
and implementation cost, automation is the winner in the long run.

87

Bibliography

[1] Opera Software ASA. Approval letter from opera software asa. Please see
Appendix A, 2014.

[2] Thomas E.; T. A. Thayer Bell. Software requirements: Are they really a
problem? Proceedings of the 2nd international conference on Software engi-
neering. IEEE Computer Society Press, pages 60–67, 1976.

[3] Project Lead: Simon Bennetts. Owasp - zap, security regression testing.
http://code.google.com/p/zaproxy/wiki/SecRegTests, 2014.

[4] Project Lead: Simon Bennetts. Owasp - zap, zed at-
tach proxy, the open source penetration testing tool.
https://code.google.com/p/zaproxy/wiki/Introduction, 2014.

[5] Simon Bennetts. Official blog for the owasp zed attack proxy project.
http://zaproxy.blogspot.no, 2014.

[6] Scott Chacon. Pro git. http://git-scm.com/book, 2014.

[7] Shay Chen. Price and feature comparison of web application scan-
ners. http://www.sectoolmarket.com/price-and-feature-comparison-of-web-
application-scanners-unified-list.html, 2014.

[8] The MITRE Corporation. The mitre corporation is a not-for-profit company
that operates multiple federally funded research and development centers in
the us. http://www.mitre.org, 2014.

[9] Gerald P. Hancke Deep Vardhan Bhatt, Stephen Schulze. Secure internet ac-
cess to gateway using secure socket layer. Instrumentation and Measurement,
IEEE Transactions on (Volume:55 , Issue: 3), pages 793–800, 2006.

[10] Macario Polo ; Pedro Reales ; Mario Piattini ; Christof Ebert. Test automa-
tion. IEEE Software, Jan.-Feb. 2013, Vol.30(1), pages 84–89, 2013.

[11] R. Everett, G. ; McLeod. Software testing: Testing across the entire software
development life cycle. pages 1–28, 2007.

88

BIBLIOGRAPHY

[12] Inc Free Software Foundation. Gnu general public license.
http://www.gnu.org/copyleft/gpl.html , Version 3, 29 June 2007, 2007.

[13] R. Frolund, S. ; Guerraoui. e-transactions: End-to-end reliability for three-
tier architectures. Software Engineering, IEEE Transactions on (Volume:28 ,
Issue: 4), pages 378–395, 2002.

[14] Dieter Gollmann. Securing web applications. Information security technical
report - Elsevier Ltd, pages 1363–4127, 2008.

[15] Thomas Hannagan ; Maria Ktori ; Myriam Chanceaux ; Jonathan Grainger.
Deciphering captchas: What a turing test reveals about human cognition.
PLoS ONE volume:7 issue:3, pages 1–4, 2012.

[16] Samantha Groves. Owasp zap 2.3.0.
http://owasp.blogspot.no/2014/04/owasp-zap-230.html, 2014.

[17] White Paper: Imperva. Consumer password worst
practices, the imperva application defense center (adc).
http://www.imperva.com/docs/WPConsumerPasswordW orstP ractices.pdf, 2009.

[18] SANS Institute. The most trusted source for computer security training, cer-
tification and research. http://www.sans.org, 2014.

[19] Seifedine Kadry. A new proposed technique to improve software regression
testing cost. International Journal of Security and Its Applications Vol. 5 No.
3, 2011.

[20] R.Tyler Croy ; Andrew Bayer ; Kohsuke Kawaguchi. Jenkins continous in-
tergration server. http://jenkins-ci.org/, 2014.

[21] I. Kim. Keypad against brute force attacks on smartphones. Information
Security, IET (Volume:6 , Issue: 2), pages 71–76, 2012.

[22] Theodoor Scholtea ; Davide Balzarottib ; Engin Kirdac. Have things changed
now? an empirical study on input validation vulnerabilities in web applica-
tions. Computers and Security - Elsevier Ltd, pages 344–356, 2012.

[23] Xiaogang Wang ; Junzhou Luo ; Ming Yang ; Zhen Ling. A potential http-
based application-level attack against tor. Future Generation Computer Sys-
tems - Elsevier Ltd, pages 67–77, 2010.

[24] Rapid7 LLC. Penetration testing software. https://www.metasploit.com/,
2014.

[25] G. Q. Huang ; K. L. Mak. Issues in the development and implementation of
web applications for product design and manufacture. International journal
of computer integrated manufacturing, pages 125–135, 2001.

89

BIBLIOGRAPHY

[26] N. Marback, A. ; Hyunsook Do ; Ehresmann. An effective regression testing
approach for php web applications. Software Testing, Verification and Vali-
dation (ICST), 2012 IEEE Fifth International Conference on, pages 221–230,
2012.

[27] J D Meier. Web application security engineering. Security and Privacy, IEEE
Volume:4 , Issue: 4, pages 16–24, 2006.

[28] Paul Midian. Perspectives on penetration testing , black box vs white box.
Network Security, Volume 2002, Issue 11, pages 10–12, 2002.

[29] Steve Moyle. The blackhat’s toolbox: Sql injections. Network security,
vol:2007 iss:11, pages 12–14, 2007.

[30] Paul Mutton. Netcraft internet services company.
http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-
websites-vulnerable-to-heartbleed-bug.html, 2014.

[31] Bhavesh Naik. Content spoofing. http://resources.infosecinstitute.com/content-
spoofing/, 2014.

[32] Louis Nyffenegger. Evolution of cross site request forgery attacks. Journal
in Computer Virology, Volume 4, Issue 1, pages 1772–9904, 2008.

[33] NJ Ouchn. 2013 top security tools as voted by toolswatch.org readers.
Toolswatch Hackers Arsenal , http://www.toolswatch.org/2013/12/2013-top-
security-tools-as-voted-by-toolswatch-org-readers/, 2013.

[34] R. ; Haeng-Kon Kim Patel, J. ; Lee. Architectural view in software devel-
opment life-cycle practices. Computer and Information Science, 2007. ICIS
2007. 6th IEEE/ACIS International Conference on, pages 194–199, 2007.

[35] Open Source Project. Bodgeit - the bodgeit store is a vulnerable web appli-
cation suitable for pen testing. https://code.google.com/p/bodgeit/, 2012.

[36] Open Web Application Security Project. The free and open software security
community. http://www.owasp.org, 2014.

[37] Ariel Ortiz Ramirez. Three-tier architecture. Linux Journal, (Issue: 75),
2000.

[38] Stefan Munch ; Peter Brandstetter ; Konstantin Clevermann ; Oliver Kieck-
hoefel ; Ernst Reiner Schafer. Test automation roi (return on investment.
PHARMACEUTICAL ENGINEERING, Vol 32, No4, pages 1–8, 2012.

[39] sectools.org. Network security tools. http://sectools.org, 2014.

[40] Tenable Network Security. Identify vulnerabilities, reduce risk and ensure
compliance. http://www.tenable.com/, 2014.

90

BIBLIOGRAPHY

[41] WhiteHat Security. Website security statistics report - may 2013.
http://info.whitehatsec.com/2013-website-security-report.html, 2013.

[42] The Internet Society. Global internet report 2014.
http://www.internetsociety.org/sites/default/files/Global_Internet_Report_2014_0.pdf,
2014.

[43] James Joshi ; Walid Aref ; Arif Ghafoor ; Eugene Spafford. Security models
for web-based applications. Communications of the ACM, Feb2001, Vol:44,
No2, pages 38–44, 2001.

[44] Marco Vieira. Defending against web application vulnerabilities. Computer,
(Volume:45 , Issue: 2) , Published by the IEEE Computer Society, pages
66–72, 2012.

[45] Markku Laine ; Denis Shestakov ; Evgenia Litvinova ; Petri Vuorimaa. To-
ward united web application development. IEEE, IT Professional (Volume:13
, Issue: 5), pages 30–36, 2011.

[46] Paco Hope ; Ben Walther. Web security testing cookbook, systematic tech-
niques to find problems fast. Published by O’Reilly Media Inc - ISBN: 978-
0-596-51483-9, pages 1–269, 2009.

[47] Bill Wong. What heartbleed should teach embedded developers. Electronic
Design. Jun2014, Vol. 62 Issue 6, pages 64–64, 2014.

[48] Stephen Chong ; Jed Liu ; Andrew C Myers ; Xin Qi ; K Vikram ; Lantian
Zheng ; Xin Zheng. Building secure web applications with automatic par-
titioning. Communications of the ACM , Volume 52 Issue 2, pages 79–87,
2009.

91

Appendix A

Approval Letter From Opera
Software ASA

92

Appendix B

Java Code

Run_SRT.java

1 class Run_SRT
2 {
3
4 public static void main(String[] args) throws Exception {
5
6
7 // Results directory
8 String path_to_�les = "/var/www/srt/";
9

10 // Read in 4 command line arguments
11 String project_name = args[0]; // PROJECT_NAME
12 String projectid = args[1]; // PROJECT_ID
13 String baseURL = args[2]; // BASEURL
14 String Attack_str = args[3]; // ATTACK STRENGTH
15 String context = project_name;
16 int project_id = Integer.parseInt(projectid);
17
18 ZapperReport auth = new ZapperReport();
19 auth.StartSetup(project_name,baseURL,context);
20 auth.ProxyURLS(project_id,Attack_str);
21 auth.StopSetup();
22 auth.RunAScan(baseURL,Attack_str);
23 // auth.printAlerts(baseURL,0,0); FOR DEBUGGING
24 auth.saveAlertstoFile(baseURL,0,0,path_to_�les);
25
26 }
27
28 }

ZapperReport.java

1 import java.sql.*;
2 import org.openqa.selenium.Proxy;
3 import org.openqa.selenium.remote.DesiredCapabilities;
4 import org.openqa.selenium.remote.CapabilityType;
5 import org.openqa.selenium.htmlunit.HtmlUnitDriver;
6 import org.openqa.selenium.WebDriver;
7 import org.openqa.selenium.WebElement;
8 import org.openqa.selenium.By;
9 import org.zaproxy.clientapi.gen.Core;

10 import org.zaproxy.clientapi.core.ClientApi;
11 import org.zaproxy.clientapi.core.ApiResponse;
12 import org.zaproxy.clientapi.core.Alert;
13 import org.zaproxy.clientapi.gen.Ascan;
14 import org.zaproxy.clientapi.gen.Spider;
15 import org.zaproxy.clientapi.gen.Context;
16 import org.apache.commons.lang.time.FastDateFormat;
17 import java.util.Properties;
18 import java.util.List;
19 import java.io.Bu�eredWriter;
20 import java.io.File;
21 import java.io.FileOutputStream;
22 import java.io.IOException;
23 import java.io.OutputStreamWriter;
24 import java.io.Writer;
25
26 public class ZapperReport {
27

93

APPENDIX B. JAVA CODE

28 WebDriver driver;
29 Connection connection = null;
30 Statement statement = null;
31 ResultSet resultSet = null;
32 String Driver = "com.mysql.jdbc.Driver";
33 String JDBC_URL = "jdbc:mysql://ahs-db1.ams.osa:3306/SRT";
34
35 String ZAP_HOST = "owasp-t01.oslo.osa";
36 int ZAP_PORT = 8080;
37 String CONTEXT = "true";
38 String RECURSE = "true";
39 String INSCOPEONLY = "false";
40 String ATTACK_STR = "LOW"; // If not set by user, default
41 String ALERT_THRESHOLD = "MEDIUM"; // default
42 String homeDirectory = "/home/zap/session_logs/";
43 String project = null;
44 String session_name = null;
45 Properties props = System.getProperties();
46
47 ClientApi clientApi;
48 Core core;
49 Context context;
50
51 public ZapperReport() {
52
53 //Load driver
54 try {
55 Class.forName(Driver);
56 }
57 catch (ClassNotFoundException e) {
58 e.printStackTrace();
59 }
60
61 }
62
63 public void ProxyURLS(int project_number, String attack_str) {
64
65 String sort_order,url,method,params,submit;
66
67 try {
68
69 // Class.forName("com.mysql.jdbc.Driver");
70 connection = DriverManager.getConnection(JDBC_URL, "db_read", "5r1r3aD");
71
72 PreparedStatement statement = connection.prepareStatement("select sort_order, \
73 url,method,params,submit from urls where active=1 and project_id = ? order by sort_order");
74 statement.setInt(1,project_number);
75 resultSet = statement.executeQuery();
76
77 System.out.println();
78 System.out.println("ATTACK STRENGTH: " + attack_str);
79 System.out.println("ALERT THRESHOLD: " + ALERT_THRESHOLD);
80 System.out.println();
81 System.out.println("Start URL's proxy through ZAP daemon (owasp-t01.oslo.osa)");
82
83 while (resultSet.next()) {
84
85 // System.out.println("Record: " + resultSet.getString("url,sort_order"));
86 System.out.print(resultSet.getString(1));
87 System.out.print(", ");
88 System.out.print(resultSet.getString(2));
89 System.out.print(", ");
90 System.out.print(resultSet.getString(3));
91 System.out.print(", ");
92 System.out.print(resultSet.getString(4));
93 System.out.print(", ");
94 System.out.print(resultSet.getString(5));
95 System.out.print(", ");
96 System.out.print("\n"); //new line
97
98 sort_order = resultSet.getString(1);
99 url = resultSet.getString(2);

100 method = resultSet.getString(3);
101 params = resultSet.getString(4);
102 submit = resultSet.getString(5);
103
104 proxyURL(sort_order,url,method,params,submit);
105
106 }
107
108 System.out.println("End URL's proxy");
109 System.out.println();
110
111

94

APPENDIX B. JAVA CODE

112 } catch (SQLException e) {
113 e.printStackTrace();
114 System.out.println("DB Query execution failed");
115 }
116 �nally {
117
118 try {
119 if (resultSet != null)
120 resultSet.close();
121 if (statement != null)
122 statement.close();
123 if (connection != null)
124 connection.close();
125 }
126 catch (SQLException e) {
127 e.printStackTrace();
128 }
129 }
130
131 }
132
133 public void StartSetup(String project_name, String baseURL, String context_name) throws Exception {
134
135 project = project_name;
136
137 String datetimestamp = FastDateFormat.getInstance \
138 ("yyyy-MM-dd-HH-mm-ss").format(System.currentTimeMillis());
139 //session_name = project + "-srt_"+datetimestamp;
140 session_name = project + "-srt_"+datetimestamp;
141
142 // Setup the proxy details
143 Proxy proxy = new Proxy();
144
145 String proxy_settings = ZAP_HOST+":"+ZAP_PORT;
146 proxy.setHttpProxy(proxy_settings);
147 proxy.setSslProxy(proxy_settings);
148
149 DesiredCapabilities capabilities = DesiredCapabilities.htmlUnit();
150 capabilities.setJavascriptEnabled(false);
151 capabilities.setCapability(CapabilityType.PROXY, proxy);
152 WebDriver driver = new HtmlUnitDriver(capabilities);
153 this.setDriver(driver);
154
155 // Client API object with host and port
156 clientApi = new ClientApi(ZAP_HOST, ZAP_PORT);
157
158 // Core API object for session
159 core = new Core(clientApi);
160 core.setHomeDirectory(homeDirectory);
161 core.newSession(session_name,"override");
162
163 // Context object
164 context = new Context(clientApi);
165 context.newContext(context_name);
166
167 clientApi.addIncludeInContext(context_name,baseURL);
168
169 // Set the User Agent such that we know where we are coming from.
170 // Keep in mind that ZAP also fuzzes this �eld
171 props.setProperty("http.agent", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0;) SRTv2.2");
172
173 }
174
175 public void StopSetup() {
176 driver.close();
177 }
178
179 public void sleep() {
180 try {
181 Thread.sleep(3000);
182 } catch (InterruptedException e) {
183 // Ignore
184 }
185
186 }
187
188 protected void setDriver(WebDriver driver) {
189 this.driver = driver;
190 }
191
192
193 public void proxyURL(String sort_order, String url, String method, String params, String submit) {
194
195

95

APPENDIX B. JAVA CODE

196 if (method.equals("GET")) {
197
198 driver.get(url);
199
200 } else {
201
202 driver.get(url);
203
204 WebElement link;
205
206 String[] keypairs = params.split("&");
207 for (String keypair: keypairs) {
208
209 String[] paramvalue = keypair.split("=");
210 String param = paramvalue[0];
211 String value = paramvalue[1];
212
213 if (param.equals("empty")) {
214
215 // This �eld does not need any inputs from Selenium, use its default settings.
216 System.out.println("Using default settings for �eld: "+param);
217
218 } else {
219
220 link = driver.�ndElement(By.name(param));
221 link.sendKeys(value);
222 }
223
224
225 }
226
227
228 if (submit.contains("button")) {
229 link = driver.�ndElement(By.xpath(submit));
230 link.click();
231 } else {
232 link = driver.�ndElement(By.id(submit));
233 link.click();
234 }
235
236 }
237
238
239 }
240
241
242 public void RunAScan(String baseURL, String attackstr) throws Exception {
243
244 String [] resp_status;
245 String status = null;
246
247
248
249 �nal Ascan ascan_url = new Ascan(clientApi);
250 ascan_url.setOptionAttackStrength(attackstr);
251
252
253
254 ascan_url.scan(baseURL,RECURSE,INSCOPEONLY);
255
256
257 // Loop through till Active Scanner is done
258 resp_status = ascan_url.status().toString(0).split("=");
259 status = resp_status[1];
260 status = status.replaceAll("(\\r|\\n|\\s)","");
261 System.out.println();
262 System.out.println("Initiating Active Scan on URL's proxied ...");
263 while (! status.equals("100")) {
264
265 resp_status = ascan_url.status().toString(0).split("=");
266 status = resp_status[1];
267 status = status.replaceAll("(\\r|\\n|\\s)","");
268 System.out.println("Active Scan Status: " + status + "%");
269 Thread.sleep(2000);
270
271 }
272 System.out.println("Active Scan End ...");
273 System.out.println();
274
275
276 }
277
278 public void saveAlertstoFile(String baseURL, int start, int count, String path_to_�les) \
279 throws Exception {

96

APPENDIX B. JAVA CODE

280
281 String session_�le = session_name + ".txt";
282 String path_to_output_�le = path_to_�les + project + "/" + session_�le;
283 String �le_uri = "http://ahs-m1.ams.osa:80/srt/" + project + "/" + session_�le;
284 System.out.println();
285 System.out.println("Extracting alerts and saving results to �le: " + �le_uri);
286
287 try (Writer writer = \
288 new Bu�eredWriter(new OutputStreamWriter(new FileOutputStream(path_to_output_�le), \
289 "utf-8"))) {
290
291 // Extract Alerts
292 Alert alert;
293 Alert.Risk risk_obj;
294 Alert.Reliability rel_obj;
295 int total_alerts=0,high_alerts=0,medium_alerts=0,low_alerts=0,informational_alerts=0;
296 String url,risk,reliability,param,other,attack,desc,ref,solution;
297 List<Alert> Alerts = clientApi.getAlerts(baseURL, start, count);
298
299 writer.write("Project: " + project + "\n");
300 writer.write("Filename: " + session_name + "\n");
301 writer.write("Risks: High, Medium, Low and Informational\n\n");
302
303 for (int i=0; i<Alerts.size(); i++) {
304
305 total_alerts++;
306
307 alert = Alerts.get(i);
308 risk = alert.getRisk().toString();
309
310 switch (risk) {
311 case "High": high_alerts++;
312 break;
313 case "Medium": medium_alerts++;
314 break;
315 case "Low": low_alerts++;
316 break;
317 case "Informational":
318 informational_alerts++;
319 break;
320 }
321
322 // Process all levels of risks
323 if (risk.equals("High") || risk.equals("Medium") || \
324 risk.equals("Low") || risk.equals("Informational")) {
325
326 // Extract rest of the elements
327 url = alert.getUrl();
328 rel_obj = alert.getReliability();
329 param = alert.getParam();
330 other = alert.getOther();
331 attack = alert.getAttack();
332 desc = alert.getDescription();
333 ref = alert.getReference();
334 solution = alert.getSolution();
335
336 // Output to �le the alert extracted
337 writer.write("URL: " + url + "\n");
338 writer.write("URL Params (if any): " + param + "\n");
339 writer.write("Risk: " + risk + "\n");
340 writer.write("Reliability: " + rel_obj + "\n");
341 writer.write("Description: " + desc + "\n");
342 writer.write("Reference: " + ref + "\n");
343 writer.write("Solution: " + solution + "\n");
344 writer.write("--- \
345 --\n");
346
347 }
348 }
349
350 // Output to standard out
351 System.out.println("Alerts Extraction complete ...");
352 System.out.println();
353
354 // Summary of alerts
355 System.out.println("Summary of Alerts");
356 System.out.println("High Risk Alerts: " + high_alerts);
357 System.out.println("Medium Risk Alerts: " + medium_alerts);
358 System.out.println("Low Risk Alerts: " + low_alerts);
359 System.out.println("Informational Risk Alerts: " + informational_alerts);
360 System.out.println("Total: " + total_alerts);
361
362 // Output to �le
363 writer.write("\n");

97

APPENDIX B. JAVA CODE

364 writer.write("Summary of Alerts\n");
365 writer.write("High Risk Alerts: " + high_alerts + "\n");
366 writer.write("Medium Risk Alerts: " + medium_alerts + "\n");
367 writer.write("Low Risk Alerts: " + low_alerts + "\n");
368 writer.write("Informational Risk Alerts: " + informational_alerts + "\n");
369 writer.write("Total: " + total_alerts + "\n");
370 writer.write("\n");
371 writer.close();
372
373 } catch (IOException ex) {
374 // Handle me
375 }
376
377
378 }
379
380 }

98

Appendix C

Launcher Shell Script

run_bodgeit.sh

1 #!/bin/sh
2
3 # Path to JAVA HOME
4 export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64/
5
6 # Ensure libs that are needed are in the CLASSPATH
7 export CLASSPATH=/home/jenkins/bodgeit/bin: \
8 /home/jenkins/lib/ant.jar: \
9 /home/jenkins/lib/apache-mime4j-0.6.jar:

10 /home/jenkins/lib/bsh-1.3.0.jar:
11 /home/jenkins/lib/cglib-nodep-2.1_3.jar:
12 /home/jenkins/lib/commons-codec-1.4.jar:
13 /home/jenkins/lib/commons-collections-3.2.1.jar:
14 /home/jenkins/lib/commons-exec-1.1.jar:
15 /home/jenkins/lib/commons-io-2.4.jar:
16 /home/jenkins/lib/commons-jxpath-1.3.jar:
17 /home/jenkins/lib/commons-lang-2.6.jar:
18 /home/jenkins/lib/commons-logging-1.1.1.jar:
19 /home/jenkins/lib/cssparser-0.9.5.jar:
20 /home/jenkins/lib/guava-12.0.jar:
21 /home/jenkins/lib/hamcrest-core-1.1.jar:
22 /home/jenkins/lib/hamcrest-library-1.1.jar:
23 /home/jenkins/lib/htmlunit-core-js-2.12.jar:
24 /home/jenkins/lib/httpclient-4.2.3.jar:
25 /home/jenkins/lib/httpcore-4.2.2.jar:
26 /home/jenkins/lib/httpmime-4.2.3.jar:
27 /home/jenkins/lib/ini4j-0.5.2.jar:
28 /home/jenkins/lib/jcommander-1.13.jar:
29 /home/jenkins/lib/jna-3.4.0.jar:
30 /home/jenkins/lib/jna-platform-3.4.0.jar:
31 /home/jenkins/lib/json-20080701.jar:
32 /home/jenkins/lib/junit-dep-4.10.jar:
33 /home/jenkins/lib/nekohtml-1.9.15.jar:
34 /home/jenkins/lib/netty-3.2.7.Final.jar:
35 /home/jenkins/lib/operadriver-0.14.jar:
36 /home/jenkins/lib/protobuf-java-2.4.1.jar:
37 /home/jenkins/lib/sac-1.3.jar:
38 /home/jenkins/lib/serializer-2.7.1.jar:
39 /home/jenkins/lib/testng-6.0.1-nobsh-noguice.jar:
40 /home/jenkins/lib/webbit-0.4.8-SNAPSHOT.jar:
41 /home/jenkins/lib/xalan-2.7.1.jar:
42 /home/jenkins/lib/xercesImpl-2.9.1.jar:
43 /home/jenkins/lib/xml-apis-1.3.04.jar:
44 /home/jenkins/lib/zap-api-v2-6.jar:
45 /home/jenkins/lib/java-mail-1.4.4.jar:
46 /home/jenkins/lib/json-lib-2.4-jdk15.jar:
47 /home/jenkins/lib/zap.jar:
48 /home/jenkins/lib/selenium-server-standalone-2.35.0.jar:
49 /home/jenkins/lib/mysql-connector-java-5.1.18-bin.jar:
50 /home/jenkins/lib/htmlunit-2.12.jar:
51 /home/jenkins/lib/xml-apis-1.4.01.jar:
52 /home/jenkins/lib/commons-cli-1.2.jar:
53 /home/jenkins/lib/commons-cli-1.2-javadoc.jar:
54 /home/jenkins/lib/commons-cli-1.2-sources.jar:.
55
56 # Run Build with 4 params (bodgeit 4 http://t09-09.oslo.osa:8080/bodgeit/ LOW)

99

APPENDIX C. LAUNCHER SHELL SCRIPT

57 /usr/bin/java Run_SRT bodgeit 4 http://t09-09.oslo.osa:8080/bodgeit/ LOW

100

Appendix D

Log Parsing Perl Scripts

zap.pl

1 #!/usr/bin/perl
2
3 use strict;
4 my %data;
5 my @�elds;
6 my ($test_type,$scan_time,$total_scan_time);
7
8 my $path_to_�le = $ARGV[0];
9

10 open(ZAP,"< $path_to_�le") or die "Cannot open �le in speci�ed directory\n";
11
12 while(<ZAP>) {
13
14 chomp;
15 next if (/^\s|^\t/);
16 if (/HostProcess \- completed/ && (/TestPathTraversal/ || /TestRemoteFileInclude/ || \
17 /TestRedirect/ || /TestServerSideInclude/ || /TestCrossSiteScriptV2/ || \
18 /TestSQLInjection/ || /TestDirectoryBrowsing/ || /TestInfoSessionIdURL/ || \
19 /TestClientBrowserCache/ || /TestExternalRedirect/ || /TestInjectionCRLF/ || \
20 /TestParameterTamper/ || /ScriptsActiveScanner/)) {
21 @�elds = split(/\s/,$_);
22 $test_type = $�elds[10];
23 $scan_time = $�elds[12];
24 $scan_time =~ s/s$//g;
25 # DEBUG
26 # print "$test_type - $scan_time\n";
27 $data{$test_type}=$scan_time;
28 }
29
30 if (/Scanner \- scanner completed/) {
31 @�elds = split(/\s+/,$_);
32 $total_scan_time = $�elds[8];
33 $total_scan_time =~ s/s$//g;
34 # DEBUG
35 # print "$test_type - $scan_time\n";
36 }
37
38
39
40
41 }
42 close(ZAP);
43
44 foreach my $key (keys %data) {
45 print "$key & $data{$key} \\\\ \\hline\n";
46 }
47 print "Total,$total_scan_time\n";

access.pl

1 #!/usr/bin/perl
2
3 use strict;
4 my %data;
5 my ($method,$url_string,$url_path);
6 my @url_�elds;
7

101

APPENDIX D. LOG PARSING PERL SCRIPTS

8 my $path_to_�le = $ARGV[0];
9

10 my %URLS=(
11
12 1 => 'http://t09-09.oslo.osa:8080/bodgeit/',
13 2 => 'http://t09-09.oslo.osa:8080/bodgeit/login.jsp',
14 3 => 'http://t09-09.oslo.osa:8080/bodgeit/contact.jsp',
15 4 => 'http://t09-09.oslo.osa:8080/bodgeit/about.jsp',
16 5 => 'http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid=',
17 6 => 'http://t09-09.oslo.osa:8080/bodgeit/product.jsp?typeid=',
18 7 => 'http://t09-09.oslo.osa:8080/bodgeit/search.jsp',
19 8 => 'http://t09-09.oslo.osa:8080/bodgeit/register.jsp',
20 9 => 'http://t09-09.oslo.osa:8080/bodgeit/product.jsp?prodid=',
21 10 => 'http://t09-09.oslo.osa:8080/bodgeit/logout.jsp',
22
23);
24
25
26
27 my %result;
28
29 open(ZAP,"< $path_to_�le") or die "Cannot open �le in speci�ed directory\n";
30
31 while(<ZAP>) {
32
33 next if (/^\s|^\t/);
34 chomp;
35 my $record = $_;
36 $record =~ /(\[.+?\])\s(\d+\.\d+\.\d+\.\d+) \
37 \s(HTTP\/\d+\.\d+)\s(\w+)\s(\".+?\")\s+(.+?)\s(\".+?\")\s(\d+)\s(\d+)/g;
38 $method=$4;
39 $url_string=$7;
40 @url_�elds=split(/\s/,$url_string);
41 $url_path=$url_�elds[1];
42
43 # print "m -> $method\n";
44 # print "u -> $url_path\n";
45 # $data{$method}{$url_path}+=1;
46
47 foreach my $urlid (keys %URLS) {
48 if ($URLS{$urlid} =~ /$url_path/) {
49 $result{$urlid}{$method}+=1;
50 }
51 }
52 }
53 close(ZAP);
54
55 foreach my $url (sort { $a <=> $b } keys %result) {
56
57 print "$URLS{$url} & $result{$url}{'GET'} & $result{$url}{'POST'} \\\\ \\hline\n";
58
59 # foreach my $m (sort keys %{$result{$url}}) {
60 # print "\t$m = $result{$url}{$m}\n";
61 #
62 # }
63 }

request.pl

1 #!/usr/bin/perl
2
3 use strict;
4 my $�ag=0;
5 my %data;
6 my $�le_handle;
7 my ($parameter,$header);
8 my $path_to_�le = $ARGV[0];
9

10 open(READ,"< $path_to_�le") or die "Cannot open �le to read\n";
11
12 while(<READ>) {
13
14 chomp;
15
16 my $record = $_;
17 $record =~ s/\s+/ /g;
18
19 if ($record =~ /header\=/) {
20 $record =~ /(.+?) header\=(.*)/g;
21 $header = $2;
22 my ($key,$value) = split(/\=/,$header,2);
23 $data{'header'}{$key}{$value}=1;
24 }

102

APPENDIX D. LOG PARSING PERL SCRIPTS

25
26 if ($record =~ /parameter\=/) {
27 $record =~ /(.+?) parameter\=(.*)/g;
28 $parameter = $2;
29 my ($key,$value) = split(/\=/,$parameter,2);
30 $data{'parameter'}{$key}{$value}=1;
31 }
32
33
34 }
35 close(READ);
36
37 foreach my $type ('header','parameter') {
38
39 foreach my $key (keys %{$data{$type}}) {
40 # foreach my $value (keys %{$data{$type}{$key}}) {
41 # print "$type:\t$key => $value\n";
42 # }
43
44 my $unique_values = scalar keys %{$data{$type}{$key}};
45 print "$type & $key & $unique_values \\\\ \\hline\n";
46
47
48 }
49
50 }

103

	Introduction
	Motivation
	Problem Statement
	Thesis Structure

	Background
	Three Tier Architecture
	WebApp Anatomy
	Classes Of Vulnerabilities
	Cross Site Scripting - XSS
	Information Leakage
	Content Spoofing
	Cross Site Request Forgery - CSRF
	Brute Force
	Insufficient Transport Layer Protection
	Insufficient Authorization
	SQL Injection - SQLi
	Session Management
	Software Package Updates

	Tools
	Commercial Tools
	Open Source Tools
	Performance And Price

	Auto Regression Testing
	Blackbox Testing
	Whitebox Testing
	What Is The Goal?

	Literature Review
	OWASP
	ZAP
	Nessus
	Metasploit
	Threat Modeling

	Approach
	Setup And Installation
	Hardware
	Software
	Webserver
	GIT
	Jenkins Continuous Integration Server
	MySQL Database
	Java Application
	ZAP
	Apache2
	Developer Sandbox
	Configurations
	Load URLs Into MySQL DB

	Data Analysis
	ZAP Log
	Access Log
	Request Dumper Log
	Results Log

	Experiments
	Test Case: 1(a)
	Test Case: 1(b)
	Test Case: 2(a)
	Test Case: 2(b)
	Test Case: 2(c)

	Return On Investment (ROI)
	Process Flow Chart

	Results
	Setup And Installation
	Install Webserver (t09-09.oslo.osa)
	Install GIT (ahs-s1.ams.osa)
	Install Jenkins (ahs-m1.ams.osa)
	SSH Access From Jenkins To GIT
	Test SSH Access From Jenkins To GIT
	Create Bodgeit Store Project In Jenkins
	Install MySQL (ahs-db1.ams.osa)
	Java Application On Jenkins
	Install ZAP (owasp-t01.oslo.osa)
	Install Apache2 (ahs-m1.ams.osa)
	Developer Access To GIT
	Developer Access To Webserver
	Test SSH Access From Developer To GIT And Webserver
	Clone bodgeit.git On Developer Node
	Configurations
	Load URLs Into MySQL DB

	Data Analysis
	ZAP Log
	Access Log
	Request Dumper Log
	Results Log

	Experiments
	Test Case: 1(a)
	Test Case: 1(b)
	Test Case: 2(a)
	Test Case: 2(b)
	Test Case: 2(c)

	Return On Investment (ROI)

	Analysis
	Test Case: 1(a)
	Test Case: 1(b)
	Test Case: 2(a)
	Verification Of High Risk Alerts
	Plugins Execution Time And Fuzzing
	Requests To Proxied URLs
	Fuzzing HTTP Headers And FORM Payload Parameters

	Test Case: 2(b)
	Verification Of High Risk Alerts
	Plugins Execution Time And Fuzzing
	Requests To Proxied URLs
	Fuzzing HTTP Headers And FORM Payload Parameters

	Test Case: 2(c)
	Return On Investment (ROI)

	Discussion
	Setup
	Enhancements
	Catching Vulnerabilities
	Benefits
	Future Work

	Conclusion
	Bibliography
	Appendix
	Approval Letter From Opera Software ASA
	Java Code
	Launcher Shell Script
	Log Parsing Perl Scripts

