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Foreword

This is a preliminary version of an expository text intended for the Summer School
Lie group analysis of differential equations (Nordfjoreid, Norway, 1993). We feel that
the theory of two-dimensional homogeneous spaces, or, if one prefers, in local terms
the theory of finite-dimensional subalgebras of the Lie algebra of all vector fields on
the plane, and to a greater extent their applications, have not really become part
of mainstream mathematics, although they are absolutely basic, in particular to the
theory of differential equations, and were introduced over a century ago by Sophus
Lie (see the recent discussion on this topic in [7]). We are in the possession of the
classification of all two-dimensional homogeneous spaces, obtained by purely algebraic
methods (via the description of so-called effective pairs (g, g) of codimension 2). We
do not present the proof of this classification here, partly to save space and time and,
partly because of the didactic character of this text. To conclude the Foreword, we
list a few references that are relevent to the present exposition.

1. S. Lie, Gruppenregister, Gesammelte Abhandlungen, v.5,6, (B.G. Teubner), Leipzig, 1924,1927.

2. S. Lie, Teorie der Transformationsgruppen, Math. Ann. 16 (1880), 441-528.

3. R. Hermann, Sophus Lies 1880 transformation group paper, Math. Sci. Press, Brookline, Mass.,
1975.

4. R. Hermann, Sophus Lies 1884 differential invariants paper, Math. Sci. Press, Brookline, Mass.,
1986.

5. G. Mostow, The extensibility of local Lie groups of transformations and groups on surfaces, Ann.
of Math. 52, No.3 (1950), 606-636.

6. V. Lychagin, Lectures on geometry of differential equations. Part I, Roma, 1992.

7. A. Gonzales-Lopez, N. Kamran, P. Olver, Lie algebras of vector fields in the real plane, Proc.
London Math. Soc. (3) 64 (1992), 339-368.

8. ISLC Math. College Works, Abstracts, Lie-Lobachevsky Colloquium, Tartu, October, 1992.

9. B. Komrakov, V. Lychagin, Symmetries and integrals, Preprint series, Inst. of Mathematics.
Univ. of Oslo, 1993.
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CHAPTER 1

NAIVE APPROACH

§1. SMOOTH FUNCTIONS

1.1. Smooth functions on the line. Let us recall some basic definitions of differ-
ential calculus.

Definition 1. A function f: R — R is said to be differentiable at the point a € R if
there exists a finite limit
(@) = fla)

r—a r—a

Then this limit is called the derivative of the function f at the point a and is denoted

by f'(a) or %(a).
For any function f differentiable at the point a, the following condition holds:

f(@) = f(a) + f'(a)(z — a) + o(z — a).
Conversely, suppose that there exist A, B € R such that
f(z) =A+ B(x —a) + o(z — a).

Then it is easy to show that f is differentiable at a and A = f(a), B = f’(a). So, we
see that all functions differentiable at a point a € R are exactly those functions which
can be approximated by linear mappings up to infinitesimals of the first order.

A function f : R — R is called differentiable if it is differentiable at each point
a € R. To every differentiable function f we assign the function f’ : R — R that takes
any point a € R to f'(a) € R.

Definition 2. A function f : R — R is called continuously differentiable if it is
differentiable and f’ is continuous.

By C'(R) denote the set of all continuously differentiable functions.

Ezercise. Show that the set C!(R) is closed under addition and multiplication of

functions.
Below we shall construct by induction the chain of embedded classes of functions:

CYR)DC*R)D---DCFR)D...

Definition 3. A function f € C*¥(R) is called (k+1) times continuously differentiable
if f/ € CF(R) (i.e. f’ is k times continuously diffirentiable). In this case the function
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FEHD = (1) is called the (k + 1)-th derivative of f. By C*+1(R) denote the set of
all (k+ 1) times continuously differentiable functions.

Ezercise.

1) Show that C*(R) is closed under addition and multiplication of functions.

2) Show that the functions f(z) = z* - |z| belong to C*(R) but do not belong to
CFL(R).
Definition 4. We say that a function f : R — R is smooth if f € C*(R) for each
k e N.

By C*°(R) denote the set of all smooth functions:

C>®(R) = ﬁ CF(R).
k=1

Examples.

1. The simplest examples of smooth functions are constant mappings, linear func-
tions, and polynomials.

2. Since €% € C(R) and (e*) = e%, we see that e” is a smooth function.

3. Let f and g be smooth functions. Then the functions f-g, f+g, fog are
smooth. Moreover, if f(z) # 0 for all x € R, then the function % is also smooth.

This gives us some more examples of smooth functions, for instance

1

(€737 + 232e¢>)

€ C™(R).

4. Let f : R — R be a smooth function. Then the functions f*)(z) and F(z) =

f(t)dt are also smooth. For example,

C—s

(1)

is smooth.

Let U be an open subset of R (for instance, an open interval). Similarly, we
can introduce the concept of a function differentiable on U and define the classes
Ck(U), C>(U). For example, f(z) = 1/Z belongs to C°°(U), where U = (0, +00).
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Exercise. Show that the function f(z) = z¥z belongs to C°°(0,+00), but does not
belong to C*(R).

Suppose f € C®°(R) and f/'(z) # 0 for all z € R. Then it is possible to show that
f is a bijection of R onto f(R). Moreover, U = f(R) is an open subset of R and the
inverse function f~!: U — R also belongs to C*°(R). For instance, the function Inz,
which can be uniquely determined from the equation In(e*) = z, is smooth on the
interval (0, +00).

In the sequel we shall make use of the following fact:

Theorem 1. Let f : R — R € C*°(R) and f(a) = 0 for some point a € R. Then
there exists a smooth mapping g : R — R such that f(z) = (x — a)g(z) for all x € R.

Let f : R — R be a smooth function and a € R. Consider the following power

series: . g
PO 0+ Loy

Ty(z) = f(a) + 2!

which is called the Taylor series of f at the point a. This series is not necessarily
convergent. But even if it does converge, the sum T%(z) is not necessarily equal

to f(z).

Definition 5. A smooth function f is called analytic at a point a € R if the Taylor
series of f at a converges in some neighborhood of a and its sum is equal to f(z).

Example. Consider the function f given by (1) and put @ = 0. It can be verified
that f(™(a) = 0 for all n € N. Therefore, the Taylor series of f at the point a = 0
converges to the zero function. But f is a nonzero function on any neighborhood of
a = 0. Thus, f is not an analytic function at a = 0.

By C¥(R) denote the set of all analytic functions on R, i.e. functions that are
analytic at each point a € R. As a matter of fact, all smooth functions considered in
the previous examples are analytic.

Theorem 1 implies that the following result is true:

Theorem 1°. Let f € C¥(R) be a nonzero function and f(a) = 0 for some point
a € R. Then the function f can be uniquely represented as

f(z) = (z — a)"h(z),

where h € C¥(R) and h(a) # 0.

Remark. Generally speaking, theorem 1’ is no longer valid for smooth functions. For
example, so is the case when f has the form (1) and a = 0.

1.2. Smooth functions on the plane. By the plane we shall mean the set of all
pairs of reals:
R? = {(xl,sz) | x1,T € ]R}
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We can consider R? as a real vector space. This means that pairs of numbers can be
called vectors. These vectors can naturally be added and multiplied by real numbers:

(1, 22) + (Y1,92) = (1 + y1, 22 + Y2),

A (z1,22) = (Az1, Az2).

We shall denote the plane by V? if we want to emphasize that we consider it as a
vector space.

Fix a point a € R2. Suppose f : R? — R is a function on the plane. To every vector
v € V2 we assign the function g, : R — R by the formula

gv(t) = f(a + tv).

We say that the function f is differentiable at the point a along the vector v € V? if
gy is differentiable at ¢ = 0. Then g, (0) is called the derivative of f at the point a
along the vector v and is denoted by f,(a). From this definition it follows that

t—0 t

The derivatives along the vectors (1,0) and (0,1) are called the first and the second
partial derivatives of f at a and are denoted by Djf(a) and Dyf(a) respectively.
(Sometimes we shall use another notation: %(a) and g—x];(a).) If the partial deriva-
tives of f exist at each point a € R?, then we can define the following functions:

Dif :R* =R, a— D;f(a), i=1,2.
For example, for f(z1,2s) = 23 + 2122 + 2% we have
Dy f =2z +x2, Dof =x1 + 2.

Ezercise. Find the functions Dy f and Dyf for f : R? — R, where

:Uxmz_x% if ( ) #0
——= if (21,2 ,
flay,22) = el +ad v

0 if (z1,22) = 0.

Definition. A function f : R? — R is continuously differentiable if the functions Dy f
and D, f are defined at each point of the plane and are continuous.

By C'(R?) we denote the set of all continuously differentiable functions on the
plane. As well as for functions on the line, we shall construct by induction the chain
of embedded classes of functions:

CHR?) D C*(R?) D --- D C™(R?).



TWO-DIMENSIONAL HOMOGENEOUS SPACES 9

Definition. A function f € C*(R?) is called (k +1) times continuously differentiable
if the functions D; f and Dy f are k times continuously differentiable. The set of all
(k + 1) times continuously differentiable functions is denoted by C*+1(R?),

We say that a function f : R? — R is smooth if it is k times continuously differen-
tiable for all k € N. The set of all smooth functions on R? is denoted by C'*(R?):

o - fleve

Examples.

1) As in the case of R, the simplest examples of smooth functions on R? are constant
mappings, linear functions, and polynomials in two variables x; and x,.

2) The set C*°(R?) is closed under addition and multiplication of functions, i.e.
C*(R?) is a commutative algebra. Besides, if f € C®(R?) and f(a) # 0 for all
a € R?, then the function 1/f is also smooth.

3) Suppose f, f1, fo € C*°(R?) and g € C°°(R). Then the functions

(z1,72) = g(f(21,22))

and

(2131,.'172) = f(fl($1a$2)7f2(w1)m2))

are also smooth. For example,

3
x% +62IE1—IB2
(2% + a3 + 1)em o172

€ O™ (R?).

We shall now formulate some important results omitting the proofs.

Theorem 2. Suppose fi, f2 € C}(R) and g € C'(R?). Then the function h(z) =
9(f1(z), f2(x)) belongs to C*(R) and

P (@) = 22 (f(0), £20) - (@) + 52 (£1(@), () - F5(0).

Corollary. Let f € C1(R?), v = (v1,vs) € V2. Then

, 0 0
fula) = v g (@) + g (a)
for all a € R2.

Thus, the knowledge of the partial derivatives of a function at each point of R?
allows to find its derivative along any vector v € V2.
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Theorem 3. Suppose f € C?(R?). Then
Dy1Dyf = D2D: f.

In the sequel, for the sake of convenience, we shall write

o f

Di i i f or
1%2...7n 9 9 9
(51 ig + e g in

instead of D;, D, ... D;_ f. Besides, if f € C™(R?), then we can permute the indeces

11,89y« oy ln.
For functions on the plane, as well as for functions on R, the following fact is true:

Theorem 4. Let f € C*°(R?) and f(a) = 0 for a certain point a = (a1,az) € R2
Then there exist functions g1, ge € C*°(R?) such that

f(z1,22) = (1 — a1)91(%1, T2) + (w2 — a2)g2(w1, T2).

Suppose U is an open subset on the plane. Then, in the similar way, we can
introduce the concept of directional derivative of a function f : U — R at the point
a € U. We can also define the classes of functions C*(U) and C*°(U). For example,
the function f(z1,72) = 1/22 4 2 is smooth on the set U = R?\{0} but is not smooth
on R2,

§2. DIFFEOMORPHISMS OF THE PLANE

2.1. The group of diffeomorphisms of R?. A one-to-one mapping f : R? — R?
is called a transformation of R%2. The set of all transformations of R? forms a group
with respect to composition of mappings and is denoted by Aut(R?) or Bij(R?).

Transformations of the vector space V? are those transformations of R? that pre-
serve addition of vectors and multiplication of vectors by scalars. They are called
linear and have the form:

(x1,22) — (a1121 + a12%2, a21%1 + A22T2), (1)

where ai; € R, aj1a92 — ajoa9; 75 0.

The set of all transformations of the vector space V2 (= the set of all linear trans-
formations of the plane) forms a subgroup of Bij(R?) and is denoted by Aut(V?) or
GL(R?). Thus, considering the plane as a vector space, we assume that every admis-
sible transformation has form (1). Similarly, we can consider the plane as an affine
space corresponding to the vector space V2.

Any transformation of the affine plane has the form

(z1,22) — (a1121 + a12@2 + b1, a21 + T1a22 + b2),
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where a;;,b; € R, aiiazz — aizaz1 # 0. These transformations are called affine trans-
formations. Each affine transformation can be uniquely written as ¢, o ¢, where ¢ is
a linear transformation and

tyru—u+v (ueR?)

is a parallel translation by the vector v. The set of all transformations of the affine
space A? (= the set of all affine transformations of the plane) forms a group. This
group is denoted by Aut(A?) or Aff(R?).

Note that the set of admissible transformations performs a significant part in the
study of the plane as a set, a vector space, and an affine space. Our aim is to study
the plane as a smooth manifold. We shall not give any rigorous definition of a smooth
manifold, but we shall describe the transformation group of the plane considered as a
smooth manifold.

Every transformation of R? has the form:

@ (z1,72) = (p1(71, T2), P2(T1,72)),

where (1, ¢y are certain mappings of R? into R.

Definition 1. The mapping ¢ : R? — R?, (z1,22) — (p1(21,T2), p2(z1,22)) is called
a diffeomorphism or smooth transformation if the following conditions hold:

1° ¢ € Bij(R?);

2° 1,2 € C(R?);

3° (¢ M1, (p71)2 € C®(R?).

Examples.
1) Any linear and even affine transformation is a diffeomorphism.
2) Define the transformation by the rule

(131,132) — (ml + 1,6x1$2)-

It is a diffeomorphism of the plane R2. It can be easily shown that the inverse of this
transformation has the form

(2151,332) — (CL‘l — 1,6_m1+1$2).
3) Suppose f € C°°(IR?); then the transformation
(331,.’1,‘2) = (wl)xZ + f(wl))

is a diffeomorphism of the plane and is called a shift.

Ezercise. Describe the inverse of the transformation given in example 3).
4) Consider the following mappings of R? into R?:

(371,562) — ($1,$1$2);
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(z1,22) — (T1 + 22, V@1 — T2);
(z1,22) — (27, 22).

Since these mappings do not satisfy conditions 1°,2°,3° of definition 1, respectively,
we see that they are not diffeomorphisms.

Ezercise. Show that linear and affine transformations could also be defined as map-
pings R? — R? satisfying conditions 1°-3° of definition 1 if we replaced the set C°°(IR?)
in this definition by the following classes of functions:

{(z1,22) = a171 + agz2la1, az € R},

{(1,'1,112) — a1x1 + agxg + b|a1,a2,b € IR}

respectively. Prove that in this case condition 3° is redundant.

Further, let M? denote the plane considered as a two-dimensional manifold. The set
of all diffeomorphisms of the plane M? forms a group, which is denoted by Aut(M?)
or Diff (R?).

2.2. Local diffeomorphisms. Now we shall give some variations of definition 1.
Let U and V be two open domains on the plane.

Definition 2. The mapping ¢ : U — V, (21, z2) — (p1(z1,22), p2(1,22)) is called a
diffeomorphism of U onto V if the following conditions hold:

1° ¢ is a one-to—one mapping;

2° 1,2 € C*(U);

3° (M1, ()2 €C2(V).

Examples.

1. Let ¢ : R?2 — R? be a certain diffeomorphism of the plane and U some open
domain in R2. Then ¢(U) is an open domain in R? and ¢|ly : U — ¢(U) is a
diffeomorphism of U onto ¢(U).

2. The mapping

¢ : (z1,%2) — (z1 cOSTo, T1 SINT2)

is a diffeomorphism of the domain
U={(z1,22) | z1 >0, 0 < zp < 27}

onto
V =R\ {(z,0)|z > 0}.

Exercise. Describe the largest domain on the plane such that the restriction of the
following mapping to it is a diffeomorphism:

a) (z1,22) — (x1 + T2, (z1 — 22)?);

b) (z1,x2) — (x1,z122).

The local form of definition 1 is
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Definition 3. A mapping ¢ : R? — R? is said to be a local diffeomorphism at the
point a € R? if there exist two neighborhoods U and V of the points a and ¢(a),
respectively, such that ¢|y is a diffeomorphism of U onto V.

Note. Let W be a certain domain on the plane such that a € W. Then we can extend
definition 3, assuming that ¢ is defined only on W.

Every diffeomorphism ¢ : R? — R? is a local diffeomorphism at each point of the
plane. Moreover, U can be chosen arbitrarily. In general, the converse is not true.
To prove this we consider the mapping given by (z1,z2) — (22,22). It is a local
diffeomorphism if x; # 0, but is not even a one-to-one mapping of the plane.

Examples.
1. Let the mapping ¢ be given by

(l'1,132) = (COS:L‘l,SUg)-

Then ¢ is a local diffeomorphism at a point (z1,x2) such that x; # 7n, z2 # 0.
2. Define the mapping ¢ by the rule

(z1,72) — (T122, 23235 +1).

Then ¢ is a local diffeomorphism at no point of the plane.

The mapping ¢ : R? — R? (21, 22) — (¢1(71,72), p2(z1,2)) is smooth if @1, s €
C>(R?). For example, diffeomorphisms are smooth one-to-one mappings of the plane
that have smooth inverses. Let a € R2. There is a simple method to determine
whether ¢ is a local diffeomorphism at the point a or not. Consider the matrix

g2(a) $2(a)
(B B2,

8m1

V)

6x2

which is called the Jacobi matrixz of the mapping ¢ at the point a.

Theorem 1. The smooth mapping ¢ : R? — R? is a local diffeomorphism at a € R?
if and only if the Jacoby matrix of ¢ at a is non-singular.

§3. VECTOR FIELDS ON THE PLANE

Now we shall introduce the concept of a vector field on the plane. Since the con-
cept is extremely important, we shall give several different definitions and set the
correspondence between them.

3.1. Naive definition. To every point on the plane we assign a vector such that its
coordinates are smooth functions of coordinates on the plane. For example, suppose
that a liquid flows on the plane. Then to every point of R? we can assign the velocity
vector of the liquid at this point. More rigorously,
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Definition 1. A wvector field on the plane is a smooth mapping v : R? — V?2 that
takes every point a € R to a vector v, = v(a).

Let us recall that a function v : R2 — R? is smooth if

V(:El, 1172) = (Ul (171, 5172)) ’Ug(:E1, 562)),

where v1,v2 € C°(R?). By D(R?) denote the set of all vector fields on the plane.
The set D(R?) can be supplied with the operations of addition and multiplication by
constants:

(vi +v3)(a) = vi(a) + va(a), where vq,vy € D(R?);

(Wv)(a) = X - v(a), where A € R, v € D(R?).

Thus, D(R?) is a vector space. It is also possible to multiply vector fields by smooth

functions:
(fv)(a) = f(a) - v(a), where f € C®(R?), v € D(R?).

It is easy to verify that fv is indeed a vector field.

By 8%1 (respectively, 5‘2—2) denote the constant vector field

(z1,72) — (1,0)
(respectively, (z1,z2) — (0,1) ). This strange notation will be clear from other
interpretations of vector fields.
Ezercise. Show that any vector field v can be written uniquely in the form:

0
V = v — + vp ——, where vy,vs € C’°°(]R2).

0x 0o

Let v be a vector field and a € R? some point on the plane. The vector v, € V?
is called a tangent vector to the plane at the point a. By TyR? denote the set of all
tangent vectors to the plane at a point a € R?:

T.R? = {v, | v € D(R?)}.

Exercise. For each vector v € V, find a vector field v € D(R?) such that v, = v.
This exercise shows that T,R? is a vector space V “attached” to the plane at the
point a.

3.2. Algebraic point of view. Let f € C*°(R?) be a smooth function and v a
vector field. Fix a point a € R2. Let us consider the derivative of f along the vector
Va!

f/ (a) — 1imf(a+tva) - f(a')

Va t—0 t
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As we can see, it is a number. Let us assign to every point a € R? the derivative of f
along the vector v:

/
ar fy .

Thus, we obtain a new function of R? to R, which is denoted by v(f). It shows the
rate of change of the function f along the vector field v.

Exercise. Show that
1) (vi+v2)(f) = vi(f) + va(f);

2) (gv)(f) =g v([),
where vi,vq,v € D(R?) f,g € C°(R?).

Examples.

1) Let v= 6%1. Then for any point a = (z1,x2) we have:

limf(:c1 +t,32) — f(w1,22)  Of (a).

t—0 t BfBl

fo.(@) =

Thus, v(f) = —(%%. This gives the explanation of the notation of section 3.1.
2) Suppose v = vla%l + vzg‘%;. Then from the previous exercise it immediately
follows that v(f) = 1113%% + 02% for all f € C°°(R?). In particular, this shows that

v(f) also belongs to C*°(R?).

So, each vector field v € D(R?) defines the mapping:
C®(R?) — C=(R?), [ v(f).

In the following we shall denote this mapping in the same way as the vector field itself.

Problem. Prove that
1° v is a linear mapping over R;
2° for any f,g € C*°(R?) we have:

v(f-g9)=v(f) g+ f v(g).

We see that a mapping v is a generalization of the concept of differentiation of a
function. So, it gives us some reasons to consider the concept of a vector field from
the other point of view. A mapping of C*®(R?) to C*°(R?) is called a derivation of
the algebra of functions C*°(IR?) if it satisfies conditions 1° and 2° above.

Definition 2. A derivation of the algebra of functions C*°(R?) is called a vector field.

The following theorem establishes the relationship between Definitions 1 and 2.
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Theorem 1. Any derivation d of the algebra of functions C*°(R?) has the form:

of

d: fl—->’l)1—f+’v2
8332

0z

for certain vy, vy € C®(R2).
Proof. Put vy = d(z1) and v = d(x2). Note that
d(1) =d(1-1)=d(1)-1+1-d(1) = 2d(1).
It follows that d(1) = 0 and therefore d(c) = c¢-d(1) = 0 for all ¢ € R. Fix an arbitrary

point a = (a1, az) of R%. From Theorem 4, §1, it follows that any function f can be
written as

f(zy,22) = f(a) + (71 — a1)g1(z1, 72) + (T2 — a2)g2(21, T2),

where g1,92 € C*°(R?). Finding the partial derivatives of the left- and right-hand
sides of the equality at the point a, we obtain:

51(0) = 2-(a) and g2(a) = -(0).

Now, using the properties of derivations, we have:
d(f) = d((z1—a1)-g1) +d((z2—a2)-g2) = (z1—a1)d(g1) +v1g1 + (22— a2)d(g2) +v2g2.
Hence,

47)(@) = 0 (@)910) + 2(0)g2(0) = 11(0) () + 12(0)5 - (0)

Since the last equality holds for each point a € R?, we have

Ezercise. Show that every tangent vector to the plane at a point a can be identified
with a linear mapping p : C*°(R?) — R such that

p(f - 9) = p(f) - g(a) + f(a) - p(g).
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3.3 Geometric point of view. Consider another interpretation of a tangent vector
to the plane at a fixed point. A smooth curve is a smooth mapping s : I — R2?,
where I is some open interval of R. The condition of smoothness means that s(t) =
(s1(t), s2(t)), where s1,85 € C®(I). At each point ty € I, it is possible to find the
tangent vector to the curve s:

oy S0 +1) — s(to)

—0 t

s'(to) = (s1(t0), s2(to)) = 1

Now, let a be a fixed point on the plane. Consider the curves s : I — R? passing
through the point a. Without loss of generality we can assume that 0 € I and
s(0) = a.

Ezercise. For each vector v € V2 find a smooth curve s : R — R? such that s(0) = a
and s'(0) = v.

But there is the possibility that different curves have the same tangent vector. For
example, the curves ¢t — (¢,0) and ¢t — (t,t?) have the same tangent vector at the
point t = 0.

Definition 3. Let s1,s2 be smooth curves passing through a point a € R. We shall
say that they are equivalent at the point a if their derivatives coincide at a. Equivalence
classes of curves passing through a are called vectors tangent to the plane at the point
a.

In addition, consider one way of constructing vector fields on the plane. Let {s4 :
I, — IR{Q} be a set of curves on the plane such that their images s, (I,) cover the plane
without intersections. For instance, it can be parallel lines {s, : R — R?, ¢t — (o, t)}.
Then to every point a € R? we can assign the tangent vector to the curve passing
through a. In this way (if certain conditions of smoothness hold) we obtain a vector
field on the plane.

Example. It is easy to verify that the set of curves
{s;: R—TR? t+s (rcost,rsint), 7> 0

satisfies the required condition. Let us find the corresponding vector field. Suppose
z = (z1,z2) is some point of the plane and (z1,z3) = (rcosto,rsinty) for certain
r > 0, top € R. The tangent vector to the curve t — (rcost,rsint) at t = ¢ is equal
to (—rsintg, 7 costy) = (—x2,z1). Hence the corresponding vector field has the form:

0

Ezercise. Show that the following sets satisfy the required condition and find the
corresponding vector fields:

a) 5o : R —R2 ts (efcos(a+t),etsin(a+t)), where a € [0, 27],
and s°: R —R% ¢ (0,0);
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b) 54 : R—R? ts (efcosa,elsina), a € [0,27],
and s%: R — R2 ¢t~ (0,0).

Let U be an arbitrary open subset of the plane. Then all the definitions given above
can be reformulated if we replace R? (but not V?2) by U.

1) In accordance with Definition 1, a vector field on U is a smooth function v: U —
V2,

2) In accordance with Definition 2, a vector field on U is a derivation of the algebra
of functions C*°(U).

3) In accordance with Definition 3, a tangent vector to U at a point a € U is the
class of equivalent curves s : I — U passing through a.

Examples.

1) If v : R? — V2 is an arbitrary vector field on the plane, then its restriction v|y
to U is a vector field on U.

2) Let U = R?\{0}. Then

Z1 T2
v:U—=V2 (z1,22) — ;
(o 22) (W{mg Jw%m%)

is a vector field on U, which cannot be represented as a restriction of a certain vector
field on the plane to U.

3.4. Lie algebras of vector fields. We can consider vector fields as mappings
of C*°(R?) into C*°(R?). In such a situation one natural operation appears—the

composition of vector fields.
If v,w € D(R?), then

(vow)(f) = v(w(f)) for f € C®(R?).

Ezercise. Let v = 52—1‘ Prove that the mapping vov : C*®(R?) — C*(R?) is not a

vector field, i.e. v ov is not a derivation of the algebra C'*°(R?).
However, if we make a slight improvement and instead of composition of two vector
fields consider their commutator

[v,w]=vow—wov,

then we shall get again a vector field.
Proposition. Let v,w € D(R?). Then [v,w] also belongs to D(R?).

Proof. Since the operators v and w are linear, we see that the operator [v, w] is also
linear. Suppose f, g € C*®(R?). Then

v, w](f - 9) = v(w(fg)) — w(v(fg)) = v(w(f)g + fw(g)) — w(v(f)g + fv(9)) =
(vow)(f) - g+w(f) v(g)+v(f) -w(g)+[f (vow)(g)—
(Wov)(F)-g—v(f) w(g) —w(f) v(g)—f-(wov)(g) =

v, wl(f)-g+f-[v,w](9)
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Hence, [v,w] is also a derivation of the algebra C>(R?), i.e. [v,w] € D(R?).

Let v =v; % a -+ vz 33 and w = wq 7= 6 or Twaz- 6 . Let us find the explicit expression
for [v,w]. In order to do this, we have to know how the vector field [v,w] acts on an
arbitrary function f. We have

of of of |

(vow)(f) = V(wl({)— + wzax )= V(wl)'éz— + V(wz)a 7

2]0 82f 82f
(vlwl - + (Ul’wg + Ug’wl)a 181’2 + v2w2533_%> .

In a similar way:

Ly of
(wov)(f) = W(’Ul)é';l— + W(Uz)g‘x—z'-i—
azf 82f 82f
<v1w18—$% + (vnws + Uzwl)&m@wz T U2w23—$%> ‘

Now we see that, in the expression (v o w)(f) — (w o v)(f), the terms that contain
second partial derivatives of the function f cancel. So,

Vo wl(7) = (vlan) = w(on) g+ (v(ua) = wlo)) 5
This means that
vyw] = (v(n) = W) g+ (v () = w(tz)) e = iwm) - i) o
Example. Let v = 32-, w = f(z1)3%. Then
vow) = £ (@) 5

Ezercise. Suppose v = 3-2—1. Find all vector fields w such that
[v,w] =0.
Ezxercise. Check that commutation of vector fields has the following properties:
1° it is bilinear (over R);
2° it is skew-symmetric: [v,w] = —[w,v];

3° the Jacoby identity holds:

[v1, [va, vs]] + [va, [vs, vi]] + [vs, [vi,v2]] =0
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Definition. A Lie algebra is a vector space g supplied with a binary operation

gxg—g, (z,y)— [z,y]

such that the conditions 1°-3° hold.

Thus, we see that D(R?) is an infinite-dimensional Lie algebra. Note that commu-
tation is a bilinear operation over R, but not over C*°(R?).

Ezxercise. Show that
[V,f-W] :V(f) "LU+f' [V,W]

for all v,w € D(R?) and f € C*(R?). Find the value of the expression [fv,gw],
where f,g € C°(R?).

Definition. A subalgebra of a Lie algebra g is a subspace of the vector space g closed
under commutation.

In the sequel we shall be especially interested in finite-dimensional subalgebras of
the Lie algebra D(IR?).

Examples.
1) The vector space

8:1}1 8%2

0 0
{al———l—az—-— a1, Qg E]R}

is a two-dimensional subalgebra of the Lie algebra D(R?).
2) The space

a€R, feC™(R? }

0 0
{ 015;; +f(.’171,$2)—a-3;;

forms an infinite-dimensional subalgebra.

Ezercise. Show that the following spaces are subalgebras of the Lie algebra D(IR?):

a) { (a0 + 1wy + apaf) 52 ' a; €R };

b) { flan)sls | e @) };

c) { (111 + 0412:32)8%1 + (a1 + 0122172)% I aij € R? } :
d) { aze + (Bo + Brzr + - - + Bnat) 72 ’ @ Po,... Pn€R };
o { & & -2 & | Fec=m®) }.

Which of them are finite-dimensional?

It is possible to consider the Lie algebra D(U) and its subalgebras for an arbitrary
open subset U on the plane. All the constructions are analogous to those of the case
of R2,
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§4. ACTION OF DIFFEOMORPHISMS ON
FUNCTIONS AND VECTOR FIELDS

4.1. Differentials. Let ¢ : R? — R? be a certain smooth mapping. This means that

@(z1,72) = (01(1,22), P2(T1, T2)),

where @1, g € C (]Rz). Let vq € T,R? be the tangent vector to the plane at some
point a. Recall that v, can be considered as an equivalence class of straight lines
passing through the point a. Using this definition of a tangent vector, we shall define
the differential of the mapping ¢.

Theorem 1. Let curvest — s%(t),i = 1,2 be equivalent at the point t = 0. Then the
curves t — (p o s*)(t),i = 1,2, are equivalent at t = 0.

Proof. Suppose (s!)/(0) = (s?)'(0) = v = (v1,vs2) € T,R?. Then

(pos)(t) = (2r(s1(t), 55(1)), (51 (1), 55(1))-

From theorem 2, §1, it follows that

(0050 = (52 @0 + 320, 2@+ F2 @) )

for i = 1,2. Thus, the mapping ¢ takes equivalence classes of curves passing through
the point a to equivalence classes of curves passing through the point b = ¢(a).
Identifying tangent vectors v, with the equivalence classes of curves, we obtain the
mapping
de : T.R? — T,R2.

This mapping is called the differential of ¢ at the point a. From formula (1) it follows
that the mapping dq¢ takes a tangent vector (vy,vs) € ToR? to

(52 @ + 52 @ua, S22 + 52 (0)0n ) € TR,

In other words, ¢ is a linear mapping of tangent spaces and, in the standard basis, its

matrix has the form: 5
- (B0 80)

d d
52 (0) 5o (a)

Note that it is the Jakobi matrix of the mapping ¢ at the point a.

Oxo

Examples.

1) Let ¢ be the identity mapping of the plane. Obviously, d,¢ is the identity
mapping of the tangent space T,R? for each a € R2. 2) Let ¢ be the parallel translation
by a vector v = (v1,v2). We have

P (.Tl,xg) — (331 + V1, T2 +Uz).
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It can be easily shown that at every point a € R2, the Jakobi matrix of ¢ is the
identity matrix.
3) Let ¢ be a linear transformation of the plane:

@ : (x1,22) — (1121 + a21T2, G21%1 + A22T2).

J(a): a1 a2
Q21  QA22

for each a € R%. This means that the Jakobi matrix of ¢ is scalar and equal to the
matrix of ¢ (cp. (az) =a, Vz € R).

Then

Ezercise. Show that if the Jakobi matrix of a smooth mapping ¢ is constant, then ¢
is an affine mapping.

Further, let ¢ and v be two smooth mapping of R? into R? and a some point of
the plane. From the definition of the differential it follows that

da('zﬁ 0] gp) = d(p(a)d) o) da(p.

In particular, suppose ¢ is a diffeomorphism of the plane and 1 = ¢~!; then the last
expression has the form

d,(Idg2) = dw(a)(cp—l) o dyp.

Since the differential of the identity of the plane at a point a is the identity of the
tangent space T,R%, we have

dip(a) ((P_l) = (daﬁo)—l'

Thus, the differential of a diffeomorphism at every point is a non-singular linear map-
ping.

4.2. Action of diffeomorphisms on vector fields. Suppose v is a vector field on
the plane and ¢ is some diffeomorphism. We can consider the vector field ¢.v given

by
(Qo'v)cp(a) = da‘P(Va)' (2)

Since dq¢ is a mapping of T,R? into T, © (a)R2, we see that ¢.v is well-defined.
Example. Suppose ¢(z1,%2) = (¢1(21,2), ¢2(z1,22)) and v = z2-,i = 1,2. Then

(Ei’

(p¥)uto) = dupl1,0) = ( G210 52(0)).

Substituting a for ¢~!(a) in the expression above, we obtain

(ov)e = (G2 @), 207 (@)
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_ (91 4\ O Jpa 4\ 0O
(p'v_(&z:iocp >8w1+<8xiocp Oy’
For example, suppose ¢(z1,22) = (z1€"2,22). Then ¢~ (z1,22) = (z167%2,15) and
(2) = () morri
e dry ) Oy’ e ory ) ‘Oz, | Oxg

Suppose ¢(z1,22) = (21 + f(z2),72), where f € C°(R?). Then ¢ (z1,22) =
(z1 — f(z2), z2) and

DN 0 (DN D0
»- dr1) Oz’ v 0ry ) 295, | Oxy

Ezercise. Let ¢ be the parallel translation by a vector a = (a1, a2) and

or

vV = ’Ul(xl,.’ﬂz)'a—‘x—l' —+ vz(ml,xz)%—z—.

Find the field ¢.v.

Ezercise. Show that the following relations are true:
1° QD.()\1V1 + )\2V2) = A1p.V] + A3 Vo;
2° (p102).v = p1.(p2.V);
3 p.(fv)=(fop eV,
where A1, A2 € R, @, 1,92 € Diff(R?), f € C®(R?), v,vy,ve € D(R).

In particular, from the previous example and 3° it follows that for
(1, 2) = (p1(21, 32), p2(x1, 22)) € Diff (R?)

and

0 0
vV = ’Ul(fBl, wz)ggz + U2($1’$2)5LE—2- c D(Rz)

the vector field ¢.v has the form:

3 0 283 6 1 0
”8:cj 3331

4.3. Action of diffeomorphisms on functions. We can also define the action of
diffeomorphisms on smooth functions on the plane:

def _
o.f £ fop™h.
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Examples.
1) Let ¢ = Idge. It is evident that ¢.f = f for all f € C°(R?).
2) Suppose ¢ is the parallel translation by a vector v = (vy,v2). Then

(p-f)(z1,22) = f(w1 — V1,72 — v2).

Exercise. Check that the action of diffeomorphisms on functions has the following
properties:
1° it is linear over R:

o.(AMf1+Xafo) =A@ fi + Ao . fo;

2° @.(f1f2) = (¢-f1)(¢-f2);
3° (p1o@2).f = p1.(p2-f)-
What form would property 3° take if we defined the action as follows: ¢.f = f o ¢?
Let us describe a relationship between the actions of diffeomorphisms on functions
and on vector fields.

Theorem 2. For all ¢ € Diff(R?), v € D(R?), f € C*(R?), we have
12 e (fv) = (@.f)(ev);
22 p.(v(f) = (pv)(e-f).

Proof.
1°. Let

V=U157— +V257— <P(331,932) = (901($1>$2),902(901,$2))>

69c1 8:132 ’

where vy, v2, 01, P2 € C®°(R?). Then

2 2 8(p' 9
— . A _
QO.(fV) - Z — (fvj 8:II]> ¥ 833%

Fow™) 23 (55 ) oo - = (e-Nlew).

2°. The proof is quite analogous to that of 1° and involves only direct calculation.

Ezercise. Do this calculation.
Now we introduce one of the most important properties of the action of diffeomor-
phisms on vector fields:
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Theorem 3.
@.[v,w] = [p.v, p. W] (3)
for all p € Diff(R?), v,w € D(R?).

Proof. 1t is clear that (3) is true when v = w. Let

0
V=g W= gy and p(x1,22) = (p1(21, 32), P2(21, T2)).

8331,

Then ¢.[v,w] = .0 =0 and

oo+ (32) 7o (5m) o+ (92 ) =
(0 (o50) ~tom (#52) )
(0 (o502) ~ o (¢55) ) 2 -
o(-(38) () am e ((52) (3)) e
Thus, equality (3) holds for v = 52, w = % i,7 = 1,2. But if equality (3) is true

for some vector fields v,w € D(R?) and f is a smooth function on the plane, then it
is true for the vector fields v, fw:

[p.v,p.w] =

- (52)

o([v, fw]) = p(v(f)w + f - [v,w]) = o.(v(f)) (o.-W) + (p.f)p.[v, W] =
(V) (@ f)p-w + (@0.f)lp-v, p.w] = [p.v, p.(fw)].

This proves the theorem.

Definition. Let g;, go be Lie algebras. A homomorphism of the Lie algebras g1, go
is a linear mapping ¢ : g1 — g2 such that

o([z,y]) = [p(z), @(y)] for all 2,y € g;.

If ¢ is an isomorphism of the vector spaces g; and g, then ¢ is called an iso-
morphism of the algebras g1 and go. Finally, if g1 = go, then homomorphisms and
isomorphisms are called endomorphisms and automorphisms of the Lie algebra g;
respectively.

4.4. Equivalence of vector fields. So, for any ¢ € Diff(R?) the mapping v — ¢.v
is an automorphism of the Lie algebra D(R?).
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Definition. Let vi, vy be two vector fields (g1, g2 be two Lie algebras of vector fields)
on the plane. Then v; and vy (g1 and g3) are said to be equivalent if there exists a
diffeomorphism ¢ of the plane such that

Pp.V1 =V (90-91 = 92)-

Examples.

1) From the example of item 4.2 it follows that all vector fields of the form 5‘2-1 +
f (xl)a%2 are equivalent.

2) The vector fields 5—2— and ai are equivalent. For example, the diffeomorphism

1 T2
¢ : (x1,m2) — (z2,21) takes one vector field into the other.

3) The vector fields 52—1 + ;9% and x18iml + :1:2% are not equivalent, because the
first vector field is not equal to zero at any point a € R?, whereas the second one is
equal to zero at the point (0,0).

4) The Lie algebras g, = {ala%l + a25%|a1,a2 € R} and go = {ala% + (@129 +
azewl)%lal, ay € R} are equivalent. The desired diffeomorphism has the form:

¢: (r1,22) — (21, x2).

Note that the restriction of the mapping v — ¢.v to g; is an isomorphism of the
Lie algebras g; and go. Thus, if the Lie algebras g; and go are equivalent, then they
are necessarily isomorphic. As we shall see later, the converse statement, generally
speaking, is not true.

Let us now describe the local analogues of the definitions given above. Let U and
V be open subsets of the plane and let D(U) and D(V') be the corresponding Lie alge-
bras of vector fields. Then every diffeomorphism ¢: U — V' generates two mappings:
D(U) — D(V) and C*(U) — C*(V). All the properties of these mappings still hold
in this case.

Example. Let
U= {(.’131,1132) € R? I 0<21,0< 20 < 27T},

V =R*\{(z1,0) | z1 > 0}

and let
@: (z1,T2) — (21 cO8 T2, 1 SINT2)

be a diffeomorphism of U onto V. Under the action of ¢ the vector fields 8—?0—1 and %
are taken to the fields 5 5

T To
_.I...
Va2 +zi0r /23 + 23 0z

and
0
—Xo—— + T1—

81131 8.’172
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respectively.

Now, let U C V. To every vector field v on V we assign its restriction v|y to the
subset U. Thus, we obtain the mapping D(U) — D(V). It is easy to verify that it is
a homomorphism of Lie algebras. Suppose g is a Lie algebra of vector fields on V' (i.e.
g is a subalgebra of the Lie algebra D(V)). Then by g|y we denote its image by this
diffeomorphism.

Let a be an arbitrary point on the plane and ¢ some local diffeomorphism of the
plane at the point a such that ¢(a) = a. Then it generates a diffecomorphism U — V
for certain neighborhoods U and V of a and therefore an isomorphism D(U) — D(V)
of Lie algebras.

Definition. Let vy, vy be two vector fields (g1, g2 two Lie algebras of vector fields) on
the plane. Then vy, vy (respectively, g1, g2) are called locally equivalent at the point
a € R? if the following conditions hold:

(1) there exists a local diffeomorphism ¢ of the plane at a such that ¢(a) = a;

(2) there exist neighborhoods U, V = ¢(U) of the point a such that the diffeomor-
phism ¢|y: U — V takes the vector field vq|y into the vector field va|y (i.e. generates
an isomorphism of the Lie algebras g1|y and ga|v).

Remark. All objects in this definition (the vector fields, the diffeomorphism ¢, etc.)
can be defined only on some neighborhood of the point a.

Examples.
1) Since the local diffeomorphism

(x1,2) — ____561____7332
T+ T + 1

takes the vector field 5‘2—2 into the field

-1z 0 o)
To+1 O0x;  Oxzg’

we see that these fields are locally equivalent at the point 0.
2) Let f (ml)a%l be a vector field such that f(0) # 0. Then it is locally equivalent

to the vector field 8%1 at the point 0 . Indeed, let (z1,z2) — (p(z1),22) be a local
diffeomorphism of the plane at the point 0. This is equivalent to the following fact:
©'(0) # 0. Hence, it takes the vector field 8%1 into the field ¢’ o <p_1(:c1)(—92—1; therefore
the following condition is true for the function ¢:

¢'(z) = fp(z)), ¢(0) =0.

This ordinary differential equation is uniquely solvable in some neighborhood of 0 and,
in addition, ¢'(0) = f(¢(0)) = £(0) # 0. So, the mapping (z1,2) — (12(z1),2) is
really a local diffeomorphism of the plane and takes the vector field ;97‘2? into the vector

In a similar way one can prove the following theorem:
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Theorem 4. Let v be a vector field on the plane and vq # 0. Then v is locally
equivalent to the vector field % at the point 0.

§5. ONE-PARAMETER TRANSFORMATION GROUPS
5.1. Groups of transformations.

Definition 1. A set G of diffeomorphisms of R? is called a transformation group of
the plane if the following conditions hold:

(1) Id € G;

(2) for all p1,02 € G, 1093 €G;

(3) forallpe G, ¢ led.

In other words, a transformation group of the plane is a subgroup of the group
Diff (R?).

Examples.

1) Obviously the set that consists of the identity mapping is a trivial example of a
transformation group of the plane.

2) The set of all parallel translations, the sets of all linear and affine transformations
are transformation groups of the plane.

3) The set of all Euclidean transformations is a transformation group of the plane.

4) The symmetry group of a regular polygon is the set of all Euclidean transforma-
tions of the plane that take the polygon into itself. Then it is a finite transformation
group of the plane.

5) The set of all diffeomorphisms

($1,$2) H(x17$2+f(xl))7 fECOO(R)a

is a transformation group of the plane.

Ezercise. Consider the following sets:
a) the set of Euclidean transformations of the plane that preserve orientation;
b) the set of Euclidean transformations of the plane that change orientation;
c) {(u1,z2) — (u1,e*122)| )\ € R};
d) {(u1,u2) — (u1 + a,ug + €*11%)|a € R};
f) the set of all affine transformations of the plane that preserve area.
Which of them are transformation groups of the plane?

5.2. One-parameter transformation groups. We shall say that a family of dif-
feomorphisms {¢;}+cg smoothly depends on parameter ¢ if the mapping t — ¢¢(a) is
a smooth curve on the plane for each a € R?.

Definition 2. Let {¢:} be a family of diffecomorphisms that smoothly depends on ¢.
Then {¢} is called a one-parameter transformation group of the plane if the mapping
t — ¢y is a homomorphism of the group R into Dif f(R?).
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The last condition means that

(1) @o =1d;

(2) Pty +t, = (Ptllo '27%)

(3) p—t = (pr)~ "
Examples.

1) The trivial one-parameter transformation group is ¢; = Idge for each t € R.
2) The group of parallel translations along a vector v = (vy,v3) € V2

ot (21, 22) = (T1 + v1t, T2 + vat).
3) The group of rotations around the origin:
@i ¢ (x1,22) — (z1cost — xgsint, zqsint + x4 cost).
4) The group of shifts:
@1 ¢ (T1,22) = (z1,72 +tf(21)),
where f is some fixed smooth function on the line.

Ezercise. Invent a one-parameter transformation group different from the groups men-

tioned above.
Let us find a connection between vector fields v € D(IR?) and one-parameter trans-
formation groups {¢:} of the plane. This can be done in the following way. Put

@) =a _ . oila) - po(a)
t—0 t t—0 t
for each a € R2.

Note that v, is the tangent vector to the curve t — ¢.(a) at ¢ = 0. This is in
agreement with the interpretation of tangent vectors at a point as equivalence classes
of curves passing through this point.

The vector field v is called the infinitesimal generator of the one-parameter trans-
formation group {p:}.

Examples.

1) The infinitesimal generator of the trivial one-parameter transformation group is
the zero vector field.

2) Let us find the infinitesimal generator of the group of rotations around the origin.

We get

d . .
V(zi,02) = d—t(xl cost — xgsint, zqsint + x5 cost)|i—o = (—x2, 7).

Thus v = _:1;25?:_1 +ZE152—2-.

Exercise. Find the infinitesimal generators of the one-parameter transformation groups
from examples 2) and 4).

Let us show that a one—parameter transformation group is uniquely determined by
its infinitesimal generator.
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Theorem 1. Let {¢;} be a one—parameter transformation group of the plane, v €
D(IR?) its infinitesimal generator.
1°. The differential equation

$a(t) = Vsuy  5a(0) =0, (1)

where sq : R — R? is a smooth curve on the plane, is uniquely solvable for each
a € R2. The solution is defined at each point t € R and s,(t) = ¢4(a).

2°. Suppose v € D(R?) is a vector field on the plane such that the differential
equation (1) is globally solvable for each a € R?. Then the set of mappings {¢; : R? —
R?} determined by the equation ¢i(a) = s4(t) forms a one-parameter transformation
group of the plane.

Proof.
1°. Suppose $4(t) = ¢pi(a). Then

Sa(t + 5) — Sa(t) lim @t—l—a(a) — Qot(a) _

8; (t) = clliI(l) - = am . =
. € a)) — a
lim celind )2 aula) Voi(a) = Vsa(t)-

Thus the curve s, (t) is a solution of differential equation (1). This differential
equation is uniquely solvable. Hence, the curve s,(t) is the unique solution and it is
determined at each point of the line.

2°. Consider the diffeomorphisms ¢, t € R, determined by the equation p¢(a) =
S4(t). Let us prove that {¢;} is a one-parameter transformation group. Clearly
o = Idgz. We claim that

Prir:(a) = u (p1(a)), Vi1, t2 €R,a € R, (2)
Indeed, the curve s(t) = s,(t + t2) is a solution of the differential equation
s'(t) = vsy,  8(0) = e, (a)
But this equation has exactly one solution, which is equal to Sy, (a) (t). Hence we get
sa(t1 +1t2) = sy, (a)(t1).

This completes the proof.

Example. Consider the vector field v = T122- + x9=2-. In this case the differential
83]1 3:]32

equation (1) has the form:

13

{ si(t) = s1(t), 51(0)

s3(t) = 52(t), s2(0) =@

29
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where s(t) = (s1(¢), s2(t)). Hence we get
s1(t) = are’, sa(t) = aqe’.

The corresponding one-parameter transformation group has the form:
@1 ¢ (T1,72) = (e'zy, e'zy)

In other words, ¢; is the homothety with ratio et.

Now we assume that v € D(R?) is a vector field such that equation (1) does not
have any global solutions.
For example, put v = x%a—‘z-l. The corresponding differential equation has the form:

Solving this equation we obtain

ai

Sl(t) - 1-— alt’

s2(t) = as.

We see that the solution is defined only in a certain neighborhood of the point 0, for
example, on the interval (—ﬁ; |7-31_|> Moreover, we cannot define the diffeomorphism

¢ whenever t # 0. However, for each ¢ € R it is possible to find a domain on the
plane such that the diffeomorphism ¢, is defined. In our case ¢; can be defined on
the open subset V; = {(z1,z2)|tz1 # 1; z2 € R}.

Now we introduce the following concept.

Definition 3. Let {¢;} be a family of diffeomorphisms that smoothly depends on ¢
and suppose that the following conditions hold:

(1) each diffeomorphism ¢; is defined on some open domain V; C R? and V = R?;

(2) the set {(t,a) € R x R?|a € V;} is open;

(3) wo = Idg2 : ©t,+t, = @1, © 1, Whenever both sides of the equality make sense.
Then {¢;} is called a local one-parameter transformation group of the plane.

Examples.

1) Any one-parameter transformation group is a local one-parameter transformation
group, where for V; one can take the whole plane for all ¢ € R2.

2) The family of diffeomorphisms

e
<Pt3(371>$2)'—"< ! wz)

1 —Ilt’

is also a local one-parameter transformation group. Moreover, for V; we can take
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Indeed,

T
Ptq (‘Ptz(xl,xz)) = Yt <— xz) =

1-— wltg,
1—w$1t2 C oz | = ( T1 . 1’2)
9 - )
1—-1—_%6'151 1—$1(t1t2)

for all t1,t2 € R2, (z1,22) € R? such that these expressions make sense.

As before, to every local one-parameter transformation group {¢;} of the plane we
can assign a certain vector field. Indeed, for each point a € R? the curve s,(t) = ¢ (a),
according the definition, is defined in some neighborhood of 0. If we assign to every
point a the tangent vector to the curve s, at the point ¢ = 0, we shall get the vector
field v:

v, = 5,,(0) for all a € R?.

This vector field is said to be the infinitesimal generator of the local one-parameter
transformation group {¢;}. Moreover, from the proof ot theorem 1 it follows that the
following statement is true:

Theorem 2. There is a one-to-one correspondence between vector fields on the plane
and local one-parameter transformation groups of the plane.

Let us now show how local one-parameter transformation groups appear naturally.
Let S? be the two-dimensional sphere given by the equation z? + z3 + 22 = 1 in R3.
Let us introduce a parametrization on the sphere by means of two parameters x; and
5. Since the sphere is not homeomorphic to the plane, we can do it only in some
neighborhood U on the sphere. For U we take the set S?\{0,0, 1} and project it on the
plane {z3 = 0} by means of stereographic projection. In this case a point (z1,z2,x3)

of the sphere is transformed into the point (1 f;s; T ffcs) of the plane. The inverse

mapping is given by

’ Vs -+ i+ + Uy +ys+1)

Consider the one-parameter group of rotations of R? with respect to 0z-axis:
ot 1 (z1,T2,23) — (1 cost — zgsint, xe, 1 sint + 3 cost).

Since the sphere is stable under these rotations, we see that they induce a one-
parameter transformation group of the sphere. Consider its action on points of U
in the coordinates introduced above:

2y1 cost — (y2 +y2 — 1)sint _
yi+y3+1— 2y sint — (y7 +y3 — 1) cost’

e (Yy1,92) — (

2y2
yi+ys+1—2y;sint — (y? + 3 — 1)cost) ‘
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Consequently, diffeomorphisms ¢, are defined not for all points of the plane, i.e. {¢;}
is a local one-parameter transformation group.

Exercise.

1) Find all points of R? where ¢; is not defined.

2) Show that the infinitesimal generator of the given-above local one-parameter
transformation group of the sphere has the form:

2
vV =
(y7 +v3 +1)?
Thus, we see that the global one-parameter transformation group of the sphere

becomes local if we consider its action on some parametrized neighborhood, which we
identify with the plane.

0 0

2 2

. 21— 12 —
<(y1 Y2 )8y1 Y1Y2 8y2)

§6. INTRODUCTION TO LIE TRANSFORMATION GROUPS

6.1. Lie transformation groups. In the sequel we shall be interested only in those
transformation groups of the plane that possess an additional topological structure
(not arbitrary transformation groups of the plane).

A parametrization of a transformation group G is a homeomorphism of some open
domain in R" onto a neighborhood of the identity mapping in G:

p: O — G,

where O C R", p(O) is a neighborhood of identity in G.
In the sequel we shall assume that O 3 0 and p(0) = Idge.

Definition. A group G of transformations of the plane is called an r-parameter
transformation group (or an r-dimensional Lie transformation group) if there exists a
parametrization p: O — G, where O C R", such that the following condition holds:

if s: R — O is a smooth curve in O, then the family of diffeomorphisms ¢; = p(s(t))
of the plane smoothly depends on parameter t.

Examples.

1) Any one-parameter transformation group is a 1-parameter transformation group
in the sense of the definition given above.

2) The group of parallel translations on the plane is a 2-parameter transformation
group, where for O one can take the whole plane:

p: (J;]_, 1;2) = T(ar:l,:zg)'
Here T(4, 4, is a parallel translation by a vector (z1,2z2) € V2. Note that in this case
p(0) =G.
3) The group of all linear transformations of the plane is a 4-parameter transfor-

mation group; the parametrization, for instance, has the form: p(xi,z2,z3,24) is a
linear transformation with matrix

14 2 To
I3 1+.’E4
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Exercise. Find the largest number 7 € R such that the open ball
B, ={(z1,22,23,74)|75 + 23 + 25 + 235 < r?}

can be chosen for O.

4) Similarly, it is possible to show that the group of all affine transformations of
the plane is a 6-parameter transformation group.

5) The group of all Euclidean transformations of the plane is a 3-parameter trans-
formation group. The parametrization, for example, has the form:

p(QO, Z1, 33'2) = T(azl,ccg) S cha

where R,, is a rotation by the angle ¢ around the origin of coordinates. For O we can
take the neighborhood

{(p,z1,22) eR® | = < < 7}

6) The group of all transformations of the plane is not an r-parameter transforma-
tion group whenever r € N. It is really so, because there does not exist a neighborhood
of the identity mapping that can be parametrized by a finite number of parameters.

Ezercise. Show that the group of all linear transformations of the plane with deter-
minant 1 is a 3-parameter transformation group.

To every r-parameter transformation group of the line it is possible to assign some
r-dimensional Lie algebra of vector fields on the plane. Let s:IR — O be a smooth
curve in a neighbourhood O, where s(0) = 0, and {¢; = p(s(t))} a corresponding
family of diffeomorphisms. Then to the curve S we can assign the vector field v*® on
the plane:
pt(a) —a
t—0 t )

The following theorem is a fundamental result of theory of Lie groups and is given
without proof.

Theorem 1.

1) The set g = {v® | s:IR — O, s(0) = 0} is an r-dimensional Lie algebra on the
plane and does not depend on parametrization p.

2) The vector field v® depends only on the vector v = s'(0). The map R" 5 v
v® € g is an isomorphism of vector spaces.

3) For each v € g, differential equation (1) is globally solvable. Diffeomorphisms
from corresponding one-parameter subgroups lie in G and generate the connected
component of the identity of the group G.

The Lie algebra g is called the Lie algebra of vector fields of the Lie transformation
group G.

This theorem shows that the Lie algebra g almost completely determines the Lie
transformation group G.
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Examples.

1) Assume that G is the group of parallel translations on the plane and s:t —
(a1t, aqt) is a smooth curve in a neighborhood O. Then the family of diffeomorphisms
corresponding to s has the form:

©¢: (CBl,IL‘z) > (371 + a1t, x9 + azt).

Therefore, the corresponding vector field has the form:

0 0
aj 6_$—1 + asg @ .

From item 2 of theorem 1 it follows that the Lie algebra g does not contain any
other vector fields except those given above. Thus, g = { a18%1 + agﬁ | a1,a2 € R}
and the map

R? 5 (a1, as) — ali —l—azi €g
’ 01B1 82172
is really an isomorphism of vector spaces.

2) Let G be the group of all linear transformations of the plane. Then to a curve of

the form ¢ — (a1t, ast, ast, ast) € O there corresponds the family of diffeomorphisms

@i: (21, 22) = ((1 + a1t)z1 + astzs, astz + (1 + aat)zs).

The corresponding vector field at a point (z1, z2) has the form:

d
-C'Z—t- ((1 + alt)xl + astza, astr, + (1 + a4t):r;2) |t=0 = (a,1£E1 + asrg,a271 + a4x2).

Hence,

0 0
g={(a1z1 + agxz)gg + (agz1 + a4x2)a—xz | a1, a2,a3,a4 € R}.

Ezercise. Find the Lie algebras of vector fields for the following Lie groups of trans-
formations of the plane:
a) a one-parameter transformation group with infinitesimal generator v € D(R?);
b) the group of affine transformations of the plane;
¢) the group of Euclidean transformations of the plane.

6.2. Local Lie transformation groups. Let us now consider local analogues of
Lie transformation group.

Let G be a Lie transformation group. Now we assume that diffeomorphisms from
G are defined not on the entire plane but on some open domain except for the identity
map, defined everywhere. We also assume that for every point a € R? there exists
an open neighborhood of the identity of G such that it contains only those diffeomor-
phisms which are defined at the point a. Transformation groups of this type are called
local Lie transformation groups.
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Example. To every non-singular matrix from Matgzy3(R)

a1l @iz a3

A= | a1 a2 az

as1 asz @33

assign the following transformation of the plane:
01171 + @12T2 + 13 A21%1 + A22T2 + a23)

a31%1 + agaT2 + a3z’ A31Z1 + A32%2 +asz )
Note that it is defined only at those points (z1,z2) that satisfy the condition

wa:(z1,22) — (

as1T1 + asaTs + ags # 0.

Transformations of this type are called linear fractional or projective.
Exercise. Check that

1°. papB = paB;
2°. x4 = pa,
for all non-singular matrices A, B and A\ € R*.
In particular, we have (¢4)™! = @ 4-1, i.e. pa0pa-1(a) = pa-10pa(a) = a for
all points a € R? for which these equalities make sense.
Since x4 = @4, in the sequel we shall consider only matrices with determinant 1.

Ezercise.

1) Show that for any two different matrices A, B with determinant 1 the transfor-
mations g4 and pp are different.

2) Find all matrices A such that the transformation @4 is defined everywhere.

It is possible to show that the set of all projective transformations of the plane is
an 8-parameter Lie transformation group.

To every local transformation group of the plane there also corresponds a certain
Lie algebra of vector fields on the plane. We can construct it in just the same way.

6.3. Transitive transformation groups of the plane.

Definition. A transformation group of the plane G is called transitive if for any
points a, b € R? there exists a diffeomorphism ¢ € G such that ¢(a) = b.

Examples.

1) The groups of parallel translations and affine transformations are obviously tran-
sitive.

2) The group of linear transformations of the plane is not transitive, since the point
(0,0) is stable under any linear transformation of the plane.

Ezxercise. Which of the followings transformation groups are transitive:
a) the group of Euclidean transformations of the plane;
b) the group of shifts:

G = {(z1,22) = (z1, f(21) + 22) | f € CZ(R*)}?

Now suppose G is a Lie transformation group of the plane and g is the corresponding
Lie algebra of vector fields. There is a simple criterion for the group G to be transitive.
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Theorem 2. A Lie transformation group of the plane G is transitive if and only if
for each point a € R? the space g, = { Vv, | v € g} coincides with T,R?.

Ezercise.

1) Check that for the group of parallel translations the condition of theorem 2 is
satisfied.

2) Let G be the group of linear transformations of the plane and g the corresponding
Lie algebra of vector fields. Find a point a € R? such that g, # T,R%2. Theorem 2 is
a basis for a local analogue of the concept of transitivity.

Definition. A Lie algebra g of vector fields on the plane is said to be transitive at a
point a € R? if g, = T,R2.

Thus, a Lie transformation group G of the plane is transitive if the corresponding
Lie algebra of vector fields is transitive at every point of the plane.

Exercise. Suppose that a Lie algebra g of vector fields on the plane is transitive at a
point a € R2. Show that there exists a neighborhood U of a such that g is transitive
at each point b € U.

§7. LOCAL CLASSIFICATION

7.1. One-dimensional case. Our nearest aim is to describe all finite-dimensional
transitive Lie algebras of vector fields on the plane up to local equivalence.

However, now we consider the same problem on the line. It is obvious that all
definitions given above can be formulated for any space R"™, where n € N.

Each vector field on the line has the form f % for some f € C*®(R?) and the
operation of commutation is given by

g | = Ud =4 D)

0z’ Yoz
We shall employ the following notation: for linearly independent vectors e, ..., ek
of some vector space V by (eq, ..., ex) we shall denote the subspace of V' spanned

by these vectors.

Theorem 1. Let g be a finite-dimensional Lie algebra of vector field on the line and
suppose that g is transitive at x = 0. Then g is locally equivalent to one and only one
of the following Lie algebras:

1°.

0
<5:£ >’
2°.
o0
oz "oz
3°.
NN
ox' “ox’ T Oz
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Proof. Since g is transitive at 0, there exists a vector field v € g such that v # 0.

Then, as it was shown in section 3, it is locally equivalent to the vector field %. Now
consider the set of functions

F={f€C°°(1R)|f%€g}.

[e)

It is easy to show that F is a finite-dimensional vector space. Besides, since 5- € g
and [6%, f %] = f 6%, we see that it is closed under differentiation of functions.

Hence, F is the set of all solutions of some homogeneous linear differential equation
with constant coefficients (see appendix B). In particular, it follows that all functions
from F are analytic in a certain neighborhood of the point a = 0. To complete the
proof of the theorem we need the following lemmas:

Lemma 1. Let v,w be nonzero vector fields on the line. If [v,w| = 0, then there
exists A € R* such that v = Aw.

Proof of lemma 1. Indeed, let v = f(x)a%, W= g(m)a%. Then the equality [v,w] =0
is equivalent to the equality
fg' = f'g=0.

(L) - Lot
9 g

Consequently,

/
for all z € R such that g(z) # 0. Similarly, (%) = 0 for all points x of the line such

that f(z) # 0. Hence, the zero sets of the functions f and g coincide and f = Ag for
a certain A € R.
In the sequel we shall say that a vector field v € D(IR) has zero of order n at a

point a € Rif v = (x —a)"- f(x)%, where f(a) # 0. If v, # 0, then we shall say
that the vector field v has zero of order 0 at the point a.

Lemma 2. Suppose that vector fields v,w € D(R) have zeros of order n and m,
respectively, at the point 0. Then the vector field [v, w] has zero of order not less than
n+m—1 at0.

Proof of lemma 2. Indeed, if v = z" f(z)Z, w = 2™g(z)-Z, then we have
v, w] = (2" £(a) - (a7 (a) + ma™g(x))

(@) + 2" f(2)) - 29(2))

2 (2 ()9 (&) + (m— m)f(@)g(a) — of (2)g(x)) s

i.e. the vector field [v, w] has the zero of order greater or equal to n +m — 1 at the
point 0.
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Lemma 3. Dimension of the Lie algebra g is not greater than 3.

Proof of lemma 3. Choose a basis vi,vs,..., v, of the Lie algebra g so that vy = 5%
and every next vector field has zero of order greater then that of the previous one at
the point 0. We can always do it by means of linear transformations of an arbitrary
basis. Now, let us assume that n > 4 and p, g are orders of zeros of the vector fields
vp—1 and v, respectively (since all functions from F are analytic, we see that p and
q are finite). Then n — 2 < p < ¢. Consequently, the vector field [v,_1, v,] has zero
of order not less than p+q—1>q¢+n—3 > g+ 1 at the point 0. Since all nonzero
vector fields from g have zero of order not greater than ¢ at the origin and [v,_1, vy,
is a nonzero vector field from g, we come to a contradiction. This proves the lemma.

Consider now the following cases:

1) dimg = 1. Since % € g, we see that g has form 1°.

2) dim g = 2. In such a situation F is the solution set some second-order differential
equation and 1 € F. Hence, this equation has the form:

"+ A" =0.

If A = 0, then g has form 2°. Suppose A\ # 0. Then g = ( %; e_)‘xg% ). It is easy
to show that the local diffeomorphism z — 1 — e®/? takes this subalgebra into the
subalgebra (5‘95, m-a%).

3) dimg = 3. Let {v1,va, vs} be a basis of the Lie algebra g chosen as in the proof
of lemma 3. In this case it is not difficult to show that at the point 0 the vector fields
vy and v have zero of order 1 and 2 respectively. Without loss of generality we can

assume that

— a . — 8 N = 2 2 8
vi=3=5 Vo= (@ +o())goi va=(a? +o(a”) 5.
Then we get
[V1,V2] =v;+avy + ,8V3a
[vi,v3] = 2va +vs;

[V2,v3] = V3
for certain numbers «, 3,7 € R. Passing to the new basis

o
w1 =V1+< —77)%,

Y
W = 2vy + Vg,
2
W3 = V3,
we obtain

[Wlaw2] =wi+ 5W2> [W17W3] = 2W2a [W2,W3] = W3, (1)



40 B. KOMRAKOV A. CHURYUMOV B. DOUBROV

where 6 = a + 7.
From the Jacoby identity

[[w1, wa], ws] + [[w2, ws],w1] + [[w3, w1],wz] =0

it follows that § = 0.
Since the vector field w; is nonzero at the point 0, we see that there exists a local
diffeomorphism that takes w1 into the vector field @ Suppose as well that the vector

fields wo and w3 pass into f(z)-2 5. and g(z )2 50 respectlvely, under this diffeomorphism.
Then from equalities (1) it follows that

.fI:17 g/:2f7 fgl_flg:g

§lo

Hence, f(z) = z, g(z) = 22, and we have g = (-2, =2, 22-2). This completes the
oz ox

proof of the theorem.

7.2. Two—dimensional case. The analogous theorem for finite-dimensional Lie
algebras on the plane is more complicated and has the following form:

Theorem 2. Any finite-dimensional transitive Lie algebra of vector fields on the
plane is locally equivalent to one of the following Lie algebras:

L1 (3% 22

21 (s gz Tz +Amagl), NS

2.2 (55 525 (Ao —m2) 5% + (31 +Am) 52 ), A2 0

3.1. (—8—2;; %; a:la%l; m2£§>'

3.2. (a%l; -32—2; -’E152—1+x2—6—‘z—2, x2am1 +f”1az ).

4.1. (—92—1; gol(xl)aim;...;cpn(ml)ai), where functions ¢1, ..., ¢, form a basis of
solutions of some homogeneous linear differential equation with constant coefficients.

5.1. (3% Taz; p1(21)5% ;- - - on(21) 5% ), where functions ¢, .., n are as in
4.1.

6.1. (5%; :1;18%1%-)\3:2;9%; %; 371;9—2;;-~;$?_1%>, A#n—1.

8.1. <a;fcla mlaiml; mza;gz; 3;22; $1%;...;x?—1%>,

9.1. (3%13 3713—?5-!-(”—1)@%; 3%2; xla—‘;-;...;x?—la;i),

10.1. (52—1; 2:161;{%1*;9‘2—2' x%gg—l x18i2>

TLL (orge; + oo (1= 08— ) —2mageys 201zage +(L+od +0d)50).

11.2. (w150, — w2505 (1- $1+$2)ax — 25Ty 50 —201 80 50 + (1 +2F —23) 52).

11.3. (w150, — vagar; (L+af —23) 50 + 2010250 2$1w2-3—‘37+(1—m1 +13)3%).

12.1. <£T3 1321 %821; 322' 9523223 933322)-

12.2. (3%1; 3—2—; .’1313;‘ +x28‘z ; xzag —I—:z;la—%;
(z3 _mg)'g%+2$1$238 23615628 + (22 — x%)%).
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3 _. 0 . 9 . 9 . 9 .
13.1. <8a:1’ Oxy ! ml@xl’ 3’2ax1’ xlamg’ 5523@’

6] . 0 o)
T <$15-x‘- +1132'5-x—2> ; L9 (mlE +£E2E)>.

I4.1. <5—33—1_’ 3352. 1_52—1- T P25 L1 $23—?:—1->

15.1. (%; Bac » Ll X 2322' 51715‘;95;; 302@)-

16.1. (325 325 1152 2352 — 18§2>

17.1- (5 2951821 +n2agas; olgoy +”$1$2a§2v a0 T1oegi- -3 T aag):
18.1. <3371, 18901 23223 flagl +nzc1:c28x2; Dy $18$2;...;$?%>.

§8. GLOBAL REALIZATIONS

Let us show how the Lie algebras of vector fields that have been listed in theorem
2 can be realized as Lie algebras of local Lie transformation groups of the plane.
Moreover, we shall show that every local Lie transformation group like this is a global
Lie transformation group of a certain two-dimensional surface with the action written
in coordinates of some domain on this surface. (This way, for example, in §6 we obtain
a local one-parameter transformation group of the sphere.)

8.1. One-dimensional case. Let us first consider at first global realizations of the

transformation groups of the line.

1°. Let g = (79%). Then it is easy to see that the one-parameter transformation

group of the line corresponding to the vector field a-a%, a € R. has the form:
YT — x + at.

Besides, for all ¢t € R diffeomorphisms ¢ are completely defined on the line. So, the
corresponding Lie transformation group of the line is the group of parallel translations:

G={z—z+a]|ack}

2°. Let g = ( 5> T 836) Then the one-parameter transformation group of the line
corresponding to the vector field v = (a + bx){,%J has the form:

ot _

1
oz e +a- 2 when b # 0 and (1)

p¢: ¢ — z +at when b=0.

Diffeomorphisms ¢, for all £ € R are also defined on the whole line. All transformations
of type (1) generate the group of affine transformations on the line:

G={z—ax+b|lacR], beR}

3°. Now let g = ( 5c T 8%; z? 3‘9%) In this case the one—parameter transformation

group of the line corresponding to the vector field (a + bz + cx?)-2 55 Where ¢ # 0, can
be determined only locally.
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Consider the group of linear fractional transformations of the line:

GZ{xl—)ZjiZ 1((01, Z)GSL(Z,]R)}.

ax+b
cx+d’

T = —%, we see that G is a local Lie transformation group. Let us describe its Lie
algebra of vector fields on the line. To do it, we shall draw smooth curves in GG passing
trough the identity and then find the vector fields on the line corresponding to these

curves. For example, suppose
et 0
S t— ( 0 et

is one of these curves. Then the corresponding family of diffeomorphisms of the line
that depends smoothly on parameter ¢ has the form:

Since transformation of the form z — where ¢ # 0, is not defined for the point

1 — e2lx,

The corresponding vector field has the form:
vmz%ir%m;%:%, z €R,

i.e.

FEzercise. Check that the curves

1 ¢t 1 0
t»——><0 1) andt|—><t 1)

determine the vector fields % and —wz—(% respectively. Since the group G is a 3-

parameter transformation group, we see that the corresponding Lie algebra g of vector
fields is three-dimensional. We already know that %; 2x585; —zQ% belong to g.
Therefore,
0 0 50
=(=; T—; T°=).
g <8x ox 8:1:>

Let us now describe the global realization of this transformation group.

By RP™ denote the set of all straight lines in R™*! passing through the origin of
coordinates. This set is called the n-dimensional projective space.(If n = 1 or 2, the
set RP" is also called the projective line and projective plane respectively.) It can also
be described as the quotient set of R™*1/{0} by the following equivalence relation:

(Il,wz,...,$n+1) N()\ml,)\$2,...,>\$n+1), A e R,
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The equivalence class determined by a point (z1,zs,...,Zn+1) is denoted by [z : x2 :

-t Tpt1]. The set of elements [z1 : 2o : -+ : Tpy1] € RP™ such that z,11 # 0
is called the affine chart and can be identified with R™ by means of the following
correspondence:

IRP”B[xlzmz:--‘:wnH]H( , Y e )6]1%”.
Tn+1l Tn4l Tn41

Now let n = 1. Consider the following transformations of the projective line RP*!:
[1 : 23] — [(azy + bzy) : (cz1 + dx2)].

They are well-defined and form a transformation group G. Let us identify the affine
chart
U= {[IE1,CE2] € IRP1|$2 '7‘/—' 0}

with the line R by means of the following correspondence:

t—[t:1], [z Z.’Ez]l——)ﬂ.
x2
If we now consider the action of transformations from G on the domain U in the new
coordinates, we obtain:

b
G:{t»—»g{—d '(‘CL Z)eSL(z,R)}.

As we see, this is exactly the group of linear fractional transformations of the line.
However, diffeomorphisms of G are still defined not on the whole line.

8.2. Examples for dimension 2. Now for each Lie algebra g of vector fields on the
plane from theorem 2 we describe a two-dimensional surface S, a Lie group G of its
transformations, and a parametrization m:R? — S of some open domain U = 7(RR?)
on S such that the restriction of the action of G to U determines the Lie algebra g.
Let us first consider the most important examples.

1) Let S = R? and let G be the group of affine transformations of the plane. Then
the corresponding Lie algebra of vector fields is exactly algebra 15.1 of theorem 3.

2) Let

F™ 4 an 1 f" V4t aif +aof =0 (2)

be some homogeneous linear differential equation and F the space of its solutions.
Consider the set G of transformations of the plane such that

(z1,22) — (21 + a,bxe + f(z1 + a)),

wherea € R, be R}, feF.
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Lemma 1. The set G is a transitive (n + 2)-parameter transformation group of the
plane.

Proof. Denote by (a,b, f) the transformation of the plane given by
(1, x2) — (21 + a,bzy + f(z1 + a)).

It is not difficult to show that

(a,b, f) = (0,1, f) o (a, b, 0).
Let us show that G is a group. Indeed, Idg2 = (0,1,0). Suppose

(a1,b1, f1), (a2, b2, f2) € G.
Then

(a1,b1, f1) © (a2, b2, f2) = (0,1, f1) o (a1,b1,0) 0 (0,1, f2) o (a2, bz, 0).

Let us calculate (aq,b1,0) 0 (0,1, f2). We have:

0717f2)

b1,0
(x1,22) Gt (1,22 + fa(z1)) (@1,0) (

x1 + a1, b1z2 + b1 fa(z1)) =

= (1 + a1,b122 + b1 (Lg, f2) (z1 + a1)),

where L,,:C®(R) — C*°(R) is a linear operator of the space C°°(R) such that
(Lq, f)(x) = f(z — a1). But the space F is invariant under the action of L, whenever
a € R. Hence, L,, fo € F and

(a1,01,0) 0 (0,1, f2) = (a1, b1, b1 Lqy f2)-
It means that
(a1, b1, f1) 0 (a2, b2, f2) = (0,1, f1) o (a1, b1,b1La, f2) 0 (az,b2,0) =
= (0,1, f1) 0 (0,1,b1Lq, f2) o (a1,b1,0) o (az, b2,0) =
= (0,1, f1 + b1La, f2) 0 (a1 + az,b1b2,0) = (a1 + az, biby, f1 + b1La, f2).

It is easy to verify that

_ 1 1
(a7b>f) t= (_aaga_gL—af)'
Comnsequently, G is a group of transformations of the plane.. Let us show that it is

transitive. Let f be an arbitrary nonzero function from F. Since L,f € F for all
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a € R, we can assume that f(0) # 0. Then any point (z1,z3) of the plane can be
taken into the point (0,0) by means of the following transformations:

<—x1, i —-f%f> (21, 22) — (0,0).

Further, let wy,ws,...,w, be a basis of the space F. Then the mapping
mR"? - @, (x,y, 21,22, -y 2n) — (T,eY, 2101 + -+ + Zpwn)
is a parametrization of the group. It shows that G is an (n + 2)-parameter transfor-

mation group.

Exercise. Prove that the corresponding Lie algebra of vector fields has form 4.1 from
theorem 2.

3) The example given below is some modification of the previous one. So, let
F =R, _1[x] be the set of all polynomials of degree not greater than n — 1. It can be
considered as the set of all solutions of the differential equation f(™ = 0. Note that
F is stable under the following transformations of the space C*°(IR):

Lapy: f = Loy f,

where L(qp) f(x) = f(axz +b) for all @ € R*, b € R. This enables us to construct the
following transformation group of the plane:

G ={ (z1,22) — (az1 + b,cz2 + f(az1 +0)) | a,c € RY, beR, fe F}

The proof of the following lemma is similar to that of lemma 1.

Lemma 2. The group G is a transitive (n + 3)-parameter transformation group of
the plane.

The corresponding Lie algebra of vector fields is 5.1 from theorem 2.
4) As above let F = R, [z]. Consider the set G of all local diffeomorphisms of the
plane such that

azry + bxo ers ax1 + bxs
cxy +dzy’ (cxy + dzo)™ cxy+dzy ) )

(21, 22) - (
Lemma 3. The set G is an (n+5)-parameter local transformation group of the plane.

The proof of the lemma is analogous to that of lemma 1 if we take into account
that F is invariant under the following transformations

f— f, where f(t) = (ct +d)" - f (Ztti—z) :
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In other words, if
f(t) =pnt" + -+ + p1t + po,

then
f(t) = pplat +b)" + - +pi(at +b) - (ct +b)" "1 + polct + b)™.

Direct calculation shows that the corresponding Lie algebra of vector fields has form

18.1 of theorem 2.
Let us describe the global realization of this transformation group. For S consider
the quotient set of (R?\{0}) x R by the following equivalence relation:

(yl’y2’z) ~ (AylaAy%/\nz)a A e R

Denote by R™[y;, y2] the set of all homogeneous polynomials of degree n in variables
Y1, Y2:

R™y1, 2] = {aoy? + a1yl ‘vz + - + a1yt + anyila; € R, 0 < i < n)
Consider the following set of transformations of S
G = {(y1,y2,2) ¥ (ay1 + bya, cyr + dya, ez + f(ayr + byz, cy1 + dy2))|

(Ccl 2) € SL(2,R), ecRY, f EIR"[yl,yz]}.

Ezxercise. Check that these transformations are well-defined and form a group.
By U denote the following domain in S:

U ={(y1,y2,2) € Sly2 # 0}.

Let us identify U with the plane by means of the mapping

T (Y1, Y2, 2) — <g1 ° )

Y2 Yy
Then the inverse mapping has the form:
7T—1 : (xl,il'z) — (xla 1)*’1;2)'

It can be easily seen that transformations from G, written in coordinates (z1,z2) of
U, have the desired form.

5) Let us construct the global realization of Lie algebra 13.1 of theorem 3. It
is analogous to the global realization of linear fractional transformations of the line.
Namely, let S = RP? and let G be the following set of transformations of the projective
plane:

G = {ly1: y2 1 ys) — [(a11y1 + a12y2 + a13y3) : (a21y1 + a22y2 + a23y3) :
(as1y1 + asay2 + aszys)] | (@ij)1gi,j<3 € SL(3,R)}.
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For a domain U C RP? take the affine chart
U={[y1:y2:ys] € RP?|ys # 0}.
Let us parametrize U by the mapping
7R = U, (x1,22)— [r1:2:1].
Then

7 U =R [yrcysiys] = (ﬂ; %>
Y3 Ys

and transformations from the group G written in the coordinates (1, z2) of the plane
are exactly linear fractional transformations of the plane. The corresponding Lie
algebra of vector fields is the algebra 13.1 of theorem 3.

6) Let S = R?\{0} and let G be the group of linear transformations of the plane.
Consider the following parametrization of S:

7 (x1, T2) > (1672, €72).

The inverse mapping is given by
™ (Y1, y2) <£; lnyz)
Y2

and defined on the domain U = {(y1,y2) | y2 > 0}. It is easy to show that the action
of G restricted to U and written in the coordinates (z1,z2) has the form:

b ary +b
(CCL d) (21, 22) <c:1;11+d’ To +ln(cx2+d)>.

It is a local 4-parameter transformation group of the plane such that its Lie algebra
is exactly the Lie algebra 16.1 from theorem 3.



48 B. KOMRAKOV A. CHURYUMOV B. DOUBROV

CHAPTER 1II

ABSTRACT APPROACH

§1. BASIC CONSTRUCTIONS

1.1. Action of groups. The central concept of theory of homogeneous spaces is an
action of a group on a set.

Definition 1. Let G be an arbitrary group. An action of the group G on a set M is

a homomorphism _
a: G — Aut(M).

Then any element g € G can be regarded as the transformation a(g) of the
set M. In the sequel, for the sake of convenience we shall write g.m instead of
a(g)(m) (g € G,m € M). It is immediate from the definition that the following con-
ditions hold:

(g192)-m = g1.(g2.m) Yg1,00 € GomeM

em=m Vme M.
Taking this into account, definition 1 can be reformulated as follows:

Definition 1°. Let G be an arbitrary group. An action of G on a set M is a mapping
a:GxM— M, (g,m)+— g.m such that

(9192)-m = g1.(g2.m) Vgi,00€GmeM

em=m Vme M.

Examples.

1) For any group G and any set M, put g.m = m for all ¢ € G, m € M. This action
is called trivial.

2) The permutation group S, of degree n acts naturally on a set of n elements.

3) The group of Euclidean (affine) transformations acts on the plane.

4) The group of rotations acts on the sphere.

5) Let M = C°°(R) be the set of all smooth functions on R and G the group of
translations on the line. Note that G can be identified with the set of real numbers.
Then put

(a.f)(z) = f(x —a) fora €, f(zx)e M,

which gives an action of G on M.

Let us introduce some concepts connected with an action of a group on a set.
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Definition 2. Suppose that a group G acts on a set M and m is an arbitrary element
of M. The stabilizer of the element m is the set

G = {g € Glg.m = m}.

It is easy to show that G,, is a subgroup of G.
The set M can be supplied with an equivalence relation in the following way:
my ~ my wWhenever there exists a g € G such that g.m; = mo.

Exercise. Make sure that the relation introduced above is truly an equivalence relation.

Definition 3. Equivalence classes with respect to the introduced equivalence relation
are called orbits of the action of G on M.

Ezercise. Suppose my1,my € M are two elements lying in the same orbit. Show that
the subgroups G,,, and G, are conjugate.

Definition 4. We say that a group G acts transitively on a set M if the action of G
on M has only one orbit, which is equal to M.

This is equivalent to the fact that for any two elements my,mo € M there exists
a g € G such that g.m; = my. If the element ¢ is unique, then the action is called
simply transitive. For example, the action of a group G on itself by means of left shifts
(9.h = gh for g, h € G) is simply transitive.

Exercise. Show that any simply transitive action can be reduced to the action like
this.

Consider one very important example of a transitive action. Suppose G is an
arbitrary group and G is its subgroup. Let M = G/G be the set of left cosets
{gG|g € G} relative to G in G. Consider the action of G on M defined by

9.(hG) = ghG.

Ezercise. Check that the action is well-defined and transitive. Find the stabilizer of
the point eG.

The following lemma shows that all transitive actions can be reduced to this exam-
ple.

Lemma. Suppose that a group G acts transitively on a set M, m € M, and G =
G, is a stabilizer of the point m. Then the mapping T : G/G — M, ¢gG — g.m
establishes the natural isomorphism of the sets G/G and M, and the isomorphism 7
is in agreement with the action of G, i.e.

g.7(z) =7(g.x) for allg € G,z € G/G.

The proof is trivial and is left as an exercise.

Thus, the study of transitive actions can essentially be reduced to the study of
groups and their subgroups.

The concept of a homogeneous space is based on the consideration of smooth objects
in the previous definitions. In doing so groups turn into Lie groups, while sets into
smooth manifolds.
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Definition 5. Let G be a Lie group that acts on a smooth manifold M so that the
mapping G x M — M, (g,m) — g.m is a smooth mapping of manifolds. Then the
pair (G, M) is called a homogeneous space.

All given earlier definitions can be extended to the case of homogeneous spaces.
Moreover, the following facts are true.

Proposition.

1) Let (G, M) be a homogeneous space and m € M. Then G = G,, is a closed
subgroup of the Lie group G.

2) Let G be an arbitrary Lie group and G its closed subgroup. Then the set
M = G /G of Ieft cosets can be uniquely supplied with a structure of a smooth manifold
so that the natural action of G on M is smooth.

Therefore, as in general case, the study of homogeneous spaces reduces to the study
of pairs (G, G), where G is a Lie group and G is a closed subgroup of G.

1.2. Examples of homogeneous spaces. Examples 1), 2), and 4) of actions of
groups on sets are in fact examples of homogeneous spaces.

1) The groups GL(n,R) and SL(n,R) act transitively on the set R™\{0}, which can
be naturally supplied with a structure of a smooth manifold.

2) The action of the groups GL(n,R) and SL(n,RR) on R™ generates their action on
the set of straight lines passing through the origin of coordinates. This way we obtain
the action of GL(n,R) and SL(n,RR) on the projective space RP™ 1. Let us write it
out in an explicit form in terms of homogeneous coordinates of the manifold RP™~1.

Let [xo : z1 : -+ : p—1] be homogeneous coordinates of a point X € RP™ ! and let
A be an element of GL(n,IR). Then the homogeneous coordinates of the point A.X
have the form [yo : y1 : -+ : Yn—1], where the column
Yo
n
Yn—1

can be obtained as a product of the matrix A by the column

Zo
T

Tn—-1

on the right. In particular, this immediately implies that the action is smooth.

3) Let (G, M) be a homogeneous space and H a closed Lie subgroup of G. If H
acts transitively on M, we obtain the new homogeneous space (ﬁ, M). In this case
(H, M) is called a restriction of the homogeneous space (G, M). It may turn out that

—~

the action of H on M is not transitive but has an open orbit M. In such a situation
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the structure of a smooth manifold can be induced to M and the pair (H, M ) can be
turned into a homogeneous space. In this case (H, M ) is said to be a local restriction
of the homogeneous space (G, M).

For example, let G = Aff(n) be the group of affine transformations of the affine
space A" and let = be an arbitrary point of A”. Let H be the stabilizer of the point
z. Then H is a closed Lie subgroup of G and it can be identified with GL(n,R). The
action of H on A™ is not transitive. However, H acts transitively on A™\{z}. So we
obtain the new homogeneous space (GL(n,R), A™\{z}), which coincides essentially
with that from example 1).

Exercise. Describe the stabilizer of some point for each of the homogeneous spaces
mentioned above.

We shall say that two homogeneous spaces (G, M) and (Gz, My) are equivalent if
there exists a pair of mappings (f, @) such that

f : G1 — G4 is an isomorphism of Lie groups,

@ : My — M, is a diffeomorphism of manifolds,

and p(g.m) = f(g).o(m) for all g € Gy, m € M;.

By the dimension of a homogeneous space (G, M) we shall mean the dimension of
the manifold M.

In the sequel, we shall mainly be interested in describing and studying small-
dimensional homogeneous spaces (dim M < 4), especially two-dimensional ones. (One-
dimensional homogeneous spaces are rather simple, whereas those of dimensions 3 and
4 are much more unwieldy.)

Preparatory to this, we shall impose some more restrictions on homogeneous spaces
to be considered.

Definition 6. A homogeneous space (G, M) is called effective if the identity element
e € G is the only element of the group G which leaves all points of the manifold M
stable. The subgroup K = Ngyep Gy is called the kernel of ineffectiveness of (G, M).
In other words, K is the set of all elements of G that leave all points of M stable.

Note that a homogeneous space (G, M) is effective if and only if its kernel of inef-
fectiveness is trivial. Suppose o : G — Diff(M) is the homomorphism of groups that
determines the action of G on M; then K is exactly the kernel of . In particular, this
implies that K is a normal subgroup of the Lie group G. Since K is an intersection
of closed Lie subgroups (K = NzenGy), then K is also a closed Lie subgroup of G.
This allows to consider the factor group H = G/K, which can be naturally supplied
with a structure of a Lie group. Moreover, it is possible to define an action of the Lie
group H on M:

(zK).m =z.m for x € G,m € M.

It is easy to show that the action is well-defined, which turns (H, M) into a homoge-
neous space.
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Ezercise. Check that (H, M) is an effective homogeneous space.

In the study of homogeneous spaces (for instance, while various different invariants)
it is important to consider not a group G itself but its image in Diff(M). Therefore,
we shall further be interested only in effective homogeneous spaces.

Another restriction that we impose on the homogeneous spaces to be studied is
that G is a connected Lie group. It can always be achieved by considering the action
of the connected component of the identity element instead of the whole Lie group’s
action.

So, our immediate task is to describe small-dimensional effective homogeneous
spaces (G, M) such that G is a connected Lie group.

Since there is a one-to-one correspondence between the set of homogeneous spaces
and the set of pairs (G, @), where G is a Lie group and G its connected Lie subgroup,
we can extend the previous definitions to the case of pairs (G, G).

Theorem.

1. The homogeneous spaces defined by pairs (G1,G1) and (G2, Gs) are equivalent
if and only if there exists an isomorphism of Lie groups f : Gi — Go such that
f(G1) = Ga. _

2. The kernel of ineffectiveness of the homogeneous space defined by a pair (G, Q)
is exactly the largest normal Lie subgroup of G that belongs to G.

3. The dimension of the homogeneous space defined by a pair (G,G) is equal to
the codimension of the subgroup G in the Lie group G.

Proof.
1. Indeed, suppose f : Gi — Gq is an isomorphism of Lie groups such that
f(G1) = G3. Then consider the smooth mapping

(ptal/Gl —>§2/G2

defined by (2G1) = f(z)Gs for x € Gy. It is easy to check that ¢ is well-defined and
is a diffeomorphism of manifolds, and that the pair (f, ) establishes equivalence of
the homogeneous spaces (G1,G1/G1) and (G2, G2/G2).

Conversely, suppose that a pair of mappings ( 1, ) establishes equivalence of the
homogeneous spaces (G, G1/G1) and (G, G2/G2). There exists a g € Gy such that
v(eG1) = gGo. Put

f(z) =g tf(z)g forall z € G.

It is easy to verify that f : G; — G is an isomorphism of Lie groups and f(G1) = Gs.
2. Suppose K is the kernel of ineffectiveness of the homogeneous space (G, G/G).
Then K is a normal Lie subgroup of the Lie group G. Show that K C G. Indeed, if
z € K, then
zG = z.(eG) = eG.

Therefore z € G.
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Let K’ be an arbitrary normal Lie subgroup of G such that K’ ¢ G. Then for
r € K' and g € G, since g 'zg € K’ C G, we have

z.(9G) = zg9G = g(9"'z9)G = ¢gG.

This means that K’ C K and that K is really the largest normal Lie subgroup of G
lying in G.

The converse can be proved in a similar way.

3. The proof is trivial.

Definition 7.

1. We say that pairs (G1,G1) and (Ga, G2) are equivalent if there exists an isomor-
phism of Lie groups f : G; — G3 such that f(G;) = Gs.

2. We say that a pair (G, Q) is effective if G contains no nontrivial normal Lie
subgroups of G.

3. By the codimension of a pair (G,G) we shall mean the codimension of the Lie
subgroup G in the Lie group G.

Thus, our problem reduces to finding (up to equivalence) all effective pairs (G, G)
of small codimension.

Example. Let G = SL(2,R). Suppose G is the set of all upper triangular matrices
of the Lie group SL(2,R). This set is normally denoted by ST(2,RR). Since G contains
the center of G, which is equal to {E}, we see that the pair (G, G) is not effective.
Instead of the subgroup é, consider its connected component of the identity element

G:{@ 1795)

The pair (G, G) is effective. Let us describe the homogeneous space (G, G/G). Any

matrix
a b
(2 %) esom

xeRi,ye]R}.

can be uniquely written as

a b\ [cosp —sing Ty .
(c d>_<sing0 COS(p)(O 1/x>,$EIR ,y € R, € [0, 27). (1)

Here z and ¢ are uniquely determined from the condition ze'? = a + ic, and
y = bcosp + dsin p.

Therefore, each left coset ¢gG,g € G, is uniquely determined by the angle ¢ in (1),
which is the same for all elements of the coset. Thus, the factor space M = G/G can
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be identified with the circle S'. If S! is regarded as the set of those vectors of the
Euclidean vector space R? whose norm is equal to 1:

St = {v e R? v| =1},
then the identification has the form
o (wm2)
Now describe the action of G on M. Let
()
sin ¢

be an arbitrary element of M and g = <(Z Z) an element of G. The left coset

corresponding to g.v has the form:

a b cosp —singp el acosp+bsing —asing+ bcosep G
c d singp  cosg ~ \ccosp+dsing —csinp+ dcosp

cos ¢’
sin ¢
This can also be written as

Therefore g.v = < ), where ¢’ = arg((acosp + bsinp) + i(ccos ¢ + dsinp)).

g(v)

g.v =
lg(w)I’
where g(v) is the image of v by the linear transformation of R? with matrix g.

Exercise. Show that the homogeneous space defined by the pair (G, é) is equivalent
to (SL(2,R),RPY).

1.3. Linearization. The study of Lie groups can in many respects be reduced to
the study of their Lie algebras. Similarly, the study of pairs (G, G) (and therefore, the
study of homogeneous spaces) can be reduced to the study of pairs (g, g), where g is
a Lie algebra and g its subalgebra.

In the sequel, we shall employ the following three equivalent definitions for the Lie
algebra g of a Lie group G.

Definition 8. The Lie algebra g of a Lie group G is
a) the tangent space to the identity element of G;
b) the set of left-invariant vector fields on G;

c) the set of one-parameter subgroups of G.

All three definitions are in agreement:
a) < b)
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To each vector v € T.G assign the left-invariant vector field V' € D(G) defined by
Vg = dLy(v),

where g € G, Ly : G — G, z + gz is the diffeomorphism of G corresponding to the
element g, and dL, : T.G — T,G is the differential of L, at the point z = e.

Conversely, if V' is a left-invariant vector field on G, then V is uniquely determined
by the vector V, € T.G.

a) < c¢)

Let v be an arbitrary element of the tangent space T.G. Define a curve ¢(t) in the
Lie group G as a solution of the differential equation

g(t) = dLg(t) (U)

with the initial condition g(0) = e. It is easy to show that g(t) is defined for all ¢t € R
and that g(t1 + t2) = g(t1)g(t2). In other words, g(t) is a one-parameter subgroup of
G.

Conversely, each one-parameter subgroup ¢(t) of G is uniquely determined by the
tangent vector to g(t) at the point g(0). Since g(0) = e, this vector belongs to T.G.

If g is regarded as T.G, then g can be supplied with the structure of a vector space
of dimension equal to that of G. Furthermore, if V3 and V5 are two left-invariant
vector fields on G, then their Lie bracket [V7, V5] is also a left-invariant vector field on
G. Thus, we have the skew-symmetric bilinear form on g:

(z,y) = [z,y]  foraz,y€g,
satisfying the Jacobi identity:
[z, [y, 2] + [y, [z, 2] + [2,[2,9]] =0 Va,y,z€0

This turns g into a finite-dimensional real Lie algebra.

Examples.
1) The Lie algebra of the Lie group GL(n,R) can be identified with the set of all
n-by-n matrices. It is denoted by gl(n,R). The bracket operation has the form:

[A,B] = AB — BA for A, B € gl(n,R).

Similarly, the Lie algebra of the Lie group SL(n,IR) is the set of all n-by-n matrices
with zero trace. It is denoted by sl(n,R) and has the same bracket operation.

2) Let G = Aff(n). Fixing a point in A™, we can identify G with the group
GL(n,R) KR™. The group operation has the form:

(A1,v1)(Az,v2) = (A142,v1 + Aqvg),

where A;, A2 € GL(n,R), vy,v, € R™.
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The Lie algebra of the Lie group G can be identified with the set gl(n,R) £ R"™.
The bracket operation has the form:

[(A1,v1), (A2, v2)] = ([A1, A3, A1vs — Agvq).

Let g be a Lie algebra and g a subspace of g closed under the bracket operation.
Then g is called a subalgebra of g. In particular, g is a Lie algebra itself. If [g, g] C g,
then g is called an ideal in g. For example, the subalgebra sl(n,R) is an ideal in the
Lie algebra gl(n,RR).

FEzercise. Let t(n,R) denote the set of all upper triangular square matrices of order n.
Show that t(n,RR) is a subalgebra of gl(n,IR). Prove that t(n,R) is not an ideal when-
ever n > 2.

Let G be a Lie group and g its Lie algebra. Then to any Lie subgroup G of G we
can assign a subalgebra g of g. If § is regarded as T.G, then g is exactly the subspace
T.G of the vector space T,G. Therefore, to any pair of Lie groups (G, G) we can assign
the pair of Lie algebras (g,g). Moreover, if G is a normal Lie subgroup of G, then g
is an ideal in g.

Let g1,g2 be two Lie algebras. A homomorphism of g, into g is a linear mapping

f g1 — go such that
flz,y]) = [f(2), f(W)]

for all z,y € g;.

Suppose f : G; — G5 is an arbitrary homomorphism of Lie groups. Consider its
differential df : T.G; — T.G4 at the identity element of G;. If we identify the Lie
algebras g; and go of the Lie groups G; and G, with the tangent spaces T.G; and
T.G2, respectively, then the mapping df : g1 — g2 is a homomorphism of Lie algebras.
If f is an isomorphism of Lie groups, then df is obviously an isomorphism of Lie
algebras.

According to all the preceding, we approach the problem of classifying pairs of Lie
groups (G, G) in the following way: first, to classify pairs (g,g) of Lie algebras, and
then for each of the obtained pairs to find all corresponding pairs of Lie groups.

In terms of pairs (g, g), definition 7 corresponds to the following one:

Definition 9.

1) Two pairs (g1,g1) and (g2, g2) are said to be equivalent if there exists an isomor-
phism of Lie algebras f : g1 — g2 such that f(g1) = go.

2) A pair (g, g) is called effective if g contains no nontrivial ideals of g.

3) The codimension of a pair (g,¢) is the codimension of the subspace g in the
vector space g.

The correspondence between definitions 7 and 9 can be established by the following

Theorem. . _
1) The equivalence of pairs (G1,G1) and (G2, G2) implies the equivalence of the
corresponding pairs (g1, ¢1) and (g2, g2)-
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2) If a pair (G, G) is effective, then the corresponding pair (g,g) is also effective.
3) The codimension of a pair (G, G) is equal to that of the corresponding pair (g, g).

Proof. Tt is immediate from the outlined correspondence between Lie groups and Lie
algebras.

So, we shall first turn to the description of effective pairs (g, g) of small codimension.

§2. ONE-DIMENSIONAL HOMOGENEOUS SPACES

2.1. Local description. We now turn to the description of one-dimensional homo-
geneous spaces. First we describe effective pairs (g, g) of codimension 1.

Theorem. Any effective pair (g,g) of codimension 1 is equivalent to one and only
one of the following pairs:

E_]:R(:‘l, g:{O}
g = Rey @ Rey, where [e1,e3] = €2, g=Rey

x,ye]R}

1.
2.

3.8=sl(2,R), g=st2,R)= { (35 yg;)

Proof. We shall make use of Morozov’s theorem and some results of semisimple Lie
algebras theory.

Theorem [Morozov]. Let (§,9) be an effective pair such that g is a maximal sub-
algebra.

(1) If § is not semisimple, then there exists a commutative ideal a such that g = g®a
and g acts faithfully on a (i.e. the set {z € g|[z,a] = {0}} is zero).

(ii) If g is semisimple but not simple, then there exists a simple Lie algebra g such
that g =g x § and g = {(z, z)|z € §}.

In our case g is a subalgebra of codimension 1. Therefore, g is maximal. Consider
the following cases:

(i) The Lie algebra g is not semisimple. Then g = g®a, where a is a one-dimensional
ideal, and the set {z € g|[z,a] = {0}} equals {0}. It easily follows that dimg < 1. If
dimg = 0, then the pair (g, g) has the form 1. If dimg = 1, then (g, g) is equivalent
to the pair 2.

(ii) The Lie algebra g is semisimple but not simple. Then there exists a simple Lie
algebra g such that g = g x g and g = {(z, z)|z € g}. It follows that dimg — dimg =
dim g. However, there exist no simple Lie algebras of dimension less than 3.

(iii) The Lie algebra g is simple. It is known from semisimple Lie algebras theory
that in this case rank of g equals 1. There exist two real simple Lie algebras of rank 1:
s[(2,R) and su(2). However, su(2) contains no subalgebras of codimension 1. There-
fore § = 5[(2,R). There exists a unique (up to the group Aut(g)) two-dimensional
subalgebra in s[(2,R). So, the pair (g, g) is equivalent to the pair 3.
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2.2. Globalization. Now we proceed to fulfillment of the second part of our plan.
For each pair of Lie algebras (g, g) we shall describe all pairs of Lie groups (G, G) and
the corresponding homogeneous spaces (G, G/G).

The process of globalization was described by Mostow in 1950 (G.D.Mostow ”The
extensibility of local Lie groups of transformations and groups on surfaces”, Ann. of
Math, v.52, No 3.) Let us cite the basic results of this work.

Let (G, G) be a pair of Lie groups, g the Lie algebra of G, and g the subalgebra
of § corresponding to the subgroup G. In this case we say that the pair (G,G) is
associated with the pair (g, g).

Theorem 1. Let (g,g) be an effective pair of codimension < 4. Then there exists a
unique effective pair (G, G) associated with (g, g) such that G is a connected subgroup
of G and the manifold G/G is simply connected.

The pair (G, G) mentioned in theorem 1 can be constructed in the following way.
For the Lie algebra g there exists a unique simply connected Lie group H such that
is the Lie algebra of H. The group H contains a uniquely determined connected Lie
subgroup H (which is not necessarily closed) corresponding to the subalgebra g. In
particular, if the codimension of the pair (g, g) is not greater than 4, then it is imme-
diate from theorem 1 that the subgroup H is closed. Since H is a simply connected
Lie group, we see that the quotient manifold H/H is simply connected. However the
pair (H, H) is not necessarily effective.

Lemma. The kernel of ineffectiveness of the pair (H, H) is discrete and equals Z(H)N
H.

Proof. Let K be the kernel of ineffectiveness of the pair (H,H). Then K is a normal
closed Lie subgroup of the Lie group H and K C H. Therefore, K is discrete;
otherwise the pair (g,g) would not be effective. On the other hand, any normal

discrete subgroup belongs to the center Z(H). Thus K C Z(H) N H. Conversely,
Z(H) N H is a normal Lie subgroup of H lying in H. Therefore K D Z(H)N H. It

follows that K = Z(H) N H.
The lemma implies that the pair (H/K, H/K) satisfies the conditions of theorem 1.
Examples.

1. Let (g,g) = (R,{0}). The simply connected Lie group with Lie algebra g is also
R; the connected subgroup corresponding to the subalgebra g is zero. The pair of
Lie groups (R,{0}) is effective. So, we have (G,G) = (R,{0}). The corresponding
homogeneous space is the group of translations on the line.

2. Let g = Rey @ Reg, where [e1,e2] = €2, and g = Rey. Then the simply connected
Lie group with Lie algebra g is the set G = R* x R supplied with the following group
operation:

(z1,91) - (z2,92) = (2132, Y1 + T1Y2).

The subgroup corresponding to the subalgebra g is R* x {0}.
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Ezercise. Check that Z(G) = {e}.
Therefore, the pair (G, G) is effective. Consider the homogeneous space (G, G/G).
Note that each element (z,y) € G can be uniquely written as

(z,y) = (L,y) - (x,0).

It follows that we can take the number p = y for a coordinate on the coset (z,y)G.
Then the action of G on M = G/G can be written as follows:

(z,y)p = (z,9).(L,p)G) = (z,y + pz)G =y + pz.

Thus, the homogeneous space (G, G/G) is exactly the group of affine transforma-
tions of R preserving the orientation (since z > 0).

The following result obtained by Mostow gives the description of all effective pairs
(G, Q) associated with a given pair (g, g).

Theorem 2. Let (g, g) be an effective pair of codimension <4 and (G, G) the effective
pair associated with (g, g) such that G is connected and G /G is simply connected. Now
suppose Z is the center of G and N(G) is the normalizer of G in G. Then any effective
pair associated with (g, g) has the form:

(G/(SNZ2),G/(SNZ)),

where S is a Lie subgroup of the Lie group N(G) such that S O G and the Lie group
S/G is discrete.

Example. Let us describe all pairs associated with the pair (R, {0}). Recall that in
this case G = R and G = {0}. It is easy to check that Z = G and N(G) = G. Thus,
all discrete subgroups of the group of real numbers are to be found. All of them have
the form S, = {an|n € Z}. Since the mapping = — ax, where z € R and o # 0, is an
automorphism of G preserving G, we see that (up to equivalence) S is equal to either
Z or {0}. In the latter case we obtain no new homogeneous spaces. On the contrary,
if S = Z, we obtain the new pair (R/Z,{0}). The corresponding homogeneous space
is the group of rotations of the circle.

Ezercise. Turn back to example 2 and show that S = G and that no new homogeneous
spaces can be obtained.

[

2.3. The simply connected covering group SL(2,R). Let us describe all homo-
geneous spaces corresponding to the pair

(s[(2,R), s¢(2, ).

We have already considered two of them. One of the associated pairs is

G =SL(2,R), G:{(g’ aﬁ) a>0}.
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The corresponding homogeneous space can be described as follows: the group SL(2,R)
acts on the circle S' = {v € R?||v| = 1} so that

g9(v) 1
g.v = ———, veES geSL(2,R).
l9(v)]

In the second case the group SL(2,RR) acts on the projective space RP!, which is
also homeomorphic to the circle. Since the element —F acts trivially on RP!, we
see that the action is not effective. However, we can consider the group PSL(2,R) =
SL(2,R)/{#E}, which acts effectively on RP?.

As we can see, in both cases the manifold M is not simply connected. This follows
from the fact that the Lie group SL(2,R) is not simply connected and is diffeomorphic
to S x R%2. By SL(2,R) denote the simply connected Lie group such that its Lie
algebra equals s[(2,R). It is called the simply connected covering group of SL(2,R).
So, in order to describe the homogeneous spaces to be found, we have first to describe
the group SL(2,R).

Recall that every element of the group SL(2,R) can be uniquely written as

cosp —sinp) [z Yy

singp  cosp o z71 )’
where ¢ € [0,27), x € R, y € R. This establishes a diffeomorphism of the Lie groups
SL(2,R) and S* xR* xR~ S x R%. Therefore, the group SL(2,R) is diffeomorphic
to IR3. For a covering mapping it is convenient to consider the mapping

7 RY X R? — SL(2,R),

ens\ (VE %
e (522 ) (2 %),

Sin 2z COS 2z %

Now it remains to introduce a group operation on R% X R? so that m would be a
surjection of Lie groups.
Let us just give the result, omitting detailed calculation.

Theorem. The operation on R’ x R? given by

(x1,y1,21) - (T2,Y2, 22) =
= (X(wbyl,zz)mz,y(xl,yl,Zz) +X(931,y1722)y2721 + Z(fﬂl,yl,zz)),

where ) )
xcosz+ ysinz)® + sin” z
X(a,0,7) = el tenz
Ccos sinz)(—xsinz + ycosz) +sinzcos z
Yoy, z) = Feosz Tysina) ycos2) |

T
T dt

z
Z(z,y,2) = ,
(@,2) /0 (z cost 4 ysint)2 +sin®t
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turns R? X R? into a Lie group such that m is a surjective homomorphism of Lie
groups.

Ezercise. Check that
a) Z(z,y,mk) = wk, whenever k € Z;
b) for 7k < z < w(k + 1) the following condition holds:

Z(z,y,2) = 7k + cot ! (z cot 2 + y).

FEzercise. Check that

X(z,y,0) =z, X(1,0,2) =1,
Y(z,y,0) =y, Y(1,0,z) =0,
Z(z,y,0) =0, Z(1,0,z2) = 2.

—_—~———

Let us find the center of the group SL(2, R). Suppose that an element (z,y, z) belongs
to the center. Then for any s € R we have

(LU,y,Z) : (170’8) = (170’ 8) ’ (‘Tay’ Z)

It follows that

X(z,y,s) ==,
Y(z,y,8) =y,
Z(z,y,s8) =s

for all s € R.
The first of the equations may be rearranged to give

(z% —y® — 1) cos 25 + 2xysin2s = z2 — y* — 1

for all s € R.
This takes place only if
22 —y? —1=2zy=0.

Since z € R, we have y = 0 and x = 1. Then two other equalities of the system above
are also satisfied. So, every element of the center has the form (1,0, z). If (1,0, z2)
belongs to the center, then the following conditions hold:

X(z,y,2) ==,
Y(z,y,2) = v,
Z(x,y,2) =z

forallz € R* |, y € R.
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The first equation can be rearranged to give
12(cos2z — 1) + 2zysin 2z — y*(cos 2z — 1) = cos 2z — 1

forallz € R, y € R.
This takes place only if
sin2z =cos2z—1=0.

It follows that z = 7k, k € Z.

Conversely, it is easy to show that for k € Z, the element (1,0, 7k) belongs to the
center.

So, we have proved the following

—~—

Theorem. The center of the Lie group SL(2,IR) is infinite and has the form
{(1,0,7k| k € Z}.
The connected subgroup of SL(2,R) corresponding to the subalgebra st(2,R) of

s[(2,IR) has the form
— r Yy
=10 )

Then the inverse image of H by 7 has the same Lie algebra, and the connected sub-

—

xe]R"jr,yeIR}.

group of SL(2,R) corresponding to the subalgebra st(2,1R) is the connected component
of the identity of 7=1(H). It is easy to check that

Y H) = {(z,y,2rk)|z € R* , y € R, k € Z}.
Then G = {(z,y,0)|z € R, y € R}.
FEzercise. Show that N(H) = m(N(Q)).

Note that
_ r Yy
van={(5 %)

7 Y N(H)) ={(z,y,mk)|z e R}, y € R, k € Z}.

Direct calculation shows that 7=(N(H)) C N(G). Therefore N(G) = n~1(N(H)).
Let S be a Lie subgroup of the normalizer N(G) such that S 2 G. Then S has the

xE]Ri,yGJR}

and

form:

Sp={(z,y,mk) |z eR},ycR ke Z} (n € N).
For any n € N, the Lie group S,,/G is discrete and the intersection of S, and the
center Z of G has the form

Zn =S, N Z ={(1,0,7nk)| k € Z}.

So, any effective pair associated with the pair (sl(2,1R),st(2,IR)) is equivalent to one
and only one of the following pairs:

a) (G,G),

b) (G/Zn, Sn/Zn), n € N.



TWO-DIMENSIONAL HOMOGENEOUS SPACES 63

§3. TWO-DIMENSIONAL HOMOGENEOUS SPACES.
LOCAL CLASSIFICATION

3.1. Preliminaries. We now turn to the description of effective pairs (g, g) of codi-
mension 2. Preparatory to formulating the basic theorem, we shall introduce some
auxiliary constructions.

1. Let V be an arbitrary finite-dimensional vector space and G a Lie subgroup of
the Lie group GL(V'). The set G x V can be turned into a Lie group by putting

(¢1,v1) - (2,v2) = (P12, V1 + p1(v2))
for all (¢1,v1), (p2,v2) € G X V.

Ezercise. Check that the operation above actually turns G x V into a Lie group.
We shall denote the Lie group constructed this way by G £ V. For example, the

group Aff(n) of affine transformations can be identified with GL(n,R) A R", and the

group of transformations of the plane preserving the orientation with the Lie group

SO(2) K R?  where SO(2) = { (cosoz —sina) ‘ a € IR} :

sina  cos«

Now find the Lie algebra of the Lie group G £ V. Let g be the subalgebra of gl(V)
corresponding to the subgroup G. It can be defined as

g= {x € gl(V)|exp(tx) € G Vt € IR}.

Then the Lie algebra to be found is the vector space g x V' with the following bracket
operation:

[(901,111), (902,?12)] = ([9017902]7901(02) - SDz(Ul))-
For example, the subalgebra corresponding to the Lie subgroup SO(2) has the form

50(2)2{(—03: g) ZEE]R};

then the Lie algebra of SO(2) £ R? is s0(2) £ R2.

Remark. If V is regarded as a commutative Lie group (Lie algebra), then our con-
struction is a particular case of a semidirect product of Lie groups (Lie algebras).

Ezercise. Suppose H is the Lie group of similitude transformations of the plane. Find
the Lie algebra of H.
2. Recall that an elementary Frobenius matrix is a matrix of the form:

0 . I —ap
10 . . .0 -a
o1 . . .0 —ag
0 0 —An—2

OO...l—an_l
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Its characteristic and minimal polynomials coincide. They are equal to
(=D™(@™ + ap_12" + - a1z +ag).

Let p(x) be an arbitrary polynomial of nonzero degree. By F(p) denote the elemen-
tary Frobenius matrix such that its characteristic polynomial equals (up to a constant
factor) the polynomial p. The size of F(p) is equal exactly to the degree of p. For
example,

0o . 0 0
F(z") = Lo..00 (n-by-n matrix).
o . . . 10

Exercise. Show that F(p) is a nilpotent matrix if and only if p = az™, a # 0.

Problem. Suppose p € R[z] is an arbitrary polynomial of nonzero degree. Prove that
matrices

(1) F(p(z)) and F(p(z + ) + AE, X € R;

(2) F(p(x)) and AF(p(z/))), A € R*
are conjugate.

3. By R™[z,y] denote the vector space of homogeneous polynomials in z,y of the
n-th degree. Then dimR"[z,y] = n + 1. Note that differential operators of the form
(az + cy) 2 + (bz + dy) 8% leave the space R"[z,y] invariant and can be regarded as
linear operators on R"[z,y]. Moreover, the set of these operators is a vector space

and is closed under the bracket operation. In other words, it is a subalgebra of the
Lie algebra gl(R" [z, y]).

Exercise. Show that the mapping
a b 0 0
7rn.<c d>v—>(aa:+cy)%+(bm+dy)a—y

establishes an isomorphism of the Lie algebra gl(2,IR) and the subalgebra outlined
above.

For a subalgebra a € gl(2,R), by a £, R"[z,y] denote the Lie algebra m,(a) £
R™[z,y]. If n = 2, the Lie algebra m,(s[(2,R)), in terms of the basis {z?, zy, y?}, has
the form:

2z y O
2z 0 2y x,y,z € R
0 2z -2z

Further we shall use the following notation:
(1) for the subalgebras of gl(2,R)

t(Z,JR):{(g g) x,y,ze]R},
5t(2,]1%):{(:8 _y$>

x,y € }R} = t(2,R) Nsl(2,R);
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(2) for the Lie algebra of orthogonal matrices
so(n) = {4 € gl(n,R)|A +'A = 0};

(3) for the n-by-n matrices

o1 0 ... 00
-1 0 ... 0
001 .. 00 5 0
No=1: : e and S, = :
0 1 )
0 0 0 0 0 -

3.2. Classification of pairs. Now we are able to formulate the central theorem.

Classification theorem. Any effective pair (g,g) of codimension 2 is equivalent to

one of the following pairs:
1.1

g=R?* g={0}.

g=aAR* g=ax{0}, Whereaz{(g /\O:E> :EGI[R},|)\I<1.

g=aXR% g=ax{0}, Wherea:{(/\x ;g)

T

erR},A}O.

3.1

g=aAR* g=ax/{0}, Wherea:{<g 2) x,yGIR}.

3.2

g=aAR?’ g=ax{0}, Whereaz{(jj _xy> w,ye]R}.

g = {zF(p)|lz € R} AR",
T1
g={0} x : z; € R 3, where p € R[z],n = degp > 1;

Tn—1

0

in addition, if p = az™, then n > 2.
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5.1(p)
§={zE, +yF(p)lz,y € R} KR”,
1
g={zE,|z € R} x : z; € R 3, where p € Rlz],n =degp > 2.
zcno_l
6.1(n,\)

g ={z(AE, + Sp) + yNp|z,y € R} LR,

0
T2
g={z(AE, + Sp)|z € R} £ . ||z eRp, wheren > 2, € R, X\ #n.
T,
7.1(n)
z1
g= Tn(NEp + Sp) +yNp, | - ) z; ER,ye Ry C 9.1(n),
Tn
0
T2
g= Tn(nEy, + Sn), | . z; € R p, wheren > 2.
Tn
8.1(n)
g ={zE, +ySn + 2Np|z,y,z € R} KR",
0
T2
g ={zE, +ySu|z,y € R} X : z; €ER 3, wheren > 2.
Ln
9.1(n)

g ={z(nE, + Sp) + yNnlz,y € R} LR",
0

L2
g ={z(nE, + Sp)|z € R} x . |lz; R}, wheren > 2.

Tn
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10.1
_ 0 =
s=si2®), a={(( §)lzcn}
11.1
- _ z 0
g=sl(2,R), g= { (0 —x) xe]R}.
11.2
_ 0 -z
g =sl(2,R), g:{( )}weR}zso(Z).
z 0
11.3
_ . 1 y+iz . w0
g—zu(2)—{<_y+iz Cir ) a:,y,ze]R}, g_{(o —ix> a:E]R}.
12.1
g =sl(2,R) xsl(2,R), g=st(2,R) x s5t(2,R).
12.2
g=502,C)g, ¢g=st2,C)p.
13.1
§=si(3,R), g= { (“'6”1 i)'A € gl(2,R), B e Matm(m)} |
14.1
g =sl(2,R) KR? g=s5l(2,R) x {0}.
15.1
§=0l(2,R) KR? g=gl(2,R) x {0}.
16.1
_ 0 =z
g=0l(2,R), g= { (0 y> z,y G]R}-
17.1(n)
g =502, R) L, R"[z,y],
g =st(2,R) £, {aoz™ + -+ an_12" 'y|a; € R}, where n > 0.
18.1(n)

g =gl(2,R) A, R"[z,y],
g=1t2,R) L, {apz™ + -+ ap_12" 'y|a; € R}, wheren > 1.

When n =0 g = sl(2,R) x (R} AR);g = st(2,R) x (R x {0}.
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Pairs from different items are not equivalent to each other. Two pairs from 4.1
corresponding to polynomials p; and py are equivalent if and only if there exist o, A €
R* such that p; = apz(Ax).

Two pairs from 5.1 corresponding to polynomials p; and ps are equivalent if and
only if there exist o, A € R* and p € R such that p; = aps(Az + p).

Any two pairs from any other item are not equivalent.

Remark 1. The Lie algebras g from items 1.1-9.1 are solvable; g from items 10.1-13.1
are semisimple; g from items 14.1-18.1 have the nontrivial radical.

Remark 2. If we omitted the restrictions imposed on parameters in the theorem, the
following pairs would be equivalent:

41(z) =11,  6.1(1,A) 221\ —1);
5.1(x — \) = 2.1(0); 9.1(1) =2 2.1(0);
6.1(n,n) = 9.1(n); 8.1(1) = 3.1.

§4. TWO-DIMENSIONAL HOMOGENEOUS SPACES.
GLOBAL CLASSIFICATION

4.1 The process of globalization. Let us modify the basic constructions described
by Mostow. We shall first generalize the concept of an effective homogeneous space.

Definition. A homogeneous space (G, M) is called locally effective if its kernel of
ineffectiveness is discrete.

Let (G, G) be a pair corresponding to a locally effective homogeneous space. This is
equivalent to the fact that any normal Lie subgroup of G lying in G is discrete. In this
case we say that the pair (G, G) is locally effective. Nevertheless, the corresponding
pair of Lie algebras is effective. Moreover, the following is true:

Proposition 1. Let (G,G) i)e a pair of Lie groups and (g,g) the corresponding pair
of Lie algebras. The pair (G,G) is locally effective if and only if the pair (g,g) is
effective.

Exzxercise. Prove the proposition above.

The proposition shows that the concept of a locally effective pair is somewhat more
natural than that of an effective pair. To each locally effective pair (G, G) we assign
the effective pair (G/K,G/K), where K is the kernel of ineffectiveness of (G, G).

Definition. We shall say that two locally equivalent pairs are similar if the corre-
sponding effective pairs are equivalent.

For each effective pair (g,g) we shall find (up to similarity) all locally effective
pairs associated with (g, g). We shall then be able to describe (up to equivalence)
all effective pairs associated with (g,g) by passing from locally effective pairs just
obtained to the corresponding effective pairs. In doing so we shall use the following
result:



TWO-DIMENSIONAL HOMOGENEOUS SPACES 69

Proposition 2. Let (@,_G) be a locally effective pair and K its kernel of ineffective-
ness. Then K = GN Z(G), where Z(G) is the center of G.

Proof. Since any subgroup of the center is normal, we see that G N Z(G) C K.
Conversely, since K is a normal discrete subgroup, we see that the subgroup K is
central (why?). Therefore K C G N Z(G), which concludes the proof.

Let (§,g) be an effective pair of codimension 2. Recall that there exists a unique
pair (G,G) associated with (g,g) such that the subgroup G is connected and the
manifold G/G is simply connected. The following result follows immediately from the
results of Mostow.

Proposition 3. Every locally effective pair associated with (9,9) is similar to a pair
of the form (G, S), where S is a Lie subgroup of N(G) such that S D G and the Lie
group S/G is discrete.

Note that there is a one-to-one correspondence between the set of subgroups S
described in proposition 3 and the set of all discrete subgroups of the Lie group

N(G)/G.

Theorem. Let (G, M) be the homogeneous space corresponding to the pair (G, G).
a) The mapping g — gG gives a one-to-one correspondence between elements of
the group N(G)/G and points x € M such that G, = G.
b) Put C = {x € M|G, = G}. Then the group operation on C given by

111G - oG = ninoG for ni,my € N(G)

turns C into a Lie group isomorphic to N(G)/G.
¢) The equality
nG.(9G) = (9n)G,

where n € N(G) and g € G, gives a right action of C' on M.
d) The action of C on M commutes with the action of G on M, i.e.
c.(9.x) =g.(cx)
forallge G,ce C,z € M.

Proof.

a) Let + = gG. Then G, = gGg~!. Therefore, G, = G if and only if g € N(G).

b) It is sufficient to check that the operation is well-defined. Indeed, for hy, hs € G
we have

’fllhlG . ’I’Lzth = nlhlngth = nlhlnzG - nlnz(nglhlng)G = anLQG.

The statements of items c¢) and d) can be proved in a similar way.

Remark. The action of C on M can be rewritten as

c.(9G) =nG.gG = gnG = g.(nG) = g.c,
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where ¢ = nG € C, n € N(G), and g € G.

Now let D be an arbitrary discrete subgroup of C. Then D determines a regular
equivalence relation on M: 1 ~ x5 if there exists a d € D such that d.x; = ;.

Let M /D denote the quotient manifold of M by the relation just introduced. Item
d) of the theorem above implies that this relation is invariant under the action of
the Lie group G. This allows to define an action of G on the manifold M/D. This
way we obtain the new homogeneous space (G, M/D). It is easy to check that the
corresponding pair of Lie groups has the form (G, S), where S/G = D.

We shall say that discrete subgroups D1 and Dy of the Lie group C' are equivalent
if there exists an automorphism (m, ) of (G, M) such that 7(D;1) = Ds.

Further, for each effective pair (g,g) from the classification theorem, we shall de-
scribe the corresponding pair (G, G), the homogeneous space (G, M), where M =
G/G, the set C, the action of C' on M, discrete subgroups D of C (up to equivalence),
and the manifolds M/D.

4.2. Examples.

1. Let (g, g) be the pair 1.1 from the classification theorem. Then the corresponding
pair (G, G) has the form (R?, {0}), where R? is considered as an abelian additive group.
The homogeneous space is the plane with the simply transitive action of the group of
translations. In other words, M = R? = {(p,q)|p,q € R}, G = {(=,y)|z,y € R}, and
the action of G on M can be written as

(z,9)-(p,q) = (z +p,y +9)

for (z,y) € G, (p,q) € M.
In this case the stabilizer of any point of the plane equals G. Therefore, the sub-
group C' coincides with M and the group operation on C' has the form:

(P1,q1)-(P2,92) = (P1 + P2, 01 + q2).

Every discrete subgroup of C' is equivalent to one and only one of the following
subgroups:

a) {(0,0)}; b) {(n,0)ln € Z}; c¢) {(n,m)|n,m € Z}.
Factorization of M by the corresponding equivalence relation gives a transitive action
of the group G on the plane R?, cylinder S* x R, and torus S! x S* respectively.

2. Let (g, g) be the pair 2.1 from the classification theorem. Then the corresponding
pair (G, Q) has the form

G=AAKR*, G=Ax{0}, where

a={ (5 8)|sem).

The manifold M can be identified with the plane M = R? = {(p,q)| p,q € R}. (In
the sequel, by the plane we shall always mean the manifold R? with the standard
coordinates (p, q)). The action of G on M can be written as

(2, (y,2)).(p,q) = (zp + y,z*q + 2),



TWO-DIMENSIONAL HOMOGENEOUS SPACES 71

where z € R% | (y,2) € R%
Now find all points (p, ¢) € M such that the stabilizer of (p, ¢) equals G. This takes
place if and only if the following condition holds:

(p.q) = (zp, 2 q) for all z € R .

Therefore, if A # 0, then C' = {(0,0)} and we obtain no new homogeneous spaces. If
A =0, then C = {(0,a)| a € R}. We have

(0,a).(p,q) = (0,0).((1,p,9)G) = (1,p,).(0,0) = (p, ¢ + a).
So, the action of the group C' on M has the form:
0,a).(p,9) = (p,q +a).
All nonzero discrete subgroups of C' are equivalent to the subgroup {(0,n)| n € Z}.

The corresponding quotient manifold is the cylinder R x S*. Identifying the circle S 1
with the factor group R/Z (z + €2™®), we can write the action of G on R x St as

(z, (y,2))-(p,q) = (zp +y, (¢ + 2) mod 1).

3. Let (g,9) be the pair 10.1 from the classification theorem:

§=5[(2,R),9={<8 ‘8) :ce]R}.

Then the corresponding pair (G, G) has the form
G=5LER), G={(1,y0)ycR}).

The manifold M can be identified with the infinite half-plane
RY xR={(p,q)| p e RY, y € R}.
The action of G on M has the form:
(z,9,2).(p,q) = (PX(3,9,9) , Z(z,9,9) + 2).
Now find the group C. A point (p, q) belongs to C' if

(r,q) = (1,9,0).(p,q) = @X(L,9,9) , Z(1,9,9))

for all y € R. Therefore, for all y € R the following condition holds:

_/q dt
= o (cost+ysint)? 4 sin’t’
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This is true for ¢ = 7k , k € Z. If 7k < ¢ < w(k + 1), then the last condition is
equivalent to the following one:

q—mk = cot !(cot g +y) for all y € R,
which is impossible. Hence ¢ = 7k , k € Z. Then pX(1,y,q) = p and therefore
C={(a,7k)| a € R} , k € Z}.
The action of C on M has the form:
(a,7k).(p,q) = (a,7k).(p, 0,4)G = (p,0,9).(a,7k) = (ap, g + k).

Every nonzero discrete subgroup of C' is equivalent to one and only one of the
following subgroups:

a) {(1,mkn)| k € Z} , n € N;

b) {(e*,mkn)| k€ Z} , neN, a € R%;

c) {(aF,win)| k,l €Z} , neN, a e R},
The corresponding quotient manifolds are

a), b) the cylinder R x S1;

c) the torus St x S*.

4. Let (§,g) be the pair 11.1 from the classification theorem:

§=5l(2,]1%),g={<g _Ox) a:e]R}.

_——

If we put G = SL(2,R) with the group operation described earlier, it would hardly
be possible to find the action of G on M in an explicit form (try to do it !). We shall

S

do it in a different way. Let G be the set SL(2,R) supplied with the following group
operation:

g1 % g2 = 9201 for g1,92 € SL(2,R).

—~— X

We denote this group by SL(2,R) . In coordinates, the group operation has the form:

(T1,Y1,21) * (T2, Y2, 22) =
= (X(z2,y2,21)z1 , Y(22,Y2,21) + X (22,2, 21)Y1 , 22 + Z(x2,Y2, 21))-

(Compare with that on Sm» The Lie group Sm) is isomorphic to S E(xZ,/]R)

The isomorphism can be established by the mapping ¢ — ¢!, g € SL(2,R). The
subgroup G has the form:
G ={(x,0,0)| z € R} }.
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It is easy to check that the manifold M = G/G can be identified with the plane and
the action of G on M can be written as

(z,9,2).(p,q) = Y(z,9,9) + X(z,9,9)p, 2+ Z(2,y,9)).
Now find the set C. A point (p,q) belongs to C' if
(p,9) = (2,0,0).(p,q) = (Y(2,0,9) + X(2,0,9)p , Z(z,0,q))

for all x € R% . Therefore,

q xdt
= for all x € RY..
1 /0 z2 cos?t + sin?t +

Note that the condition holds if ¢ = 7k , k € Z. If mk < ¢ < w(k+1), this is equivalent
to the following condition

q — mk = cot*(z cot q) for all z € RY.

This takes place if and only if cot ¢ = 0 or ¢ = 7k + /2. Therefore ¢ = 1k/2 , k € Z.
It immediately follows that p = 0 and

C ={(0,7k/2)| k € Z}.
The action of the group C has the form:
(0,7k/2).(p, q) = (0,7k/2).((1,p,9)G) = (1,p,)-(0,7k/2) = ((=1)*p,q + 7k/2).
Every nonzero discrete subgroup of C is equivalent to one and only one of the
following subgroups:
a) {(0,mnk)| k € Z}, n € N;
b) {(0,(2n — 1)7k/2)| k € Z}, n € N.

The corresponding quotient manifolds are the cylinder and Mobius strip respectively.
5. Let (g,g) be the pair 4.1 given by the polynomial

p=zx" + a'n—l«'lfn‘_1 + -+ a1x + ag.
For a smooth function f € C*(R), put
E(f) = f™ + an1f"V 4o+ arf' +aof.

Then E(f) = 0 is a linear ordinary differential equation with constant coefficients.
It is know from theory of differential equations that solutions of our equation form
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an n-dimensional vector space. (See appendix B.) Let F, denote the vector space of
solutions. In addition, if

s t

ki 2 2\1;
p(x) = [J(z — e T] (= = \)* + 1),
i=1 j=1
then the functions
x"eXT, 0<n<gk —1,1<i1<s,
z"eN7 cos 5T, z" e sin p;, 1<n<ljg, 1<e<t

form a basis of F,.

Problem. Prove that there exists a solution w(z) of the equation E(f) = 0 such that

the functions
w(z), W'(z),...,w" )

form a basis of the space of solutions.
Let us describe the pair (G, G) corresponding to (g,g). First, consider the action
of the group R on the set C*°(R) defined by

(z.f)(a) = fla—x)

forz eR, a€R, feC®R).

Problem*. Prove that the action is linear, i.e.
z.(f+g9g) =xz.f+zg and z.(Af) = Mz.f).

Prove that for any finite-dimensional subspace V' C C*°(IR) invariant under this action
there exists a polynomial p € R[z] such V equals F,,.
Now put G = { (z, f) | z € R, f € F, }, where the group operation has the form:

(z1, f1) - (w2, f2) = (z1 + 22, f1+ 21.f2),

and G = {(0, f) | f € F», f(0) =0}. It can be shown that (G, G) is the desired pair.
The corresponding homogeneous space is the plane with the following action of the
Lie group G:

(@, f)-(p,@) = (z+p, ¢+ f(z +p))

Ezxercise. Check that 6(0,0) =G@.

Let us now describe the set C. By ,f7:"; denote the set {f € F, | f(0) =0}. A point
(p, q) belongs to C' if
(p,q) = (0, f)-(p,q) = (p,a + f(p))

for all f € .%;. This takes place if f(p) = 0 for all functions f € .%;. It is obvious that
C D> {(0,a) ]| acR}.
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Lemma. Let C # {(0,a) | a € R}. Then the polynomial p(z) is equivalent to one of
the following polynomials:

k
a) plz)=[[((z—2?+8), AER, b; € 2Z;
=1
k
b) plz) =[]z —N?+8), AER, b; € 27 + 1;
1=1

k
o) p(z)=(@-N][(z=X>+]), AeR, b €2

Proof. Since C' # {(0,a) | a € R}, we see that functions from .f?; have nonzero common
roots. Let o be the nonzero common root with the least absolute value. Since the
space Jp, is finite-dimensional and consists of smooth functions, we see that this root
always exists. Two pairs 4.1 defined by polynomials p(z) and Ap(pz), A, pu € R*, are
equivalent. Therefore, it can be assumed that o = 7. Let L be the linear operator on
F given by Lf(z) = f(x + m). It is easy to show that the subspace F, is invariant

with respect to L. Therefore, 3’-;; is invariant with respect to the operator L* (k € 7Z)
and the points 7k, k € Z, are also common roots of all functions from .7?;.

Consider the forms on F, given by f +— f(wk), k € Z. Note that they are pro-
portional. If the functions wy,...,w, form a basis of .f?';, then in the dual basis, these

forms have the coordinates
(1 (k) wa(Tk), <oy (7)),

Therefore, all basis functions are eigenvectors of L belonging to the same eigenvalue.
This proves the lemma. Note that the eigenvalue equals e*™ in cases a), ¢) and —
in case b).

We say that cases a), b), and c) are special and the other cases are nonspecial.

Now find the action of C on M. Not that for any point (p,q) € M, an element
(p, f) € G such that f(p) = q takes the point (0,0) into (p,¢). In nonspecial cases we
have

(0,a).(p,q) = (0,a).(p, £)G = (p, )-(0,a) = (p,a+ f(p)) = (p,q + a),

where (0,a) € C.

All nonzero discrete subgroups of C' are equivalent to the subgroup {(0,n) | n € Z}.
The corresponding quotient manifold is the cylinder.

Consider the special cases. We have

(7k,a).(p,q) = (v, f)-(7k,a) = (p+ 7k,a + f(p + 7k)) = (p + 7k, a + LF f(p)).
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Therefore, the action of C' on M has the following form:
a),¢) (rk,a).(p,q) = (p + 7k, e q + a),

b) (rk,a).(p,q) = (p+ 7k, (—1)*e*™*q + a).

Let us now describe discrete subgroups D of the group C and the corresponding
manifolds M/D.
a), ¢) It is easy to check that the group operation on C has the form:

(wkl,xl) . (sz,.’l)g) = (7T(k1 + kz),ml + e’\”klxz).

If X # 0, then every nonzero discrete subgroup of C' is equivalent to one and only one
of the following subgroups:

{(mnk,0) | k € Z}, n € N;

{(0,k) | k € Z}.

The corresponding quotient manifolds are cylinders. If A = 0, we have one more
subgroup in addition to the subgroups just mentioned:

{(2mnk,m) | k,m € Z}, n € N.

The corresponding quotient manifold is the torus.
b) The group operation on C has the form:

(7Tk'1, .’131) . (sz,xz) = (71'(]{31 + kg), 1+ (—1)k16)\7rk1$2).
If A # 0, then all nonzero discrete subgroups viewed up to equivalence have the form:
{(2mnk,0) | k € Z}, n€N;

{(0,k) | ke Z};
{((2n —1)7k,0) | k € Z}, n € N.

In the first two cases the factorization gives the cylinder and in the last case the
Mobius strip. If A = 0, we obtain two more discrete subgroups:

{@2mnk,m) | k,m € Z}, n € N;

{(n =)k, m) | k,m € Z}, n € N.

The corresponding quotient manifolds are the torus and the Klein bottle respectively.
6. Let (g, g) be the pair 17.1 from the classification theorem. Let us now find the
corresponding pair of Lie groups (G, G). Just as gl(2,R) can be realized as a subalgebra
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of gl(R™[x, y]), the Lie group GL(2,R) can be realized as a group of automorphisms
of the space R"[z,y]. Let

o= (;‘ 2) € GL(2,B) and f(z,y) € B"[a, .

Then put
(9-)(z,y) = f(az + cy, bz + dy).

Ezercise. Check that
a) g.f € Ryfz,y] for all g € GL(2,R), f € R"[z,y];
b) (9192)-f = 91(g2f) for all g1, 95 € GL(2,R), f € R"[z,y].

Now let SL(2,R) be the universal covering group of the group SL(2,R) and = :

——~—

SL(2,IR) — SL(2,IR) the covering homomorphism. Then the action of the Lie group

P

SL(2,IR) on R™[z,y] can be defined by

g.f =7(g)-f

"

for g € SL(2,R), f € R™[z,y]. The Lie group G has the form:

e —~———

G = SL(2,R) K R"[z,y].
The group operation on G can be written as

(91, f1) - (92, f2) = (9192, f1 + 91-f2).
Then the subgroup G has the form:
G ={(z,y,0)|z € R} ,y € R} L{f € R"[z,y]|f(0,1) = 0}.
The corresponding homogeneous space is the plane with the following action of G:

(2,9, 2, f)-(p,q) = (e, X ?q + f(—sina, cos a)),

where o = 2 + Z(z,y,p), X = X(z,y,p).
A necessary and sufficient condition for a point (p, ¢) to belong to the set C is that
for all (z,y,0, f) € G the following condition holds:

(9, q) = (Z(z,y,p), X ™*(z,y,p)q + f(—sin Z(z,y,p), cos Z(z,y, p))).

It follows that
C={(rk,a)lk € Z,aeR}ifn=0

and
C = {(rk,0)|k € Z} if n > 0.
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If n = 0, then all nonzero discrete subgroups viewed up to equivalence have the form:

{(mnk,0)|k € Z}, n € N;
{(0,k)|k € Z};
{(mnk,l)|k,l € Z}, n € N.

In the first two cases the factorization gives the cylinder and in the last case the torus.
Consider the case n > 0. The action of the Lie group C on M is given by

(7k,0).(p, q) = (p+ 7k, (~1)*"q).
Each nonzero discrete subgroup is equivalent to the following one:
{(mmk,0)|k € Z}, m € N.

The corresponding quotient manifold is the cylinder whenever mn is even or the
Mobius strip whenever mn is odd.
The complete list fo all two-dimensional homogeneous spaces is given in appendix

C.

5. STRUCTURE OF PAIRS (g,g)

5.1. Isotropically-faithful and reductive pairs. Let us give some definitions and
then find out which of the pairs mentioned in the classification theorem satisfy their
conditions.

Let g be a Lie algebra and V' a vector space. Recall that an arbitrary homomorphism
of Lie algebras p : g — gl(V) is called a representation of g on V. If p is injective,
then the representation is said to be faithful.

Let p be a representation of g on V. Then each element x € g can be regarded
as an endomorphism of V' denoted by xy. In this case the vector space V is called
a g-module and we write z.v = zy (v) instead of p(z)(v), x € g, v € V. A g-module
V is called faithful if the set {x € glz.v =0V v € V} is zero. There is a one-to-one
correspondence between the set of all g-modules and the set of all representations of
g. In the sequel we shall use both of these terms.

To each pair (§, g) we can assign a representation of the Lie algebra g on the vector
space of dimension dimg — dim g.

Definition. The isotropic representation of a pair (g, g) is the representation of the
Lie algebra g on the vector space (g, g)/g given by

p(x) (T +g) =[z,Z] + 9

for all z € g, T € g. The pair (g,g) is called isotropically-faithful if its isotropic
representation is faithful.
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Examples.
1) Let (g, g) be the pair 2.1()\) from the classification theorem:

T € ]R} .
The factor space g/g can be identified with R?. Then the action of an element
x 0
(5 ) 0) s
on g/g is given exactly by the matrix
z 0
0 Xz /-

Therefore, for any A € R the pair (g, g) is isotropically-faithful.
2) Consider the pair 4.1(p) from the classification theorem. Then

= _ 2 . z 0
g—aKIR,g_ax{O},wherea—{<0 Aa:)

1

§={sF(p)|z € R} AR", g = {0} x b e er?d,
T

where n = degp > 1 and if p = 2™ then n > 2. Put

up=F(p)+0and ug =0+ | :
0
1

Then the cosets u; + g and uy + g form a basis of the space g/g. Let

z1
e=0+ :
Tn—1
0
be an arbitrary element of g. Then
0
z1
o) +a) =leul+a=| | +a=oaiumta,
Tn-1

p(e)(uz +g) = [e,uz] +g=0+g.

79
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Therefore, the isotropic representation of (g, g), in terms of our basis, has the form:
0 =z —1
ple) = (0 0 ) :

The class of isotropically-faithful pairs turns out to be rather important. In particu-
lar, if a homogeneous space has an invariant affine connection, then the corresponding
pair (g, g) is isotropically-faithful.

Ezercise. Show that if a pair (g, g) is isotropically-faithful, then it is effective.
Theorem. Any isotropically-faithful pair (g, g) of codimension 2 is equivalent to one
and only one of the following pairs from the classification theorem:

1.1, 2.1, 2.2, 3.1, 3.2,

4.1(p), wherep=z—1, (z —1)(z —A) (J]A| < 1),

2 (z—1)% (z-N?+1(\>0);

5.1(p), where p =22, z(x —1), z? +1;

6.1(2,)), 7.1(2), 7.1(3), 8.1(2), 9.1(2),

10.1, 11.1, 11.2, 11.3, 14.1, 15.1, 16.1.

Proof. 1t is a matter of direct verification to prove that the pairs mentioned above
are the only isotropically-faithful pairs among those mentioned in the classification
theorem. A pair 4.1(p) is isotropically-faithful if and only if degp < 2. It is easy to
check that the polynomial p viewed up to transformations of the form

p(x) = Ap(px), A, pe R,

is equivalent to one and only one of the polynomials mentioned in the theorem. Sim-
ilarly, a pair 5.1(p) is isotropically-faithful if and only if degp = 2. In this case, p
can be reduced to one and only one of the polynomials mentioned in the theorem by
transformations of the form

p(z) = Ap(pr +a), L, pe Ry, a€R.

Let (g,g) be an arbitrary pair of codimension 2 and p : g — gl(g/g) its isotropic
representation. Consider the matrix realizations of the subalgebra p(g) in different
bases of the space g/g. So, to the pair (g, g) we can assign the class of subalgebras of
gl(2,R) conjugate to each other.

Definition. Two pairs (§1,¢1) and (g2, g2) are called isotropically-equivalent if the
corresponding classes of conjugate subalgebras of gl(2,R) coincide.

Problem. Prove that every class of conjugate subalgebras of the Lie algebra gl(2,R)
can be assigned to a certain isotropically-faithful pair.

Let us pick out one representative from each class of conjugate subalgebras of
gl(2,R). This is equivalent to classifying all subalgebras of gl(2,R) up to conjugation.
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Proposition. Any subalgebra of the Lie algebra gl(2,R) is conjugate to one and only
one of the following subalgebras:

I {0} VII {(Z’ ;y) m,yeﬂl{};

II(N) {(g /&) me]R}, N <1, VIII(\) {(AO”” z) x,yE]R};

II1(\) {(y ;;“) a;EIR}, A>0; IX {(g g) x,ye]R};
IV{( )a:e]R}; X {(g Z) x,y,ze]R};

x € ]R} i XTI sl(2,R);

)
(s %)

Proof. See ”Subalgebras of gl(n, P)”, ISLC Abstracts, Lie-Lobachevsky Colloquium,
Tartu, Estonia, 1992.

T o O8 8 8

T,y € ]R} ;S XIT gl(2,IR).

Representatives from classes of conjugate subalgebras corresponding to all effective
pairs (g, g) of codimension 2 are listed in appendix C.

Consider an arbitrary g-module V. A subspace W C V is called invariant if
g.W C W. It is obvious that the trivial subspaces {0} and V are invariant. The g-
module V is called simple if V' contains no nontrivial invariant subspaces. If for each
invariant subspace W there exists a complementary invariant subspace Ws, then the
g-module V is called semisimple.

Now let (g, g) be an arbitrary pair. Then g can be regarded as a g-module, where

z.T = [z, T]

for x € g, T € g. It is obvious that g C g is an invariant subspace of the g-module g.
If there exists an invariant subspace complementary to g, then the pair (g, g) is called
reductive. The subalgebra g is said to be reductive if the g-module g is semisimple.

Ezercise. Let (g, g) be an effective pair. Prove that

a) if g is a reductive subalgebra, then the pair (g, g) is reductive;

b) if (g, g) is a reductive pair, then (g, g) is isotropically-faithful.

Suppose that the pair (g,g) is reductive and m is an invariant subspace comple-
mentary to g. Then m can be identified with g/g and the action of g on g/g can be
written as

z.m = [z, m]

for x € g, m € m.
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Theorem. Each isotropically-faithful pair (g, g) of codimension 2 is reductive except
those equivalent to one of the following pairs from the classification theorem:

7.1(3), 10.1, 16.1.

Proof. 1t is sufficient to consider only isotropically-faithful pairs described in the pre-
vious theorem and for each pair (g, g) of this kind to check if there exists an invariant
subspace complementary to g.

Corollary. Let (g,g) be an effective pair of codimension 2 such that g is a reductive
subalgebra. Then the pair (§,g) is equivalent to one and only one of the following
pairs:

1.1,2.1(N), 2.2()), 3.1,3.2,4.1(z — 1),

11.1,11.2,11.3,14.1,15.1.

Proof. From conditions of the corollary it follows that the subalgebra g is either com-
mutative or non-solvable. Moreover, the isotropic representation of the pair (g,g)
must be semisimple. It can be easily checked the pairs mentioned in the corollary are
the only pairs that satisfy these conditions. It remains to note that for all of these
pairs, g is reductive.

5.2. Inclusions. Let (g,g) be an effective pair and p a subalgebra of g such that
p+g=g Putp=png.

Proposition.

1) The pair (p,p) is effective.

2) The pairs (g,9) and (p,p) have the same codimension.

3) If the pair (g, g) is isotropically-faithful, then the pair (p,p) is also isotropically-
faithful.

We say that the pair (p, p) is a restriction of the pair (g, g) and the pair (g, g) is an
extension of the pair (p,p). We also say that a restriction (extension) is maximal if p
is a maximal subalgebra of g.

All maximal restrictions for pairs of codimension 2 are given in appendix C.

Theorem.
1) All maximal pairs (g,g) of codimension 2 are equivalent to one of the following:

5.1(p), 12.1, 12.2, 13.1, 18.1(n), (n > 2).
2) All minimal pairs (g, g) of codimension 2 are equivalent to one of the following:

1.1, 4.1(z — 1), 41((x — N)?+1), 11.3.

Proof. It immediatly follows from the list of all maximal inclusions.
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CHAPTER III

INVARIANTS

§1. TENSOR INVARIANTS

Suppose that an arbitrary group G acts on a set M. A point € M is called an in-
variant of the action if g.z = z for all g € G. Now let (G, M) be a homogeneous space.
Since G acts transitively on M, we see that the action has no invariants. However, we
can consider natural prolongations of the action of the group G to different objects on
M such as the tangent bundle. Actions obtained this way may have invariants.

Let TM denote the tangent bundle on the manifold M. Each element g € G gives
the diffeomorphism of M x — g.xz and therefore the isomorphism of tangent spaces

dg : TpyM — Ty M for all x € M.

Similarly, each element g € G gives the isomorphism T*M — T;_l. .M. This allows

to prolong the action of G to the space T™(TM) of tensor fields of valence (n,m)
on M. For g € G, by g* denote the corresponding transformation. Each tensor field
w € TM(TM) can be regarded as a family of tensors of valence (n,m)

{wz € T7N(Te M) }aem
which depends smoothly on x. A tensor field w is an invariant if
g *wg = Wg.x

forallz € M, g€ G.

Let g be an arbitrary point of M and put G = Z;},;o. Note that each invariant tensor
field w is uniquely determined by the tensor wg, € T,7*(Ty,M). Let g be an element of
G. Then the mapping dg is an automorphism of the space T, M. Therefore, dg gives
an action of the group G on T*(T,,M). This action is called isotropic. Since w is
invariant, we see that the tensor wy, is invariant under the action of G on T (T, M).
Conversely, suppose wy, € T (Ty, M) is an arbitrary tensor invariant under the action
of GG. Putting

Wy = g*wmoa
we obtain a tensor field w on M invariant under the action of G. So, we have proved
the following

Proposition. There is a one-to-one correspondence between the set of tensor fields
of valence (n,m) on M invariant under the action of G and the set of tensors from
T (T, M) invariant under the isotropic action of the Lie group G = G, .

Note that in order to describe tensors invariant under the isotropic action of G, it
is sufficient to know the action of G on the tangent space T, M. Since this action is
linear, we obtain the homomorphism of Lie groups f : G — GL(T,,M).
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Theorem. Let (G, M) be a homogeneous space, © an arbitrary point of M, and
G = Gy, Let (§,9) be the pair of Lie algebras corresponding to the pair (G,G).

a) The tangent space Ty, M can be naturally identified with the factor space g/g.

b) The homomorphism of Lie algebras p : ¢ — gl(g/g) defined by the homomor-
phism of Lie groups G — GL(Ty, M) coincides with the isotropic representation of the
pal'r (§> g)

Let f: G — GL(V) be an arbitrary homomorphism of Lie groups. The homomor-
phism f gives a linear action of the Lie group G on V. Then we can naturally define
a linear action of G on V*:

(9-2)(v) = a(g™"w)

for g € G, a € V*, v € V. This allows to prolong the action of G to an arbitrary
tensor space:

G018 QU B @ ®™) = (g01) @+ @ (9.0) B (90)) ® -+ ® (g.0™)

for g € G, v1,...,v, € V, v',...,v™ € V*. There exists a homomorphism of Lie
groups G — GL(T (V) corresponding to this action. The corresponding homomor-
phism of Lie algebras g — gl(T(V')) turns the space T (V') into a g-module.

Proposition.
a) Let V denote the g-module corresponding to the linear action of G on V. Then
the g-module V* corresponding to the action of G on V* can be given by

(z.a)(v) = —a(z.v)

fora eV, veV,xeqg.
b) The g-module T (V') corresponding to the action of G on the space T (V') can

be given by
(1 ® QU RV ® - ®V™) =

n
:Zv1®®(xvz)®®vn®vl®®vm+
=1

m
_I_erl®...®Un®v1®...®(m_vi)®...®fum.
=1

¢) A tensor w € T» (V') is invariant under the action of G if and only if x.w = 0 for

all x € g.
d) A subspace W C V is invariant under the action of G if and only if W is an
invariant subspace of the g-module V.

Thus, description of tensors invariant under the isotropic action of the Lie group
G can be reduced to description of tensor invariants of the g-module g/g. Note that
if we study tensor invariants of a g-module V, it is important to consider not the Lie
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algebra g itself but its image by the mapping g — gl(V'), z — xy. We shall first of
all be interested in invariant bilinear forms, operators, vectors and covectors (linear
forms) as well as invariant subspaces.

Let us write out conditions for these objects to be invariant.

1. A vector v € V is invariant < z.v =0 Vz € g.

2. A covector a € V* is invariant < a(z.v) =0Yv eV, x €gor

x.v C Kera Vz € g.
3. A bilinear form b € Bil(V) is invariant if
b(z.v1,v2) + b(vy, z.v3) =0 Vv, ve €V, = € g.
4. An operator ¢ € gl(V) is invariant if
z.p(v) —p(zw)=0 YveV, zeg

or
v =¢v  Vreg

5. A subspace W C V is invariant if z.W C W Vzx € g.

To each subalgebra a C gl(2,R) we can assign the natural a-module R%. Any two-
dimensional faithful module can be represented as a module of this form. Therefore,
in order to describe all invariants of a g-module g/g, it is sufficient to do it for the cor-
responding a-modules R?, where a C gl(2,R). Note that if two pairs are isotropically
equivalent, then the corresponding g-modules §/g have the same invariants.

Invariants of a-modules R? such that a is one of the subalgebras of gl(2,R) obtained
earlier are tabulated in appendix C.

Some corollaries.

1. Only the subalgebras I and III(0) have an invariant positive definite symmetric
form. Therefore, the only homogeneous spaces to allow an invariant Riemannian
metric are those whose corresponding pairs of Lie algebras are equivalent to one of
the following pairs:

1.1, 2.2(0), 11.2, 11.3.

2. The only homogeneous spaces to allow an invariant pseudo-Riemannian metric
are those whose the corresponding pairs of Lie algebras are equal to one of the following
pairs:

1.1, 2.1(-1), 11.1.

§2. JET SPACES AND DIFFERENTIAL INVARIANTS

2.1. Jet spaces.
Let a be an arbitrary point on the line.
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Definition. Two functions f,g € C*°(R) are called k-equivalent at the point a if
f(@)—g(x)=o0((z—a)*) asz — a.

From the definition it follows that two functions f and g are k-equivalent if and
only if f(a) = g(a) and @ (a) = g (a), 1 < i < k.

It is easy to check that the k-equivalence relation is indeed an equivalence relation.
The class of functions k-equivalent to f at a point a € R is called the k-jet of f at the
point a and is denoted by [f]¥. In particular, [f]? is the set of all smooth functions
such that g(a) = f(a). By J¥ denote the set of k-equivalence classes at a point a € R.
To every class [f]¥ we can assign a collection of numbers

(yO)yh v ayk)> where Yi = f(z)(a), 0 < 1 < k,

which uniquely determine the class.

FEzercise. Show that for any collection of numbers (yo, ¥1, - - ., Yk ) there exists a smooth
function f such that y; = f®(a), 0 < i< k.

Thus, for every point a € R, the set J* can be identified with RF*1,

By J* denote the union of all J*:

TP = I
ach

It follows that we can consider J* as R¥*2. Namely, to each element [f]¥ € J* assign
the set of k£ + 2 numbers

(x) Yo, Y1,y--- >yk)a where Yi = f(l)(x)

To every function f € C*(R) it is possible to assign the curve in J*:

se(f):t = (¢ [£IF)-

It is called the k-jet of the function f. For example, if we identity J* with RF*+2, then
the curve corresponding to the function f(z) = x? has the form:

t (t,t%,2t,2,0,...,0).

Ezercise. Let s:t — (t,y0(t),y1(t),...,yn(t)) be some curve in the space J*. Show
that it has the form si(f) if and only if y;(t) € C®(R) and y;+1 = yi(t) for all
teR, 0<t<Ek—-1.

Consider now the Lie algebra D(IR?) of all vector fields on the plane. Let us recall
that every vector field v € D(IR?) generates a local one-parameter group of diffeomor-
phisms {¢;} . It is uniquely determined by:

Sg(t) = Vs.(t) sa(o) = a,
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where s,(t) = ¢i(a) for all a € R.

Now with every vector field v on the plane we associate a certain vector field
v(®) on the space J*. To do it, first, we construct the local one-parameter group
of diffeomorphisms {¢;} corresponding to the vector field v € D(R?). Further, let
(a, [f]¥) be some element of J* and let functions g;, hy € C*°(R) be given by

(g¢(z), he(z)) = @e(z, f(z)) for all z € R.

Then put
(@ [718) = (9:(0), heogi TEw)

For a fixed point (a,[f]¥) € J* all the constructions described above will be well-
defined for sufficiently small t. In particular, if t = 0, then go = Idg2, ho = f, and
consequently goék) =Idjx.

Conversely, for each t € R the diffeomorphism (p,(:k) of the space J* will be defined
on a certain open domain. Moreover, from the definition it immediately follows that
goglf) o go,gf) = @%Ifz‘_h is defined everywhere, where this equality makes sense. Thus, we
have obtained a local one-parameter transformation group of J*. The corresponding

vector field v* on the space J* is called the k-th prolongation of the vector field v.

Theorem 1. The map v — v(®) is a homomorphism of the Lie algebra D(R?) into
the Lie algebra of all vector fields on J*.

Examples.
1) Suppose k = 0. Then an element (a, [f]) of the space J° can be identified with
the point (a, f(a)) on the plane. The functions g; and h; are defined by the equality

(9:(2), he(z)) = pu(z, f(2)).
Then

o (a,0) = (9u(a), [heo 67 P0)) =
(g:(a), heo g (g:(a)) = (ge(a), hu(a)) = py(a,b).

So, in our case cpﬁo) = ;. Hence, v(9) = v. This enables us to identify the spaces
J? and R?. In agreement with the identification, we shall denote coordinates on the
plane by (z,yo)-

2) Let v = yoaiyo be a vector field on the plane. Find the vector field v(}). The
one-parameter transformation group {¢:} corresponding to the vector field v has the
form:

i: (2,90) = (,€"yo).
Let us identify the spaces J! and R3. Suppose (a,9o,%1) is an arbitrary point in R3.
The corresponding point in J* is (a, [yo +y1(z — a)];) . Then the functions g, and h;
are determined by

(g¢(z), he(z)) = @e(z, Yo +y1(z —a)) = (z, e'yo + e'yr(z — a)),
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so that
9i(z) = =, hi(z) = elyiz + et(yo — y10).

Then
(1) _ (@) ALY BRI = t t
¢ (a,90,y1) = 91 (@, [yo +yi(z —a)lg) = (a, [RdSY) = (a, €'yo, €'y1).

Hence

o gy 0 O
0 Yo ' 0y1 .

As we can see, it is rather difficult to find prolongations of vector fields using only
definitions. However, there exist simple formulas to do it. Some of them allow to do
it without finding the corresponding one-parameter transformation groups.

Theorem 2. Let v = A(z,y0) 2 + Bo(z, yo)aiy0 be a vector field on the plane, then
the vector field v(¥) has the form:

0 < )
(k) — E . ‘
v _A(m’y(])afb +i=0 B’L(mayOa"wy’Jay.a

(2

where
g 4B dA
1T gy T Yl
and
d_9, 0 2
de  or A %0 Yi+1 R

Example. Let v = yO% — 335% be a vector field on the plane. Then, from theorem
2 it follows that

where dB dA
0 2
= —_—— ———"‘—1—
b= g 4
Thus,
0 0
M) = g — 2— — (1 + 12—
v Yo g xayo (I+y7) -

2.2. Differential invariants of homogeneous spaces. Suppose now g is a Lie
algebra of vector fields on the plane. Denote by g(¥) its image by the mapping v —
v(k). From theorem 1 it follows that g(¥) is a Lie algebra of vector fields on the space
Jk.
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Definition. A differential invariant of the k-th order of a Lie algebra g € D(R?) is a
function F' € C*(J*) such that

v®O(FY=0forall v eg.

The set of all differential invariants of the k-th order of a Lie algebra g € D(R?) is
denoted by I (g).

Using the properties of the action of vector fields on functions, one can easily prove
the following

Theorem 3.
1. The set Ix(g) is a subalgebra of the algebra C*®(J¥).
2. If f1,..., fn € Ix(g) and F € C*°(R™), then F(f1,..., fn) € Ix(g).

Definition. We say that a set of differential invariants f1,..., f- is a (local) basis of
the Lie algebra Iy(g), if

(1) the functions are functionally independent (in some neighborhood);
(2) for any differential invariant f € Ix(g) there exists a smooth function F' such
that f can be (locally) written as f = F(f1,..., fr)-

For example, let g = s[(2,R) be the Lie algebra of vector fields on R? with basis

0 0 0
X = =, X = - X - 2 .
1 8y0 2 =Yo E 3=1Yo 5yo

Then direct calculation shows that t