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Foreword

We consider classification of lower-dimensional homogeneous spaces an immedi-
ate continuation and global version of classification results obtained by Sophus Lie.
Two-dimensional homogeneous spaces were classified locally by Sophus Lie [L1] and
globally by G.D. Mostow [M]. (See also our preprint [KTD], where the complete
classification of two-dimensional homogeneous spaces, both locally and globally, is
presented.) S. Lie also obtained some results in classification of three-dimensional
homogeneous spaces and described all subalgebras in the Lie algebra gl(3,C). A
detailed account of these classifications can be found in [L2].

The problem of finding the complete description of three- and four-dimensional
homogeneous spaces as pairs, (group, subgroup) or even (algebra, subalgebra), is
extremely important and rich in applications, but it is a very difficult one: “The
description of arbitrary transitive actions on manifolds M, where dim M > 3,
presently seems to be unattainable.” ([GO], p.232)

Minimal transitive actions, that is, those that have no proper transitive sub-
groups, on three-dimensional manifolds were classified in [G]. The problem of local
classification of three- and four-dimensional homogeneous spaces was chosen by one
of the authors, B. Komrakov, as the topic of Dr. Sci. thesis for A. Tchourioumov,
the other author. (Some of the results can be found in [Tch].)

An important subclass in all homogeneous spaces is formed by isotropically-
faithful spaces. In particular, it contains all homogeneous spaces that admit an
invariant affine connection. The present preprint gives the local classification of
three-dimensional isotropically-faithful homogeneous spaces.

In 1990, the International Sophus Lie Centre, jointly with the University of
Belarus, organized an experimental group of 25 students majoring in mathematics
and working in accordance with a special syllabus oriented to modern differential-
geometric methods in the study of nonlinear differential equations. The following
idea arose: to split up the classification problem mentioned above into smaller
parts and give each part to a student; in the process of learning new material, the
student will then try to apply his newly acquired knowledge to this problem as an
illustration.

Suppose, for example, that the student is learning about differential equations;
he then writes out trajectories of one-parameter subgroups on the specific manifold
that he has been given. Studying differential geometry, he computes invariant affine
connections, metrics, curvature tensors, geodesics, etc., with special emphasis on
his example, and so on.

In their first year, the students all took an advanced course in Lie algebras and
the main part of the work on all these “smaller parts” was completed by 12 students.
We had no time to give our students an introductory course in cohomologies of Lie
algebras, and although their computation constitutes a considerable part of the
work, we do not use this language.

This work was started in Tartu University, Estonia (August 1991), continued at
the Institute of Astrophysics and Atmosphere Physics in Toravere, Estonia (Decem-
ber 1991 to March 1992), then at the “Bears’ Lakes” Space Center of the Special
Research Bureau of Moscow Power Engineering Institute (August 1993), and fin-
ished at the University of Oslo and the Center for Advanced Study (SHS) at the



Norwegian Academy of Science and Letters. (Naturally, most of the time from Au-
gust 1991 to November 1993 was spent in Minsk, Belarus.) The story of this work
was rich in experiences and events only indirectly connected with mathematics,
something we will not here dwell on at length. We would, however, like to express
our gratitude to those who directly or indirectly made it possible for us to complete
this work.

In the future, we are going to proceed with the study of geometry of three-
dimensional homogeneous spaces in the following directions:

description of invariant affine connections on three-dimensional homogeneous

spaces together with their curvature and torsion tensors, holonomy groups,

geodesics, etc.;

— description of invariant tensor geometric structures and their properties;

— global classification of three-dimensional isotropically-faithful homogeneous
spaces and description of inclusions among the corresponding transformation
groups;

— description of differential invariants for the homogeneous spaces to be found
and of the corresponding invariant differential equations;

— description of discrete subgroups in transformation groups together with

description of the corresponding topological factor spaces.



Introduction

It is known that the problem of classification of homogeneous spaces (G, M) is
equivalent to the classification (up to equivalence) of pairs of Lie groups (G, G) such
that G C G. Two pairs (G1,G,) and (G2, Gy) are said to be equivalent if there
exists an isomorphism of Lie groups 7: G1 — G5 such that m(G1) = Gs.

By linearization, the problem can be reduced to the problem of classification of
pairs of Lie algebras (g,g) viewed up to equivalence of pairs. The structure of all
pairs of Lie groups (G, G) corresponding to a given pair of Lie algebras (g, g) was
described in [M]. In the study of homogeneous spaces it is important to consider
not the group G itself, but its image in Diff(M). In other words, it is sufficient to
consider only the effective action of the group G on the manifold M. In terms of
pairs (g, @), this condition is equivalent to the condition for g to contain no proper
ideals of g. In this case we say that the pair (g, g) is effective.

In the present work we classify all isotropically—faithful pairs (g, g) of codimen-
sion 3.

Definition. A pair (g,g) is said to be isotropically-faithful if the natural
g-module g/g is faithful.

We say that a homogeneous space (G, M) is isotropically-faithful if so is the
corresponding pair (g, g). From geometrical point of view it means that the natural
action of the stabilizer G, of an arbitrary point z € M on Ty M has discrete kernel.

We divide the solution of our problem into the following parts:

(1) We classify (up to isomorphism) all faithful three-dimensional g-modules U.
This is equivalent to classifying all subalgebras of gl(3,R) viewed up to
conjugation.

(2) For each g-module U obtained in (1) we classify (up to equivalence) all
pairs (g, g) such that the g-modules g/g and U are isomorphic.

In Chapter I we give basic definitions and introduce the notation to be employed.
Here we also solve part (1) of the problem by classifying subalgebras in gl(3,R).

In Chapter II we develop methods for constructing pairs (g, g) given a three-
dimensional faithful g-module U. This involves computation of the first cohomol-
ogy space of g with values in the natural module £(U,g). A series of techniques
described in Chapter II allows, in some cases, to simplify the computation consid-
erably.

Finally, Chapter III gives the classification of three-dimensional isotropically-
faithful pairs itself.
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4. Four-dimensional case

Proposition 4.1. Any pair (g,g) of type 4.1 is trivial.

[,] €1 €2 €3 €4 Uy Uz U3
€1 0 0 0 0 Ui U9 0
€9 0 0 2e3 —2e4 uy —-ug 0
€3 0 -—263 0 e 0 U1 0
€4 0 264 —€9 & U2 0 0
U1 —U1 —U3 0 —U2 0 0 0
U2 —U3 U2 —Uy 0 0 0 0
u3 0 0 0 0 0 0 0

1 0 0 1 0 O
ei=10 10}, ee=[0 =1 0},
0 0 O 0 0 O
0 1 0 0 0 O
€3 — 0 0 0 , €4 = 1 0 0 .
0 0 0 0 0 O
Then
/0 0 0 O (0 0 0 O
0 0 0 O 0 0 0 O
A(el) - 0 0 0 0) ) A(62) - 0 0 2 0 ’
0 0 0 O \0 0 0 -2
(0 0 0 O 00 0 O
0 0 0 1 0 0 -1 0O
A(e3) - 0 =2 0 0 ) A(64) - 0 0 0 0 ’
0 0 00 02 0 0

and for ¢ € g the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by e; and es.

Lemma. Any virtual structure q on generalized module 4.1 is equivalent to one
of the following:

Cler) = , C(eg) =C(e3) =C(es) =0.

OO OO
o O O O
co o

Proof. Let ¢ be a virtual structure on generalized module 4.1. Note that a =
Res ® Res @ Rey is a semisimple subalgebra of the Lie algebra g. Without loss of
generality it can be assumed that ¢(a) = {0}. Therefore

Clez) =Cl(e3) = Cles) =0, C(er) = (Czl-j)1<i‘<4-

YA
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Checking condition (6), Chapter II, we obtain:

0 0 i
0 0 O

C(el) = 0 0 0 ) 0(62) = 0(63) = C'(64) =0.
0 0 O

Let (g,9) be a pair of type 4.1. Then it can be assumed that the corresponding
virtual pair (g, g) is defined by a virtual structure determined in the Lemma.

Then

[61,62] =0,

[e1,e3] =0, [e2, €3] = 2es3,

[e1,e4] = 0, [ea, e4] = —2e4, [e3,e4] = eg,

ler, u1] = u1, [ez,u1] = uy, les,u1] =0,  [eq,u1] = ug,
[61,u2] = Uz, [ez,uz] = —ug, les, ug] = ua, [eq,uz] =0,
ler,us] = per, lea,us] =0,  [ea,us] =0, les,us] =0.

Since the virtual structure ¢ is primary, we have

g%(h) =g%(h) x U%(h) for all « € §*
(Proposition 10, Chapter II). Thus

g9 (h) D Rey @ Rez @ Ruz, g2 (h) O Res,
§0D(h) > Rey, g (p) > Ruy,
g1 (h) D Ruy,

[u1,us] € *O(h),
[u,us] € gV (h),
[uz, us) € g1~V (h),

and
[uh u2] = 07

[u1,U3] = ﬁ1u1,
[U2,u3] = Y2Uu2.

Using the Jacobi identity we see that p = 0, 1 = 42 and the pair (g, g) has the
form:

[7] €1 €2 €3 €4 Uy U3 us
€1 0 0 0 0 Uy Ug 0
€2 0 0 263 -—264 U1 —U2

e3 0 —2e3 0 e 0 U1 0
€4 0 264 —€9 (? U2 0 0
Uy —uy  —Uq 0 —ug 0 0 Bruq
U9 —U9 U9 —U1 0 0 0 ,31U2
u3 0 0 0 0 —Biur —Piug
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The pair (g, g) is equivalent to the trivial pair (g1, g1) by means of the mapping
T : @ — @, where
m(ei) = e, 1 =1,2,3,4

m(u1) = uy,

m(uz) = ug,

m(ug) = ug + Prex.
The proof of the Proposition is complete.

Proposition 4.2. Any pair (g,g) of type 4.2 is equivalent to one and only one
of the following pairs:

1.
[,] el e €3 eq U Uz U3
e1 0 0 0 0 Auy  Aug  ug
€2 0 0 263 —264 Uq —U2 0
€3 0 —2e3 0 e 0 up 0
€4 0 2eq —e2 (f Ug 0 0
U1 —/\Ul — U1 0 —U2 0 0 0
%) —)\Uz U9 —Uul 0 0 0 0
us —Uus 0 0 0 0 0 0

2.2=1
[,] e1 e e eq U Uy U3
e 0 0 0 0  Zuy 3us wug
e 0 0 2e3 —2e4 u; —ug 0
es 0 —2e3 0 e 0 up 0
€4 0 264 —€9 (% U9 0 0
U1 —%ul —Ux 0 — U9 0 Uus 0
(%) —E'LLQ U9 —U1 0 —Uus 0 0
us —Uus 0 0 0 0 0 0

Proof. Let € = {e1,e2,e3,e4} be a basis of g, where

A0 0 1 0 O
e1r={0 X 0], ea=10 -1 0],
0 0 1 0 0 O
0 1 0 0 0 0
e3=(0 0 0), ea={(1 0 0]}.
0 0 0 0 0 O
Then
0 0 0 O 0 0 0 O
0 00O 0 00 O
A(el) - 0 0 0 0) ) A(eZ) - 0 0 2 0 )
\0 0 0 0 0 0 0 -2
(0 0 0 O 0 0 0 O
0 0 0 1 0 0 -1 0
A(e3) = 0 =2 0 0 ) A(64) = 0 0 0 0 9
0 0 0 0 02 0 O
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and for z € g the matrix B(z) is identified with x.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-
tors e; and es.

Lemma. Any virtual structure q on the generalized module 4.2 is trivial.

Proof. Let g be a virtual structure on the generalized module 4.2. Note that
a = Res @ Res @ Rey is a semisimple subalgebra of the Lie algebra g. Without loss
of generality it can be assumed that ¢(a) = {0}. Therefore

C(e2) = Cles) = Cles) =0, Cl(er) = (clj)igica-

1<5<3

Checking condition (6), Chapter II, we obtain:

0 0 ¢
0 0 O
C(el): 0 0 0 5 0(62)20(63)20(64)20.
0 0 O
Put

0 0 cl,
0 0 O
H = 0 0 O
0 0 O

and Cy(z) = C(z) + A(z)H — HB(z). Then
Ci(es) =0, 1<i<4

By corollary 2, Chapter II, the virtual structures C' and C; are equivalent.
This completes the proof of the Lemma.

Let (g,9) be a pair of type 4.2. Then it can be assumed that the corresponding

virtual pair (g,g) is defined by the virtual structure determined in the Lemma.
Then

[e1,e2] =0

[e1,e3] =0 [e2,e3] = 2e3

[e1,e4] =0 [e2,e4] = —2e4 [es,ea] = €2

ler,u1] = Auy ez, u1] = uq [es,u1] =0  [eq,u1] = ug
le1,uz] = Aug  [ez,uz] = —us  [es,uz] = w1  [es,ug) =0
ler,us] =us  [e2,u3] =0 les,uz] =0  [eq,u3] =0

Since the virtual structure ¢ is primary, we have

g%(h) =g(h) x U%(h) for all a € h*
(Proposition 10, Chapter II). Thus

§%9(h) > Res @ Rea, §2(h) D Res,
§"7(H) DO Res,  gMV(H) O Ruy,
§0700) SRu,  §19(h) O Rus,
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Therefore
[u1,ua] € g@M(h),
[u1,us] € gH(h),
[z, us] € g1 "1(p),
and

[u1,us] = aje1 + azes + azus,
[u17u3] = 0’

[UQ, U3] = 0.

Using the Jacobi identity we see that the pair (g,g) has the form:

[,] €1 €2 €3 €4 Ul U2 us
e1 0 0 0 0 Auq Aug  us
€2 0 0 263 -—264 Ui —U2 0
es 0 —2e3 0 e 0 Uy 0
e 0 24 —e 0w 0 0
(5] —&ul —U1 0 —(’l)L2 0 a3us 8
u — AU u —Uu —a3U

ui —U32 02 0 ! 6 : 0

where (2\ — 1)ag = 0. Consider the following cases:
1°. A # 1.
Then the pair (g, g) is equivalent to the trivial pair (g1, g1).
2°. =1
: 2
2.1°. a3 = 0. Then the pair (g, g) is equivalent to the trivial pair (g1, g1).
2.2°. ag # 0. Then the pair (g, g) is equivalent to the pair (g3, g2) by means of
the mapping 7 : go — @, where
m(ei) =€, i =1,...,4,
m(uy) = uq,
m(ug) = ug,

7T(’LL3) = X3U3.

Since dim D(¥(Dg1)) # dim D(¥(Dgs)), we see that the pairs (g1,g1) and (g2, g2)
are not equivalent.
Thus the proof of the Proposition is complete.

Proposition 4.3. Any pair (g,9) of type 4.3 is trivial.

[,] €1 €2 €3 €4 Uy U2 U3
e1 0 0 0 0 wu; u us
€9 0 0 €3 —€4 U3 02 —Uusg
€3 0 —E€3 0 € 0 Uy U2
€4 0 —€4 —€3 & Ug U3 0
U1 —U; —Ux 0 —U9 0 0 0
U2 —U2 0 —Uy —Us 0 0 0
usz —uz U3  —Us 0 O 0
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Proof. Consider z € g such that

8

Il
oo m
o= o
— oo

Note that zy = idy. Then, by Proposition 13, Chapter II, the pair (g, g) is trivial.
Proposition 4.4. Any pair (g,9) of type 4.4 is trivial.

[a] €1 €2 €3 €4 Uy U2 U3
e1 0 0 0 es w3 0 0
€2 0 0 0 0 0 wuy O
€3 0 0 0 —es 0 0 |ug
€4 —€4 0 €4 0 0 0 Ul
U1 —U1 0 0 0 0 0 0
Ug 0 —ug O 0 0 0 0
us 0 0 —uz O 0 0 O

Note that 2y = idy. Then, by Proposition 13, Chapter II, the pair (g, g) is trivial.
Proposition 4.5. Any pair (g,g) of type 4.5 is trivial.

[a] €1 €2 €3 €4 Ui Uz U3
e1 0 0 0 0 Uuq U us
€2 0 0 €4 —€3 —UuUs 02 U1
es 0 —ey 0 e —Us  Up 0
€4 0 €3 —€9 (? 0 —Us U

Uq —Ui Us U9 0 0 0 02
U2 —U9 0 —U1 Us 0 0 0
us —Uusz —Ux 0 —U2 0 0 0

Proof. Consider z € g such that

8
Il
oo
oo
—_ o o

Note that zyy = idy. Then, by Proposition 13, Chapter II, the pair (g, g) is trivial.

Proposition 4.6. Any pair (g, g) of type 4.6 is equivalent to one and only one
of the following pairs:

1.
[,] er ey ez eq Uy Uy U3
€1 0 0 )\63 €4 U1 )\u2 0
€9 0 —€3 —€4 0 0 Us
€3 —)\63 €3 0 0 0 0 (/%)
€4 —€4 €4 0 0 0 0 Uq
U1 —Uq 0 0 0 0 0 0
U2 —-)\UQ 0 0 0 0 0 0
Uus 0 —Uus —Uz —Uj 0 0 0
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2.2=0
[,] €1 €2 €3 €4 U1 U2 us
€1 0 0 0 €4 Uy 0 0
€9 0 0 —€3 —€4 0 0 Usg
€3 0 €3 0 0 €4 €3 €2 + U9
€4 —€4 € 0 0 0 Al
Uy —Ujq 6 —€4 0 0 —U3 0
U9 0 0 —€3 0 Uy 0 Uus
us 0 —Uuz —€2 —U2 —Uj 0 —Uus 0

Proof. Let € = {ey,eq,€e3,e4} be basis of g, where

1 0 0 0
€1 = 0 A 0 , €2 = 0
0 0 0 0

o O O
— o O
SN—————

®

w

Il
N
o O O
o OO
o = O
SN——

IS

Ny

|
N
o OO
o OO

Then

00 0 0 00 0 0
00 00 00 0 O

Aler) = ooxo) Ale)=19 o _1 o |
00 0 1 00 0 -1
0 0 0 0 0 00 0
0 0 0 0 0 00 0

Ales) =1\ 1 g o] A= 9 ¢ 0 o]
0 0 0 0 110 0

and for € g the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by vectors e
and es.

Lemma. Any virtual structure ¢ on generalized module 4.6 is equivalent to one
of the following:

a)A=0
0 0 O
_ _ _ _ {0 0 p}.
Cler) = Clez) = Clea) =0, Clea) = | . 0]
p 0 0
b))\z%
0 0 O
0 0 O
0(61) = 0(62) = 0(64) = O’ 0(63) = 0 0 0 )
0 p O
c) A ¢{0,3}

0(61) = C(ez) = 0(63) - 0(64) 0.
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Proof. Let g be a virtual structure on the generalized module 4.6. Without loss
of generality it can be assumed that ¢ is primary. Since

g®(h) = Re; ® Rea, UV (h) 2 Ruy,

g()‘,_l)(b) 2 R637 U(A’O)(h) 2 RU2,
g7V (h) 2 Rey, U@ (h) = Rus
we have )
0 c%z 0 0 czz 0
[0 ¢35 O |0 ¢35 O
Cle=19 o o] “==|o o ol
0 0 O 0 0 O
0 0 3 0 0 O
0o 0 o4 [0 0 O
Cles)=1 g, o | “=|g o o]
Cil Ciz O O Ciz 0
Consider the following cases:
1°. A = 0. Then
0 ¢, 0 0 ¢, 0
0 ciy O 0 2, 0
Cle=19 o o] C={g o o)
0 0 O 0 0 O
0 0 ¢, 0 0 0
10 0 o 10 0 O
Cle)=1 9 @, o | Y=o ¢ o
¢, 0 0 0 ¢}, O
Put
0 4c§3 0
_ |0 —cipteg; O
H= 0 0 0]’
0 0 0
and Cq1(z) = C(z)+ A(X)H — HB(z) for ¢ € g. Then
0 ¢ O 0 czz 0
_ 0 Coo 0 _ 0 Coo 0
Gle=19 o of A=|g ¢ of
0 0 0 0 0 0
0 0 0 0 00
| 0 0 &, {0 0 O
Glea)=1 ¢ &, o | =19 0 0
¢, 0 0 0 00
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Since for any virtual structure ¢ condition (6), Chapter II, must be satisfied, after
direct calculation we obtain:

0 0 O
Cler) = C(eg) = Cleq) =0, Cf(es) = 8 2 15
p 00
2°. N =13
0 0 O
C(e1) =C(e2) =Cles) =0, Cles) = 8 8 8
0 ¢f O

Since for any virtual structure ¢ condition (6), Chapter II, must be satisfied, after
direct calculation we obtain:

0 0 O
0 0 O

0(61) = 0(62) = C(64) = 0? 0(63) = 00 01l pE R.
0 p O

3°. 2 ¢{0,3}. Then

C(e1) =Cl(ez) =C(es) = C(eq) = 0.
This completes the proof of the Lemma.

Let (g, @) be a pair of type 4.6. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Since the virtual structure ¢ is primary, we have

g%(h) =g%(h) x U*(h) for all a € h*
roposition 1 apter 1l). Consider the ifollowing cases:
(Proposition 10, Chapter II). Consider the following

1°. A =0. Then

[e1, 2] =0,
[e1,e3] =0, [ea,e3] = —es,
[e1,e4] = €, [e2,e4] = —ea, [e3,e4] =0,
le1,u1] = u1, [ea,us] =0, [es, u1] = pes, [es,u1] =0,
[er,u2] =0, [ea,us] =0, les,uz] = [ea,us] =0,
[e1,us] =0, [ez,u3] =0, [es,us] = pes + uz, [eq,us] = uj.

Since

ad%9(h) = Re; ® Rey @ Rug,
g(O,—l)([)) = Res, ﬁ ®, -1)(()) = Rey,
8" (h) = Ruy, §*(h) = Rus,
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we have

[u2a U3] = y3us.

Using the Jacobi identity we see that the pair (g, g) has the form:

[,] €1 €9 €3 €4 Ui U9 us

el 0 0 0 e4 U1 0 0

€9 0 0 —€3 —€4 0 0 Us

e3 0 e3 0 0 pes pes  pes+u
€4 —€4 €4 0 0 0 0 U1

Uy —uq 0 —pey 0 0 —puy 0

U2 0 0 —pes 0 pus 0 pus
Uus 0 —uz —pey—uz —u; 0 —pug 0

Consider the following cases:

1.1°. p = 0. Then the pair (g, g) is equivalent to the trivial pair (g;,81)-
1.2°. p # 0. Then the pair (g, g) is equivalent to the pair (gs2,g2) by means of
the mapping 7 : g2 — @, where

m(ei) =€, i =1,...,4,

1
m(uj;) = Z—Duj, Jj=1,2,3.

2°. N = % Then

[61,62] = 07
1
€1,€3] = <e€3, €2,€3| = —€3,
fex,es] = ges, [eases]
le1, e4] = eq, le2,e4] = —e4, [e3,e4] =0,
[61,U1] = Ui, [62, ul] = 0, [63,U1] - O, [64,U1] = 0,
1
le1,uz] = 2¥2) le2,uz) =0, les, uz] = peq, [es,uz] =0,
ler,us] =0,  [ez,us] =0,  [es,us] =uz, [eq,us] =uy.
Since
g29(h) = Re; ®Reg, §/27V(h) = Res,
g7 (h) = Reu, g 9(h) = Ruy,
§'/20(h) = Rus, §*V(h) = Rus,
We obtain
[ul,uz] = 0,
[U’l’ U3] = O>
[’U,z, ’LL3] = 0.
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Using the Jacobi identity we see that the pair (g, g) is trivial.

3°.1¢{0,3}.
Using the Jacobi identity we see that the pair (g, g) is trivial.

Since the Lie algebra g» is nonsolvable, we see that the pairs (g1, 91) and (g2,82)
are not equivalent.
This completes the proof of the Proposition.

Proposition 4.7. Any pair (g,g) of type 4.7 is trivial:

[,] €1 €9 €3 €4 U1 U2 Us
€1 0 —E€3 € 0 /\ul — Uy U+ )\Ug )\Ug
€9 €3 0 (% €2 0 0 U1
€3 —E€2 0 0 €3 0 0 U2
€4 0 —e€9 —E€3 0 0 0 Uus
U1 Ug — /\ul 0 0 0 0 0 0
(%) —Uuy — /\U2 0 0 0 0 0 0
us —)\Ug —Uu3 —U —Uusg 0 0 0

Proof. Let € = {e1, e2,e3,e4} be a basis of g, where

A10 00 1
ee=|-1 X0, e=[00 0],
0 0 A 00 0
00 0 000
es={0 0 1], e=(000].
000 00 1
Then
0 0 0 0\ 00 0 0y
0 0 10 0001
Ale)=1g 1 g o) A= 1000)’
0 0 00 0000
0 000 0 0 0 0
100 0 0 -1 0 0
Ale)=1 g o9 o 1> A=|o o -1 0]
0 00 0/ 0 0 0 0

and for z € g the matrix B(z) is identified with z.
Lemma. Any virtual structure C on generalized module 4.7 is trivial.

Proof. Put C(e;) = (C;k)lgj@, 1 <7 < 4. Checking condition (6), Chapter II,
1<k<3
we obtain:
1 4

11 €12 /4\0134

4 4 4 4 4 4 Acy3—Cas
—Cyy + ACyy — €31 Cyp + Achy — 3y T2
4 4 4 4 Acastcs
Cgp T Ac3y —c3p 33+ )‘ng + C%z —a8—22

1 4
Ci1 Cy2 Acys
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1
0 0 Ciz'i‘)‘cu
A241
_>‘C‘111_C}12 C}n'AC}Lz A
0(62) — Af-{-l \ 1,\2-1-11 21 43
—Aci; ¢y c11=Aciy A 4 ’
2241 A241 311 l13
0 0 c4§‘-:)\c41
+1
0 0 Ac%%—c%l
A2+1
Acil+c}2 AC%2_C%1 C4 +C4
C( )_ A2+1 A2F1 22 13
€)= —Xcl, —c} el —xcl 4 4 ’
41 " C49 41 42 c —c
A2+1 A2+1 321 143
0 0 )\c4§—c41
A241
4
I
Cles) = Co1 €G22 Cg3
SEA NP SR S
31 32 23
0 0 ci3
Put
1 1 1 1
ciotAcyy Acip—ciy C4
A241 A241 13
4
ct ck L2a
H — 21 22 ‘21
4 4 C33
€31 C32 N
C}u"')‘czlu >‘C}12_C<111 c4
A241 A241 43

and Cy(z) = C(z) + A(z)H — HB(z). Then Ci(e;) =0, 1 < < 4.
By corollary 2, Chapter II, the virtual structures C' and C; are equivalent.

Thus we have
[61,62] = —¢€g,
[617 63] = €3,
[61, 64] = 07

[

[
ler,u1] = Auy —ug, [ez,us
ler, us] = u1 + Aug, |

[

[61 5 u;;] = )\'U,g,

[uy,uz] = aje; + azeq + azes + ases + ayuy + asus + azus,
[ui,us] = bres + baeg + bses + byey + Bruy + Paus + Paus,

[ug,us] = c1e1 + c2ea + czes + caeq + y1u1 + Y2us + Y3us.

Using the Jacobi identity we see that the pair (g, g) is trivial.
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Proposition 4.8. Any pair (g,g) of type 4.8 is equivalent to one and only one
of the following pairs:

1.
[a] €1 €2 €3 €4 Uy Uz U3
€1 0 0 (]. — )\)63 —)\64 U1 0 )\U,g
€ 0 0 —pes (1—p)es 0 wug pug
es3 (A =1)es pes 0 0 0 0 wu
€4 Aey (p—1)es 0 0 0 0 uy
Uq —1Uq 0 0 0 0 O 0
Uo 0 —Uo 0 0 0 O 0
U3 —Aus —pus —uy —Usg 0 O 0
2. A=0,pu=0
[,] €1 €2 €3 €4 Uy Uz Uug
€1 0 0 €3 0 Uy 0 0
€2 0 0 0 €4 0 U9 0
€3 —E€3 0 0 0 0 0 U1
€4 0 —ey 0 0 0 0 U
wi | —u1 000 0 0 0 ©
Ug 0 —Ug 0 0 0 0 €4
us 0 0 —Up —U 0 —€4 0
3 A=0,p=0
[,] €1 €2 €3 €4 U U2 us
el 0 0 €3 0 u; 0 0
€9 0 0 0 €4 0 U9 0
€3 —€3 0 0 0 0 0 Uy
€4 0 —€4 0 0 0 0 U
Uy —uq 0 0 0 0 0 0
Usg 0 —wuy O 0 0 0 —ey
u3 0 0" —u;r —us 0 e O
4. A=0,p=0
[?] €1 €2 €3 €4 Uj U2 us
e 0 0 e 0 U 0 0
e 0 0 G e 0@ w 0
es —e3 0 0 0 0 Uq
€4 0 —€4 0 0 0 0 U9
Ui —U1 0 0 0 0 0 €3
U 0 —u2 O 0 0 0 ey
us 0 0 —U1 —U2 —e3 —Qey4 0 ,0 <a<l
5. A=0,pu=0
[,] €1 €2 €3 €4 Ui U2 us3
€1 0 0 €3 0 Uy 0 0
€9 0 0 0 €4 0 U2 0
€3 —€3 0 0 0 0 0 U1
€4 0 —ey4 0 0 0 0 aug
uq —uy; 0 0 0 0 0 es
U2 0 —U9 0 0 0 0 —Qey
U3 0 —U; —QUs —€3 Qeéy 0 ,a>0
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6. A\=0,p=
(] e1 e e3 e4 Ul Uz U3
€1 0 0 €3 0 Uq 0 0
€2 0 0 0 €4 0 U2 0
€3 —€3 0 0 0 0 0 Uy
€4 0 —es O 0 0 0 atly
U1 —U1 0 0 0 0 0 —E€3
Ug 0 —Usg 0 0 0 0 —aeq
U3 0 0 —u] —OoUy ez ey 0 ,0<axl
_ 1
7 )\ = 0, M= 5
[,] €1 €2 €3 €4 U U2 U3
el 0 0 es 0 wur 0 e
€2 0 0 —%63 %64 0 U2 %u;;
€3 —€3 %63 O 0 O 0 Uy
€4 0 —5€4 0 0 0 0 U2
wi | —un D 0 0 0 0 0
Uus 0 — Uy 0 0 0 O 0
Us —€4 ——%u;; —U1 —U2 0 0 0
_ _ 1
8. )\ == 0, Hm = 5
[a] €1 €2 €3 €4 Uy U2 us
el 0 0 es 0 wu;y O ey
€2 0 0 —%63 %64 0 U9 %Ug + €4
€3 —€3 %63 O O 0 0 (5]
€4 0 —>eq 0 0 0 O Ug
wi | —w b 0 0 0 0 0
U9 0 —U2 0 0 0 0 0
Uus —Qey —%U3 — €4 —U1 —U9 0 0 0
9. A =-1,p=1
[»] €1 €2 €3 €4 Ui U2 us
e 0 0 2e e U 0 —u
6; 0 0 —633 (51 01 u U33
e3 —2e3  e3 0 0 0 02 Uy
€4 —€4 0 0 0 0 U2
Ui —U1 0 O 0 O U2
U9 0 —U2 0 0 0 0 0
Us Us —Uuz —U3 —Uy —U2 0 0
100 A\=-3, p=13
[3] €1 €2 €3 €4 Uy U2 us
€1 0 0 %63 5 €4 Ui 0 —%u:;
€ 0 0 ——%63 €4 0 uq %U3
es | —3es tes 0 0 0 0 wu
€4 —564 —164 0 0 0 0 U9
U1 —Ux 6 0 0 0 0 €4
U 0 —Uo 0 0 0 0 0
us %u;; —-%U,g —Ui —Ug —€4 0 0
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Proof. Let € = {e1,e3,e3,eq4,€5} be a basis of g, where

1 00 0 0 O 0 0 1 0
€1 = 0 0 O , €3 = 01 0 , €3 = 0 0 0 , €4 = 0
0 0 X 00 u 00 0 0

Then
00 0 O 00 0 0
00 0 O 00 0 0
Al)=19 0 1-1 0  Ale) =1 —p 0
00 0 0 —\ \o 0 0 1-
0 0 0 0 (0 0 00
0 0 0 0 0 0 00
Ales) =121 4 0 0] Al)=145 o o o
0 0 0 0 \)X -1 0 0

and for z € g the matrix B(z) is identified with z.

o O O

o~ O

) |

303

By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vectors

e; and es.

Lemma. Any virtual structure ¢ on generalized module 4.8 is equivalent to one

of the following:
a)A=-1, p=1

0 0 0
Cle) =0, i=1,2,4, Cles) = 8 8 8)
00 p
bHyA=0, u=2
0 2p 0
Cle) =0, i=1,2,3, Cles)= 8 b 8)
0 0 0
OA=0, p=1
000 0 0
Cle;) =0, :=3,4, Cler)= 8 8 8 : 0(62)=(8 8
0 0 p 00
d)A=0, u=0
00 —-p 00
Cle))=0, i=3,4, Cle)= 2 8 o, 0(62)2(2 8
0 ¢ O 0 s

R O O o
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6) (/\7/~‘) ﬁé {(ﬁla 1)’(072)7(07 %),(0,0)}
Cle)=0, i=1,...,4

Proof. Let q be a virtual structure on generalized module 4.8. Without loss of
generality it can be assumed that ¢ is primary. We have:

g®9(h) D Re; @ Rez, ULO(h) D Ruy,

g" M) 2 Res, UV (D) 2 Rug,

g(_)‘*l_“)(f)) D Rey, U(A’”)(b) D Rus.
Consider the following cases:

1°. p =2, A=0. Then

o

4
C12

o

Clei)=0,:=1,2,3, C(es) =

o

C%z
0
0

o o O o

0

where ¢}y, ¢35 € R.
Since for any virtual structure ¢ condition (6), Chapter II, must be satisfied,
after direct calculation we obtain

0 2p 0
N 10 p O
Cle;)=0,1=1,2,3, C(es) = 00 0
0 0 O
2°. p=X=0. Then
00 o 0 0 &,
|1 0 0 ¢33 0 0 3
Cled=1a, o o) “@=lz o o
0 ¢, O 0 ¢2, 0
0 0 O 0 0 O
{00 o {0 0 o0
Clea) =14 o c§3)’ C(e“)“(o 0 0
00 0 0 0 cf
Put
0 0 O
0 0 O
H= g, 0 0
0 cij3 O
and Cy(z) = C(z) + A(z)H — HB(z) for z € g. Then
0 0 ¢l 0 0 2
0 0 ¢y 0 0 ¢

Ci(er) = k0 o0 | Ci(e2) 2 0 0| Ci(es) = Ci(es) = 0.

2
3
0 cip O 0 ¢, O
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Since for any virtual structure g condition (6), Chapter II, must be satisfied, after
direct calculation we obtain

0 0 —p 0 0 —r

N . _ 0 0 —g¢q . 0 0 —s
Cl(ez) - 07 t= 3a4a 01(61) - p 0 0 ’ 01(62) “ir 0 0
0 ¢g O 0 s O

By corollary 2, Chapter II, the virtual structures C' and C are equivalent.
Similarly we obtain the other results of Lemma.

Let (g,g) be a pair of type 4.8. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Consider the following cases:

1°.X=-1, p=1. Then

[e1,e2] =

le1,e3] = 2e3, [e2, €3] = —es,

[e1,e4] = [e2,€4] =0, [es,eq] =0,

ler,u1] = w1,  [eg,u1] =0, les,u1] =0, [es,u1] =0,
[e1,us] = le2, ug] = ug,  [es,uz] =0, les, ua] =0,
[e1,us] = —us, [e2,us] =us, [es,us] = pes +u1, [eq,us]=us.

Since the virtual structure ¢ is primary, we have

g%(h) =g%(h) x U*(h) for all « € h*
(Proposition 10, Chapter II). Therefore
[u1>u2]
{ulv ”‘3} = Y2u2
]=0.

[u27 us

Using the Jacobi identity we see that the pair (g, g) has the form

[,] €1 €2 €3 €4 Ui U2 us

€1 0 0 2es €4 Ug 0 —Us
€9 0 0 —€3 0 0 U2 us

€3 —2e3 €3 0 0 0 0 ui+ pey
€4 —€4 0 0 0 0 0 U9

Ul —Ui 0 0 0 0 0 Yo U2
Ug 0 —Ug 0 0 0 0 0

Uus Uus —Uuz —U; —U2 —7U2 0 0

and is equivalent to the pair (g, gg), whenever 42+ p # 0, by means of the mapping
T™:gy — gt

m(e1) = eq, m(u1) = p + y2u1 + pea,

m(ez) = eq, T(uz) = uz,

m(es) =p+v2es,  w(uz) = us.

7r(64) = €4,
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If p+~2 = 0, then the pair is equivalent to the trivial pair by means of the mapping

g =g

n(e1) = e1, m(u1) = p+ Yau1 + pes,

m(ez) = eg, m(ug) = ug,
m(es) = es, m(us) = us.
71'(64) = €4,

92°. i = A\ = 0. Then

[e1, e2] =0,

le1, e3] = es, [e2,e3] = 0,

[e1,e4] =0, [e2,e4] = €4, [es,eq] =0,

[e1, u1] = uy + pes, [e2,u1] = res, les,u1] =0, [es,us] =0,
[e1, uz] = geq, [e2, ua] = uz + seq, les,u2] =0, [ea,uz] =0,
[e1,us] = —pe1 — qea, [e2,us] = —re; —sea, [es,us] =u1, [eq,us] = us.

Since the virtual structure ¢ is primary, we have

g=3a"2n) @ g™ @ " (),

where
3°9(h) = Re; ® Rey ® Rus,
g(l,o)(b) = Rez ® Ruy,
Q(O’l)(b) = Res @ Ruy.
Therefore

[u1,us] =0,
[u1,us] = bzes + Pruy,
[Uz,us] = c4e4 + Y2U2.

Using the Jacobi identity we see that the pair (g, g) has the form

[,] el €2 €3 €4 U1l U9 us
€1 0 0 €3 0 Uy 0 0
€2 0 0 0 €4 0 U 0
€3 —€3 0 0 0 0 0 Uq
I I T A T .
u U e3t+o1u
u; 0 —upy O 0 0 0 ciei-l-fy;u;
U3 0 0 —ur —up —bses—Pius —caes—y2us 0
Put 1 1
o = /6:

2 ) 2
V103 + 25| \lea + 2|

Consider the following cases:
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2.1°. by + 2L = 0.
2
2.1.1°. Cq + 1—2 = 0.

Then the pair (g,g) is equivalent to the trivial pair (gi,91) by means of the
mapping 7 : g1 — @, where

m(e;) =ei, 1 =1,...,4,

m(uy) = ‘ﬁ—leg + u1,

2
m(uz) = %64 + ue,
7T('LL3) = ﬁu;; - %61 - ’;—262.

2.1.2°. cs+ 2 > 0.

Then the pair (g, g) is equivalent to the pair (g2,82) by means of the mapping
T : @z — @, where

m(e;) =€, 1 =1,2,3,

T(es) = Pea,
m(uy) = %63 + uq,
m(ug) = —;264 + ug,
A
m(ug) = ug — %61 — —%ez.

2.1.3% ¢y + 2 < 0.

Then the pair (g, g) is equivalent to the pair (g3, gs3) by means of the mapping
7 : @3 — @, where

m(e;) = e;,1=1,2,3,

7‘-(64) = /8647

m(uy) = 52—163 + u1,

w(uz) = 22, 4 s,

m(us) = Pus — %61 - %2—62

2.2°. by + 2 > 0.

2.2.1° ¢4y + 2 > 0.
Then the pair (g, g) is equivalent to the pair (g4, 84) by means of the mapping
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7 @4 — @, where

7T(61) =e,
ab

7(62) = €2, W(ul) = _.é_63 _|_ ug,

2

— +4
r(es) = acs, m(ug) = X2TVERID 4,
— 2 4

m(es) = aeq, m(uz) = aug — a2,31 er — a(72 2’)’2 + c4)62.

Note that two pairs (g}, g} ) and (g}, g4 ) corresponding, respectively, to the values
a and 1/a of the parameter are equivalent by means of the following mapping
T gy — g4

71'(61) = €1,
m(e2) =€z, m(u1) = uz,
m(es) = Vaes,m(uz) = uq,
1
m(eq) = Vaes,m(us) = ﬁug.
So, we can assume that 0 < a < 1.
2.2.2°. ¢y + 2 < 0.

Then the pair (g, g) is equivalent to the pair (gs,g5) by means of the mapping
7. g5 — @, where

7T(61) = e,
apy

7((62) = 623 7l'(u1) = 763 +u1,
o

m(es) = aeg, w(uz) = 77;-64 + ug,

m(es) = Bes, w(uz) = —ug— é—l—el _ 3’_2_62_
o 2 2

2.2.3°. ¢4 + 2 =0.

Then the pair (g, g) is equivalent to one of the pairs (g', g), considered in case
2.1.2°, by means of the mapping 7 : g’ — g, where

m(e1) = eq,

m(e2) = ez, m(uy) = ug,

m(es) = eq, w(uz)=uq,
(

m(es) =e3, w(uz) = us.
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2.3°. b3 + %12— <0. 23.1°%¢s+ Zfi <0. 23.1.1° % < 1. Then the pair (g, g)
is equivalent to the pair (gs, g¢) by means of the mapping 7 : gg — g, where

m(e1) = ey,
o
m(ez) =€z, w(ur)= 71-63 + ug,
o
m(es) = aeg, w(uz) = —2%2—64 + ug,
1
m(es) = Pes, w(uz) = —ug — %el — ’;—262.

2.3.1.2°. § > 1. Then the pair (9, 9) is equivalent to the pair (gs, gs) by means
of the mapping 7 : g¢ — @, where

71'(61) = €1,
o
m(ez) = e, 7(u1) = _2:2364_{_”2’
e
77(63) = /364, W(U2) = %‘63 + U1,
m(eq) = aes, 7(uz) = ﬁus - Mel - Mez
’ o? 20 2a

2.3.2°. ¢y + 2 =0,
Then the pair (g, g) is equivalent to one of the pairs (g',g'), considered in case
2.1°, by means of the mapping 7 : g’ — g, where

m(e1) = ey,

m(ez) = ez, w(uy) = ua,
m(es) = es, m(ug) = uq,
m(es) = €3, m(uz) = us.

2.3.3°. ¢4+ L2 >0,

Then the pair (g, g) is equivalent to one of the pairs (g',g'), considered in case
2.2°, by means of the mapping 7 : g’ — g, where

m(e1) = e,
m(e2) = eg,
m(e3) = eq,
m(es) = ez,

m(uy) = ug,
71'(U2) = Ui,
71'(’0.1,3) = Uus.

Consider the homomorphisms f; : g; — gl(4,R), i = 1,...,6, where f;(z) is the
matrix of the mapping adpg; « in the basis {es,u1, es,us} of Dg;, = € g;.

Since the subalgebras f;(g;), : = 1,..

., 6, are not conjugate, we conclude that

the pairs (g;,9:), ¢ = 1,...,6, are not equivalent.
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In a similar way we obtain the other results of the Proposition.

Proposition 4.9. Any pair (g,g) of type 4.9 is equivalent to one and only one

of the following pairs:
1.

[7] €1 €2 €3 €4 U1 Uz Uug
€1 0 0 ——/\63 + €4 —/\64 — €3 —U2 Ui )\Ug
es 0 0 (1—p)es (1—ples up ug pus
€3 )\63 — €4 M — 1 €3 0 0 0 U9
e4 es +Aes (n—1)eq 0 0 0 0 w
U1 U9 —Ux 0 0 0 0 0
(%) —U1 —U3 0 0 0 0 0
us —Au;; —Hus —U2 —U1 0 0 0
2 A=0,p=0
[,] e1 ez ey €4 ui Uz ug
e 0 0 e —e3—u U 0
e; 0 0 e§ 643 u12 u; 0
€3 —E€4 —€3 0 0 0 0 ('3
€4 €3 —€y4 0 0 0 0 Uy
Ui U9 —Uul . 0 0 0 0 €4
U2 —UuU;  —U 0 0 O 0 e
us 0 —U2 —U1—€4 —E€3 6
3A=0,pu=
[,] e1  ep €3 €4 Uy Uy U3
e 0 0 e —e —Uy U 0
e; 0 0 e§ 643 u12 u; 0
es —e4 —e3 0 0 0 Uo
€4 €3 —€4 0 0 0 0 U1
U1 U9 —U1 0 0 0 0 —€4
U2 —U1 —U9 0 0 0 0 —€3
us 0 0 —U2 —Up €4 €3 0
4. A=0,pu=0
[,] €1 €2 €3 €4 Ui U2 us
e 0 0 e —e —u u 0
e; 0 0 6§ e ’ u12 u; 0
€3 —€4 —€3 0 (jl 0 0 Ug
€4 €3 —€4 O 0 0 0 Uq
U1 U2 —Ux 0 0 0 0 Oy -+ €3
U2 —Uy —Uy 0 0 0 0 Oe3 — €4
U3 0 0 —Uy —U] —oeqg—e3 —oe3+ ey 0 ,az0
5 A=0,pu=0
[a] €1 €2 €3 €4 231 Ug Uug
e 0 0 e —e —u U 0
e; 0 0 eg 643 u12 u; 0
€3 —eq4 —e€3 0 0 0 0 Ug
€4 ‘€3 —€4 0 0 0 0 U1
Uy U  —Uy 0 0 0 0 aey — €3
Ug —U1  —Ug 0 0 0 0 aes + ey
us 0 0 —Uy —Up —0eq4+e3 —aes —ey 0 ,az2(
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Proof. Let €& = {e1,e3,e3,ea} be a basis of g, where

0 1 0 1 0 0 0 0 O 0 0 1
e1 = -1 0 0),e=10 1 0],es=10 0 1])],ea=10 0 0
0 0 X 0 0 p 0 0 O 0 0 O
Then
0 0 O 0 0 0 0 0
0 0 O 0 0 0 0 0
A(el) - 0 0 =\ ___1) 3 A(62) - 0 0 1— m 0 3
00 1 -\ 00 0 1-pu
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0
Ales) =1 ) u—1 0 0]’ Ale)=11 ¢ o o]
-1 0 0 0 A p—1 0 0

and for z € g the matrix B(z) is identified with z.

By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-
tor esg.

Lemma. Any virtual structure ¢ on generalized module 4.9 is equivalent to one
of the following:

a) N2+ u?#£0
Cle))=0, i=1,...,4
b)A=pu=0
/7 0 0 r\ 0 0 ¢
_ 0 0 s 10 0 »p _ _
C(er) = . 0), Clez) = ¢ —p 0] C(e3) = C(eq) = 0.
—-s r 0 -p —q O

Proof. Let ¢ be a virtual structure on the generalized module 4.9. Without loss
of generality it can be assumed that ¢ is primary. Consider the following cases:

a) A\* + p? # 0. Since

9(g) DRe; B Rey, g7 (g) D Res & Rey,
UM(h) D Ruy @ Ruz, UW(h) O Rus,

we have
1 2
0 0 ¢3 0 0 s
0 0 c%3 0 0 033
Cler) = 1 1 1 , Clea) = 2 2 2 )

c c c c c c
31 €32 C33 31 €32 C33

1 1 2 2
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3

cé1 czz 0 cil ci12 0

_ e e 0 _ |5 5 0

Clea =10 0 & | “@={0 0 o
0 0 «ci 0 0 cj;

To be definite, let A # 0. Put

0 0 his
0 0 has

Hy = ,
! h31 h32 h33
h41 h42 h43

where the set of coefficients h;; (1 <7 <4, 1 <j < 3)is a solution of the following
system of linear equations:

c3s = haz + 2\hs3,

cis = has + 2\hys,

023 = h4z + hi3,

c3s = h31 + his,

c33 = haz — Ahys — (1 — 1)has,
cts = ha1 — Mg — (p — 1)has,

1 _
Ciz3 = Ahis,

1

Since the matrix of the system is non-degenerate, we see that there exists a unique
solution.

Now put Ci(z) = C(z) + A(z)H, — H1B(z) for z € g. Then

0 0 O 0 0 c§3 \
2
Ci(er) = 0 0 0 Ci(es) = 0 0 ¢35
1\€1 Cl Cl O ) 1162 02 C2 C2 )
?1 gz 31 32 33
Ci1 Cy2 Cq1 Cyup Cys
3 3 4 4
c c 0 c c 0
Ciles) = 21 Ca22 Ciles) = 21  Ca2
(e3) 0 0 c§3 ’ (es) 0 0 c§3
0 0 0 0 ¢

By corollary 2, Charter II, the virtual structures C' and C} are equivalent.

Since for any virtual structure ¢ condition (6), Charter I, must be satisfied, after
direct calculation we obtain:

If A=0 and p # 0, we can similarly show that the virtual structure ¢ is trivial.
b) A = p = 0. Since

a(g) D Rey BRey, gV (g) D Res @ Rey,
UM () 5> Ruy & Ruz, UO(h) O Rus,
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we have
0 0 O 0 0 2
_ 0 0 O _ 0 0 2
A=la, a o] “@la a g |
Czln Czlu 0 021 022 cﬁs
0 0 O 0 0 O
0 0 O 0 0 O
Clea) =19 0 & | =10 0
0 0 cis 0 0 cj,
Put
0 0 O
0 0 O
H, = Chs C§3 0}’
033 ci3 O

and Cy(z) = C(z) + A(z)H, — HyB(z) for € g. Then

1
0 0 ¢35 0 0 0%3
0 0 ck 0 0 ¢
_ 23 _ 23 _ _
Cole)=| a  a yClea)=| 2 2 2 , C(es) = C(es) = 0.
31 G2 G 31 %2 O
Ca1 Cao  Cy3 Cq1 Cyp Cy3

Since for any virtual structure ¢ condition (6), Charter II, must be satisfied, after
direct calculation we obtain:

[ 0%3 = C}w = C%la
Czln = C%z _C%Sa

1 C%s = C§1 = 0227
021 = C%z = —033

The proof of the Lemma is complete.

Let (g,9) be a pair of type 4.9. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Consider the following cases:

1°. A2+ u? #0. Then

[e1,e2] =0,

[e1,e3] = es — Xes,  [ea, e3] = (1 — pes,

[e1,e4] = —e3 — Aeq, [e2,ea] = (1 — p)es, [es,eq] =0,

[e1,u1] = —uq, lea,u1] = u1, [es,u1] =0, [eq,u1] =0,
[e1,us] = uy, [ea, uz] = uz, [es,uz2] =0, [eq,u2] =0,
[e1,us] = Aug, [e2,us] = pus, les,us] = uz [eq,us] = u.
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Using the Jacobi identity we obtain

and see that the pair (g, g) is trivial.
2°. A = pu =0. Then

le1, e2] =

[e1, €3] = [e2, €3] =

le1,e4] = —es, [e2,e4] = [es,eq] =0,

[e1,u1] =res—ses—ug, [e2,u1] = 63—p64+u1, les,u1] =0, [es,u1] =0
[e1,us] = —ses—rest+uy, [ez,us] =—pes—qestug, [es,uz] =0, [eq,us]
[e1,uz] =re1+seq, [e2, us] =qe1 +pes, [es,us] = u2, [es,us] =uy

Since the virtual structure ¢ is primary, we have

g%(h) = g%(h) x U%(h) for all « € h*
(Proposition 10, Charter II). Thus

39(h) = Rey; ®Rey ®Rus,  §7(h) = Res & Rey & Rug & Rus.

Therefore
[u1,u2] C g (b),
[u,us] € §(b),
[uz,us] € g (b),

and
[ul’ u2] = Oa

[u1,us] = bges + baes + Prur + Baua,
[uz,us] = czes + caes + y1u1 + Y2 us2.

Using the Jacobi identity we see that
p:O7 QZO, 'l":O, 3:0
3 =bsy, ca=-by, M1=-P2, 72=p

Consider the pair (g',g') of the following form:

[,] €1 €2 €3 €4 U1 U2 us

€1 0 0 €4 —e3 —Ug U1 0

€9 0 0 €3 €4 Uy Uo 0

€3 —€4 —€3 0 0 0 0 U9

€4 €3 —€4 0 0 0 Ui

Uy Uy  —Uj 0 0 0 0 res + yeq
Ug —u;  —Usg 0 0 0 0 yes — ey
U3 0 0 —Uy —U] —Tegz — Yey Tey — Yes
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where

B Bz Citiiv)
=b
2 y=ot T
The pairs (g, g) and (g',g') are equivalent by means of the mapping 7 : g’ — g,
where

r = b3 +

7!'(61‘):61', 1= 1,...,4,

71'(’(1,1) = Uy — &63 - &64

2 2
m(uz) = ug + %64 - %63,
m(us) = ug — %261 + %62

Consider the following cases:

2.1°. £ =y = 0. Then the pair (g, g') is trivial.

2.2°. z =0 and y > 0. Then the pair (g, g’) is equivalent to the pair (gz,g2) by
means of the mapping 7 : go — @', where

W(ei) = €;, 1= 1,...,4,
1 .
m(u;) = —u;, 3 =1,2,3.
( .7) \/g J
2.3°. 2 = 0 and y < 0. Then the pair (g, g’) is equivalent to the pair (gs,g3) by
means of the mapping 7 : g3 — @', where
m(e;) =ei, 1 =1,...,4,

() = —
m(u;) = —
TV

2.4°. ¢ > 0. Then the pair (g',g') is equivalent to the pair (gs,g4) by means of
the mapping 7 : g4 — @', where

uj, j=1,2,3.

m(e;) =e;, t=1,...,4,

1 :
m(uj) = ﬁuj’ 7 =1,2,3,
and a = y/z.
2.5°. ¢ < 0. Then the pair (g',g’) is equivalent to the pair (g5, gs5) by means of
the mapping 7 : g5 — @', where
m(ei) =€, 1 =1,...,4,

1
m(u;) = 7=

Uy, .7 = 1a 27 37
and o = —y/z.

It remains to show that the pairs determined in the Proposition are not equivalent
to each other whenever A = u = 0.

Consider the homomorphisms f; : g; — gl(n,R), ¢ =1,...,5, where fi(z) is the
matrix of the mapping adpg; z in the basis {es, e, u1, uz}.

Since the subalgebras f;(gi), ¢ = 1,...,5, are not conjugate to each other for

all values of parameters, we conclude that the pairs (gi,9i), ¢ = 1,...,5, are not
equivalent.
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Proposition 4.10. Any pair (g,g) of type 4.10 is equivalent to one and only
one of the following pairs:

1.
[,] €1 €2 €3 €4 Uy U U3
0 e 0 0 0 wu 0
e | —ee T 0 0 0 w 0
€3 0 0 0 € 0 0 U1
o 0 0 —e O 0 0 wus
Uy 0 0 0 0 0O 0 O
Uz —U1 —U2 0 0 0 0 0
U3 0 0 —u; —uz 0 0 O
2.
[,] e1 ea € €4 U uz  ug
0 e 0 0 0 ey+u 0
s e ¢ 0 0 0 Cu o0
€3 0 0 € 0 0 Ui
€4 0 0 —€3 03 0 0 us
Uy 0 0 0 0 0 0 0
Ug —€g — U] —Ug 0 0 0 0 0
us 0 —U1 —Us 0 0 0
3.
[»] €1 €2 €3 €4 Ul U2 us
e 0 e 0 0 0 e+u 0
e —e1 0 0 0 0 ‘up 0
e3 0 0 0 e 0 0 e4 + aug
6o 0 0 —es G 0 0 us
Uy 0 0 0 0 0 0 0
U2 —€2 — U3 —U2 0 0 0 0 0
Us 0 —e4 —au; —ug 0 0 0 , a£0
Proof. Let € = {e1, ea,€e3,e4} be a basis of g, where
(0 10 (o 0 0
=100 0], ea=(0 1 0]},
\o 0 0 \o 0 0
0 0 1 0 0 0
es=|0 0 0}, ea=1{10 0 0].
0 0 O 0 0 1
Then
01 0O -1 0 0 O
0 00O 0 0 0 O
Ale)=109 00 0| AD={ ¢ ¢ o 0]
0 00O 0 0 0 O
(0 0 0 O 0 0 0 O
0 0 0 O 0 0 0 O
A(e3) - 0 0 0 1 3 A(64) - 0 0 =1 0 )
\o 0 0 0/ \o 0 0 0/

and for z € g the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-
tors eo and ey4.
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Lemma. Any virtual structure ¢ on generalized module 4.10 is equivalent to
one of the following:

Ci(e1) = , Ci(e2) =0, Ci(es)= ; Ci(es) =0.

o O O O
ooy O
o O O o
o O O O
o O O O
n O O O

Proof. Let ¢ be a virtual structure on generalized module 4.10. Without loss of
generality it can be assumed that ¢ is primary. Since

g=t0(h) =Rer, g"(h) = Res ® Res, g> I (h) = Res,

UC®9(h) =Ruy, UL =Ruy, UOV(h) = Rus,

we have

chy (1) 0 g 0 0\

| 0 ¢ O e 00
Cle)=1 o o o] “=|7% o 0]

0 ¢, O 2, 0 0/

0 0 O 0 0 0\

0 0 o 31 0 0
Cles) = 3 0 (2)3 » Clea) = (2)1 0 0]

0 0 ¢, O 0)

Checking condition (6), Chapter II, we obtain c3; = ¢, = ¢}, = ¢}, = 0 and
¢33 = —ciy, €3; = —ciy. Put

0

1

_ | ~¢n1
H = 0

1
Cq2

o O OO
o O OO

and Cy(z) = C(z) + A(z)H — HB(z). Then

0 0 0

Ci(e1) = 8 C%ch%l g , Ci(e2) =0,
0 0 0
0 0 0

Gle={g 0 o | Gl)=0

3 1

By corollary 2, Chapter II, the virtual structures C and C; on generalized module
4.10 are equivalent. This proves the Lemma.
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Thus it can be assumed that the virtual structure ¢ has the form determined in

the Lemma. Then

[61,62] = €1,

[e1,e3] =0, [e2,e3] =0,

[e1,e4] = 0, lez,e4] =0,  [e3,eq] = e,
le1,u1] =0, le2,u1] =0, lea,u1] =0,
[e1,us] = pe2 +u1, [e2,us] =ua, [es,uz] =0,
[e1,us] =0, [ea,us] =0, [es,us] = ses + uq,

[64,u1] =0,
{64,’!12] = 07

[64, U3] = Uus.

Since the virtual structure ¢ is primary, we have

g%(h) = g%(h) x U%(h) for all a € h*
(Proposition 10, Chapter II). Thus

g 70(h) =Rer, §*7V(h) = Res,

ﬁ(o’o)(h) = Rey ® Rey & Ruq,
g10(h) = Rug, gV (h) = Rus,

[u1,uz] € g10(H),
[us,us) € g%V (h), and
[uz, us) € g1V (),

Using the Jacobi identity we see that the pair (g, g) has the form:

[ul,uz] = QaUz,
[Ul,us] = 53“3,

[U,z, u;;] =0.

[,] €1 €2 €3 €4 Ui U2 us3

e 0 e 0 0 0 er +u 0

& —e 0 0 0o o ™ 0

es 0 0 0 e 0 0 seq + uy
€4 0 0 —€3 03 O O Uus
LA I A
U —pey — U1 —U

ug P 20 ! 0 2 —seg —u; -—us 0 0 0

Consider the following cases:

1°. p = s = 0. Then the pair (g, g) is equivalent to the trivial pair (g1,81)-
2°. p#0, s =0. Then the pair (g, g) is equivalent to the pair (g2, g2) by means
of the mapping 7 : go — @, where

m(ei) =€, t=1,...,4,

m(u;) = pug, ¢ =1,2,3.
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3°. p=0, s # 0. Then the pair (g, g) is equivalent to the pair (g3, g2) by means
of the mapping 7 : g2 — @, where

4°. p #0, s # 0. Then the pair (g, g) is equivalent to the pair (g3, g3) by means
of the mapping 7 : g3 — g, where

m(ei) =€, 1 =1,...,4,
m(u1) = pui,
m(uz) = puz,
7(us) = sus.

Now it remains to show that the pairs determined in the Proposition are not
equivalent to each other.

Since dimD?%g; = 1, dimD?g, = 4, and dimD?g; = 6, we see that the pairs
(g1,81), (82,92), and (@3, gs) are not equivalent to each other.

This completes the proof of the Proposition.

Proposition 4.11. Any pair (g, g) of type 4.11 is equivalent to one and only
one of the following pairs:

1.
[7] €1 €2 €3 €4 Ui Uz U3
€1 8 8 €3 (1 — )\)64 161 0 >\U3
e —e —pue u u
62 —Ees3 €3 03 /6 ‘ 0 uf “03
N (A—=1)es pes 0 0 0 0 ug
Uy —uy 0 0 0 0 0 0
U2 0 —Uy  —Uy 0 0 0 O
U3 —\us —pus 0 —uq 0 O 0

[»] €1 €2 €3 €4 Ui U2 us3
€1 0 0 €3 €4 Uq 0 0
€9 0 0 —e3 ey 0 Uy  —Us
e3 —e3  e3 0 0 0 Uy 0
€4 —ey4 —€y 0 0 0 0 Uy
U1 —u 0 0 0 0 €4 e3
U2 0 —Ug2 —Ujz 0 —€4 0 €
U3 0 usz 0 —Uu; —ez3 —es 02
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3A=0,pu=
[7] €1 €2 €3 €4 U1 Uz U3
0 0 e e u 0 0
2; 0 0 —23 04 01 U9 0
€3 —e€3 € O 0 O U1l 0
o | Zes 00 0 0 0 wu
Ui —U3 0 0 0 0 0 Ul
U9 0 —U9 —U1 0 0 0 u
us 0 0 0 —Uz —Ui —U2 02
4. A= %a H = “%
[7] €1 €2 €3 €4 Uy U2 us3
€1 0 0 €3 l64 U1 0 %’LLg
€9 0 0 —e3 ze4 0wz —zus
€3 —€3 €3 0 0 0 Uy 6
es | —2es —2es 0 0 0 0 uw
wi | —ws O 0 0 0 0 0
U9 0 —Uu9 —U1 0 0 0 €4
us —%u;:, %u;; —U1 0 —€4 0
5. A=0,pu= %
[,] €1 €2 €3 €4 Uy U U3
€1 0 0 €3 €4 Ul 0 0
€9 0 0 —es —2e, 0wy FU3
€3 —€3 €3 0 6 0 Uq €4
€4 —€4 ~%84 0 0 0 0 (751
U —Uy 0 0 0 0 0 0
Ug 0 —Uy  —Uy 0 0 0 0
Uus 0 —%u;; —€4 —U1 0 0 0
6. \ = %, pw=0
[a] €1 €2 €3 €4 Uy U U3
e1 0 0 es  3ea ui 0 Zug
€ 0 0 —e3 0 0 wuz eq
€3 —E€3 €3 0 0 0 Uy O
€4 —%64 0 0 0 0 0 U1
U1 —Uu 0 0 0 0 0 0
U9 0 —U9 —Uq 0 0 0 0
Uus —lu3 —€4 0 —U1 0 0 0
7. A= %, pw=20
[,] €1 €2 € €4 Ul Uy us
€1 0 0 €3 %64 U1 0 €4 + %U3
€9 0 0 —e3 0 0 ug aey
€3 —e3 €3 0 0 0 w 0
€4 —%64 0 0 0 0 0 U1l
U1 —Uy 0 0 0 0 0 0
(V%)) 0 —U3 —U1 0 0 0 0
U3 —e4 — %U3 —oey 0 —u 0 O 0
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[a] €1 €2 €3 €4 Uiy U2 us

e 0 0 e 0 u; eq4 ez+u

e; 0 0 —23 €4 01 ué S—U3 ’

€3 —e3 €3 0 0 0 wuy 0

€4 0 —€4 0 0 0 0 U1

U —uq 0 0 0 0 0 0

U2 —€4 —Ug —Uj 0 0 0 0

us —€3 — U3 us 0 —U1l 0 0 0

9 A =1 pu=-1

[»] €1 €2 €3 €4 Ui U2 us
el 0 0 es 0 Uy aey aes + us
€2 0 0 —E€3 €4 0 . €4 + U2 €3 — U3
€3 —€3 €3 0 0 0 U1 0
€4 0 —€4 0 0 0 0 Uy
Uy —Uuy 0 0 0 0 0 0
Ug —oey —e4 — Uy —UP 0 0 0 0
us —0OEe3 — U3 —E€3 + us 0 —Ui 0 0 0

Proof. Let € = {ey, ea, e3, e4} be basis of g, where

1 0 0 0 0 O 0
€1 = 0 0 O , €2 = 0 1 0 , €3 = 0
0 0 A 0 0 p 0

c o~
co o
SNS—

@

Ny

Il
RS
coc o
oo o

Then
0 0 O 0 0 0 O 0
0 0 O 0 0 0 O 0
A(el) == 0 0 1 0 ) A(62) = 0 0 -1 0 )
\0 0 0 1=\ 00 0 —pu
(’0 06 0 0 ( 0 6 0 O
0 0 0 O 0 0 0 O
Ales) =1 3 1 g of A=) ¢ ¢ 0 0]
0 0 0 O \)\—1 g 0 0

and for z € g the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by vec-
tors ey, es.

Lemma. Any virtual structure ¢ on generalized module 4.11 is equivalent to
one of the following:

a) ()‘a M) ¢ {(0’ %)’ (%—,0), (17_1)}
HA=0, u=1

2

02(6i) = 0) 7= 13274’ 02(63) =

o O OO
o O OO
" O OO



322 III. THE CLASSIFICATION OF PAIRS

)A=1, =0
0 0 O 0 0 0
0 0 0 0 0 O
03(61) = 0 0 0 b C3(62) = 0 0 0 bl 0(63) = 0(64) = 0;
0 0 p 0 0 ¢
d)A=1 p=-1
0 0 O 0 0 0
0 0 O 0 0 0
04(61) = 00 r s 04(62) = 0 0 s y 0(63) = 0(64) =0.
0 p O 0 g O

Proof. Let g be a virtual structure on the generalized module 2.19. Without loss
of generality it can be assumed that ¢ is primary. Since

g®9(h) D Rey @ Rey, ULY(h) D Ruy,
g7 (h) = Res, UV (h) = Ruy,
g M) DRes,  UMH(h) 2 Rus,

we have

0 0 ¢4 0 0 3
1o 0 00 o
C(el) - ( (]) (1) ci}S ) 0(62) - 0 0 633 ’
VNG G2 G43 c¢hi iy cis/

0 0 0 cj; 0 0
{0 0 O {000
Clea)=1g o o) C=170 o o
0 c3, o3 0 0 ci3

Since for any virtual structure ¢ condition (6), Chapter II, must be satisfied, after
direct calculation we obtain:

2

0 0 ci?, 0 0 0%3
0 0 0 0
C(el) = 0 0 iia ) C(62) = 0 0 Egz )
i Ciy  Cis ¢t ci cis
0 0 O 0 0 O
0 0 0 0 0 O
Cle)=10 0 | ““=lo 0o o]
0 iy cis 0 0 «ci;
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where the set of coefficients cfj

(- ea(l+p) =cgs(A = 1),
cip(1+p) = ch(A = 1),
Aeds = 0,

(1-2u)cis =0,

(2\ = 1)eis = 2pel;,
Acty = pety,

Ac33 = picy,

¢y = ¢33 + Acis,

¢ty = ¢33 + pels,

cil = )‘ciz’

i1 = pchy,

Acis = (1= Nejg — pegs + cig,

#Cis =(1- A)C%3 - ,“Cgs + Cil-

Consider the following cases:
1.A=0, p=0. Put

4 3
3043 — C42
4 3
—C33 + C43 — Cy9
O b
0

o O O o

2.0=0, 1< <0, 0< p<1. Put

0
g=|0
0
3
4

o O o O©

Ca2

b g L
o

DO =

w w

o O O
OO O O

o O

and put C'(z) = C(z) + A(z)H — HB(z) for ¢ € g. Then

0 0 0 0 0
0 0 0 0 0O
Cle=lo o o] =10 o
0 Ciz 04113 0 022

satisfies the following system:

323
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o O

Cl(63) = 5 01(64) = 0,

OO OO
OO OO
ho O

Ca3

where the set of coefficients cf-

; satisfies the following system:

c3a(1+p) = c33(A = 1),
cip(1+p) = cfo(A = 1),
§ Acds =0,

(1 =2u)ci; =0,

(2\ — 1)c2y = 2ucy,.

By corollary 2, Chapter II, the virtual structures C' and C' are equivalent.
Consider the following cases:

a) (A 1) ¢ {(0,1), (1,0), (1,-1)}. Put

0 0 0

0 O 0
Hi=10 0 hy

0 haa has

where the set of coefficients h;; is a solution of the following system:

11 _ 1 2
h33 = y=gc33 or haz = 97633

1 1 _ 1 2
h42 =31 042 or h42 = —'—1+uc42 ,

—_1 .1 _ 1 2
has = 33=7¢43 OF hag = 25 43

and put Ci(z) = C'(z) + A(z)H; — H1B(z) for z € g. Then

b) A =0, p= 3. Put

0 0 0

0 0 0
H=19 o —cls

0 —cip —ci

and Cy(z) = C'(z) + A(z)H; — Hy B(z) for z € g. Then

0 0 O

. 0 0 O

CZ(Gi) = 07 t= 1’2a4a 02(63) = 0 0 0
0 0 ci
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0
H = 0

OO OO

0

0

0 c§3
022 0

and Cs(z) = C'(z) + A(z)Hs — H3B(z) for € g. Then

0 0 O 0 0 O
0 0 O 0 0 O
03(61) = 0 0 0 ) 03(62) = 0 0 O 9 03(63) = 03(64) = 0
0 0 ci, 0 0 c2,
d)A=1, p=—1. Put
0 0 O
0 0 O
Hi=19 0 o
0 0 cl

and Cy(z) = C'(z) + A(z)Hy — HyB(z) for z € g. Then

0 O 0 0 O 0
0 O 0 0 0 0

Cu(er) = 0 0 o, |’ Ca(e2) = 0 0 &, | Ci(es) = Cy(es) = 0.
0 ¢ O 0 ¢, 0

This completes the proof of the Lemma.

Let (g, g) be a pair of type 4.11. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Consider the following cases:

1°. =1 < pu < 1. Then

[e1, e2] =0,

[61763] = €3, [62763] = —¢€3,

[e1,ea] = (1—XN)eq, [e2,e4] = —pes, [e3,eq] =0,

[e1, u1] = uq, [ea,u1] =0, [es,u1] =0, [es,u1] =0,
[e1,uz] =0, [e2, ua] = ua, les, ua] = u1, [eq,us] =0,
le1, us] = Aus, le2,us] = pus, [es,us] =0, [es,uz] =u;

Since the virtual structure ¢ is primary, we have

8O0 (h) 2 Res ®Rez,  §10(h) 2 Ruy,
g0 7V(h) = Res, g (h) = Rug,
g T(h) DRes,  gMM(B) 2 Rus.
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Therefore

[Ul,uz] = Q4¢€y4,
[ul,ug] = b161 + b262 + b363 -|- b464 —]— ,31u1,
[ug, us] = cre1 + coea + caes + y1u1 + Yous.

Using the Jacobi identity we see that the pair (g, g) has the form:

[,] €1 €2 €3 €4 U1 U9 us
€1 0 0 €3 (1 - )\)64 Ui 0 )\’LL3
€9 0 0 —es — ey 0 Ug  pus
€3 —€3 €3 0 0 0 Ui 0
€4 ()\ - 1)64 HEq 0 0 0 0 Ui
U1 —U 0 0 0 0 Co€4 A
Ua 0 —U9 —U1 0 —Co€4 B
usz —Aus —pus 0 —uq -A —-B 0,

A = coe3 + youq,
B = czez + caeq + 11u1 + Y2U2,
where the coeflicients ¢z, ¢4, 71 and v, satisfy the following system:
Aca = (14 p)ex =0,
Az = py2 =0,
(1 =2X)es = (14 2p)cs =0,
(I-=Xn=0+pn =0
Consider the following cases:
11% ca=c4 =71 =72 =0.
Then the pair (g, g) is trivial.
12°0 ¢ #0, A=0, p=—-1, ca =71 =72 =0.

The pair (g,g) is equivalent to the pair (g2,g2) by means of the mapping = :
g2 — @, where

Y

m(ei) = e, 1=1,2,4,

m(es) = -6-2-63,
m(uy1) = uy,
W(Uz) = C2U2,
7(uz) = us.

Since dimD?g; # dimD?g,, we see that the pairs (g1,91) and (g2, g2) are not
equivalent.

1.30.’)/2750, )\ZMZO, 62=C4=")’1:0.

Then the mapping 7 : g3 — g such that

m(ei) =€ t =1,2,3,
1
m(es) = —eq,
(4) Y2 ‘
m(u1) = uy,
m(ug) = ug,
m(uz) = yaus,
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establishes the equivalence of the pairs (g,g) and (g3, 93)-
It is easily proved that the pairs (g1,91) and (g3, 93) are not equivalent.

14°. 4 #0, A=, p=—-1, ca =711 =7 =0.
The pair (g,g) is equivalent to the pair (gs4,94) by means of the mapping 7 :
g4 — @, where

m(ei) =€, i =1,2,4,
m(e3) = l63,
C4
m(u1) = uq,
m(uz) = cqus,
m(us) = us.

Since dimD?g; # dimD?g,, we see that the pairs (gi,g1) and (g4,94) are not
equivalent.

1.5°11 #0, A=1, p=-1, s =ca =72, =0.
Then the mapping 7 : g1 — g such that

m(e;) =ei, 1=1,...,4,

m(u1) = uq,
m(u2) = y1€4 + Uz,
m(ug) = us,

establishes the equivalence of the pairs (g,g) and (g1,91) with A =1, = —1.
2°.A=0, p= % Then

{elae‘Z] - O’
[61,63] = €3, [62,63] = —E€g3,
1
le1,e4) = €4, [e2,e4] = —5 e3,e4] = 0,
[61,'&1] = Ui, [627u1] = O’ [63>u1] = Oa [64,“1] = O,
ler,ug) =0, [e2,u2] = ug, les,ug] =u1, [es,ug] =0,
1
[e1,us] =0, [e,u3] = —2—u3, les, us] = pes, [es,us] = u;.

Since the virtual structure ¢ is primary, we have

a=g""®) g PO ed b)) eg" ) ea b)) e g™,
where
§©V(h) = Res @ Rea, g (h) = Ruy,
g7 () = Res, V() = Ruy,
g7 (h) =Res,  §VP(h) = Rus.
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Therefore
[ulauZ] = 0)
[ulau?)] = 07
[U2, UB] =0.

Using the Jacobi identity we see that the pair (g, g) has the form:

[7] €1 €2 €3 €4 Uy Uz u3
el 0 0 es3 €4 u;p 0 0
€9 0 0 —E€g3 —l64 0 U2 %’LLP,
es —eg3 €3 0 6 0 w1 pey
€4 —ey %64 0 0 0 0 uy
Uy —uq 0 0 0 0 0 0
Ug 0 —U2 —Ui 0 0 0 0
u3 0 —%Ug —pes —u; 0 O 0

2.1°. p = 0. Then the pair (g, g) is trivial.
2.2°. p # 0. The pair (g,g) is equivalent to the pair (gs,gs) by means of the
mapping 7 : g5 — @, where
w(e;) =€, t=1,...,4,
m(uj) = puj, 7 =1,2,3.
Since dimD?g; # dimD?gs, we see that the pairs (g;,g1) and (gs,gs) are not
equivalent.

3. A= %, = 0. Then

[e1,€2] =0,
le1, e3] = es, [62,63] = —e€s3,
le1,e4] = %64, [e2,e4] = 0, [e3,eq] =0,
[e1, u1] = uq, [e2,u1] =0, [es,u1] =0, [eq,u1] =0,
[er,us] =0, [e2, u2] = u2, [es,ua] =uy, [es,uz] =0,
[e1,us] = pe4+%u;;, le2, usz] = ges, [es,us] =0, [es,u3] =1u;.
Since the virtual structure ¢ is primary, we have

[u1,ug] =0,

[u1,us3] =0,

[ug, us] = 0.

Using the Jacobi identity we see that the pair (g, g) has the form:

[a] €1 €2 €3 €4 U U2 usg

€1 0 0 €3 %84 uy 0 pes+ %u;;
€9 0 0 —es3 0 0 u» qca

€3 —es es3 0 0 0 wup 0

€4 —%64 0 0 0 0 0 U1

ug —U 0 0 0 0 0 0

U9 O —U2 —U1 0 0 0 0

ug —pe4—%u3 —qes 0 —u; 0 O 0
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Now we determine the group of all transformations for mappings ¢q. We have

0 0 O 0 0 O
0 0 O 0 0 O
C(er) = 00 ol C(ez) = 00 ol C(e3) = C(eq) = 0.
0 0 p 0 0 ¢
Put
0 0 O 0 0 0
0 0 O 0 0 O
01(61) = 0 0 0 ; Cl(ez) = 0 0 O 5 C,(eg) = 01(64) = 0
0 0 p 0 0 ¢

The virtual structures C' and C' are equivalent if and only if there exist matrices

P € A(g) and H € Matyx3(R) such that
C'(z) = FC(¢ Y (2))P™' + A(2)H — HB(z) for all z € g,

where ¢(z) = PzP~! and F is the matrix of the mapping ¢. Direct calculation
shows that the virtual structures C and C' are equivalent if and only if there exist
numbers a, b such that ab # 0 and the following conditions are satisfied:

' a ! a
sz—QP, q=b—29-

Using these conditions we see that any virtual structure on the generalized mod-
ule 4.11 (A = %, p = 0) is equivalent to one and only one of the following:

a)

b)

o O O o
o O OO
_— O O O

03(61) = y C3(62) = s 03(63) = 03(64) =

oo oo
coc oo
—_ o oo
co oo
co oo
Q oco o

Note that the virtual structure C! was already considered in case 1°.
For the virtual structures C?, C® we obtain the following nonequivalent pairs:
(gG ) gﬁ)a (g7 ) 97)
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4°. X =1, p = —1. Then

[61762] =0,

[61,63] = €3, [62,63] = —e€s3,
[e1,e4] =0, [e2,e4] = €4,
[61,U1] = Ui, le2,u1] = 0,

[e1,us] = pes,

[e1,us] = res+us,

THE CLASSIFICATION OF PAIRS

3, e4] =0,

les,u1] =0,  [es,ua] =0,
les, ug] = u1, [es,uz] =0,
[es,us]) =0, [ea,us] = uj.

Since the virtual structure ¢ is primary, we have

[ulau2] =0,

[ul, ’U,3] = 0,

[uz,us] = Y1Ui1.

Using the Jacobi identity we see that the pair (g, g) has the form:

[,] €1 €2 €4 Ui Uz us

e1 0 0 0 Uy pey pes+us
€2 0 0 —e3 €4 0 qeéy -|—’LL2 gez —us
€3 —€3 €3 0 0 Uy 0

€4 0 —€4 0 0 0 Uy
Ui —U1 0 0 0 0 0

Ug —pey —ges—uy —Uy 0 0 0 Y1U1
uz | —pes—usz —qeg+us up 0 —mug 0

The mapping 7 : g — g such that
' m(ei) = e, @ o4,

m(u1) = u1,

m(ug) = vieq + ug,

m(us) = us,

establishes the equivalence of the pairs (g,g) and (g',g'), where the latter has the

form:
[] e1 €2 eq U U u3
el 0 0 0 u pey pes+us
€ 0 0 —e3 4 0 ges+us ges—ug
es —e3 €3 0 0 Uy 0
€4 0 —ey 0 0 0 uy
U1 —U1 0 0 0 0 0
Usy —pey —ges—uUy  —Uj 0 0 0 0
uz | —pez—uz —qez3+us up 0 0 0

Now we determine the group of all transformations for mappings q. We have

0

00

0 0 0
Cled=10 0
0 p O

0
0
q

0 0 0

o O

y 0(63) = 0(64) =0.
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Put
0 0 O 0 0 O
0 0 0 0 0 O
C'(el) = 0 0 pl y C,(BQ) = 0 0 q, 5 C’(63) = C,(64) = 0
0 p 0 0 ¢ O

The virtual structures C and C' are equivalent if and only if there exist matrices

P € A(g) and H € Matyx3(R) such that
C'(z) = FC(p™Y2z))P™' + A(z)H — HB(z) forall z € g,

where p(z) = PzP~! and F is the matrix of the mapping ¢. Direct calculation
shows that the virtual structures C and C’ are equivalent if and only if there exist
numbers a, b, ¢ such that abc # 0 and the following conditions are satisfied:

=2 N
p_bcp, q_bCQ'

Using these conditions we see that any virtual structure on the generalized mod-
ule 4.11 (A =1, p = —1) is equivalent to one and only one of the following ones:

a)

b)
000
00 0 :
C%(er) = 00 1l C%e;) =014 =2,3,4;
010
c)
0 0 0 0 0 0
0 0 0 000
03(61) = 0 0 o 3 03(62) = 0 0 1 ) 03(63) = 03(64) =0.
0 a 0 010

Note that the virtual structure C! was already considered in case 1°.
For the virtual structures C?, C?* we obtain the following nonequivalent pairs:

(g8798)7 (§9a99>‘

Proposition 4.12. Any pair (g,g) of type 4.12 is equivalent to one and only
one of the following pairs: '

1.
[,] €1 €2 €3 €4 Uy uz Uusg
e1 0 0 es (1—=XNes ur 0 Ausg
€9 0 0 —E€3 —€4 0 U2 Us
€3 —e€3 €3 0 0 0 Uy 0
€4 (A—1)es €4 0 0 0 0 u
U1 —uq 0 0 0 0 0 0
Ug 0 —Ug  —Uj 0 0 0 0
Uus —)\’U,g —Uus3 0 —Uux 0 0 0
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2. 2=1
' [,] €1 €2 €3 €4 Ui U2 U3
0 0 e 0 U 0 wu
g; 0 0 —23 —€4 01 %) ug
€3 —e3 €3 0 0 0 wu; O
€4 0 €4 0 0 € €2 Uj
i | —un 0 0 —es O ws Q
U2 0 —U2 —Ujp —€2 —Us 0 0
us —Uus —Uus 0 —U1i 0 0 0
Proof.
Let € = {e1, ea,e3,e4} be a basis of g, where
1 00 0 00
er=1{0 0 0}, ea=1{0 1 01},
0 0 X 0 0 1
010 0 0 1
es=|10 0 0], es=10 0 0].
0 00 0 0 O
Then
0 0 O 0 0 0 O 0
0 00 0 0 0 O 0
Ae)=1pg o1 o | AD={o0 -1 o]
\O 0 0 1=\ 0 0 0 -1
0 0 0 O 0 0 0 0
0 0 0 O 0 0 0 0
A=\ _1 1 90 AW=| o 00 o)
\0 0 0 O A—=1 1 0 0

and for z € g the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-
tors e; and es.

Lemma. Any virtual structure q on generalized module 4.6 is equivalent to one
of the following:

a) A=1
0 p O
N0 = _| 0 ¢ 0},
C(ei)=0,:=1,2,3, C(eq) = g—p 0 0]
0 0 0
by A#1

Proof. Let ¢ be a virtual structure on generalized module 4.12. Without loss of
generality it can be assumed that ¢ is primary. Note that

g=a"2(h) @ gtV (h) @ gV (h),
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U = U(l’o)(b) @ U(A,l)(b) @ U(O’l)(f)),

where
g9 (h) D Res ®Rea, g V(h) DRes, g ">7I(h) D Rey,
U(l,O)(b) S Rug, U(o,l)(b) O Ruy, U(A,l)(()) D Rus.

Consider the following cases:

a) A = 1. We have

0 ¢}, O

N _ . _ 0 c3 O
Cle;))=0,i=1,2,3, Cles) = 0 0
0 0 O

Since for any virtual structure ¢ condition (6), Chapter II, must be satisfied, after
direct calculation we obtain

0 p 0
Clei) =0,:=1,2,3, Cles) = qu (q) 8
0 0 0

b) A # 1. We have
Cle;)=0, i1=1,...,4.

This completes the proof of the Lemma.

Consider the following cases:

1°. A =1.

Let (g, @) be a pair of type 4.12. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Then

[e1, e2] = 0,

[61, 63] = €3, [62,63] = —é€g,

[e1,e4] =0,  [eg,eq] = —es, [e3,e4] =0,

[er,ur] = w1, [ez,u1] =0,  [es,us] =0, [es,us] = (g —p)es,
le1,ug) =0, [eg,us] =ug, [es,uz] =uy, [e4,us] = pe; + gey,
le1,us] = ug, [ez,us] =u3, [es,us] =0, [eq,us]=1u1.

Since the virtual structure ¢ is primary, we have

a=a"2maa " PH eg V) es"Vm) ea () o> H),

where

g0(h) DRey DRez, g07V(h) 2 Res, §07V(h) 2 Rey,
g (h) 2 Ruy, gV (h) 2 Ruz,  3V(h) 2 Rus.
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Therefore
[u1,us] = agus,
[Ul,ua] =0,
[UQ, ’LL3] = 0

Using the Jacobi identity we see that the pair (g, g) has the form

€1 €9 €3 €4 (73] U2 us

e 0 0 e 0 u 0 u
e; 0 0 ——23 —eyq O1 Ug ug
€3 —€3 €3 0 0 Ui 0
es 0 €4 0 0 pes  pex Ui
Uq —Uuq 0 0 —pes 0 pus 0
U2 0 —Ug —U1 —pe€z —pPus 0 0
U3 —u3 —us —Uq 0 0

1.1°. p=0.

Then the pair (g, g) is equivalent to the trivial pair (g1,g1).

1.2°. p#0.

Then the pair (g, g) is equivalent to the pair (g2, g2) by means of the mapping
T : g2 — @, where
m(e;) =ei, t=1,...,4,
m(u;) = pugy, 0 =1,2,3,

and since dim(gs, g2) # dim(g1, g1), we conclude that the pairs (g2, 92) and (g1,81)
are not equivalent.

20\ # 1.

Then it can be assumed that the virtual pair (g, g) is defined by one of the virtual
structures determined in the Lemma. Then

le1,e2] =0,

le1,e3] = e3, [62, 63] = —€3,

le1,ea] = (1 — Nea, [e2,e4] = —eq, [es,es] =0,

[61,U1] =ui, [Gz,ul] =0, [63au1] =0, [54»u1] =0,
[61,U2] =0, [ez,uz] = Uz, [63, uz] = u1, [64,U2] =0,
le1, us] = Aus, le2, us] = us, [es,us] =0, [es,us]=u;.

Since the virtual structure ¢ is primary, we have

g=0"Ym eg" M Vm)egVm) ea™ 0) eg ™V m) o gV (),

where

g”(h) 2 Rey @ Rez, gH7V(h) 2 Res, g M 7V(h) 2 Rey,

§"”(h) 2 Ruy, g@V() D Ruz, gV (h) 2 Rus.
Therefore
[u1,us] =0,
[u1,u3] =0,
[’LLQ, U3] =0.

The pair (g, g) is trivial.
This completes the proof of the Proposition.
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Proposition 4.13. Any pair (g,9) of type 4.13 is equivalent to one and only
one of the following pairs:

1.
[,] e1 €2 es €4 o Uy us
e 0 e e .0 U 0 0
6; —€2 02 6’ )\62 + e3 01 U1 0
€3 —€3 0 0 —€9 + )\63 0 (751
€4 0 —Xeg—e3 e — des 0 Aug —uz ug+ A\usg
ui | —w () 0 0 0 0
U2 0 —U1 0 ug — /\U2 0 0 0
Uus 0 0 —Ux —Ug — /\Ug 0 0 0
22.2=0
[,] €1 €2 €3 €4 Ui U2 us
e 0 e e 0 u 0 0
6;12 —E€9 (f 6’ €3 01 Ul 0
€3 —e3 0 0 —e O 0 uy
€4 0 —e3 € 0 0 —us wusg
Ul —Uy 0 (f 0 0 € €3
U 0 —u 0 uz  —es 7
Us 0 —Uy3 —Ug —E€3 —€4 6
3. A=0
[7] €1 €2 €3 €4 U1 U2 us
e 0 e e 0 u 0 0
e; —e9 02 09’ es 01 U 0
€3 —E€3 0 0 —€2 0 Uq
€4 0 —e3 € 0 0 —uz u
Uq —U1 0 & 0 0 —E€9 —E€3
Ug 0 —uq 0 U3 €9 0 —eyq
us 0 0 —U1 —Us €3 €4 0
Proof. Let € = {e1,e2,e3,e4} be a basis of g, where
/1 0 0 0 1 0
egr=10 0 0), e2e=10 0 0],
0 0 0 \0 0 0
0 0 1 0 0 O
es=|0 0 0], ea=]0 X 1]}.
0 0 O 0 -1 X
Then
(0 0 0 0 0 0 0 0
10 1 00 [ -1 0 0 X
Ale)=19 01 0] AHD=| g g9 1)’
\0 0 0 O \ 0 0 0 O
0 0 0 O 0 O 0 0
0 0 0 -1 0O —Xx 1 0
Ales)=| 3 g o o | Aed=10 3 _y o]
0 0 0 O 0 0 0 0

and for « € g the matrix B(z) is identified with z.
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By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vectors
e; and es.
Consider the complex generalized module (g€, U®). Put

gi=e®1, 1<1<4

and
ﬂj:u]~®1, 1<7<3.

Then € = {€1,€2,€3,€4} is a basis of gC. The vector space UC can be identified
with C*, and {1, dig, i3} is the standard basis of U®.

Lemma. Any virtual pair (g,g) of type 4.13 is trivial.

Proof. Suppose (g, g) is a virtual pair defined by a virtual structure q. By Propo-
sition 15, Chapter II, without loss of generality it can be assumed that ¢C is primary
virtual structure on the generalized module (g©, U C) (with respect to ). Since

g (h%) = Ce1 @ Cey,

g mMI(HC) = (6, + 163),

g AI(HC) = (6, — iés),
(UC)(l,O)(bC) — (Cul,

(U OMIGC) = Cliz + diis),
(US)OA7D(HC) = Cliip — dis),

we have
g% (é1)(iin) = 0, g% (82 +i&3)(ii1) = 0,
¢%(&1)(tiz + 1ti3) = 0, q“(é2 + 163) (i + iii3) = 0,
qc(él)(ﬂg —1tig) =0, qc(éz + 1é3)(tg —ttz) = 0,
q“ (62 — iés)(1i1) =0, q%(&4)(ii1) = 0,
qC(é2 - 153)(’&2 + 2’&3) = 0, qc(é4)(ﬁ2 + ’Lag) = 0,
q“(E2 — i8s) iy — diig) =0, ¢%(é4)(iip — dtis) = 0.
Therefore,

¢CEN(u;) =0, 1<i<4, 1<j<3.

Since the matrices of the mappings g(e;) and ¢%(&;), 1 < i < 4, coincide, we obtain
Cle) =0, 1<i<4.

This completes the proof of the Lemma.
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Thus, it can be assumed that the virtual structure ¢ determining the virtual pair
(g,9) is the zero mapping of g into £(U, g). Then,

[61762] =0,

[61,63] = €3, [62, 63] =0,

[e1,e4] =0, [e2,e4] = Aea +e3, [es,eqa] = —eq + Aes,

le1,u1] = u1, [e2,u1] =0, [es,u1] =0, [ea;ua] =0,

[e1,u2] =0, [e2,uz] = uq, [es,us] =0, [es, uz] = Aug — ug,
[e1,us] =0, [ez2,u3] =0, les,us] = uq, [ea,us] = ug + Aus.

Since ¢© is a primary virtual structure on the generalized module (g&, U®), we have
@)*(6%) = (@9)*(6°) x (US)*(H°) for all a € (h©)*
(Proposition 10, Chapter II). Thus,
g0 (hC) = Cey & Ce, g1 TI(00) = C(e, + i),
g AI(00) = C(& — i), g (h°) = Cuy,
g0 MIO) = Claz +itis), g0 TV(05) = Caz — idis),
and
[t1, Ty + i3] e gtMIn),
[ty, Uy — itig] e g I("),
[ty + i, Ty —7iis] €  §O*V(HO).

Consider the following cases:

1°. A # 0. Then
[ty, g + 2ti3] = 0,
[ty, 09 —1ti3] = 0,
[Ug + iUz, Ug — 1U3] = —2i[tg, U3] = 0.
Hence,
[ulau2] =Y,

and the pair (g, g) is trivial.
2°. A =0. Then

[G1, U + 2Us] = [U1, Ug] + ¢[ty, U] € C(é2 + 1€3),
Z[~1,ﬂ3] - C(éz — ié;;),

[112 + z'113,122 — ’L’L~L3] = —Zi[ﬁz,u;;] € (Cel + 664.

[U1, U — iUg] = [Uy,Uz] — 1
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Hence,
[u1,uz] = azeq + ases,
[u1,us] = baeg + bses,

[uz,us] = cre1 + caea.

Using the Jacobi identity we see that the pair (g, g) has the form:

[,] €1 €2 €3 €4 Ui U2 us3
€1 0 € €3 0 Ul 0 0
€9 —€9 (f 0 €3 0 U1 0
es —eg3 0 —eqeg 0 Uq
€4 0 —e3 e é) 0 —usg Ug
uq —uq (? 0 0 g€y ag€3
Ug 0 —uq 0 us3 —ages %) asey
us 0 0 —Ui —U9 —ag€zy —Aagety 20

2.1°. az = 0. Then the pair (g, g) is equivalent to the trivial pair (g1, g1).
2.2°. ag > 0. Then the pair (g, g) is equivalent to the pair (g2, g2) by means of
the mapping 7 : g2 — @ such that

m(e;)) =ei, 1 =1,...,4,
1

m(uj) = ~\/Cl_—2

2.3°. a2 < 0. Then the pair (g, g) is equivalent to the pair (g3, gs) by means of
the mapping 7 : gg — @ such that

uj, j=1,2,3.

It remains to show that the pairs determined in the Proposition are not equiv-
alent, whenever A = 0. Since dimDg; # dimDg, and dim Dg; # dim Dgs, we see
that none of the pairs (g2,92) and (g3, g3) is equivalent to the pair (g1,81). By as
and ag denote Levi subalgebras of the Lie algebras g, and gs respectively. Note
that a; = sl(2,R) and as = su(2). Therefore, the pairs (g2, g2) and (g3, gs) are not
equivalent.

This completes the proof of the Proposition.

Proposition 4.14. Any pair (g,g) of type 4.13 is equivalent to one and only
one of the following pairs:

1.
[,] €1 €2 €3 €4 uy Uz  Ug
€1 0 0 Aes — ey Aeg +e3  Auy  —uz  ug
€9 0 0 (p—1)es (p—1)es pur us ug
€3 €4 — )\63 1-— H)E3 0 0 Uy 0
€4 —e€e3 — )\64 1-— H)Eq 0 0 0 0 U1
Ui —>\U1 —Huy 0 0 0 0 0
U2 us — U9 —U1 0 0 0 0
Us —U9 —Uus 0 —Ul 0 0 0
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2. 0A=0,u=
[7] €1 €2 €3 €4 U1 U2 U3
e 0 0 —e e 0 —u U
e; 0 0 —eg —24 0 u23 ug
€3 eq €3 8 8 8 uy + eq 6_{%
e —e e —e U e
s 00 0 0 0 0 82 ' 0 !
u u —Uy —U] — € e
ug —32 —ug -1—62 ! —Uq z epr O 0 0
3 A=0,pu=0
[a] €1 €2 €3 €4 Ui U2 Uus3
e 0 0 —e e 0 —u u
e; 0 0 —e§ —24 0 u23 ugz,
ez | e4 €3 8 8 8u1 +aej+e —_El +a_ﬁ2
eq4 | —€ e e —ae uit+ae;+e
uli 5 3 61 0 0 8 1 8 2 1 81 2
u U3 —Ug —U]—QE]—E aeq—e
u§ —1322 —u§ —1a62 +161 2 —Uy —2a61 1—62 0 0 0 , O 2 0
4. A=0,u=2
[] €1 €2 €3 e4 Uy U us
el 0 0 —e4 es 0 —ugz +e3 Ug+ e4
€ 0 0 e e 2uq Ug us
€3 €4 —€3 0’; 6 0 Uy 0
€4 —€3 —€4 0 0 0 0 U
1 0 2y, 0 0 0 0 0
U2 Ug — €3 —U9 — U1 0 0 0 0
us —Ug — €4 —Uus 0 —Uy 0 0 0
5. A=0,pu=2.
[,] e1 e es e4 Uy Ug us
€1 0 0 —€4 €3 0 —usz + aes U2 - O€Ey
€2 0 0 €3 €4 2u1 (%) + €3 us + €4
es €4 —e3 0 0 0 U 0
€4 —€3 —€4 0 0 0 0 Uy
U1 0 —2u1 0 0 0 0 0
U9 Uz — aeg —Ug — €3 —Up 0 0 0 0
U3 —Ug — ey —U3 — €4 0 —u; 0 0 0

Proof. Let € = {e1,e2,e3,e4} be a basis of g, where

A0 0 g 0 0 010 00 1
es=10 0 1],ea=10 1 0},e3s=10 0 0),es=10 0 0
0 -1 0 0 0 1 00 0 00 0
Then
00 0 0 00 0 0
00 0 O 00 0 0
Ale)=1¢g o A 1] A(e2)—(00u—1 o |’
00 -1 X 00 0 pu-—1
0 0 00 0 0 00
0o 0 00 0 0 00
Ales) = | _) 1—M00’A(e4)‘(—~1 0o o0 0]
1 0 00 “X 1—p 0 0
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and for z € g the matrix B(z) is identified with z.

By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vectors
e1 and ey. Consider the complex generalized module (g&, U®). Put

Ei=e;®1,1=1,...,4, and ﬁj:u]'®1,j:1,2,3-

Then € = {&1,¢é,,¢3,64} is a basis of g*. The vector space UC can be identified
with C*, and {@1, U2, U3} is the standard basis of UC.

Lemma. Any virtual pair (g,g) of type 4.14 is equivalent to one of the following

a) (A, 1) € {(0,0), (0,2)}

b)A=0,u=2
0 0 O 0 0 O
0 0 O 0 0 O
Cay(er) = 00 pl° Ca(e) = 0 r s Ca(e3) = Caeq) = 0;
0 0 ¢ 0 —s r
)A=0,u=0
0 p —¢ 0 ¢ p
0 0 -
Caler) = Calea) =0, Cales)=|, & b |, Csley={, F &
0 0 O 0 0 0

Proof. Suppose (g, @) is a virtual pair defined by a virtual structure g. By Propo-
sition 15, Chapter II, without loss of generality it can be assumed that ¢ is a

primary virtual structure on the generalized module (g&, U®) (with respect to h(c)
Note that

g9 (h%) > Cé; @ Cé,, (US)N, w)(6%) D Ciy,
g # V(%) D Cés+id),  (UC)BD(HC) O C (i +iis),
g D(B%) D C(és—idy), (US)THD(HC) D C (g —iis).
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Suppose A = 0 and y = 2. Then

¢~ (&1)(@) =0,
q© (s +ié4)(i) =0,
g% (&1)(tz + iti3) € C(&; +1ié4),
q° (€5 +1€4)(Ug +103) =0,
g% (&1)( — iii3) € C(& —iéa),
g% (é3 +184)(iiz — iti3) =0,
¢© (& —iéq)(iin) =0,
¢© (&2)(iia) =0,
qC (63 —iéq)(iig + iti3) =0,
% (&2)(tig + 7ii3) € C(és + 1é4),
g% (&3 —ié4)(tig — iti3) = 0,
q© (é2)(tip — vti3) € C(é3 —iéy),
and Co 3
¢ (&1)() = ¢~ (&)(ii2) = 0,
¢% (¢1)(iis) € Cé3 + Céy,
q% (é1)(ii3) € Cé; + Céq,
¢° (&2)(i2) € C& + Céa,
¢% (&)(ii3) € Cés + Céq,
¢ (&)(i;) =0, i=3,4,j=123.
Since the matrices of the mappings g(e;) and ¢© (&), 7 = 1,...,4, coincide, we get
0 0 0 0 O 0
Cle)=| ¢ 022 cgg . Cle)=| ¢ cgz cga . Cles) = Cleq) = 0.
0 cip cis 0 ciy cis

Checking condition (6), Chapter II, for z,y € £, we obtain
¢y = cip =0,
ciy = cis,
cfs = —clp-
Finally put Cy = C.
In a similar way we obtain the other results of the Lemma.

Thus, it can be assumed that any virtual structure on (g,U) has the form de-

termined in the Lemma. Since ¢ is a primary virtual structure on the generalized
module (g©, U®), we have

(@)7(5%) = (@) (h%) x (U")*(h°) for all a € (h°)*
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(Proposition 10, Chapter II). Therefore,

@) > CaCa,  (@F@)M() D Ca,
(@ )(0°) D Clestids), (@) V() D Claiz+iia),
(" (%) D C (& —ica), (@) V() D C(ar—itis).

Consider the following cases:

1°. (A, p) ¢ {(0,0), (0,2)}. Then

_[ela 62] - Oa

[e1,e3] = Nes—eq, [e2,e3] = (u—1es,
[e1,e4] = es+Neq, [e2,6e4] = (—1eq, [es,eq] =0
[e1,u1] = Auy, [e2,u1] = puy, [es,u1] = [ea,u1] =0,
[e1,us] = —us, [e2,us] = uz, les,ua] = u1, [es,us] =0,
[e1,us] = ug, [e2,u3] = us, [es,us] = [e4,u3] = uy.
We have

[y, U + tlUg] = [U1, Us] + ¢[U1, U] = 0,

[y, Ug — ttg] = [Uy, Ug) — ¢[Uy,Us] = 0,

[ + iiig, dia — 4ii3) = —2i[da, i3] = 0.

Hence,

and the pair (g, g) is trivial.
2°. A= p =0. Then

le1, e2] =
[61, 3] = —€4, [62,63] —es,
le1,e4] = €3,  [ea,e4] = —eq, [e3,e4] =0,
ler,u1] = [e2,u1] =0, [es,u1] = 0,
le1,ug] = —us, [ez,uz] =ug, [e3,us] = uy+pe;+qes,
le1,us] = up, [eg,us] =us, [e3,us] = —qe1+pes,
We have
[G1, U + its] € C(tug + its),
[y, 09 — ttg] € C(Ug — tl3),
[ty + itis, dig — idig] = 0.
Hence,

[u1, uz2] = ages + ages,
[u1,us] = Boug + Baus,

[’LL2, U3] =0.

[64,U1] - 07
[64, u2] = g€1 —pez,

le4,us] = ui+pes+gez.



4. FOUR-DIMENSIONAL CASE 343

Using the Jacobi identity we see that the pair (g, g) has the form:

[a] €1 €2 €3 €4

Ui U2 us
e1 0 0 —eq4 €3 0 —uz wug
€ 0 0 —e3 —eq 0 u U
€3 €4 €3 0 0 0 ff 15
€4 —E€3 €4 0 0 0 —-13 fi
Uy 0 0 0 0 0 0 0
(%) us —U3 —A B 0 0 0
us —U2 —Ug —-B —A 0 0 0 y

where
A = wuy + pey + gea,

B = —qeq + pea.

2.1°. p = ¢ = 0. Then the pair (g, g) is trivial.
2.2° p 75 0, ¢ = 0. Then the pair (g,g) is equivalent to the pair (gz2,g92) by
means of the mapping 7 : go — @ such that

m(e;) =ei, 1 =1,...,4,
1

m(u;) = —uj, j=1,2,3.
p

2.3°. ¢ # 0, p/q < 0. Then the pair (g,g) is equivalent to the pair (g3,gs)
(a = p/q) by means of the mapping 7 : g3 — g such that

m(e;) =€, 1 =1,...,4,
1 )
m(uj) = Z—)uj, j=1,2,3.

2.4°. ¢ # 0, p/q > 0. Then the pair (g,g) is equivalent to the pair (gs,gs)
(a = —p/q) by means of the mapping 7 : g5 — g such that

n(e1) = —ey,
1
m(e2) = ez, w(uy) = EUI’
1
m(es) = e, m(ug)= ;u;;,

1
m(es) = e3, m(ug) = Z—)Uz.

Since the virtual pairs (g1,91), (82,92), and (@s,g3) are not equivalent, we see
that the pairs 4.14.1, 4.14.2, and 4.14.3 are not equivalent.

3°. A=0, p = 2. Then

[e1,e2] =0,

[61,63] = —€4, [62,63] —e€s3,

le1,e4] = e3, le2, e4] = —eq, [e3,e4] =0,

[e1,u1] =0, [e2,u1] =0, les,u1] =0, [es,u1] =0,
[e1, uz] = —us, le2, ug] = ugtres—ses, [es,us] =u1, [es,u2] =0,
le1,us) = up+pes+qes, [ea,us] =us+ses+res, [es,us] =0, [es,us]=1uy



344 III. THE CLASSIFICATION OF PAIRS

We have o N
[dy,Up + 23] = 0,
[y, —iu3] =0,
[t + 1U3, Uy — iUz] € Ciy.
Hence,
[ul,uz] = 0,
[ur,us] =0,

[u2,u3] = Y1Ui1.

Using the Jacobi identity we see that the pair (g,g) has the form:

[,] €1 €9 €3 €4 Uy U2 Us

€1 0 0 —€4 €3 0 —Uus uz+qe4
€2 0 0 €3 €4 2U1 Ug+res uUztrey
€3 €4 —€3 0 0 0 Ui 0

€4 —E€3 —€4 0 0 0 0 (75}
Uy 0 —2uy 0 0 0 0 0
Ug us —Ug—Teg  —Up 0 0 0 Y1uU1
U3 —Ug—qeq4 —Ugz—Tey 0 —u; 0 —Y1U1 0

Consider the pair (g, g'):

[,] €1 €2 €3 €4 U1 U2 us
€1 0 0 —€4 €3 0 —Uus ’LL2+Q64
€ 0 0 es es4 2uy us+res ustrey
€3 €4 —e€3 0 0 0 (5] 0
€4 —€3 —€4 0 0 0 0 Ui
Uy 0 —2u3 0 0 0 0 0
U9 us —Ug—TEs3 —U1 0 0 0 0
Uus —Ug—qeqs —Uz—Tey 0 —u; 0 0 0

The pair (g', g') is equivalent to the pair (g, g) by means of the mapping 7 : g’ — @,

such that '
m(ei) =€, 1 =1,...,4,

m(uy) = uq,
7T(U,2) = Ug — %64,
m(ug) = ug + 7?163.

3.1°. r = ¢ = 0. Then the pair (g',¢') is trivial.
3.2°. ¢ # 0, r = 0. Then the pair (g',g') is equivalent to the pair (gs,84) by
means of the mapping 7 : g4 — @' such that

m(ei) =€, 1 =1,...,4,

2
m(uy) = —uq,
(u2) 2 1
(U = —Uu + —€
2 q 2 2 4,

2 1
m(us) = Eug + 563.
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3.3°. r # 0. Then the pair (g', g') is equivalent to the pair (gs,95) (a = p/(2r))
by means of the mapping 7 : g5 — g’ such that
m(e;) =€, 1=1,...,4,
1

m(uy) = ;ul,
1
m(ug) = uz + 23764,

m(ug) = ;u:; + 4q—re;;.

Since the virtual pairs (g1,91), (84,04), and (gs,8s5) are not equivalent, we see
that the pairs 4.14.1, 4.14.4, and 4.14.5, are not equivalent.
This completes the proof of the Proposition.

Proposition 4.15. Any pair (g,g) of type 4.15 is trivial.

[,] €1 €2 €3 €4 Uy Uz us

el 0 0 ez —Xeg e4 up O Aug
€2 0 0 —€3 — €4 —€4 0 U2 U + Uus
€3 )\64 — €3 es +eq 0 0 0 Ui 0

e4 —ey e 0 0 0 Uq
Uy —u 0 0 0 0 0 0
(7)) 0 —U?2 —U1 0 0 0
us —)\’LL2 —Ug — U3 0 —U1 0 0 0

Proof. Consider z € g such that

o = O
>
= 4 o
—

1
=10
0

Note that zy = idy +, where ¢ is a nilpotent endomorphism. Then, by Proposi-
tion 13, Chapter 1I, the pair (g, g) is trivial.

Proposition 4.16. Any pair (g,q) of type 4.16 is trivial.

[,] €1 €2 €3 €4 U U2 U3
e1 0 0 es—es €4 u3 0 w

€2 0 0 —€3 —€4 0 %) ug
€3 €4 — €3 €3 0 0 0 U1y 0
€4 —€4 €4 0 0 0 0 Ui
(5] —U1 0 0 0 0 0 0
U2 0 —U2 —Uu 0 0 0 0
Uus —U2 —Uus 0 —Uux 0 0 0

Proof. Consider x € g such that

O = O

1 0
z=10 1
0 1
Note that zy = idy +¢, where ¢ is a nilpotent endomorphism. Then, by Propos1—

tion 13, Chapter II, the pair (g, g) is trivial.
And this proves the Proposition.
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Proposition 4.17. Any pair (g,g) of type 4.17 is trivial.

e1 €2 €3 €4 U1 Uz us
€1 0 0 es + )\64 €4 U1 )\ul + us9 0
€9 0 0 €4 — €3 —€4 0 Uy Uus
€3 —€3 — )\64 €3 — €4 0 0 0 0 U9
€4 —€4 €4 0 0 0 0 U1
Uy —uq 0 0 0 0 0 0
U2 -)\u — U9 U1 0 0 0 0 0
s 0 —usg  —uy  —uy O 0 0
Proof. Consider z € g such that

1 A+1 0

=0 1 0

0 0 1

Note that xy = idy +¢, where ¢ is a nilpotent endomorphism. Then, by Proposi-
tion 13, Chapter II, the pair (g, g) is trivial.

Proposition 4.18. Any pair (g,g) of type 4.18 is trivial.

€1 €9 €3 €4 {'5] Usg Uus
e 0 e es + e 0 Uy U1+ u 0
6; —€2 6 2 0 : €2 01 ! 0 2 U1
€3 —€g — €3 0 0 € 0 0 U9
€4 0 —€9 —E€3 d; 0 0 us
U1 —U1 0 0 0 0 0 0
U2 —Up — U3 0 0 0 0 0 0
Uus 0 —U1 —U9 —Uus 0 0 0
Proof. Consider z € g such that

1 10

zr=10 1 0

0 0 1

Note that 2y = idy +¢, where ¢ is a nilpotent endomorphism. Then, by Proposi-
tion 13, Chapter II, the pair (g, g) is trivial.

Proposition 4.19. Any pair (g,g) of type 4.19 is equivalent to one and only
one of the following pairs:

1.
[7] €1 €2 €3 €4 Uy Uz ug
e 0 0 —e3 —e 0 0 wu
6; 0 0 643 0" 0 Uy 0
%3 €3 —E€4 0 0 0 Ug
€4 €4 0 0 0 0 Uq
uq 0 0 0 0 0 0 0
Uo 0 —Uq 0 0 0 0 0
Us —Uus 0 —U9 —U1 0 0 0
2.
[a] €1 €2 €3 €4 U1 U2 us
e 0 0 —e —e 0 0 u
e 0 0 e 0 0 w O
€3 €3 —€4 0 0 —€4 —263 U9
€4 €4 0 0 0 0 —€4 Uy
uy 0 0 e4 0 0 Uy 0
Uo 0 —uy; 2es €4 —Up 0 —2us
us —UuUs 0 —Ug2 —Ui 0 2U3 0
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Proof. Let € = {ey,e3,e3,e4} be a basis of g, where

0 0

0],

€1 =

€3 =

oo o O O
OO O O oo
O = O

Then

= O O O O oo

Ales) =
0

€y =

OO O O OO

and for x € g the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-

tor e;y.

OO O O O

_— OO OO O o oo

OO = O OO

N~— S

OO OO OO oo

347

OO OO O OO
OO OO C O oo

Lemma. Any virtual structure q on generalized module 4.19 is equivalent to

one of the following:

0(61)20,
0 0 —2p\
0 0
Cles)=10 o g
0 0 0

0(62) =

) 0(64) =

o O O

0
0
(o
0

0

oo oow O

b

0
o)
0
0/
0\
p\

o)

Proof. Let q be a virtual structure on generalized module 4.19. Without loss of
generality it can be assumed that ¢ is primary. Since

9(_1)(5) = Res @ Rey,
U(O)(h) = Ru; @ Rugy, U(l)(b) = Rus,

9(0)(5) = Re; @ Rey,

we have
cil ciz 0
c c 0
C(el) = (2)1 62 0 )
0 0 O
( 0 0
0 0
Cles) = 231
( 3) c§1 c%z 0
cyy ¢ O

()

OO O ONN=N

o

Y
NGNS
R

NN
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Put

—ggl _ggz 0

— | ¢u ¢z 0
H= 0 0 0
0 0 0

and Ci(z) = C(z) + A(z)H — HB(z) for z € g. Then

(cil ciz 0 Cgl czz + c§1 0
c c 0 c Coe — C 0
Ca(er) = \gl I AT R I B
0 0 O 0 0 0
0 0 cz3 + cgz 0 0 c§3 + C§1
_ 10 0 c33—cyy _ 0 0 Cog3 — Cy3
01(63) = 0 0 0 3 0(64) — c%l C%Z 0

By corollary 2, Chapter II, the virtual structures C' and C are equivalent.
Checking condition (6) for the mapping C1, we obtain:

0 0 O 0 0 O
Ced={g o o Cled=|g b ol
0O 0 O 0 0 O
0 0 —2 /000\
Cle)=[o o & | Glew=|g o b
\o 0 o 0 p 0

This completes the proof of the Lemma.

Let (g, g) be a pair of type 4.19. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Then

[61? 62] = Oa

[61,63] = —€3,

[62; 63] = €3,

[e1,€e4] = —€4, [e2,€4] =0, [es,eqa] =0,

ler,u1] =0, le2,u1] =0, [es,u1] =0, les,u1] =0,
le1, uz] =0, le2, us] = u1+peq, [e3,uz] =0, le4, uz] = pey,
[er,us] = usg, [ez,us] =0, les, us] = uz—2pey+qea, [es,us] = uy+pes.

Since the virtual

(Proposition 10,

structure ¢ is primary, we have
g%(h) =g%(h) x U*(h*) for all « € R
Chapter II). Thus

39(h) = Re; @ Rey ® Ruy & Ruy,
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V() = Res @ Rey, gV (h) = Rus.

Therefore
[u1,us] € 5O (B),
[U1,U3] 9(1)(5)
[uz,us] € gV (h),
and

[u1,uz] = a1 + a2 + aqus + agug,
[U1,U3] = 53”3,

[u2a U3] = Y3Uu3.

Using the Jacobi identity we obtain:

ag=az = oy =ay =0,

ﬁ3:07
g =0,
")/320.

It follows that the pair (g, g) has the form:

[a] €1 €2 €3 €4 U1 U2 us

0 0 —e —e 0 0 U
Z; 0 0 643 04 0 U1 + PeE2 03
€3 €3 —064 8 8 8 — 2pey
e e e u1 + pe
PR L S T
U —Uui — pe —pe
ug —Uus ! 0 bez — U9 + 2p61 —ulp—%liz 0 0 0

1°. p = 0. The pair (g, g) is equivalent to the trivial pair (g1, g1).
2°. p # 0. The pair (g,g) is equivalent to the pair (gz,g2) by means of the
mapping 7 : g2 — @, where

m(e) =€, t=1,...,4,
1

m(uy) = —uy + ey,
p

W(UQ) == ]—)UQ — 261,

1

7T(U3) = Z—)’u;;.

Since g; is a solvable Lie algebra and g, is unsolvable, we see that the pairs
(91,91) and (g2, g2) are not equivalent.
This completes the proof of the Proposition.
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Proposition 4.20. Any pair (g,g) of type 4.20 is equivalent to one and only
one of the following pairs:

1.
[a] €1 €2 €3 €4 Uy Uz Usg
e1 0 —es —dez (I1—XNes 0 wup Aug
€2 €9 0 0 €3 0 Uq 0
€3 )\63 0 0 0 0 0 U1
€4 ()\ — 1)64 —€3 0 0 0 0 U2
Uy 0 0 0 0 0 O 0
U2 —U9 —U1 0 0 0 0 0
us3 —Aug 0 —uy —Ug 0o 0 0
2. A=—3
[7] €1 €2 €3 €4 Uy U2 us3
€1 0 —€9 —1—63 -3-64 0 U9 —lu;;
€9 €9 0 20 263 0 UuUq %)
e3 —éeg 0 0 0 0 0 Uq
€4 —5€4 —E€g3 0 0 0 0 U9
w b 0 0 0 0 0 0
U9 —U3 —Ui 0 0 0 0 €3
ug %u 0 —u; —uy 0 —eg 0
3 2=0
[7] €1 €2 €3 €4 Ui U2 us
e 0 —e 0 e 0 U 0
& & 00 0 e 0 u 0
e G o 0 0 0 0 u
€4 —e4 —e3 0 0 0 0 Us
Uy 0 0 0 0 0 0 es3
Ug —Ug —U1 0 0 0 0 €4
us 0 0 —U1 —U2 —E€3 —€4 0
4. X=0
[,] €1 €2 €3 €4 U U2 U3
e 0 —e 0 e 0 wu 0
e ez 00 0 e 0 u 0
e G 0 0 0 0 0 wu
€4 —€4 —E€3 0 0 0 0 U2
U 0 0 0 0 0 —es
Ug —Uy  —Uj 0 0 0 —ey
ug 0 0 —u; —-us e e O
5 A=
[7] €1 €2 €3 €4 (731 U us
e 0 —e 0 e 0 u 0
& &2 00 0 e 0 us 0
e G o0 0 0 0 0 "
€4 —€y4 —€3 0 0 0 0 U9
U1 0 0 0 0 0 aes + uy
Us —Ug  —Up 0 0 0 0 aeq + ug
U3 0 —U1 —Uy —QEe3 — U] —Qeq4 — U 0
6. =0
[a] €1 €2 €3 €4 Uy Uz ug
e 0 —e 0 e 0 u
ol e 020 ea 0« G
S
e —¢ —e U
w1 0" 0o 0 0 0 0 ¢
Ug —U2 — U1 0 O 0 0 0
us —E€3 0 —U1 —U2 0 0 0
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7.2=0
[,] €1 €2 €3 €4 Ui U2 us
e 0 —e 0 e 0 u e
e; e ()2 0 eg 0 ui 0?’
& G 0 0 0 0 0 wu
€4 —€4 —E€3 0 0 0 0 U9
Uy 0 0 0 0 0 0 es
U9 —Uz —Ujp 0 0 0 0 €4
Uus —E€3 0 —Ui —Ug —E€3 —€4 0
8 2=0
[,] €1 €2 €3 €4 Uy U2 us
e 0 —e 0 e 0 wu e
eé e 02 0 eg 0 u? j
es G 0 0 0 0 0 w
€4 —€y4 —E€3 0 0 0 0 U9
Uy 0 0 0 0 0 0 —es
U2 —Uz2 —Uq 0 0 0 0 —€4
us —E€3 0 —U1 —U2 €3 €4 0
9. 2=0
[,] €1 €2 €3 €4 U1 U2 us
e 0 —e 0 e 0 U e
e; e 02 0 64 0 uf 0z
e G o 0 0 0 w1
€4 —€4 —E€3 0 0 0 0 U3
Ui 0 0 0 0 0 0 (0751 + U1
Ug —Ug  —Up 0 0 0 0 aeq + ug
U3 —e3 0 —U1 —Uy —Qe3 — U] —O0eq — Ug
10. \ =
[,] €1 €2 €3 €4 Uy U2 U
e 0 —ey —€ 0 0
e; € 02 03 €3 0 g? Zi
es e 0 0 0 0 0 up
es G —e 0 0 0 0 wu
Uy 0 0 0 0 0 0 O
U2 —Uy  —Uq 0 0 0 0 0
us —Uus —€4 —U1 —U2 0 0 0
11. A =1
[,] €1 €2 €3 €4 U1 U2 U3
€1 0 —E€9 —E€3 0 0 U9 us
€2 €9 0 0 e e3s U1 ey
& e 0 0 0 0 0 w
ex 0 —e 0 0 0 0 wu
Uy 0 —e3 0 0 0 0 w9
U —Uuy —Up 0 0 0 0 0
us3 —u3 —e; —u; —uy —uz 0 O
12. A =1
(] el €2 €3 €4 up U2 us3
e1 0 —eg —e3 0 0 Ug us
€9 €9 0 0 e e3s U3 €1 +eq
e | e 0 0 0 0 0 ‘us
€4 0 —E€3 0 0 0 0 U9
U1 0 —€3 0 0 0 0 U2
Uz —U2 —u1 0 0 0 0 0
U3 —ug —eyj—e4 —uU; —us —ug 0 0
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13. A =3
[>] €1 €2 €3 €4 Uy Uz U3
e1 0 —eg —3ez3 —2e4 0 ug 3usg
€2 €2 0 €3 0 Uy
es3 %63 0 8 8 8 0 w
e e —e e U
ui of 0> 0 o o ¢ ¢
Ug —U2 —U1 0 —€2 0 0 0
U3 —3us 0 —u; —uy 0 O 0
Proof.

Let € = {e1,e2,e3,e4} be a basis of g, where

00 0 01 0 00 1 00 0
=101 0],ea=[000),es=(000},ea=({0 0 1].
0 0 A\ 00 0 00 0 0 0 0
Then
00 0 0 00 0 0
0 -1 0 0 100 0
Ale)=19 o _x o |> A=y ¢ 0 1]
0 0 0 1-—2)\ 00 0 0
0000 0 0 0 0
000 0 0 0 0 0
Ales) = g 0 o’ Ale)=1 o 1 0 o]
0000 A—=1 0 0 0

and for z € g the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-
tor e;.

Lemma. Any virtual structure q on generalized module 4.20 is equivalent to
one of the following:

CL) A ¢ {_1a0>1a3}

b) A= -1
0 0 O
Clen={g ° Bl clen=0i=234
0 0 O
c)A=0
0 0 O
Clen=|g o 5| Cle)=0.i=234
0 0 O
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dyr=1
0 0 p
0 0 0 ,
Cles) = » 0 0] Clei) =0, 1 =1,3,4;
0 0 ¢
e) A=3
0 0 0
N 5 — 10 p O
Cle;)=0,1=1,2,3, C(es) = 00 0
0 0 0
Proof. Put .
Clei) = (Cjk)1<]<4 , t=1,...,4.
1<k<3

Let g be a virtual structure on generalized module 4.20. Without loss of generality
it can be assumed that ¢ is primary. Since

9(0)(5) 2 Req,

g V(h) D Rez,  U(h) 2 Ruy,
g"V(h) DRes,  UM(h) 2 Ruy,
g V() D Res, UN(h) 2 Ru,

we have:
1 1 2 2
/011 0 C%s\ /(2) Ci2 €13
2
1) — cl cl cl ) 2) = c2 c2 c2 )
e \3 % o
C41 Gy Cy3 C41 C42 Cy3
B3 B3 B L4 4 0
"%1 12 €13 €11 €12 \
1 4
Cle=| 2 2 5|, clen=|2 P
, =
C3y 8 cgg 2 0 623)
0 «cip ci3 i 0 cg3
Put ) )
C12 0 —Ca3
0 0 0
H = c3 4 0
33 C33

iz Cizt(1— A3 —ciy
and C'(z) = C(z) + A(z)H — HB(z) for z € g. Then

1 1 2
C(el): 1 1 1 ) 0(62): 2 2 0 )
2
C41 Cyuz  Cy3 C41 C42  Cy3
3 3 3 4 4
c%l C%z €13 Ci1 Ciz 0
c c 0 , c c 0
C'(e3) = 21 €22 C'(ey) = 21 €22
(€3) cgl 0 0 ’ (€4) 0 0 O
0 022 O cil 0 0
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By corollary 2, Chapter II, the virtual structures C and C' are equivalent.
Since for any virtual structure ¢ condition (6), Chapter II, must be satisfied,
after direct calculation we obtain:

(0 0 0 0 0 ¢
oo 0 s o [ 0o 0 o0
Cller) = 0 —c33 ¢33 ]’ Clez) = Aeis 00 )
\0 0 0 0 0 ¢
00 0 0 0 0
000 0 ¢ 0
Cllea)=1¢9 o o Clle)=149 0o ol
\o 0 o 0 0 0

where the set of coefficients cfj satisfies the following system:

(/\ - 1)623 =0,
(A - 3)032 = 03

Consider the following cases:
a) A ¢ {—1,0,1,3}. From the system it follows that ¢, = c; = c3, = 0. Put

00 0
0 0 135cis
Hl = 14328 ’
0 0
0 0 0
and Cq1(z) = C'(z) + A(z)H; — H1B(z) for = € g. Then

Ci(e) =0, i=1,...,4

b) A = —1. From the system it follows that ¢, = c2; = c3, = 0. Put

0 0 0
0 0 0
Hy, = ,
27lo 0 —3c
0 0 0
and Cz(z) = C'(z) + A(z)Hy — HyB(z) for z € g. Then
0 0 0
_ [0 0 e N=0 ;=
C12(61) - 0 _C%S 0 ) 02(62) - Oa L= 2a3’4'
0 0 0

¢) A = 0. From the system it follows that ¢, = ¢2; = 3, = 0. Put

0 0 0
_006%3

H3‘000’
0 0 0
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and Cs3(z) = C'(z) + A(z)Hs — H3B(z) for z € g. Then
0

Cg(el) - N C3(6i) = 0, 1= 2,3,4.

C33

o O O
o O OO
O w— O O

d) A = 1. From the system it follows that c3, = 0. Put

0
1.1
€23
11
7C33

0

Hy =

o O OO
o O OO

and Cy(z) = C'(z) + A(z)Hsy — HyB(z) for z € g. Then

0

0
04(62) - 0%3

€13
0
0 M)
0 cis

o O O O

e) A = 3. From the system it follows that ¢?, = ¢2, = 0. Put

Hs =

OO OO
OO OO
-

-

/70 0 0N

4
Cs(ei) =0, i =1,2,3, Cyleq) = g % 8
0 0 0

This completes the proof of the Lemma.

Ci(e;) =0, i =1,3,4.
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Let (g, ) be a pair of type 4.20. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the

Lemma. Consider the following cases:

1°. The virtual structure ¢ is trivial. Then

[e1, ea] = —eg,

[e1, €3] = —Aes, [e2,e3] =0,

[e1,e4] = (1—=Neq, [e2,e4] =e€3, [e3,eq] =0,

ler,ui] =0, le2,u1] =0, [es,u1] =0, [eq,uq]
[e1,u2] = ug, le2,uz] = w1, [es,u2] =0, [eq,us]
[e1,us] = Aus, [e2,us] =0, [es,us] =wu1, [es,us]
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Since the virtual structure ¢ is primary, we have

() D Rey @ Ruy, §V(h) D Rey,
aV(h) 2 Res, g2V(h) 2 Rey,
¥ (h) O Rus, gV (h) 2 Rus.

Therefore

[u1,uz] = ases + aseq + agus + agus,
[u1,us] = brey + baea + bzes + baes + Brus + Bauz + Psus,

[ug, us] = c1e1 + caeg + czes + caeq + Y1u1 + Y2u2.

Using the Jacobi identity we see that the pair (g, g) has the form:

[,] €1 €2 €3 €4 Uy U2 U3
€1 0 —ey —Xez (1—XNes O Uy Aug
€2 €9 0 €3 0 Uq

€3 )\63 0 0 0 0 0 Uq
€4 ()\ - 1)64 —E€g3 0 0 0 0 U2
U1 0 0 0 0 0 0 A
(V%) —U9 —Uy 0 0 0 0 B
us -—)\U3 0 —U1 —U2 —-A -B 0 ,

A = bses + Bruy,
B = c3e3 + bzeq + y1u1 + PBrug,

where
(1 -+ 2)\)63 — 0,
Abs =0,
A3y =0,
(1+ )\)“)/1 = 0.

Consider the following cases:

1.1°. A ¢ {—1,—1%,0}. Then the pair (g, g) is trivial.
1.2°. A = —1. Then ¢3 = b3 = #; = 0 and the pair (g,g) is equivalent to the
trivial pair (g1,91) by means of the mapping 7 : g; — @, where

m(e;) =€, 1=1,...,4,

1
7r(u1) = §U1,
m(ug) = %63 + Sus,
1
m(ug) = —:Yzlez + §U3.

1.3°. A = —%. Then b3 = 31 = v = 0.
1.3.1°. ¢z = 0. Then the pair (g, g) is trivial.
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1.3.2°. ¢3 # 0. The pair (g, g) is equivalent to the pair (g2, g2) by means of the
mapping 7 : g2 — @, where

w(er) = e,
1

7T(62) = —E€2, 7T(U1) = Ui,
C3

m(es) = e3, m(ug) = c3ug,

m(es) = cseq, 7(us) = us.

It can be easily proved that the pairs (g1, 91) and (g2, g2) are not equivalent.
1.4°. A =0. Then ¢3 =7 = 0.
1.4.1°. b3 = By = 0. Then the pair (g, g) is trivial.
1.4.2°. B = 0.
1.4.2.1°. bg > 0. The pair (g, g) is equivalent to the pair (gs,g3) by means of
the mapping 7 : gg — @, where

m(er) = ey,

62)—5362, 7T(u1)=b3u1,

(
(
m(es) = \/_63, m(uz) = ug,
1
(e4) = T m(us) = /byus.

U

N

1.4.2.2°. b3 < 0. Then the mapping 7 : g4 — @ such that

7T(61) = €1,
7(ez) = —bseq, m(uy) = —bsuy,
m(es) = \/—bses, w(uz) = ug,
1
7'('(64) = ﬁ64, ’/T(Ug) =V —b3U3,

establishes the equivalence of the pairs (g,g) and (g4, 94).

1.4.3°. B1 # 0. The pair (g,g) is equivalent to the pair (gs,gs) by means of
the mapping 7 : g5 — @, where

m(er) = eq,
7(62):ﬂ%62, W(ul):ﬂ%ul,
W(es) = pres, 71'(“2) = Uug,

7r(e4) = %64, 7T(U3) = ﬁlu;;.

Let a; be the ideal in g;, ¢ = 3,4, 5, spanned by {es, e4,u1,us}. Note, that a; is
a unique 4-dimensional commutative ideal in Dg;. Consider the homomorphisms
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fi 18 — gl(4,R), 7 = 3,4, 5, where f;(z) is the matrix of the mapping ad,; z in the
basis {es, e4,u1,uz} of a;, for z € g;.

Since the subalgebras f;(gi), ¢ = 3,4,5 are not conjugate, we conclude that the
pairs (gi,9:), ¢ = 3,4,5 are not equivalent.

2°. A= —1. Then

[61, 62] = —é€2,
[61, 63] = €3, [62, 63] = 0,
[61,64] = 264, [62, 64] = €3, [63, 64] = 0,
[elaul] = 07 [eZaul] = Oa [637 ul] = 07 [64) ul] = 0?
[61,U2] = —pes + U2, [627u2] = Ui, [63,U2] = 07 [64,U2] =Y,
[e1,u3] = pes — us, [e2,u3] =0, [es,us] =u1, [es,us]=us.
Since the virtual structure ¢ is primary, we have
=80 e "0 eV b o),
where
39(h) = Re; ® Ruy, g (h) = Rey @ Rus,
§V(h) = Res ®Ruz, §@(h) = Rey.
Therefore
[u1, u2] = ages + agus,
[u1,u3] = baeg + Baus,
[ug, us] = erer + y1us.
Checking the Jacobi identity on vectors (eq,uz, us).
le1, [uz, us]] + [us, [e1, ua]] + [uz, [us, e1]] = 0
we obtain p =0 and C(e;) =0, 7 =1,...,4. This virtual structure was considered
in case 1°.
3°. A =0. Then
0 0 O
0 0 O )
Cle1) = 00 p| C(e;) =0, 1=2,3,4.
0 0 O
Put
0 0 O
{0 0 O Vo .
C'(er) = 00 o C'(e;) =0, 1 =2,3,4.
0 0 0
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The virtual structures C and C’ are equivalent if and only if there exist matrices
P € A(g) and H € Matsx3(R) such that
C'(z) = FC(p Hz))P™' — A(z)H + HB(z) for all z € g,

where ¢(z) = PzP~! and F is the matrix of the mapping ¢. After some calculation
we see that the virtual structures C and C' are equivalent if and only if there exist
reals a, b such that ab # 0 and the following condition is satisfied:

' a
p =Pb—2-

Using this condition we see that any virtual structure on generalized mod-
ule 4.20 (A = 0) is equivalent to one and only one of the following:
a) Cl(e;) =0, 1=1,...,4.

| 00 0
D Ce)=|o o 1| CHe)=0,i=234
00 0

The virtual structure C! was considered in case 1°.
For the virtual structure C? we obtain:

[61762] = —¢€2,

[e1,e3] =0, [e2,e3] =0,

le1,e4] = €4, [ea,eq] = €3, [e3,e4] =0,

[e1,u1] =0, lez,u1] =0, [es,u1] =0, [es,u1] =0,
le1,ug] = ua, [ea,uz] =u1, [es,uz] =0, [eq,us] =0,
le1,usz] =e3, [e2,u3z] =0, [es,us]=uy, [es,us]=us

Since the virtual structure ¢ is primary, we have

g=a""n) g0 oa™m),

where
Q(O)(f)) = Re; @ Res @ Ruy @ Rus,

a7V (h) = Reg, a1 (h) = Res ® Rus.
Therefore

[u1,u2] = aseq + agus,
[ui,us] = brey + bses + Bruy + Bsus,
[ug, us] = caeq + Yaus.

Using the Jacobi identity we see that the pair (g, g) has the form:

[,] €1 €2 €3 €4 Ui U2 U3

el 0 —eg 0 €4 0 U e

eo e 0 0 es 0 uf j

& G o0 0 0 0 0 1

€4 —€4 ~ —E€E3 0 0 0 0 U9

Uy 0 0 0 0 0 0 b363 + ﬁ]’ul
Uz —uz —uy 0 0 0 bzes 4 Brus
us3 —e3 0 —uy —up —bses —fPiur —bzes — Prug 0 ;
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= 31 = 0. Then the pair (g, g) is equivalent to the pair (gs, g6)-

3.2.1°. b3 > 0. The pair (g, g) is equivalent to the pair (gr,g7) by means of

the mapping 7 : g7 — @, where

m(ey1) = ey,
m(ez) = bseq,

7{-(63) = \/ECS,

1
7'('(64) = ﬁ&b

3.2.2°. b3 < 0. Then the mapping 7

m(e1) = e1,
7T(62) = —bsey,
7T(63) =V —5363,
m(eq) = !

m(uy) = byuy,
m(uz) = uz,

) = /bsus.

7T(U,3

: gs — @ such that

W(ul) = “b3u17

m(ug) = ug,

=V —bg’LLg,

(u3)

establishes the equivalence of the pairs (g, g) and (gs, gs)-

3.3°. By # 0.

The pair (g,g) is equivalent to the pair (g9, g9) by means of the mapping 7 :

g9 — @, where

m(ey) = ey,

(e2) = fiea, mw(ur) = Biua,
W(es) = Pies, W(Uz) = Uz,
m(eq) = ée‘;, m(us) = Prus.
As in case 1.40, we can prove that the pairs (gi, i), ¢ = 6,7,8,9, are not equiv-
alent.
4.° A =1. Then
le1,e2] = —ea,
[61, 63] = —es, [62, 63] =
[e1,e4] =0, [e2,€4] = [es,eq] = 0,
le1,u1] =0, [e2,u1] = pes, les,u1] =0, [es,u1] =0,
le1,uz2) = ua, [e2,u2] = les,u2] =0, [eq,uz] =0,
ler,us] = us, [e2,us] = pey +qe4, les,us] = u1, [eq,us] = ua.

Since the virtual structure ¢ is primary, we have

=30 oa?®n) @g?(n),
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where
g(o)(h) = ]Rel (&) R64 D Rul,
§V(h) = Re; ®Res, §V(h) = Ruz @ Rus.

Therefore
[u1,us2] = agus + agus,

[u1,us] = Baug + Paus,

[’u,z, ’u,3] =0.

Using the Jacobi identity we see that the pair (g,g) has the form:

[,] e1 e €3 e4 Uy Ug Us

€1 0 —€2 —€3 0 0 U9 U3

€2 ) 0 0 es pes  uy; pey + qeq
es3 e 0 0 0 0 0 U

ee 0 —es 0 0 0 0 U

uq 0 —pes 0 0 0 0 PU2
U9 —U3 —Ui 0 0 0 0 0

us —u3z —pe; —qeq —up —uz —pug 0 0

Now we determite the group of all transformations for mappings ¢. We have

0 0 p
0 0 O :
C(es) = p 0 0| C(e;)) =0, 1 =1,3,4.
0 0 ¢
Put
0 0 p
0 0 O .
C'(ey) = oo ool C'(e;) =0, 1=1,3,4.

0 0 ¢

The virtual structures C' and C' are equivalent if and only if there exist matrices

P € A(g) and H € Matyx3(R) such that
C'(z) = FC(p Y (2))P™* — A(z)H 4+ HB(z) for all z € g,

where p(z) = PzP~! and F is the matrix of the mapping . After direct calculation
we see that the virtual structures C' and C' are equivalent if and only if there exist
reals a, b, ¢ such that abc # 0 and the following conditions are satisfied:

! b ! b2
P=p— 4 =9
ac ac
Using these conditions we see that any virtual structure on generalized module 4.20
(A =1) is equivalent to one and only one of the following:
a) Cl(e;) =0, i=1,...,4
0 0

b) C?(ep) = , Ce)=0,1=1,3,4

o O O O
o O O
— O O



362 III. THE CLASSIFICATION OF PAIRS

1

c) C?(ez) = NE C3(e;) =0, i=1,3,4;

—_— o000+ OO

d) C*(ez) = C*e;) =0, i=1,34.

oo oo O oo
o
¥

0 b
0 0 1
Note that the virtual structure C! was considered in 1°. For the virtual struc-
tures C%, C%, C* we obtain the following nonequivalent pairs: (§10,810), (811, 911),
(912, 912)-

5°. A = 3. Then
[61,62] = —€2,
[e1,e3] = —3es, [ez,e3] =0,
[e1,e4] = —2eq, [e2,€4] = €3, [e3,e4] =0,
[e1,u1] =0, [e2,u1] =0, [es,u1] =0, [es,u1] =0,
le1, us] = ug, le2, uz] = uy, [es,uz] =0, [eq,us] = pea,
le1,us] = 3us, [e2,us] =0, [es,uz] =u1, [es,us] = us

Since the virtual structure ¢ is primary, we have

=" Ymea?Has VO osn e ag?,

where
g3 (0) =Res, §72(h) = Rey,
g7V (h) =Rey, §°(h) = Rey @ Ruy,
§V(h) = Ruz,  §¥(h) = Rus.
Therefore
[u17u2] = 07
[u1,u3] =0,
[Uz, us] =0

Using the Jacobi identity we see that the pair (g, g) has the form:

[,] el €9 es €4 Uy U U3
€1 0 —€9 -—363 —-264 0 U9 3U3
€9 €9 0 0 €3 0 Uy 0
€3 363 0 0 0 0 0 U1
€4 2ey —e3 0 0 0 pex ug
Uy 0 0 0 0 0 0 0
U2 —U2 —Uq 0 —peEa 0 0 0
Us —-3U3 0 —U1 —U9 0 0 0

5.1°. p = 0. Then the pair (g, g) is trivial.
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5.2°. p # 0. The pair (g, g) is equivalent to the pair (@13, g13) by means of the
mapping 7 : g13 — @, where
m(e;) =e€;, t=1,...,4,

m(uj) = puj, 7 =1,2,3.

Since dim D?g; # dim D?gy3, we see that the pairs (g1, 91) and (g13,g13) are not
equivalent.
The proof of the Proposition is complete.

Proposition 4.21. Any pair (g,g) of type 4.21 is equivalent to one and only
one of the following pairs:

1.
[,] €1 €2 €3 €4 Uy U2 us
e1 0 (1—=XNez (A—pes (1—p)es ur Aug  pus
€ (A —=1)es 0 €4 0 0 wu 0
€3 Mm— A €3 —€4 0 0 0 0 U2
ey p—1)es 0 0 0 0 0 Uy
Uq —Uu1 0 0 0 0 0
U2 —Aug —U1 0 0 0 0 0
us —pHus —Uu9 —Uu1 0 0 0
2. A4+2u=
[,] €1 €2 €3 €4 Uy U2 us3
€1 0 (1 - )\)62 3>‘2_1 €3 —1'—2-2‘-64 U1 )\UZ %u;;
€2 ()\ — 1)62 0 €4 0 0 U1 0
€3 1—23A €3 —€4 0 0 0 0 U9
€4 e, 0 0 0 0 0 uy
Uy —uq 0 0 0 0 0 0
Ug —Auy —uy 0 0 0 0 €4
u3 %u 0 —Ug —uq 0 —ey 0
3A=1pu=
[7] €1 €2 €3 €4 (73] U2 Uus
e 0 0 e e u u 0
e; 0 0 ei (jl 01 uf 0
€3 —€g3 —€4 0 0 0 0 U2
€4 —€4 0 0 0 0 0 U1
U1 —U1 O 0 0 0 0 €4
Ug —Us  —U 0 0 0 0 es «5 €4
U3 0 —Uy —U] —eg4 —€3— ey
4. A=1pu=
[a] €1 €2 €3 €4 Ui U2 us
e 0 0 e e u u 0
e; 0 0 ei (31 01 u? 0
€3 —e€3 —€4 0 0 0 0 U2
€4 —ey 0 0 0 0 Ul
Uy —Uy 0 0 0 0 0 —€4
Ug —Uy —Up 0 0 0 0 €4 — €3
us 0 0 —Ug —Ui €4 €3 — €4 0
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5. 4p=0
[,] €1 €2 €3 €4 231 Uz U3
€1 0 (1 - )\)62 /\63 €4 U1 )\’U,z 0
€2 ()\ — 1)62 0 €4 0 0 (5] 0
€3 ——)\63 —€4 0 0 0 0 U2
€4 —€4 0 0 0 0 0 Ui
(75} —U1 0 0 0 0 0 €4
U2 _)\UQ —U1 0 0 0 0 €3
us3 0 0 —Uy —U] —e4 —€3
6. pn=20
[7] €1 €2 €3 €4 Uy Uz us
el 0 1—Xez e ea Uy Aug O
€9 ()\ - 1)62 0 €4 0 0 Ui 0
€3 —>\63 —€4 0 0 0 0 U2
€4 —€4 0 0 0 0 0 (5]
uq —u3 0 0 0 0 0 —ey
U2 —>\U2 —U1 0 0 0 0 —E€3
us 0 0 —Us —U; €4 €3 0
TA£L u=
[>] €1 €2 €3 €4 Ui U2 U3z
€1 0 1-— /\)62 )\63 €4 Uy /\’LL2 0
€2 ()\ — 1)62 0 €4 0 0 (5] 0
€3 —)\63 —E€4 0 0 0 0 Ug
€4 —ey 0 0 0 0 0 Uy
Uy —Uq 0 0 0 0 0 aeq + uq
Ug —A\uo —uy 0 0 0 0 aeg + usg
Uusg 0 0 —Uy —U] —Qeg4 — U] —Qe3 — Uy 0
8 A=0,p=-1
[7] €1 €2 €3 €4 Ui U2 us3
e 0 e e 2e U 0 —Uu
e; —eq (% ei O4 01 es + up 0 :
€3 —263 —084 8 8 8 €y — 263 U2
e —2Ze —e e U
ui | —ur 0 0 0 0 gt
(%) 0 —€2 — Uy 263 — €9 €4 0 0 —2’U3
Uus us 0 —U2 —€2 — Uy 0 2?1,3
9. u= %
[,] €1 €2 €3 €4 Uy Uz us
€1 0 (1 - )\)62 %(2)\ - 1)63 %64 Uy /\U2 eq + %U3
€2 (A =1)eg 0 €4 0 0 ug 0
€3 %(1 — 2/\)63 —€4 0 0 0 0 U9
€4 —%64 0 0 0 0 0 (5]
Uy —uq 0 0 0 0 0 0
Ug —u —uq 0 0 0 0 0
us —€4 — FU3 0 —U2 —U1 0 0 0
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365

100 A=0, p = %
[7] €1 €2 €3 €4 UL U2 u3
€1 0 €9 —%63 %64 U1 0 €4 + %’U,p,
€2 —e 0 €4 0 0 U1
€3 %—63 —€4 0 0 0 0 Uag
€4 —%64 0 0 0 0 0 (5]
U1 —Ui 0 0 0 0 0 0
(7] 0 —U1 0 0 0 0 €4
us —€4 — %u;; 0 —U2 —Ui 0 —E€4 0
11. A=0
[a] €1 €2 €3 €4 U1 U2 us
e1 0 € —pez (1—ples uy 0 Husg
e —e9 0 €4 0 0 ex4uy
€3 €3 —€4 0 0 0 —263 Ua
€4 (,LL — 1)64 0 0 0 0 —€4 €9 + (751
U1 —U1 0 0 0 0 0 0
Ug 0 —€g — U7 263 €4 0 0 —2U3
U3 —pus 0 —uy —eg—uy 0 2us
12. p=3x—1
[v] €1 €2 €3 €4 Uy Uz ug
e1 0 (I=Xez (1—2N)es (2—3Nes ur Aug (3X—1)ug
€2 ()\ — 1)82 0 €4 0 0 Ui 0
€3 20 —1 €3 —€4 0 0 0 €2 U2
€4 3)\ -2 €4 0 0 0 0 0 U1
Uy —Ul 0 0 0 0 0 0
Ug —Au —uy —e9 0 0 0 0
Uus (1 — 3)\ Uus 0 —U9 —U1 0 0 0
13 X=3,p=0
{,] €1 €2 €3 €4 U1 Uz Ug
€1 0 %62 %63 €4 Uy %UQ 0
€2 —%62 0 e4 0 0 up 0
€3 —563 —€4 0 0 0 €2 U9
€4 —€4 0 0 0 0 0 Uy
U1 —Ux 0 0 0 0 0 €4
U2 —l’u,z —U1 —€9 0 0 0 €3
Uus :b 0 —Ug —Up —€4 —E€3 0
14 A=2,pu=0
[,] 1 e e e uy Uy ug
€1 0 %62 %63 €4 U1 %U2 0
€9 —-262 0 €4 0 0 Uy 0
€3 —§63 —€4 0 0 0 €9 U2
e4 —ey 0 0 0 0 0 Uuq
Uq —U1q 0 0 0 0 0 —€4
Ug —Luy —u; —ey 0 0 0 —es
U3 %) 0 —Uy —U] €4 €3 0
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3 _ 2
[] e1 e es e4 Ul Uy U3
€1 0 %62 %—63 %64 U1 %UZ %’U,g
€2 —%62 0 e 0 0 wu 0
€3 —5€3 —€y4 0 0 0 €2 U2
€4 —2eyq 0 0 0 0 0 Uy
Uy —uy 0 0 0 0 0 0
Ug —%U,z —U1 —E€2 0 0 0 €4
Uus —7’(1,3 0 —Ug —Uj 0 —€4 0
_ 1 _1
[7] €1 €2 €3 €4 Uy U2 us
€1 0 %62 0 %64 U1l %U2 eq4 + %u;,,
e2 —Ley 0 e 0 0 0
€3 6 —€4 O 0 0 €2 U9
€4 —1es 0 0 0 0 0 uy
Uy —U1 0 0 0 0 0 0
U9 —%—’U,z —U1 —€9 0 0 0 0
us —€4 — %’U,3 0 —Ug2 —Uj 0 0 0
17 A=2,u=0
[7] €1 €2 €3 €4v Uy Uy U3
€1 0 %62 %63 €4 Uq %UQ 0
€9 —-%—62 0 €4 0 0 uy;  es
€3 —5e3 —eq 0 0 0 0 up
€4 —€4 0 0 0 0 0 Uy
(5] —U1 0 0 0 0 0 €4
U9 —luz —U1 0 0 0 0 €3
us 6 —€3 —Ug —U; —€4 —€3 0
18 A=3,u4=0
[7] €1 €2 €3 €4 Uy U2 us
€1 0 %62 563 €4 U1 %UQ 0
€9 ——%62 0 e4 0 0 wu €3
€3 —ses —eqg 0 0 0 0 ue
N —eyq 0 0 0 0 0 U1
Ui —Uq 0 0 0 0 0 —€4
U9 —lU2 —U1 0 0 0 0 —€3
U3 %) —e3 —Up —U] €4 €3 0
19 =%,p=0
[,] €1 €2 €3 €4 U1 U2 us
€1 0 %62 %63 €4 Ui %U2 0
€9 —lez 0 €4 0 0 31 €3
€3 —ze3 —eg 0 0 0 0 U
€4 —€4 0 0 0 0 0 U1
Uy —uq 0 0 0 0 0 aeq + uy
Uy —Luy  —uy 0 0 0 0 aes + us
Usg %) —e3 —Ug —U] —0e4— U] —Qe3— Uy 0
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20. A —p=3%
[,] €1 €2 €3 €4 Uy U2 us3
e1 0 (1—XNez 3es 3=20e, wy Aup Z=lyg
€2 ()\ - 1)62 0 €4 0 0 Uq €3
€3 -—%63 —ey 0 0 0 0 U
€4 28 0 0 0 0 0 Uy
Uy —Uq 0 0 0 0 0 0
Ug —Au2 —uy 0 0 0 0 0
us 1 22)‘11,3 —€3 —U2 —U1 0 0 0
2. =% pu=1
[a] €1 €2 €3 €4 Ui Ug U3
el 0 %62 %63 %64 Uq %uz %’Ug
€2 ——'%-62 0 €4 0 0 Ui €3
€3 —g63 —€4 0 0 0 0 U9
€4 —5€4 0 0 0 0 0 Uy
Uy —Uq 0 0 0 0 0 0
U —Zuy —u; 0 0 0 0 e
Uus —gUg —€3 —U2 —Ui 0 —€4 0
2. =1pu=1
{’] €1 €2 €3 €4 Uy Uz Uus3
€1 0 0 %63 %64 Uyp U €4 + %u;;
€9 0 0 €4 0 0 wuy es
€3 —%63 —€4 0 0 0 0 U9
€4 —564 0 0 0 0 0 U1
(5] —U1 0 0 0 0 0 0
Ug —Ug —uq 0 0 0 0 0
U3 —e4 — %u;; —e3 —ug —u; 0 0 0
2. =1,pu=1
[7] €1 €2 €3 €4 Ul U2 usg
€1 0 0 %63 %64 U1 Ug —eq + %u;;
€9 0 0 €4 0 0 u es3
es —Leg —ey4 0 0 0 0 Ug
€4 —5€4 0 0 0 0 0 Ui
Uq —uq 0 0 0 0 0 0
Ug —u —Uq 0 0 0 O 0
Us €4 — §U3 —€3 —U2 —Uy 0 0 0
24 A =1 pu=0
[»] €1 €2 €3 €4 Uy U2 Uusg
e 0 0 e e U u 0
e; 0 0 ei 61 01 u% €9
€3 —€3 —€4 0 0 0 0 U9
€4 —ey 0 0 0 0 0 e4 + ug
Uy —uj 0 0 0 0 0 aey
U9 —U2 —Ujx 0 0 0 0 ez — Uy
U3 0 —ey —Up —€4— U] —Qeg —oez -+ U 0

367
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25. =1, =0

[7] €1 €2 €3 €4 Ui U2 us

€1 0 0 €3 €4 1 U2 0

€2 0 0 € 0 0 Ui €2

€3 —e3 —€4 6 0 0 0 U2

€4 —ey 0 0 0 0 0 es + uq

Uy —u 0 0 0 0 0 aey

U2 —Uy  —Ujp 0 0 0 0 aes + eq4 — Usg
usz 0 —e3 —Uy —e4— U] —Qey —Qe3— €4+ Ug 0

1 0 0 0 1 0 0 0 0 0 0 1
er=10 A 0)],ea2={0 0 0},e3=10 0 1),e.=100 0}J.
0 0 p 0 0 O 0 0 0 0 0 O
Then
0 0 0 0 0 0 0 O
0 1—-2AX 0 0 A-1 0 0 O
A(el) B ) 0 2\ — M 0 ) A(eZ) - 0 00 0}
0 0 0 1-yu 0 01 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
A(63) - pw— A 0 0 0 ) A(64) - 0 0 0 0 )
0 -1 0 0 p—1 0 0 0

and for z € g the matrix B(z) is identified with z.

Lemma. Any virtual structure ¢ on generalized module 4.21 is equivalent to
one of the following:

a))\:l,“:()
0 0 p 0 0 r
_ [0 0 ¢ 10 0 s
Cle)=1 , 0] Cle2)=| o _9 ol
-p —¢ 0 0 0 O
0 0 O
0 0 O
0(63) = 0, 0(64) = 0 0 —r ;
0 0 s
0 =5p 0 00 0
0 0 0 0
0(61)20(62):0, 0(63): g 0 0 , 0(64): 0 ]5 0 :
0O 0 O 0 0 O



4. FOUR-DIMENSIONAL CASE

0 0 0
0 0
Cle1) = C(eg) = Clea) =0, C(es) = | 18 0) ;
0 0 O
d)r=1
0 0 0
0 0 O
Cle1) =Cl(ez) =C(es) =0, C(es) = - 0) :
0 p O
0 0 0 0 0
C(el) = 0(63) = O, 0(62) = 0 m_2)p 0 , 0(64) _ 0 0
o 0 0 0 0
flA=0
0 0 0
0 0
C(el) = 0, 0(62) — 0 g 0 ,
0 0 O
0 0 0 0 0 0
C(es) - 0 __2p O 9 C(64) = O 0 0 ;
9)1—-2\+2p=0
0 0 O
0 0 0
Cler) =Cles) =C(es) =0, Cle2) = 00 p ;
0 0 0
0 0 0
Cler) = 0 0 p Clea) = Cles) = Cles) = 0;
! 0 0 0 ’ 2 3 4 ;
0 —p 0
0 0 O
0 0 0O
C(el) = 0 0 0 5 0(62) = 0(63) — 0(64) — 0;
0 0 p

(w—=Dp

369
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n)A=1 =0

O O OO
(=R e R an S SV

o O OO

0(63) =

)

OO o

o O O O

OO O O

0(62)

= 0(64) = 0,

C(e1)



371

4. FOUR-DIMENSIONAL CASE
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0O 0 O 0 0 O
10 0 O {0 0 ¢
0(63) 1o _2q 01l 0(64) I 0 BE
0 0 O 0 —g O
u) \,peR
Cle;)=0, 1=1,...,4
Proof. Put .
Cle;) = (c;k)1<j<4, , 1=1,...,4
1<k<3
Let ) .
c%’1 cé3 0
- A
—C41 €33 —C43
c33tcly ciy 0
and C' = C(z) + A(z)H — HB(z) for z € g. Then
Clle;) = | C21 €22 a3 . Cley) = €31 C22 (a3
C=le oy o | T o ]
ciy cip cls 0 0 0
cil ciZ 0 cil ci2 cis
0 c c c
Clles) = | €21 €22 L Clleg)=| 2 2 “»
() 3 ¢ 0 (e4) 31 €32 Cay
0 ¢ 0 Chi Ci2 Ca3

By corollary 2, Chapter II, the virtual structures C and C' are equivalent.
Since for any virtual structure ¢ condition (6), Chapter II, is satisfied, after direct
calculation we obtain:
system (1)

(1) =16k
(2) 3 =3,
E?’g Céz = (1 N 1)tz

4 €3 = —C42;,
(5) (A =1)cf, — 3y = cpo
(6) 33 =c3y,
(7) (;\ - #)ﬁs +2‘3§2 = C33,

8 Cig = C39 + C5q,
g9§ 032 - 622 22

23 = C43;

(10) (2 — p)ezp =0,
(11) Ac53 =0,
(12) (1= A+ p)es3 =0,
(13) Aci, =0,
514; ?}11}\: (F; _3 Deis + pcis,

15 2 - ’1: 012 - 0,
(16) (2 — p)e3; =0,



(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)

4. FOUR-DIMENSIONAL CASE

(3>‘ -1- H)C%Z = 0)
Ac3, =0,
61132 = (/,L - /\)Cisa

(1—2N\)c3, =0,
C%s = _641127

(1 - A + /'I')C%S = 07
A2, = 0,

()‘ - 1)Ci3 = _/'chiia

(26)
(27)
(28)
(29)
(30)
(31)

(1—=X+p)3, =0,

(1 —2X\ +2u)c; =0,

célll = C%Za

c%z = C%z = 0%1 = C%l = 01133 =0,

€11 = C31 = €1 = C%z =0,

C?1 = Cgl =0,

C%l = 031 = C%l = 0‘113 = C%z = Cil = 04112 =0.

Consider the following cases:
1°. A =1, =0. Put

0 0 0
0 0 O
H= 0 0 O ’

and Cy(z) = C'(z) + A(z)H — HB(z) for z € g. Then

and

1
0 0 c%3 0
0 0 ¢ 0
_ 23 _
Ci(er) = 1 , Cile2) =
0 ¢35 O 0
1 1 1
Cq1 Cyg  Cy3 0
3
2 c}’)2 0\ ’/0
‘ cc. co, 0 0
Ci(ez)= | 2t 22 Ci(es) =
1( 3) 0 C§2 ol 1( 4) 0
3
0 ¢ O 0
1 _ 2 _ 2 _
cg3 =0, cyy = c33 =0,
3 _ .3 _ 3 _ 3 _ 3 _
Ciz = ¢y =0, 022 = Ciz = ¢y, =0,
¢y =0, Cog = C4p =0,
4 _ 9 3 _ 4
Czs = _?’CISa 021 = 022‘1
022 = 0125 Cia = —2642a
022 = "2021, , 023 = ng» )
033 = 032 + ¢i3, Cz%z = Cazl‘l‘ €22,
c%s = C43i Cy1 = —C13y
C?z = “1013> €23 = —Cy9,
C41 = C32,
Direct calculation shows that
1
0 0 c%3 0
0 0 c 0
Ci(er) = 23 Ci(ez) =
1(e1) 0 e, 0| 1(e2) 0
1 1
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0 0 O

{0 0 O
01(63) = 0, 01(64) = 0 0 _0%3
0 0 ¢

The virtual structures C; and C' are equivalent.

2°. (A =1)2 4+ pu? #0.

2.1°. Suppose p = 0. Then from equations (19),(24) and (27) of system (1) it
follows that cl, = cj; = ¢}, = 0. Put

0 0 ’1“5653
H 0 0 0
- 0 253, 0
i3 0 0
and Cy(z) = C'(z) + A(z)H — HB(z) for € g. Then
02(61) - (C;k)1<j<4, y U= 17 747
1<k<3
where c;k satisfy system (1) and ¢33 = c§; = 0.
2.2°. Suppose g # 0. Put
0 0 %ch
0 0 0
H= 0 =2l
LAl 0 0

and Cs(z) = C'(z) + A(z)H — HB(z) for € g. Then

Cs(ei) = (ck) , 1=1,...,4,
1<5<4
15kS3

where c;k satisfy system (1) and ¢j; = 0. From equations (9),(19),(24) and (27)
of system (1) it follows that ¢y = cj3 = cj; = ciy = 0.

Hence, if (A —1)? 4 p? # 0, then ¢3; = ¢}; = ci; = cj; = c3, = 0. It follows that
the matrices Cs(e;), e = 1,...,4, have the form:

0 0 0 0 0 c§3

10 0 c%?, 10 c%z 0
Cs(er) = 0 0 0 , Calea) = 0 c§2 c§3 !

0 ci, cij 0 0 O

0 ci’z 0 0 0 0

3 3 4 4

_ | 51 3 O _ |0 c5 coy
Gle)=17 &, o G=g o |

0 ¢, 0 0 ¢}, O

where the coeflicients c;- i satisfy the following system of linear equations



4. FOUR-DIMENSIONAL CASE

system (2)
(1) ci2 = _c%2>
(2) 0%3 = C%Za
(3) ng = —20327
(4) C%S = _641127
(5) 5y =(1—p)eciy,
(6) 33 =(1—p)ei,
(7) gy =(p—1)cls,
(8) ey = (u—2),,
(9)  (\+2u—3)ch, =0,
(10) (2 = p)ety =0,
(11) (8A—1—p)e3, =0,
(12) (1—2\)ely =0,
(13) (1= X+ p)cky =0,
(14) )‘052 - Oa
(15) (1= A+ p)es, =0,
(16) (1 —2X+2p)ci, = 0.
Consider the following cases:
3°. A= %,,u = g. Then
0 &, 0
—3c3, 0 0
C4(61) - 04(62) = 0, 04(63) = 0 0 0
0 0 0

The virtual structures Cy and C' are equivalent.

) 04(64) =

375
0 0 0
0 —%c}, 0
0 0 0
0 0 0

4°. (A p) # (3, 2). From equations (9) and (10) of system (2) it follows that

3y =0.
Hence, system (2) is equivalent to the following system
(1) 3 =clp = =0,
(2) Ci? = —6327
(3) C%S = 0327
(4) 3y = —2ch,
(5) 0%3 = —012,

(6) C§3 = (p— 1)0%3,

(7) ¢l = (p—2)cts,

(8)  (BA=1-p)e3, =0,
(9)  (1=2X\)ei, =0,

(10) (1 =X+ p)ei; =0,
(11) A3, =0,

(12) (1 —=2X+2p)ci; = 0.

The other results of the Lemma can be obtained using this system of linear

equations.

Let (g, g) be a pair of type 4.21. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
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Lemma. Put

[ui,uz] = are; + ages + ages + ages + ayuy + agug + asus,
[u1,us] = bres + baeg + bzes + baes + frus + Bauz + Psus,

[ug, usz] = c1e1 + coea + cses + caes + y1u1 + y2uz + Yy3us.

1°. A =1, =0. Then

[e1,e2] = 0,

[61, 63] = €3, [62,63] = €4,

[e1,e4] = €4, [e2,e4] = 0, [es,eq] =0,

ler,u1] = —pesa+uy,  [ez2,u1] =0, [es,u1] =0, [es,us] =0,

le1, ug] = —pes—qeqtua,lez, us] = —2restu,les,uz] =0 [es,uz] =0,

[e1,us] = pe1+qeq, [ea, us] = restsea, [es,us] =0, [es,us] = —rest+sestu;.

Using the Jacobi identity we see that the pair (g, g) has the form:

€1 €9 €3 €4 U1 U2 Uus
e1 0 0 es €4 u; U 0
€ 0 0 €4 0 0 up  Seg
€3 —E€g3 —€4 0 0 0 %)
es —ey 0 0 0 0 0 ses+tuy
(5] —U1 0 0 0 0 A
U2 —U2 —Uui 0 0 0 B
us 0 —8€2 —U2 —8€4—Uj —-A -B 0 , (3)

where
A=b4e4+ﬂ1u1, ‘
B = bye3 + caeq +y1u1 + (B1 — s)uz,
s # 0.
The mapping 7 : g’ — @ such that
m(ei) =e€;, 1 =1,...,4,
1 .
W(U]) = ;uja 7 =123,
establishes the equivalence of pairs (g,g) and (g',g’), where the latter has form (3)

for s = 1.
The mapping 7 : g’ — g’ such that

m(e) = e, ¢t =1,2,4,
m(e3) = ez — %*/164,
m(u1) = uq,

1 1
W(uz) =Uz — 57164 - 5’)’1“17
m(ug) = us,
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establishes the equivalence of the pairs (g”,g") and (g',g'), where the latter has
form (3) for s = 1,7, = 0.
The mapping 7 : §"" — g such that

m(ei) =€, 1=1,...,4,

1
m(uy) = ug — §ﬁ164,

1
m(ug) = ug — §ﬂ163,

1
m(ug) = uz + §ﬁ1el,

establishes the equivalence of pairs (g",g") and (g'",g""), where the latter has
form (3) for s =1,71 = 1 = 0.

1.1°. ¢4 = 0. Then the pair (g"',g"") is equivalent to the pair (g24,g24).
1.2°. ¢4 # 0. Then the pair (g",g"") is equivalent to the pair (@25, g25) by means
of the mapping 7 : g5 — g"', where
m(ei) =€, 1=1,2,4,
1
m(es) = et
m(u1) = uq,
1

7T(’LL2) = ;4“27

m(ug) = us.

Consider the pairs (@24, g24 ) and (gh,, 954 ) with parameters a and o' respectively.

Let us show that these pairs are not equivalent, whenever @ # «a'. Suppose
a = g24/D%g24 and ¢ is a natural projection of gas to @. Then a = ¢(ga4) for the
pair (@24, 924). Similarly define @' and a’ for the pair (@54, g54). Let us show that
the pairs (a,a) and (@',a’) are not equivalent, whenever a # o'.

Suppose these pairs are equivalent by means of a mapping 7 : @ — @’. Since

n(Da) c Da', w(a)=4d, n(Da)CDd and n(Z(a))C Z(a),

the matrix of m has the form:

kk 0 0 0 a
kz b 0 d2 ag
k3 0 C3 d3 as
0 0 0 52 (6%}
0 0 0 0 o3

Let us check the following equality

m([2,9]) = [r(2), 7(y)]
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for basis vectors of a.
[7(ez2), m(us)] = [bez, azus] = asbey = m([ez, us]) = bey & az = 1.

[m(e3), m(us)] = —czares + csug = m([es, us]) = daep + dses + boug &
& dy = 0,d3 = —czay, b2 = c3.
[m(ug), m(us)] = daes — dsares + dsus — b2a1us + abdzez — bous =
= 7([uz, us]) = —des + a'csez — dzez — baus &
& —bya; = 6ga1,0' —a; =a—al & a; =0,a =a.

It follows that the pairs (@,a) and (@',a’) are not equivalent if a # o'. Hence,
the pairs (@24, g24) and (gh4, g54) are not equivalent whenever a # o'.

Similarly it is possible to show that the pairs (g25,825) and (@55, g55) with pa-
rameters a and o' respectively are not equivalent, whenever a # o', and that the
pairs (@25, 825) and (@24, g24) are not equivalent too.

2°. A = %, w= g. Using the Jacobi identity we see that there does not exist any
pair (g, g) corresponding to this virtual structure.

In a similar way for the virtual structures e),h),d),k),l),m),n),0),p),s) and
t) of the Lemma there also does not exist any pair (g, g).

3°. 3\ — 1 — p = 0. Using the Jacobi identity we see that the pair (g, g) has the
form:

el €2 €3 €4 U1 U2 us3

€1 0 (1—)\)62 (1—2)\)63 (2—3>\)64 U1l )\’LL2 (3/\—1)U3
€2 ()\—1)62 0 €4 0 0 U1l 0

€3 22—1)es —ey 0 0 0 pesg Ug

€4 3A-2 €4 0 0 0 0 0 U1

Uy —uy 0 0 0 0 0 byey
Ug — AUy —Uq —peg 0 0 0 %

us (1—3)\)’(1,3 0 —U9 —U1 ——6464 -B 0

B = byez + caeq + y1u1,
where by(8A —1) =0, ca(TA=3) =0, 11(2\ = 1) =0, p # 0.
The mapping 7 : g’ — g such that

m(e) =€, 1 =1,...,4,

1
ﬂ-(uj) = Z_)'uja .7 =1,2,3,

establishes the equivalence of pairs (g,g) and (g',g'), where the latter has form of
(g,9) forp=1.
Now it remains to show that the pairs (g1,981) and (g',g’) are not equivalent.
i) A # 3. Since
dim D*g' # dim D3,

we see that the pairs (g',g') and (g1,8:1) are not equivalent.
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i7) A = 3. Suppose
g1 = 01/D%g
and ¢ is a natural projection of g; to gi. Then g7 = ¢(g1)-
Suppose

9 =9/D¢
and ¢ is a natural projection of g’ to g3. Then g5 = ¢(g') .
Consider the homomorphisms
firgi = gl(4,R), :=1,2
where f;(x) is the matrix of the mapping adpg: = in the basis
{e2 + Ruq, es4 + Ruq,us + Ruq,us + Ruy },

z € g¥. Since the subalgebras fi(g}) and f2(g5) are not conjugate, we conclude
that the pairs (g',g’) and (g1, g1) are not equivalent.
3.1°A=1, ca =711 =0, by #0.
3.1.1°. by > 0. Then the pair (g',g') is equivalent to the pair (g1s,913) by
means of the mapping 7 : g13 — @', where

m(e1) = e,
1 1
m(ez) = Eeg, m(uy) = aul,
1
m(es) = es, m(ug) = Eum
1 1

m(eq) = ﬁe% m(ug) = ﬁug.

3.1.2°. by < 0. Then the pair (g',g') is equivalent to the pair (g14,814) by
means of the mapping 7 : g14 — @', where

m(e1) = e1,

1 1
m(eg) = 7 e2, m(uy)= —Eul,
—04
(e2) (u2) = —=
m(es) =e m(us) = u
3 3, 2 \/—_b4 29
1 1

7T(64) = \/'T_b‘l&l, 7'('(’(/,3) - ﬁ’dg.

3.2°. A=2, 4y = by =0, ¢4 # 0. Then the pair (g',¢') is equivalent to the pair
(g15,815) by means of the mapping 7 : g15 — g, where

71'(61) = €1,
1 1
71'(62) = *0—4-62, T('(’Ll,l) = Egul,
1
m(es) = es, m(ug) = —uq,
C4
1 1
m(eq) = 564, m(ug) = au&
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3.3° A=3, by =c4 =0, 77 # 0. Then the palr (¢',g') is equlvalent to the pair
(g12,912) by means of the mapping 7 : g2 — @', where

m(ug) = ug — 57164,

m(ug) = uz + 5’)/162.

3.4°. ¢4 = by = y; = 0. Then the pair (g',g') is equivalent to the pair (g12, g12).
4°. X\ = 0. Using the Jacobi identity we see that the pair (g, g) has the form:

[,] €1 €9 €3 €4 Ui U9 us

el 0 es —pes 1—u)es uq 0 U3

€9 —€2 0 €4 ( 614) 0 pe +uq ,uO

es pes —ey 0 —2pes Ug

eq (p—1)eq 0 0 0 0 —pes pertuy
U —Uq 0 0 0 0 0 0

Us 0 —pes—u;  2pes pey 0 0 C

Us —pus 0 —uy —pes—u; 0 -C 0o

C = cseq + v1u1 — 2pug,

where ¢4(2p1 —1) =0, v (p—1) = 0.
4.1°. p =%, ¢4 #0. Then the pair (§',g') is equivalent to the pair (§11,811) by
means of the mapping 7 : g11 — @', where

7‘-(61) = €1,
Cq Cq
m(ey) = I?ez, m(uy) = Z—)Eul,
1
n(es) = es, m(ug) = ;uz,
. C4 1 C4
m(eq) = p eq, w(uz)= ’ us 3 54

4.2°. p=1,71 # 0. Then the pair (g',g') is equivalent to the pair (g11,911) by
means of the mapping 7 : g11 — @', where

7T(61) = €1,
- n . n
71'(62) = ;'627 71-(ul) - 172"“17
1 Y1
m(es) = es, m(ug) = pu2 — 2pe4,
1

m(eq) = %64, m(ug) = I—)ug + :2)/—11;62.
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4.3°. 41 = ¢4 = 0. Then the pair (g',g') is equivalent to the pair (g11,911) by
means of the mapping 7 : g11 — @', where

7T(6,')=6,', i=1,...,4,

1 .
m(uj) = ;uj, 7 =1,2,3.

5°.1—2)A+2u = 0. Using the Jacobi identity we see that the pair (g, g) has the
form:

[,] el €2 e3 e Uy Us Us
el 0 (%—/u,)ez %63 (1—p)es Uy (,u—i—%)w pug
€ (n— %)62 0 eq 0 0 Uy pes
€3 —-%63 —€4 0 0 0 0 U2
€4 (p—1)eq 0 0 0 0 0 uq
(73] —U1 0 0 0 0 0 b4e4+ﬂ1u1
Ugy —(p—i—%)ug —uq 0 0 0 0 C
us —pus —pes —U9 —U1 ——b4e4—,81u1 -C 0 )

C = byes + y1u1 + Brug + cqeq,

where B = 0, by = 0, ea(1 = 61) = 0, 71(1 — 4) = 0, p # 0.
5.1°. H = O,ﬁ% + bi # 0,64 =91 = 0.
5.1.1°. B; = 0,bs > 0. Then the pair (g, g) is equivalent to the pair (g17, g17)
by means of the mapping 7 : g7 — @, where

m(er) = ey,

71'(62) = €2, W(ul) = Uy,

5.1.2°. B = 0,b4 < 0. Then the pair (g,g) is equivalent to the pair (g1s,g1s)
by means of the mapping 7 : g1 — g, where

n(e1) = ey,
b
m(ez) = ea, W(Ul)—_aub
m(es) = ﬂ‘es, m(ug) = ——ug,
=Dy by
m(eq) = i eq, 7(ug)= ) us.

—b4 p —54
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5.1.3°. $1 # 0. Then the pair (g, g) is equivalent to the pair (g19, g19) by means
of the mapping 7 : g19 — @, where

r(er) = ex,
. _ P
m(e2) = ez, m(uy) = —6—5111,
1
p b
m(es) = Ees, m(ug) = ‘ﬂ"lfu%
1

m(ug) = —us.

b

m(eq) =

2.,
B

5.2°. pu = %,c4 # 0,01 = by =41 = 0. Then the pair (g,g) is equivalent to the
pair (@21, 021) by means of the mapping 7 : g21 — g, where

n(e1) = eq,
m(e2) = €2, m(u1) = PCZUL
m(es) = peaes, w(uz) = pcaus,

m(es) = pcies, m(uz) = us.

5.3°% u = i,a; = f1 = by = 0. Then the pair (g,g) is equivalent to the pair
(820, 920) by means of the mapping 7 : g9 — @, where

m(e;) =€, i =1,...,4,

1
m(uy) = Eul,

.1
m(ug) = 1_9(“2 ~ 7€),

1
m(u3) = ;(UB + me2).

5.4°. ¢4 = 1 = by = 1 = 0. Then the pair (g,g) is equivalent to the pair
(820, 920)-
6°. 1 —2p = 0. Using the Jacobi identity we see that the pair (g, g) has the form:

[7] €1 €2 €3 €4 uy U2 usg

el 0 (1—Xeg (/\—%)63 %64 Uy Aug pe4—|—%u3
€9 ()\—1)62 0 €4 0 0 Uy 0

€3 (%-—)\)63 —€4 0 0 0 0 U9

€4 —%64 0 0 0 0 0 U1

Uy ~uy 0 0 0 0 0 0

U2 —)\u2 —Ux 0 0 0 0 C464+")’1u1
us —p64—%U3 0 —U9 —U1 0 —C4€4 —Y1U1 0 ;

where c4A =0, 71(A = 3) =0, p # 0.
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6.1°. A = 0,¢c4 # 0,71 = 0. Then the pair (g, g) is equivalent to the pair (@11, 911)
by means of the mapping 7 : g11 — @, where

6.2°. A = 7,c4 = 0. Then the pair (g, g) is equivalent to the pair (g10,810) by
means of the mapping 7 : @19 — @, where

m(e;) =ei, 1 =1,...,4,

1
m(u1) = —uq,
p
1
m(uz) = —(uz — 11€4),
b
1
m(uz) = ;(us +me2)

6.3°. c4 = y1 = 0. Then the pair (g, g) is equivalent to the pair (@10, g10)-

7°. X =0, = —1. Using the Jacobi identity we see that the pair (g, g) has the
form:

[,] €1 €2 €3 €4 Ui U2 us

e 0 e e 2e u 0 —u

e; —eg (% ei O4 0l pes+uq 0 ’

e3 —263 —634 8 8 8 qea—2pes Uz

e —2Ze —pey pes+u

v | —uy 0 0 0 0 b 0

U 0 —peg—u;  2pes—qes pey4 0 0 —26)u3

Uus Uus %) —U3 —p€2—1Uq 0 2PU3 ;
where pq # 0.

The pair (g, g) is equivalent to the pair (gs, gs) by means of the mapping 7: gs —
g, where

m(e1) = eq,
q q
m(ez) = I—)ez, m(uy) = Ful,
1
71'(63):63, W(UZ):EUQ,
1

m(eq) = 264, m(ug) = Z—)ug.
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8°. A = %,p = % Using the Jacobi identity we see that the pair (g,g) has the

form:

[,] €1 €2 €3 €4 31 Uz us

€1 0 %62 0 %64 U1 %UZ p64+ %u;;

€2 —1e 0 €4 0 0 Uy 0

€3 6 —€4 0 0 0 S€g U2

€4 — ey 0 0 0 0 0 uy

Uy —uy 0 0 0 0 0 0

U2 —%ug —u; —Sez 0 0 0 Y1U1

ug —pey —%m, 0 —ug  —u; 0  —7yiug 0 ,
where ps # 0.

The pair (g,g) is equivalent to the pair (g16,816) by means of the mapping
7 : @16 — @, where

m(e1) = eq,

m(ez) = v/p?ses, w(u1) = pus,

1
W(€3)= \3/';;-63, W(UZ)Z i/—g(uz—;)/lecl),

1
m(es) = pey, m(ug) = us + 5’)/162.

9°. A =1,p = % Using the Jacobi identity we see that the pair (g,g) has the

form:

[7] €1 €2 €3 €4 Uy U2 us

el 0 0 %63 %64 U] Ug pe4—|—%U3
€2 0 0 €4 0 0 U1 ges

€3 ——'1‘63 —e€4 0 0 0 0 Uy

€4 —564 0 0 0 0 0 U1

Uy —uq 0 0 0 0 0 0

Uz —Us —uj 0 0 0 O 0

us |—pes—zuz —qes —up —uw; 0 0 0

where pq # 0.

9.1°. pg > 0. Then the pair (g, g) is equivalent to the pair (@22, 822) by means
of the mapping 7 : @22 — @, where

m(e1) = ex,

w(e2>:\/§e2, n{ur) = puu,
n(es) = q\/ges, n(uz) = q\/guz,

m(es) = pea, m(us) = us.
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9.2°. pg < 0. Then the pair (g,g) is equivalent to the pair (g23,g23) by means

of the mapping 7 : g23 — @, where

71'(61) = €1,

p
T(eg) = Vg m(u1) = —pua,
ﬂ%>=qJ—§%,7dw>=qJ—§m,

m(es) = —peu, m(us) = us.

10°. A, 4 € R. Using the Jacobi identity we see that the pair (g, g) has the form:

[,] €1 €2 €3 €4 Ui U2 us
€1 0 (1—)\)62 ()\—,Ll,)eg (1—”)64 U1 )\UQ Hus
€9 (/\—1 €9 0 €4 0 ) 0 Uy
es3 (p—MN)es —ey 0 0 0 0 Ug
€4 (p—1)eq 0 0 0 0 0 Uy
U —U1 0 0 0 0 a4€4 A
U9 —)\Uz — U 0 0 —a4€4 B
U3 —pus 0 —Ug —Uq —A —-B 0,
where
{ A =byes + bseg + Prug,
B =cie; + cses + caeq + viur + Y2u2,
and

ag(A+p) = be(A +p) = ci(A+p) =0,
bz +C1(1 - )\) = 0,

c3 = b4,

pby = pfr = pez = py2 =0,
Y2 = ﬁla

b? = —day4,

cl()‘ - /‘L) = 0)

a4 = Cl(l - M)a

(1 - A= 2#)64 - 0,
by = c¢1 + aa,
(1—p— A =0,
as(y2 + B1) = 0.

10.1°. 1 — XA — p = 0. Then the pair (g, g) is equivalent to the pair (g;,81) by

means of the mapping 7 : g; — g, where

m(ei) =ei, 1=1,...,4,

m(uy) = uy,

1
m(ug) = ug — 5164

1
7T('LL3) = ug + -2")/162.
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10.2°.1 — A — 24 = 0.
10.2.1°. ¢4 = 0. Then the pair (g, g) is equivalent to the pair (g1, 91).
10.2.2°. ¢4 # 0. Then the pair (g, g) is equivalent to the pair (g2, g2) by means
of the mapping 7 : go — @, where

m(e1) = e1,

)

(62) = 0462, 7T(U1) = U1,
les) = s, m(u) = g
m(eq) = €4, m(usg) = us.

10.3°. p = 0,02 + B? # 0. Suppose a = by, 3 = f.
10.3.1°. A # 1,3 # 0. Then the pair (g, g) is equivalent to the pair (g7, g7) by
means of the mapping 7 : g7 — @, where

m(ei) =€, i =1,...,4,
1
m(u;) = =uj, j=1,2,3.
B
10.3.2°. A = 1,8 # 0. Then the mapping 7 : g’ — g such that

m(ei) =€, 1 =1,...,4,

1
7T(U1) =Uui — §ﬁ64a

1
m(ug) = ug — §ﬁ62,

1
m(us) = uz + 5561,

establishes the equivalence of the pairs (g,g) and (@', '), where the latter has the
form

[,] €1 €9 €3 €4 Uy Ug Us
e 0 0 e e U u 0
e 0 0 e 0 0 w0
e3 —e3  —ey 0 0 0 0 Ug
€4 —€4 0 0 0 0 0 U1
Uy —u; 0 0 0 0 0 a'e4
Ug —Uy  —Up 0 0 0 0 a'es
U3 0 0 —uy —u; -—ad'eq —ad'eg 0,

o =a+ 162
10.3.3°. f =0, > 0. Then the pair (g, g) is equivalent to the pair (gs,gs) by
means of the mapping 7 : g5 — @, where

m(e;) =ei, 1 =1,...,4,

1
m(u;) = ~uj, 7 =123.
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10.3.4°. 8 = 0,a < 0. Then the pair (g, g) is equivalent to the pair (gs, gs) by
means of the mapping 7 : g¢ — @, where

m(ei) =€, 1=1,...,4,
1 :
m(uj) = Uiy J = 1,2,3.
10.4°. p = 0,\ = 1,c2 +~? # 0. Suppose 0 = c4,p = 1. Then the mapping
7 : g — g such that

m(e;) =e;, 1t =1,...,4,
1

m(ur) = ug — §ﬁe4,
1 1
m(ug) = ug — gPes — 5363,
(u3) = ua + 5pea + =B
m(u3z) = us 2P62 5 €1,

establishes the equivalence of the pairs (g, g) and (g',g'), where the latter has the
form

[a] €1 €2 €3 €4 Ui U2 us

e 0 0 e e U U 0

&2 0 0 e 0 0 us 0

es —e3 —ey4 0 0 0 0 Ugy

€4 —€4 0 0 0 0 0 Uy

(751 —Ui 0 0 0 0 0 01,64

Ua —uy —u; O 0 0 0 o'estoey
us3 0 0 —uy —u; —ad'es —ad'ez—oey 0 ,

o =a+ 1820 #£0.
10.4.1°. o' = 0. Then the pair (g, g) is equivalent to the pair (gz, g2) by means
of the mapping 7 : g — g, where

10.4.2°. o' > 0. Then the pair (g, g) is equivalent to the pair (gs, g3) by means
of the mapping 7 : g3 — @, where

m(ey) = eq,

m(ez) = — ez, m(u1) = UL

ﬂ'(eg) = €3, W(UQ) = ;U,z,

m(eq) = \/764, m(ug) = T
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10.4.3°. &' < 0. Then the pair (g, g) is equivalent to the pair (g4, g4) by means
of the mapping 7 : g4 — @, where

w(er) = ey,
o 1

m(ez) = —;62, m(uy) = ——a—,—ul,

= 1

€3, 71'(“2) = ;U27

1 1

—Ol, —O[l

m(e3) =

m(es) =

10.5°. A = B = 0. Then the pair (g, g) is equivalent to the trivial pair (g1,g1).

Now it remains to show that the pairs determined in the Proposition are not

equivalent to each other.
Suppose a; = [g;, D?g;], where 7 = 12,13,14. Consider the homomorphisms

fira; = gl(2,R), i =12,13,14,
where fi(z) is the matrix of the mapping adpg; ¢ in the basis
{es +D*(gi), w2 + D*(8i)},

z € a;. Since the subalgebras f;(a;) are not conjugated to each other, we conclude
that the pairs (g;, g;) are not equivalent to each other.
Since dim D?(g1) # dim D?(ga0), we see that the pairs (g1, ¢1) and (@20, g20) are

not equivalent.
Similarly we prove that all the other pairs are not equivalent to each other.

The proof of the Proposition is up.

Proposition 4.22. Any pair (g,g) of type 4.22 is trivial.

€1 €2 €3 €4 Uy Ug Uus
€1 0 0 0 ur U us
€9 0 0 € 264 Uy 02 —Uus
es 0 —eg3 6 0 wuy ug
€4 0 —-264 0 0 0 0 Uq
U1 —U1 —U1 0 0 0 0 0
U2 —Ug 0 —Uy 0 0 0 0
us —Uus us —Uy —Uj 0 0 0

Proof. Consider z € g such that

Note that 2y = idy. Then, by Proposition 13, Chapter II, the pair (g, g) is trivial.
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5. Five-dimensional case

Proposition 5.1. Any pair (g,g) of type 5.1 is trivial.

[7] €1 €2 €3 €4 €5 Uy U Ug
e 0 0 0 e —e U 0 0
e 0 0 0 —e e 0 u 0
es 0 0 0 0 0 0 0 |ug
€4 —€4 €4 0 €1 — €2 0 Ui 0
€5 €5 —€s5 0 €2 — €1 0 U9 0 0
Uy —uq 0 0 —Usp 0O 0 0
Uz 0 — U9 0 —Uz 0 0 0 0
us 0 0 —ug 0 0 0 0 O
Proof. Consider z € g such that

1 00

z=10 1 0

0 0 1

389

Note that 2y = idy. Then, by Proposition 13, Chapter II, the pair (g, g) is trivial.

Proposition 5.2. Any pair (g,g) of type 5.2 is equivalent to one and only one

of the following pairs:
1.

[a] €1 €2 €3 €4 €5 Ui U2 us
e 0 2e —2e e —es5 U3 —U 0
6; —262 02 € : 61 645 01 'LL12 0
€3 2e3  —e1 0 e 0 wuy O 0
€4 —e4 0 —es5 0] 0 0 0 ug
€5 €5 —€4 0 0 0 0 0 U2
Uy —Uq 0 —Ug 0 0 0 0 0
U2 U2 —U7 0 0 0 0 0 0
Us 0 0 —U1 —Us2 0 0 0
2.
[7] €1 €2 €3 €4 €5 Uq U9 ug
e 0 2e —2e e —e U —u 0
e; —2es ()2 e ’ (31 645 01 u12 0
e3 2es  —eq d e 0 u 0 0
€4 — €4 0 —E€s 6 0 02 0 e4 + uq
€5 €5 —E€4 0 0 0 0 0 es + U2
U1 —u 0 —Usg 0 0 0 0 auq
Ugy Ug —uq 0 0 0 0 0 aug
us 0 0 0 —e4 — U] —e5 — Uy —QU] —QU 0 , o<1
3.
[7] €1 €2 €3 €4 €s Ui U2 us
e 0 2eq —2¢ e —e U —u 0
6; —262 02 € ’ 61 645 01 ’LL12 0
€3 263 —€1 d €5 0 U2 0 0
eq | —eg 0 —es 0 0 0 0 U1 + aey
€5 €5 —e€y4 0 0 0 0 U + aes
U | —UuUp 0 —U9 0 0 0 0 Uyl — €4
U2 Ug —Uyp 0 0 0 0 0 Uy — €5
us 0 0 0 —Up — X€qg —U9 — €5z —OU + e4 —QUsy + es , O > 0
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Proof.

Let £ = {e1, e2,€3,¢€4,€5} be a basis of g, where

1 0 0 010 0 0 O
esr=10 -1 0}, e2=10 0 0), es=11 0 01},
0 0 O 0 00 0 0 O
0 0 1 0 0 0
ea=|{0 0 0], es=10 0 1].
0 0 O 0 00
Then
0O 0 0 0 O 0 01 0 O
02 0 0 0 -2 0 0 0 O
Aler)=10 0 =2 0 0 |, A(ez)=|{ 0 0 0 0 0},
00 0 1 0 0 0 0 0 1
0 0 0 0 -1 \ 0 0 0 0 O
0 -1 0 0 O 0O 0 0 o0 O
0 0 0 0 O 0 0 0 0O
Ales) =12 0 0 0 01, Alea)=1 0 0 0 0 O},
0O 0 0 0 O -1 0 0 0 O
0 0 0 10 0 0 -1 0 O
0 0 0 0 O
0 0 0 0 O
Ales)=10 0 0 0 0},
0 -1 0 0 O
1 0 0 0 O

and for z € g the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-
tor e;.

Lemma. Any virtual structure q on generalized module 5.2 is trivial.

Proof. Let ¢ be a virtual structure on generalized module 5.2. Without loss of
generality it can be assumed that ¢ is primary. Since

g="2eoa" O as m esh) oa®m),

where

872 (h) = Res, §1(h) = Res ® Ruy,
d9(h) = Re; ®Ruz, §1(h) = Rey ® Ruy,
Q(Z)(b) = R€27
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we have
0 0 cf ¢, 0 0
s, 0 0 0o 0 O
C’(e,) = O,Z = 1,2,3, 0(64) = 0 0 0 s C(es) = 0 ng 0
0 0 cis o 0 0
0 0 0 0 0 ¢
Put
0 0 0
0 0 0
H = 0 0 0},
—c3s 0 0
0 —c3; 0
and Cq(z) = C(z) — A(z)H + HB(z) for z € g. Then
0 ¢, 0 ¢y 00
4 0 0 O
c;; 0 0 0 S0
Cl(ei) =0, ¢+ =1,2,3, 01(64) = 0 0 0 ) 01(65) = 0 82 0
0 0 i
0 0 o0 0 0 0
0o 0 0

By corollary 2, Chapter II, the virtual structures C' and C; are equivalent.
Since for any virtual structure ¢ condition (6), Chapter II, must be satisfied,
after direct calculation we obtain

This completes the proof of the Lemma.

Let (g, @) be a pair of type 5.2. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Then

[e1, e2] = 2eq,

le1,e3] = —2e3, [e2,e3] = €1,

le1, e4] = ey, le2,e4] =0, [es,eq] = es,

[e1,e5] = —es, [e2,e5] =eq, [es,e5] =0, [es,e5] =0,

le1, u1] = uq, le2,u1] =0, [es,u1] =uz, [es,u1] =0, [es,u1] =0,
le1, ug) = —ug, [ea,uz] =u1, [es,uz] =0, [eq,ug] =0, [es,us] =0,
le1, us] =0, [e2,us] =0, [es,u3] =0, [es,us]=1u1, [es,us]=0.

Since the virtual structure ¢ is primary, we have

g%(h) = g%(h) x U%(h) for all a € h*
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(Proposition 10, Chapter II). Therefore

[’LLl,UQ] = dajeér + a3us,
[u1,us] = bses + Prus,

[uz,us] = cses + yaus.

Using the Jacobi identity we see that the pair (g, g) has the form:

[,] e1 € €3 €4 es uq U Us

€1 0 262 —263 €4 —E€s5 U1 —U3 0

€2 —-262 0 e 0 €4 0 Uq 0

€3 263 —e1 01 €5 0 U2 0 0

€4 —€4 0 —E€5 0 0 0 0 (751

es es —eyq 0 0 0 0 0 Ug

(5] —U1 0 —U9 0 0 0 0 aeyq + ﬂul
Usy Ug —uq 0 0 0 0 0 aes + Pug
U3 0 0 0 —uy —us —aeq— Pu; —aes — Pug

Consider the following cases:

1°. a=p4=0.

Then the pair (g, g) is equivalent to the trivial pair (g1,g1).

2°. B? 4+ 4a > 0.

Then the pair (g, g) is equivalent to the pair (g2, g2) by means of the mapping
7 : @ — @, Where

e1) =e1, 7(u1)=es+ug,
e2) =€z, m(u2) = e5+ ua,

(
(
m(es) =es, m(uz) = Aus,
(
(

andAz@#O.

3°. B? +4a < 0.
Then the pair (g,g) is equivalent to the pair (g3, gs) by means of the mapping
T : g3 — @, where

mler) =1, m(w) = ur + e,
A

71'(62):62, W(Uz)ZUZ+ ~/82—65,

m(es) =es, m(uz) = A"tus,

71'(64) = )\64,

m(es) = Aes,

_ 2
and \ = ————————\/-_73-2—_5.
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Let t; be the radical of g; for : = 1,2,3. Consider the homomorphisms f; : g; —
gl(4,R), ¢ = 1,2,3, where f;(z) is the matrix of the mapping ads, z in the basis
{64, 65,U1,U2} of E,‘, S Q,

Since the subalgebras f;(gi), ¢ = 1,2, 3 are not conjugate, we conclude that the
pairs (@;,d:), ¢t = 1,2, 3 are not equivalent.

This completes the proof of the Proposition.

Proposition 5.3. Any pair (g, g) of type 5.3 is equivalent to one and only one
of the following pairs:

1.
[a] €1 €2 €3 €4 €s Uy Uz Uug
e 0 0 e 0 e 0 wu 0
e; 0 0 (? el —éz 0 01 Uy
€3 —€9 0 0 €5 —-263 0 0 U2
€4 0 —€1 565 8 284 8 Us
G 0t % ot 0 o ¢ 0
Uo —uy 0 0 —uz —us 0 O 0
ug 0 —ui —us 0 U3 0 O 0
2.
[,] €1 €2 €3 €4 €s Ui U2 us
€1 0 0 €2 0 €1 —361 —%65-*—%11,1 —€4
€9 0 0 0 €1 —eg —3es —e3 %65—{—%11,1
es —eg 0 0 e —2e3 0 0 U
€4 0 —eq —es 05 2eq 0 us 02
es —eq eo 2e3 —2e4 0 0 Us —us
Uy 3e 3eg 0 0 0 0 —3u2 —3us
U9 %65—'5’(1,1 €3 0 —Uus —Uu2 3’(1,2 0 0
us €4 —%65—%’&1 —U9 0 us 3U3 0 0
Proof. Let € = {ey,eq,€3,€4, €5} be a basis of g, where
0 1 0 0 0 1 0 0 O
€] = 0 0 O , €z = 0 0 O , €3 = 0 0 1 5
0 0 O 0 0 O 0 0 O
0 0 O 0 0 O
ea=10 0 0}, es=10 1 O
0 1 0 0 0 -1
Then
(0 0 0 0 1 0 001 O
0 01 00 0 00 0 -1
A(el) =10 0 0 0 0], A(ez) =10 0 0 0 O S
0 0 0 0 O 0 000 O
\0 0 0 0 O 0 000 O
0 0 0 0 O 0 -1 0 0 O
-1 0 0 0 0O 0 0 0 0 O
Ales) = 0 0 0 0 -2, A(ea)=1|0 0 0 0 01},
0O 0 0 0 0O 0 O 0 0 2
\ 0 0 01 O 0 0 -1 0 O
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100 0 O©
0 10 0 0
Ales)=] 0 0 2 0 0],
0 00 —2 0
0 00 0 0

and for z € g the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-
tor es.

Lemma. Any virtual structure g on generalized module 5.3 is equivalent to one
of the following:

0 0 O 0 00
(0 0 0\ (3p 0 0
C(61) = 0 0 0 y 0(62) = 0 P 0 y
0 0 p 0 0 0
\0 2p 0 0 0 p
( 0 0 O ( 0 00
0 00 0 0 0
Cles)=|3p 0 0|, C(ea)=|] 0 0 0], Cl(es)=0.
0 0 0 -3p 0 O
k 0 0 O 0 0 0
Proof. Put 4
C(e;) = (c;k)l i=1,...,5.

)
5
3

VAY/A
NN

J
1<k

Let ¢ be a virtual structure on generalized module 5.3. Without loss of generality
it can be assumed that ¢ is primary. Since

g "V() =Rer, yO(h) = Ruy,
gM(h) =Rez,  UO(h) = Ruy,
g®(h) =Res, UV () = Rus,
g2 (h) = Rey,

g°(h) = Res,

we have
(c}l 0 0 ( 0 0 0
0 0 0 cz, 0 0
C(el) = 0 0 0 ) C(Cz) = 0 C§2 0 ,
0 0 cij 0 0 0
\ 0 <, 0 0 0 2,
( 0 0 O 0 ¢, 0
0 0 c3 0 0 0
Cles)=1]¢c3; 0 0], Clea)=|1 0 0 0],
0O 0 O ¢, 0 0
0 0 O 0 0 0
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0 0 3
0 ¢, 0
Cles)y=| 0 0 O
0 0 0
¢, 0 0
Put
0 0 —cfy
0 0 O
H= 0 0 0 ,
0 0 ©0
-3, 0 0

and Cq(z) = C(z) — A(X)H + HB(z) for z € g. Then

(c}l 0 0 (O 0 0
0 0 0 0o 0 O
01(61) = 0 0 0 y 01(62) = 0 ng 0 s
0 0 cis 0 O 0
\ 0 &, 0 \0 0 2
( 0 0 O ( 0 00
0 0 o, 0 00
Cl(eg) = Cgl 0 0 ) 01(64) = 0 0 0 ,
0 0 0 ¢t 00
\ 0 0 O 0 0 0
0 0 3,
0 ¢ O
01(65) == 0 0 0
0 0 0
\cgl 0 0

By corollary 2, Chapter II, the virtual structures C' and C; are equivalent.
Since for any virtual structure ¢ condition (6), Chapter II, must be satisfied,
after direct calculation we see that C; has the form indicated in the Lemma.

Let (g,g) be a pair of type 5.3. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Then

[e1,e2] =0,

[e1, €3] = e2, [e2, €3] = —eg,

[e1,e4] =0, [e2,e4] = €1, [es, e4] = €5,

[e1,e5] = eq, [e2,e5] = —ea,  [es,e5] = —2e3,[eq, €5] = 2e4,

le1,u1] =0, [ea,u1] = 3pea, [es,u1] = 3pes, [ea, u1] = —3pey,[es, u1] = 0,
[e1,uz] =2pes+uy,lez,us] = pes,  [es,uz] =0, [es,u2] =0, [es, uz] = ua,

[61,u3] = 3pey, [62,U3] =P65+u1,[63au3] = U2, [64,U3] =0, [65,u3] = —us.



396 III. THE CLASSIFICATION OF PAIRS
Since the virtual structure ¢ is primary, we have

g%(h) = g%(h) x U%(h) for all o € b
(Proposition 10, Chapter II). Therefore

[u1, uz] = azes + agus,
[u1,us] = bres + Bsus,

[ug, us] = cses + y1us.

Using the Jacobi identity we see that

a :_3P’71 oy =0
2 2 3 2 )
3
b1 = 1)271, /83:3p)
. _ 3
5 5

Consider the following cases:

1°. p=0.
Then the mapping 7 : g1 — g such that

7[‘(6,‘) = €4, 1= 1,...,5,

7(u1) = uy,

7['(?1,2) = U2 —Y1€2,
(

m(usg) = uz + y1e1,

establishes the equivalence of the pairs (g1, 91) and (g,9).

2°.p#0.
Then the pair (g,g) is equivalent to the pair (gs2,g2) by means of the mapping
7 : g2 — @, where

p 3p
Uy — —é¢€s,

1
m(er) = ;3—61, m(uy) = —3 5

w(e2) = zer, m(ua) = 3puz + e,
m(es) = es, m(ug) = 3puz — gel.
m(eq) = ey,
m(es) = es,
Since the Lie algebra g, is simple, we see that the pairs (g1,91) and (g2,g2) are

not equivalent.
This completes the proof of the Proposition.
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Proposition 5.4. Any pair (g,g) of type 5.4 is trivial.

[,] €1 €2 €3 €4 €5 Uy U2 U3
€1 0 0 0 0 €5 Ui 0 0
€9 0 0 0 €4 0 0 U2 0
€3 0 0 0 —€4 —E€5 0 0 Uus
€4 0 —€4 €4 0 0 0 0 U9
€5 —E€s 0 €5 0 0 0 0 U1
uq —u; 0 0 0 0 0 0 0
U9 0 —-uy O 0 0 0 0 0
us 0 0 —Uuz —Uz2 —Up 0 0 0

Note that zy = idy. Then, by Proposition 13, Chapter II, the pair (g, g) is trivial.
Proposition 5.5. Any pair (g,g) of type 5.5 is trivial.

[,] er ey ez e4 €5 Ul U U3
€1 0 0 0 €4 €5 Uil Ug 0
€2 0 0 0 —E€s5 €4 —Ug2 Uy 0
€3 0 0 0 —€4 —E€s5 0 0 us
€4 —€4 €5 €4 0 0 0 0 Uy
€5 —E€j5 —€4 e 0 0 0 0 U

U1 —ui1  Ug 05 0 0 0 0 02
U9 —U9 —U1 0 0 0 0 0 0
us 0 0 —UuUz —U; —U3 0 0 0

Proof. Consider z € g such that

Note that 2y = idy. Then, by Proposition 13, Chapter II, the pair (g, g) is trivial.
Proposition 5.6. Any pair (g,g) of type 5.6 is trivial.

[»] €1 €2 €3 €4 €5 Uy U2 U3
e 0 0 0 e e U 0 0
& 0 0 0 —e 0 0 up O
e3 0 0 0 0 —es 0 0 w3
€4 —€4 €4 0 0 0 0 uy 0
es —es 0 e 0 0 0 0 wuy
w, | =43y 0 ¢ 0 0 0 0 0
U2 0 — U2 0 —U1 0 0 0 0
Us 0 0 —Uus 0 —U1 0 0 0
Proof. Consider z € g such that

1 0 0

z=10 1 0

0 0 1

Note that 2y = idy. Then, by Proposition 13, Chapter II, the pair (g, g) is trivial.
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Proposition 5.7. Any pair (g,g) of type 5.7 is trivial.

[,] €1 €9 €3 €4 €5 Ui U2 Uus
e1 0 0 0 €4 es U 0 0
€ 0 0 0 —ey —es 0 wug ug
es3 0 0 0 —e5 € 0 —us wu
€4 —ey €4 es 0 04 0 Uy O2
€5 —E€s €5 —€y4 0 0 0 0 Uy
U1 —Uy 0 0 0 0 0 0 0
U9 0 —U3 us —U1 0 0 0 0
us 0 —UuUz —Uy 0 —U1 0 0 0

Proof. Consider z € g such that

19

Note that xy = idy. Then, by Proposition 13, Chapter II, the pair (g, g) is trivial.

OO =
O = O

Proposition 5.8. Any pair (g,g) of type 5.8 is trivial.

[,] €1 €2 €3 €4 €5 Uy Uz U
€ 0 0 —E€s3 0 €5 0 U2 0
€9 0 0 0 —es —es 0 0 ug
€3 €3 0 0 0 €4 0 Ui 0
€4 0 €4 0 0 0 0 0 Uy
€5 —e5 € —ey 0 0 0 0 u

u 0o ¢ 0 0 0 0 0

(%)) —U2 0 —Uuy 0 0 0 0 0
us 0 —Uus 0 —UuUip —U2 0 0 0

Proof. Let € = {ey,eq,€e3,€4,e5} be a basis of g, where

0 0 0 ‘0 0 0 01 0
er=10 1 0], ea=[0 0 0], es={0 0 0},
000 0 0 1 000
0 0 1 0 00
ea=10 0 0}, es=[0 0 1
000 0 00
Then
00 0 00 /0 00 0 0
00 0 00 000 0 O
Ale;)=]0 0 =1 0 0|, A(e2)=|0 0 0 0 0 |,
00 0 00O 000 -1 0
\0 0 0 0 1 \0 00 0 -1
000 00O 00000
000 00 000 0O
Ales)=]1 0 0 0 0|, A(e)=|0 0 0 0 0],
0 00 0 1 0100 0
\0 0000 000 00O
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o O O

Ales) =

o O OO
= o O oo
OO O OO
OO O O O

-1

and for z € g the matrix B(z) is identified with z.

By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vectors
e; and es.

Lemma. Any virtual structure q on generalized module 5.8 is trivial.

Proof. Let g be a virtual structure on generalized module 5.8. Without loss of
generality it can be assumed that ¢ is primary. Since

a®Y(h) = Re; D Rea, gM0(h) = Res
® () =Rer, g () = Res,
U(O,O) = Ruy, U(l’o) = Rus,
U(O’l)(f]> = Rus,

we have
(c%l 0 0 2, 0 0 0 ¢, 0
e, 00 &, 00 0 ¢, 0
Ce;)=| 0 0 0], Clea)=| 0 0 0|,C(es)=1|c3;, 0 0},
0 0 0 0 00 0 0 O
0 0 0 \ 0 0 O 0 0 0
( 0 0 i / 0 0 0\
0 0 3 0 0 O
Clea)=]1 0 0 0 |,C(es)=| 0 0 0
s, 0 0 0 0 0
\ 0 ¢, 0 \cgl 0 0
Put
-3, 0 0
H= 0o 0 0],
0 00
0 0 0
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and C; = C(z) + A(z)H — HB(z) for « € g. Then

cl, 00 2, 0 0 0 00
A, 00 ¢ 0 0 0 00
01(61)2 0 0 0 N 01(62)2 0 0 0 ,01(63): Cgl 0 0 ,
0 0 O 0 0 0 0 0 O
0 0 O 0 00 0 0 0
0 0 0 00
0 0 i 0 0 0
C1(64)= 0 0 0 ,01(65)2 0 0 0
¢t 00 0 0 0
0 ¢t 0 S, 00

By corollary 2, Chapter II, the virtual structures C and C; are equivalent.
Since for any virtual structure ¢ condition (6), Chapter II, must be satisfied,
after direct calculation we obtain:

C’l(ei)=0, ’i=1,...,5.

This completes the proof of the Lemma.

Let (g,g) be a pair of type 5.8. Then it can be assumed that the corresponding
virtual pair (g, g) is trivial. Then

[e1, 2] =0,

le1,e3] = —es, [ea,e3] =0,

[e1,e4] =0, [e2,e4] = —e€4, [e3,e4] =0,

[61,65] = é¢s, [62,65] = —és, [63, 65] = €4, [64, 65] =0,

ler,u1] =0, le2,u1] =0, les,u1] =0, [eq,u1} =0, [es,u1] =0,
le1,uz] = ua,  [ez,uz] =0, les,ug] = u1, [eq,ua] =0, [es,uz] =0,
[e1,us] =0, le2,us] = us, [es,u3] =0, [es,us]=1u1, [es,us]= us.

Since the virtual structure ¢ is primary, we have

g%(h) =g*(h) x U%(h) for all « € h*
(Proposition 10, Chapter II). Thus

g©V(h) =Res D Rez ®Rug, §10(h) = Res & Rug,
§O7V(h) = Rey, g7V (h) = Res,
ﬁ(o’l)(b) = Rus,

[u1, u2] € 30 (),
[u1,us] € g (h),
[ua, us] € g1 (h),
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[u1,uz] = azes + agus,

[Ul,us] = 53“3,

[’UZ, U3] =0.

Using the Jacobi identity we see that the pair is trivial.
This completes the proof of the Proposition.
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Proposition 5.9. Any pair (§,g) of type 5.9 is equivalent to one and only one
of the following pairs:

1.

Then

[7] €1 €2 €3 €4 €5 Uy Uz U
€1 0 0 (1 - )\)63 )\64 €5 Uq )\UZ 0
€9 0 0 0 —€4 —E€s5 0 0 us
€3 ()\—1)63 0 0 €5 0 0 U1 0
€4 —>\64 €4 —E€s5 0 0 0 0 U2
es —es es 0 0 0 0 0 Uy
(5] —Uy 0 0 0 0 0 0 0
U9 -—)\UQ 0 —U1 0 0 0 0 0
us —Us 0 —Ug2 —Ujx 0 0 0
A=
[7] €1 €2 €3 €4 €5 Ui U2 us
0 0 0 e u 0 0
2; 0 0 ed?‘ —€4 —25 01 0 Us
€3 —e3 0 0 es 0 0 Uy 0
es 0 €4 —es 0 0 es  2ey Ug
€5 —E€s € 0 0 0 0 €5 Uy
W | —uy 0 0 —es 0 0 —w 0
Ug 0 0 —uy —2e4 —e5 U 0 2us
Uus 0 —Us 0 —U9 —U1 01 —-2U3 0
Proof. Let £ = {e1,e3,€3,€e4,e5} be a basis of g, where
1 0 0 (O 0 0 0 1 0
e1r=1{0 X 0], e2=1{0 0 O}, es={({0 0 0},
0 0 O 0 0 1 0 0 O
0 00 (0 0 1
es=(0 0 1], es=[0 0 0
0 0 0/ 000
0 0 0 0 0 0 0 0 O 0 \
0 0 0 0 0 0 00 O 0
Ale)=]0 0 1=X 0 0|, Alea)=]0 0 0 0 0
0 0 0 A0 0 00 -1 0
0 0 0 0 1/ 000 0 -1
( 0 0 0 0 O 0 0 0 0 O
0 0 0 0 O 0 0 0 0 O
Ales)=]A=1 0 0 0 0f, Ales)=| 0 0 0 0 0
0 0 0 0 O -2 1 0 00
0 0 010 0 0 -1 0 0/
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0 000 0
0 00 0 0

Aes)=] 0 0 0 0 0|,
0 000 O
~1 100 0

and for z € g the matrix B(z) is identified with .

By bh denote the nilpotent subalgebra of the Lie algebra g spanned by the vectors
e; and es.

Lemma. Any virtual structure C on generalized module 5.9 is equivalent to one
of the following:

a) A #£0,3
Cl(ei) =0, =1, i
b) A= 3
0 0 0
0 0 O
Cole)=0,i=1,2,35 Cyle)=|0 0 p|;
0 0 O
0 0 O
c)A=0
03(61‘) = 0, 1= 1,2,3,
0 0 O 0 0 O
0 0 0 0 00
03(64) - 0 0 0 y 03(65) = 0 0 O
0 2 0 00 0
p 0 O 0 p O

Proof. Let g be a virtual structure on the generalized module 5.9. Without loss
of generality it can be assumed that ¢ is primary. Since

9(0’0)(5) D Re; @ Reg,
g 2(h) SRes,  ULY(h) D Ruy,
g® 1 (h) O Rey, UA9(h) 5 Rug,
g7 (h) O Res, UV (h) > Rus,
we have
1°. 2 =0
0 ¢y 0 0 ¢ 0 0 0 0
0 i, 0 0 ¢, 0 0 0 O
Cles)=1e3; 0 0], Clea)=1]¢c2, 0 0|, Cles)=]0 3, 0},
0 0 O 0 0 0 0 0 O
0 0 0 0 0 0 0 0 0
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0 0 «cs 0 0 0
0 0 c%s 0 0 0
Cles)=1| O 0 0 |, Cles)=]10 0 3
0 ¢ 0 0 0 0
g, O 0 0 ¢ 0
20\ = %
0 0 O 0 0 O 0 0 0
0 0 O 0 0 O 0 0 0
C(el) = 0 C%z 0 5 0(62) == 0 C§2 0 5 0(64) = 0 0 c%s 5
0 0 O 0 0 O 0 0 0
0 0 O 0 0 O 0 ci O
0(63) = 0(65) = 0.
3°. =2
C?l 0 0 0 0 O
Cgl 0 0 0 0 O
Cle;) =0, 1=1,2,4, Cles)=| 0 0 0], Cles)=] 0 0 0
0 0 O ¢, 00
0 0 O 0 0 O

4°. X ¢ {0, 1,2}
C(e;) =0, i=1,...,5.

Checking condition (6), Chapter II, after diect calculation we obtain
A=2: Clei)=0,1=1,...,5;

A=0:
0 0 0\
0 0 0
Cler) =C(e2) =0, Cles)=]0 ciz+e3; O,
0 0 0
0 0 0
0 0 i 0 0 0
0 0 ¢ 0 0 0
Cleq) = 0 2 0 |, Cles)=1]0 0 c3s
04 . Ca2 0 0 0
c§3 + .0.4_2';&3_ 0 0 c£113 1 fa2”%s
A=l
0 0 0
0 0 0
C(el) = O? 1= 17233a55 0(64) = 0 0 C%S
0 0 0
0 ct, O

Consider the following cases:
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1°. A = 0. Put

0 cf3 O
0 c3 O
0 0 O
0 0 O
and Cq(z) = C(z) + A(z)H — HB(z). Then
0 0 0 0 0 0
0 0 0 0 0 0
Ci(es) = 0 0 01, Ci(es)=]0 0 01,
0 Ciz + C%s 0 0 4 O 4 O
cﬁrgcga 0 0 0 c42';'023 0

Ci(e)) =0, i=1,23

By corollary 2, Chapter II, the virtual structures defined by C and C; are equiv-
alent.

2°. A = 1. Put
0 0 O
0 0 O
H=]0 ¢, 0},
0 0 O
0 0 O
and Cy(z) = C(z) + A(z)H — HB(z). Then
0 0 0
0 0 0
Co(e;) =0, :=1,2,3,5, Ca(ea)=1]10 0 c55—ci

0 0 0

Voo o /

By corollary 2, Chapter II, the virtual structures defined by the mappings C and
Cy are equivalent.
The proof of the Lemma is complete.

o
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