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Foreword 

This is a preliminary version of an expository text intended for the Summer School 
Lie grnup analysis of differential equations (Nordfjoreid, Norway, 1993). We feel that 
the theory of two-dimensional homogeneous spaces, or, if one prefers, in local terms 
the theory of finite-dimensional subalgebras of the Lie algebra of all vector fields on 
the plane, and to a greater extent their applications, have not really become part 
of mainstream mathematics, although they are absolutely basic, in particular to the 
theory of differential equations, and were introduced over a century ago by Sophus 
Lie (see the recent discussion on this topic in [7]). We are in the possession of the 
classification of all two-dimensional homogeneous spaces, obtained by purely algebraic 
methods (via the description of so-called effective pairs (g, g) of codimension 2). We 
do not present the proof of this classification here, partly to save space and time and, 
partly because of the didactic character of this text. To conclude the Foreword, we 
list a few references that are relevent to the present exposition. 

1. S. Lie, Gruppenregister, Gesammelte Abhandlungen, v.5,6, (B.G. Teubner), Leipzig, 1924,1927. 
2. S. Lie, Teorie der Transformationsgruppen, Math. Ann. 16 (1880), 441-528. 
3. R. Hermann, Sophus Lies 1880 transformation group paper, Math. Sci. Press, Brookline, Mass., 

1975. 
4. R. Hermann, Sophus Lies 1884 differential invariants paper, Math. Sci. Press, Brookline, Mass., 

1986. 
5. G. Mostow, The extensibility of local Lie groups of transformations and groups on surfaces, Ann. 

of Math. 52, No.3 (1950), 606-636. 
6. V. Lychagin, Lectures on geometry of differential equations. Part I, Roma, 1992. 
7. A. Gonzales-Lopez, N. Kamran, P. Olver, Lie algebras of vector fields in the real plane, Proc. 

London Math. Soc. (3) 64 (1992), 339-368. 
8. ISLC Math. College Works, Abstracts, Lie--Lobachevsky Colloquium, Tartu, October, 1992. 
9. B. Komrakov, V. Lychagin, Symmetries and integrals, Preprint series, Inst. of Mathematics. 

Univ. of Oslo, 1993. 
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CHAPTER I 

NAIVE APPROACH 

§1. SMOOTH FUNCTIONS 

1.1. Smooth functions on the line. Let us recall some basic definitions of differ­
ential calculus. 

Definition 1. A function f : lR --+ lR is said to be differentiable at the point a E lR if 
there exists a finite limit 

lim f(x)- f(a). 
x-+a X- a 

Then this limit is called the derivative of the function f at the point a and is denoted 
by f' (a) or ~~ (a). 

For any function f differentiable at the point a, the following condition holds: 

f(x) = f(a) + f'(a)(x- a)+ o(x- a). 

Conversely, suppose that there exist A, B E lR such that 

f(x) =A+ B(x- a)+ o(x- a). 

Then it is easy to show that f is differentiable at a and A= f(a), B = f'(a). So, we 
see that all functions differentiable at a point a E lR are exactly those functions which 
can be approximated by linear mappings up to infinitesimals of the first order. 

A function f : lR --+ lR is called differentiable if it is differentiable at each point 
a E JR. To every differentiable function f we assign the function f' : lR --+ lR that takes 
any point a E lR to f'(a) E JR. 

Definition 2. A function f : lR --+ lR is called continuously differentiable if it is 
differentiable and f' is continuous. 

By C 1 (JR) denote the set of all continuously differentiable functions. 

Exercise. Show that the set C1 (JR) is closed under addition and multiplication of 
functions. 

Below we shall construct by induction the chain of embedded classes of functions: 

Definition 3. A function f E Ck(JR) is called (k+ 1) times continuously differentiable 
iff' E Ck(JR) (i.e. f' is k times continuously diffirentiable). In this case the function 



6 B. KOMRAKOV A. CHURYUMOV B. DOUBROV 

j(k+l) = (f')(k) is called the (k + 1)-th derivative of f. By ck+1 (m.) denote the set of 
all ( k + 1) times continuously differentiable functions. 

Exercise. 
1) Show that Ck(m.) is closed under addition and multiplication of functions. 
2) Show that the functions f(x) = xk · Jxl belong to Ck(m.) but do not belong to 

ck+l (m.). 

Definition 4. We say that a function f : m. -+ m. is smooth iff E Ck(m.) for each 
kEN. 

By c=(m.) denote the set of all smooth functions: 

coo(m.) = n Ck(m.). 
k=l 

Examples. 
1. The simplest examples of smooth functions are constant mappings, linear func­

tions, and polynomials. 
2. Since ex E C 1 (m.) and (ex)' = ex, we see that ex is a smooth function. 
3. Let f and g be smooth functions. Then the functions f · g, f + g, fog are 

smooth. Moreover, if f ( x) =J. 0 for all x E m., then the function f (1x) is also smooth. 
This gives us some more examples of smooth functions, for instance 

4. Let f : m. -+ m. be a smooth function. Then the functions j(k) ( x) and F ( x) = 
X 

J f(t)dt are also smooth. For example, 
0 

X 

F(x) = J e-t2 dt E c=(m.). 

0 

Exercise. Show that the function 

f(x) = { 
0, 

x>O 

x(O 

is smooth. 

(1) 

Let U be an open subset of m. (for instance, an open interval). Similarly, we 
can introduce the concept of a function differentiable on U and define the classes 
Ck(U), c=(U). For example, j(x) = JX belongs to c=(U), where U = (0, +oo). 
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Exercise. Show that the function f(x) = x,yi belongs to c=(o, +oo), but does not 
belong to c= (JR.). 

Suppose f E c= (JR.) and f' (X) f. 0 for all X E JR.. Then it is possible to show that 
f is a bijection of JR. onto f(IR.). Moreover, U = f(IR.) is an open subset of JR. and the 
inverse function f- 1 : U -t JR. also belongs to c= (JR.). For instance, the function ln x, 
which can be uniquely determined from the equation ln(ex) = x, is smooth on the 
interval ( 0, +oo). 

In the sequel we shall make use of the following fact: 

Theorem 1. Let f : JR. -t JR. E c= (JR.) and f (a) = 0 for some point a E JR.. Then 
there exists a smooth mapping g: JR.---* JR. such that f(x) = (x- a)g(x) for all x E JR.. 

Let f : JR. ---* JR. be a smooth function and a E JR.. Consider the following power 
series: 

f'(a) f"(a) 2 
Tj(x) = f(a) + - 1-(x- a)+ - 1-(x- a) + ... , 

1. 2. 

which is called the Taylor series of f at the point a. This series is not necessarily 
convergent. But even if it does converge, the sum T1(x) is not necessarily equal 
to f(x). 

Definition 5. A smooth function f is called analytic at a point a E JR. if the Taylor 
series of f at a converges in some neighborhood of a and its sum is equal to f ( x). 

Example. Consider the function f given by (1) and put a = 0. It can be verified 
that f(n)(a) = 0 for all n EN. Therefore, the Taylor series off at the point a= 0 
converges to the zero function. But f is a nonzero function on any neighborhood of 
a= 0. Thus, f is not an analytic function at a= 0. 

By cw (JR.) denote the set of all analytic functions on JR., i.e. functions that are 
analytic at each point a E JR.. As a matter of fact, all smooth functions considered in 
the previous examples are analytic. 

Theorem 1 implies that the following result is true: 

Theorem 1 '. Let f E cw (JR.) be a nonzero function and f (a) = 0 for some point 
a E JR.. Then the function f can be uniquely represented as 

f(x) = (x- a)nh(x), 

where hE Cw(IR.) and h(a) f. 0. 

Remark. Generally speaking, theorem 1' is no longer valid for smooth functions. For 
example, so is the case when f has the form (1) and a = 0. 

1.2. Smooth functions on the plane. By the plane we shall mean the set of all 
pairs of reals: 
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We can consider JR2 as a real vector space. This means that pairs of numbers can be 
called vectors. These vectors can naturally be added and multiplied by real numbers: 

(x1, x2) + (y1, Y2) = (x1 + Y1, x2 + Y2), 

,\ · (x1, x2) = (Ax1, Ax2). 

We shall denote the plane by V2 if we want to emphasize that we consider it as a 
vector space. 

Fix a point a E JR2 . Suppose f : JR2 -7 lR is a function on the plane. To every vector 
v E V 2 we assign the function 9v : lR -7 lR by the formula 

9v(t) = f(a +tv). 

We say that the function f is differentiable at the point a along the vector v E V 2 if 
gv is differentiable at t = 0. Then g~(O) is called the derivative off at the point a 
along the vector v and is denoted by f~ (a). From this definition it follows that 

f ' ( ) -. f (a + tv) - f (a) 
v a =hm . 

t ...... o t 

The derivatives along the vectors (1, 0) and (0, 1) are called the first and the second 
partial derivatives of f at a and are denoted by D 1f(a) and D 2 f(a) respectively. 
(Sometimes we shall use another notation: /}f1 (a) and !}!2 (a).) If the partial deriva­

tives off exist at each point a E JR2 , then we can define the following functions: 

Dd: JR2 -7lR, a r-+ Dd(a), i = 1, 2. 

For example, for j(x1, x2) =xi+ x1x2 + x~ we have 

Exercise. Find the functions D 1f and D 2 f for f : JR2 -7 JR, where 

Definition. A function f : JR2 -7 lR is continuously differentiable if the functions D1f 
and D 2 f are defined at each point of the plane and are continuous. 

By C 1 (JR2 ) we denote the set of all continuously differentiable functions on the 
plane. As well as for functions on the line, we shall construct by induction the chain 
of embedded classes of functions: 
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Definition. A function f E Ck (I1~2 ) is called ( k + 1) times continuously differentiable 
if the functions D 1 f and D2f are k times continuously differentiable. The set of all 
( k + 1) times continuously differentiable functions is denoted by ck+ 1 (JR2 ). 

We say that a function f : JR2 --7 lR is smooth if it is k times continuously differen­
tiable for all kEN. The set of all smooth functions on JR2 is denoted by C00 (JR2): 

00 

coo(JR2) = n Ck(JR). 
k=l 

Examples. 
1) As in the case of JR, the simplest examples of smooth functions on JR2 are constant 

mappings, linear functions, and polynomials in two variables x 1 and x2. 
2) The set coo (JR2 ) is closed under addition and multiplication of functions, i.e. 

C 00 (lR2 ) is a commutative algebra. Besides, if f E C 00 (lR2 ) and j(a) #- 0 for all 
a E lR 2 , then the function 1/ f is also smooth. 

3) Suppose j, fi, f2 E C 00 (JR2 ) and g E C 00 (lR). Then the functions 

and 

are also smooth. For example, 

We shall now formulate some important results omitting the proofs. 

Theorem 2. Suppose !I, h E C 1 (JR) and g E C 1 (JR2). Then the function h(x) 
g(fi(x), h(x)) belongs to C 1 (JR) and 

h' (a) = aag (!I (a)' h (a)) . J{ (a) + aag (!I (a)' h (a)) . f~ (a). 
Xl X2 

for all a E lR 2 . 

Thus, the knowledge of the partial derivatives of a function at each point of JR2 
allows to find its derivative along any vector v E V2 . 
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Theorem 3. Suppose f E C 2 (Til?.2 ). Then 

In the sequel, for the sake of convenience, we shall write 

instead of Di1 Di2 ••• Din f. Besides, iff E cn(Til?.2 ), then we can permute the indeces 
i1, i2, ... , in. 

For functions on the plane, as well as for functions on Til?., the following fact is true: 

Theorem 4. Let f E C 00 (Til?.2) and f(a) = 0 for a certain point a= (a1,a2) E Til?.2. 
Then there exist functions 91,92 E C 00 (Til?.2) such that 

Suppose U is an open subset on the plane. Then, in the similar way, we can 
introduce the concept of directional derivative of a function f : U -+ Til?. at the point 
a E U. We can also define the classes of functions Ck(U) and C 00 (U). For example, 
the function f ( x1 , x2 ) = J xi + x~ is smooth on the set U = Til?. 2 \ { 0} but is not smooth 
on Til?.2 . 

§2. DIFFEOMORPHISMS OF THE PLANE 

2.1. The group of diffeomorphisms of Til?.2. A one-to-one mapping f: Til?.2 -+ Til?.2 

is called a transformation of Til?.2 . The set of all transformations of Til?. 2 forms a group 
with respect to composition of mappings and is denoted by Aut(Til?.2 ) or Bij (Til?.2 ). 

Transformations of the vector space V2 are those transformations of Til?. 2 that pre­
serve addition of vectors and multiplication of vectors by scalars. They are called 
linear and have the form: 

(1) 

where aij E Til?., an a22 - a12a21 1- 0. 
The set of all transformations of the vector space V2 ( = the set of all linear trans­

formations of the plane) forms a subgroup of Bij(Til?.2 ) and is denoted by Aut(V2 ) or 
GL(Til?.2 ). Thus, considering the plane as a vector space, we assume that every admis­
sible transformation has form (1). Similarly, we can consider the plane as an affine 
space corresponding to the vector space V2 . 

Any transformation of the affine plane has the form 
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where aij, bi E l.Pl., an a22 - ai2a2I i=- 0. These transformations are called affine trans­
formations. Each affine transformation can be uniquely written as tv o cp, where cp is 
a linear transformation and 

is a parallel translation by the vector v. The set of all transformations of the affine 
space A2 (= the set of all affine transformations of the plane) forms a group. This 
group is denoted by Aut(A2 ) or Aff(l.Pl.2 ). 

Note that the set of admissible transformations performs a significant part in the 
study of the plane as a set, a vector space, and an affine space. Our aim is to study 
the plane as a smooth manifold. We shall not give any rigorous definition of a smooth 
manifold, but we shall describe the transformation group of the plane considered as a 
smooth manifold. 

Every transformation of IPl. 2 has the form: 

where cpi, cp2 are certain mappings of IPl. 2 into l.Pl.. 

Definition 1. The mapping cp : IPl. 2 ~ IPl. 2, (XI, x2) ~ ( cpi (XI, x2), cp2 (XI, x2)) is called 
a diffeomorphism or smooth transformation if the following conditions hold: 

1 o cp E Bij(l.Pl.2); 
2o cpi, cp2 E C00 (l.Pl.2); 
3o (cp-I)I, (cp-I)2 E coo(J.Pl.2). 

Examples. 
1) Any linear and even affine transformation is a diffeomorphism. 
2) Define the transformation by the rule 

It is a diffeomorphism of the plane IPl. 2 . It can be easily shown that the inverse of this 
transformation has the form 

3) Suppose f E C00 (l.Pl.2 ); then the transformation 

is a diffeomorphism of the plane and is called a shift. 

Exercise. Describe the inverse of the transformation given in example 3). 
4) Consider the following mappings of IPl. 2 into IPl. 2 : 
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(x1, x2) ~ (x1 + x2, ijx1- x2); 

(x1,x2) ~ (xr,x2). 

Since these mappings do not satisfy conditions 1 o, 2°, 3° of definition 1, respectively, 
we see that they are not diffeomorphisms. 

Exercise. Show that linear and affine transformations could also be defined as map­
pings ]]1,_2 -7 Jlll,.2 satisfying conditions 1 °~3° of definition 1 if we replaced the set C 00 (Jlll,.2) 
in this definition by the following classes of functions: 

respectively. Prove that in this case condition 3° is redundant. 
Further, let M 2 denote the plane considered as a two-dimensional manifold. The set 

of all diffeomorphisms of the plane M 2 forms a group, which is denoted by Aut(M2) 
or Diff(Jlll,.2). 

2.2. Local diffeomorphisms. Now we shall give some variations of definition 1. 
Let U and V be two open domains on the plane. 

Definition 2. The mapping cp: U ~ V, (x1, x2) ~ (cp1(x1, x2), cp2(x1, x2)) is called a 
diffeomorphism of U onto V if the following conditions hold: 

1 o cp is a one~to~one mapping; 
2° cp1, cp2 E coo (U); 
3o (cp-1)1, (cp-1)2 E Coo(V). 

Examples. 
1. Let cp : Jlll,. 2 ~ Jlll,. 2 be a certain diffeomorphism of the plane and U some open 

domain in Jlll,.2. Then cp(U) is an open domain in Jlll,.2 and cplu : U -7 cp(U) is a 
diffeomorphism of U onto cp(U). 

2. The mapping 
cp : (xt, x2) ~ (x1 cos x2, x1 sinx2) 

is a diffeomorphism of the domain 

onto 

Exercise. Describe the largest domain on the plane such that the restriction of the 
following mapping to it is a diffeomorphism: 

a) (x1, x2) ~ (x1 + x2, (x1- x2) 3 ); 

b) (x1, X2) ~ (xt, X1X2). 
The local form of definition 1 is 
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Definition 3. A mapping rp : IR2 f---7 IR2 is said to be a local diffeomorphism at the 
point a E IR2 if there exist two neighborhoods U and V of the points a and rp(a), 
respectively, such that rplu is a diffeomorphism of U onto V. 

Nate. Let W be a certain domain on the plane such that a E W. Then we can extend 
definition 3, assuming that rp is defined only on W. 

Every diffeomorphism rp : IR2 f---7 IR2 is a local diffeomorphism at each point of the 
plane. Moreover, U can be chosen arbitrarily. In general, the converse is not true. 
To prove this we consider the mapping given by ( x1, x2) f---7 (xi, x2). It is a local 
diffeomorphism if x1 =1- 0, but is not even a one-to-one mapping of the plane. 

Examples. 
1. Let the mapping rp be given by 

Then rp is a local diffeomorphism at a point (x1, x2) such that x1 =1-1m, x2 =1- 0. 
2. Define the mapping rp by the rule 

Then rp is a local diffeomorphism at no point of the plane. 

The mapping rp : IR2 f---7 IR2, (x1, x2) f---7 ( ifl (x1, x2), rp2 (x1, X2)) is smooth if ifl, if2 E 
C00 (IR2 ). For example, diffeomorphisms are smooth one-to-one mappings of the plane 
that have smooth inverses. Let a E IR2 . There is a simple method to determine 
whether rp is a local diffeomorphism at the point a or not. Consider the matrix 

( ~(a) 
0E2(a) 
axl 

~(a)) 
8<p2(a) ' 
8x2 

which is called the Jacobi matrix of the mapping rp at the point a. 

Theorem 1. The smooth mapping rp : IR2 f---7 IR2 is a local diffeomorphism at a E IR2 

if and only if the Jacoby matrix of rp at a is non-singular. 

§3. VECTOR FIELDS ON THE PLANE 

Now we shall introduce the concept of a vector field on the plane. Since the con­
cept is extremely important, we shall give several different definitions and set the 
correspondence between them. 

3.1. Naive definition. To every point on the plane we assign a vector such that its 
coordinates are smooth functions of coordinates on the plane. For example, suppose 
that a liquid flows on the plane. Then to every point of IR2 we can assign the velocity 
vector of the liquid at this point. More rigorously, 
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Definition 1. A vector field on the plane is a smooth mapping v : IRS. 2 ----+ V2 that 
takes every point a E IRS. to a vector v a = v (a). 

Let us recall that a function v : IRS.2 ----+ IRS.2 is smooth if 

where VI, V2 E C 00 (l.RS.2). By 'D(IRS.2) denote the set of all vector fields on the plane. 
The set 'D(IRS.2 ) can be supplied with the operations of addition and multiplication by 
constants: 

(v1 + v2)(a) = v1(a) + v2(a), where v1, v2 E 'D(IRS.2); 

(.\v)(a) = .\ · v(a), where.\ E IRS., v E 'D(IRS.2). 

Thus, 'D(IRS.2 ) is a vector space. It is also possible to multiply vector fields by smooth 
functions: 

(fv)(a) = j(a) · v(a), where j E C 00 (l.RS.2), v E 'D(l.RS.2). 

It is easy to verify that fv is indeed a vector field. 
By 8~ 1 (respectively, 8~2 ) denote the constant vector field 

(respectively, (x1 , x2 ) ~---* (0, 1) ). This strange notation will be clear from other 
interpretations of vector fields. 

Exercise. Show that any vector field v can be written uniquely in the form: 

Let v be a vector field and a E IRS.2 some point on the plane. The vector v a E V2 

is called a tangent vector to the plane at the point a. By Tal.RS.2 denote the set of all 
tangent vectors to the plane at a point a E IRS. 2 : 

Exercise. For each vector v E V, find a vector field v E 'D(IRS.2 ) such that Va = v. 
This exercise shows that TaiR.2 is a vector space V "attached" to the plane at the 

point a. 

3.2. Algebraic point of view. Let f E C 00 (IR.2 ) be a smooth function and v a 
vector field. Fix a point a E IR.2 . Let us consider the derivative off along the vector 

f ' ( )=l' f(a+tva)-f(a) 
v a 1m . 

a t--+0 t 
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As we can see, it is a number. Let us assign to every point a E JR2 the derivative off 
along the vector v a: 

a 1----t f~ . 
a 

Thus, we obtain a new function of JR2 to JR, which is denoted by v(f). It shows the 
rate of change of the function f along the vector field v. 

Exercise. Show that 
1) (v1 + vz)(f) = v1(f) + vz(f); 
2) (gv)(f) = g · v(f), 

where vl,Vz,V E V(JR2) f,g E C 00 (JR2). 

Examples. 
1) Let v = 8~ 1 . Then for any point a= (x1 , x2 ) we have: 

f l () = l' f(xl +t,xz)- f(xl,xz) = of ( ) 
v a 1m ;:) a. 

a t---+0 t UXl 

Thus, v(f) = %L. This gives the explanation of the notation of section 3.1. 

2) Suppose v = v1 88 + v2 88 . Then from the previous exercise it immediately 
X1 X2 

follows that v(f) = vl tL + Vz tl2 for all f E C 00 (lR2). In particular, this shows that 
v(f) also belongs to C 00 (JR2). 

So, each vector field v E V(JR2 ) defines the mapping: 

In the following we shall denote this mapping in the same way as the vector field itself. 

Problem. Prove that 
1 o v is a linear mapping over JR; 
2° for any f, g E coo (JR2 ) we have: 

v(f ·g) = v(f) · g + f · v(g). 

We see that a mapping v is a generalization of the concept of differentiation of a 
function. So, it gives us some reasons to consider the concept of a vector field from 
the other point of view. A mapping of coo (JR2 ) to coo (JR2 ) is called a derivation of 
the algebra of functions coo (JR2 ) if it satisfies conditions 1 o and 2° above. 

Definition 2. A derivation of the algebra of functions coo (JR2 ) is called a vector field. 

The following theorem establishes the relationship between Definitions 1 and 2. 
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Theorem 1. Any derivation d of the algebra of functions coo (Il~2 ) has the form: 

Proof. Put v1 = d(x1 ) and v2 = d(x2 ). Note that 

d(1) = d(1. 1) = d(1). 1 + 1. d(1) = 2d(1). 

It follows that d(1) = 0 and therefore d( c) = c · d(l) = 0 for all c E JR. Fix an arbitrary 
point a= (a1 ,a2 ) of JR2 . From Theorem 4, §1, it follows that any function f can be 
written as 

where g1 , g2 E C 00 (!l{.2 ). Finding the partial derivatives of the left- and right-hand 
sides of the equality at the point a, we obtain: 

8f 8f 
g1(a) = -8 (a) and g2(a) = -8 (a). 

Xl X2 

Now, using the properties of derivations, we have: 

Hence, 

Since the last equality holds for each point a E JR2 , we have 

Exercise. Show that every tangent vector to the plane at a point a can be identified 
with a linear mapping p: C 00 (JR2 ) -+JR. such that 

p(f ·g)= p(f) · g(a) + f(a) · p(g). 
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3.3 Geometric point of view. Consider another interpretation of a tangent vector 
to the plane at a fixed point. A smooth curve is a smooth mapping s : I ~ JR2 , 

where I is some open interval of JR. The condition of smoothness means that s(t) = 
( s 1 ( t), s2 ( t)), where s1 , s2 E coo (I). At each point t0 E I, it is possible to find the 
tangent vector to the curve s: 

'(t ) _ ( 1 (t ) 1 (t )) _ 1. s(to + t) - s(to) s o - s1 o , s2 0 - 1m . 
t--+0 t 

Now, let a be a fixed point on the plane. Consider the curves s : I ~ JR2 passing 
through the point a. Without loss of generality we can assume that 0 E I and 
s(O) =a. 

Exercise. For each vector v E V2 find a smooth curve s : JR ~ JR2 such that s(O) =a 
and s' (0) = v. 

But there is the possibility that different curves have the same tangent vector. For 
example, the curves t ~----+ ( t, 0) and t ~----+ ( t, t 2 ) have the same tangent vector at the 
point t = 0. 

Definition 3. Let s 1 , s2 be smooth curves passing through a point a E R We shall 
say that they are equivalent at the point a if their derivatives coincide at a. Equivalence 
classes of curves passing through a are called vectors tangent to the plane at the point 
a. 

In addition, consider one way of constructing vector fields on the plane. Let {sa : 
Ia ~ JR2 } be a set of curves on the plane such that their images sa(Ia) cover the plane 
without intersections. For instance, it can be parallel lines {sa: JR ~ JR2 , t ~(a, t)}. 
Then to every point a E JR2 we can assign the tangent vector to the curve passing 
through a. In this way (if certain conditions of smoothness hold) we obtain a vector 
field on the plane. 

Example. It is easy to verify that the set of curves 

{sr: JR ~ JR2 , t ~----+ (rcost,rsint), r) 0 

satisfies the required condition. Let us find the corresponding vector field. Suppose 
x = ( x1 , x2 ) is some point of the plane and ( X1, X2) = ( r cos to, r sin to) for certain 
r ) 0, t0 E JR. The tangent vector to the curve t ~----+ (r cost, r sin t) at t = t0 is equal 
to (-rsint0 ,rcost0 ) = (-x2 ,x1). Hence the corresponding vector field has the form: 

Exercise. Show that the following sets satisfy the required condition and find the 
corresponding vector fields: 

a) sa : JR ~ JR2 , t ~----+ (et cos( a+ t), et sin( a+ t)), where a E [0, 27r], 
and s0 : JR ~ JR2 , t ~----+ (0, 0); 
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b) sa: Jll;,-*Jll;.2 , tf----'r(etcosa,etsina), aE[0,21r], 
and s0 : Jll;,---* Jll;.2 , t f---'7 (0,0). 

Let U be an arbitrary open subset of the plane. Then all the definitions given above 
can be reformulated if we replace Jll;.2 (but not V2 ) by U. 

1) In accordance with Definition 1, a vector field on U is a smooth function v : U---* 
v2. 

2) In accordance with Definition 2, a vector field on U is a derivation of the algebra 
of functions coo ( U). 

3) In accordance with Definition 3, a tangent vector to U at a point a E U is the 
class of equivalent curves s :I---* U passing through a. 

Examples. 
1) If v : Jll;.2 ---* V2 is an arbitrary vector field on the plane, then its restriction vlu 

to U is a vector field on U. 
2) Let U = Jll;.2 \ {0}. Then 

is a vector field on U, which cannot be represented as a restriction of a certain vector 
field on the plane to U. 

3.4. Lie algebras of vector fields. We can consider vector fields as mappings 
of C 00 (Jll;.2 ) into C 00 (Jll;.2 ). In such a situation one natural operation appears-the 
composition of vector fields. 

If v, wE 'D(Jll;.2 ), then 

(v o w)(f) = v(w(f)) for f E C 00 (Jll;.2 ). 

Exercise. Let v = 8~ 1 • Prove that the mapping v o v : coo (Jll;.2 ) ---* coo (Ift2 ) is not a 
vector field, i.e. v 0 vis not a derivation of the algebra C 00 (Jll;.2 ). 

However, if we make a slight improvement and instead of composition of two vector 
fields consider their commutator 

[v,w] =vow-wov, 

then we shall get again a vector field. 

Proposition. Let v, wE 'D(Jll;.2 ). Then [v, w] also belongs to 'D(Jll;.2 ). 

Proof. Since the operators v and w are linear, we see that the operator [v, w] is also 
linear. Suppose f, g E C 00 (Jll;.2 ). Then 

[v, w](f ·g) = v(w(fg))- w(v(fg)) = v(w(f)g + fw(g))- w(v(f)g + fv(g)) = 

(v o w)(f) · g + w(f) · v(g) + v(f) · w(g) + f · (v o w)(g)-

(w o v)(F) · g- v(f) · w(g)- w(f) · v(g)- f · (w o v)(g) = 

[v, w](f) · g + f · [v, w](g). 
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Hence, [v, w] is also a derivation of the algebra C00 (:!K2 ), i.e. [v, w] E V(IK2 ). 

Let v = VI 88 + v2 88 and w = WI 88 + w2 88 . Let us find the explicit expression 
Xl X2 Xl X2 

for [v, w]. In order to do this, we have to know how the vector field [v, w] acts on an 
arbitrary function f. We have 

In a similar way: 

Now we see that, in the expression (v o w)(f)- (w o v)(f), the terms that contain 
second partial derivatives of the function f cancel. So, 

This means that 

Example. Let v = 8~ 1 , w = f(xi) 8~2 • Then 

[v, w] =!'(xi)~() . 
UXI 

Exercise. Suppose v = 88 . Find all vector fields w such that 
Xl 

[v,w] =0. 

Exercise. Check that commutation of vector fields has the following properties: 
1 o it is bilinear (over IK); 
2° it is skew-symmetric: [v, w] = -[w, v]; 
3° the Jacoby identity holds: 
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Definition. A Lie algebra is a vector space g supplied with a binary operation 

fl x g--+ g, (x,y) f----7 [x,y] 

such that the conditions 1°-3° hold. 

Thus, we see that 'D(ll~2 ) is an infinite-dimensional Lie algebra. Note that commu­
tation is a bilinear operation over~' but not over C00 (~2 ). 

Exercise. Show that 
[v, f · w] = v(f) · w + f · [v, w] 

for all v, w E 'D(~2 ) and f E C00 (~2 ). Find the value of the expression [fv, gw], 
where f, g E coo (~2 ). 

Definition. A subalgebm of a Lie algebra g is a subspace of the vector space g closed 
under commutation. 

In the sequel we shall be especially interested in finite-dimensional subalgebras of 
the Lie algebra 'D(~2 ). 

Examples. 
1) The vector space 

is a two-dimensional subalgebra of the Lie algebra 'D(~2 ). 
2) The space 

forms an infinite-dimensional subalgebra. 

Exercise. Show that the following spaces are subalgebras of the Lie algebra 'D(~2 ): 

a) { (a0 + a1x1 + a2xi) 8~ 1 I ai E ~}; 
b) { f(x1)8~1 I f E coo(~2)}; 
c) { (anxl + a12x2) 8~ 1 + (a21x1 + a22x2) 8~2 I aij E ~2 } ; 

d) { a 8~1 + (f3o + fJ1X1 + · · · + f3nx?) 8~2 I a,f3o, ... fJn E ~}; 
e)*{ J!j_. _£_- J!j_. _£_ I f E coo(~2) } . 

8x2 8x1 8x1 8x2 

Which of them are finite-dimensional? 

It is possible to consider the Lie algebra 'D(U) and its subalgebras for an arbitrary 
open subset U on the plane. All the constructions are analogous to those of the case 
of~2 . 
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§4. ACTION OF DIFFEOMORPHISMS ON 

FUNCTIONS AND VECTOR FIELDS 

21 

4.1. Differentials. Let rp: JP1.2 ---+ JP1.2 be a certain smooth mapping. This means that 

where rp1, rp2 E coo (1P1.2). Let v a E Ta1P1.2 be the tangent vector to the plane at some 
point a. Recall that v a can be considered as an equivalence class of straight lines 
passing through the point a. Using this definition of a tangent vector, we shall define 
the differential of the mapping rp. 

Theorem 1. Let curves t ~---t si(t), i = 1, 2 be equivalent at the point t = 0. Then the 
curves t ~---t ( rp o si)(t), i = 1, 2, are equivalent at t = 0. 

Proof. Suppose (s1)'(0) = (s2)'(0) = v = (v1,v2) E Ta1P1.2. Then 

(rp o si)(t) = (rp1(si(t), s~(t)), rp2(si(t), s~(t)). 

From theorem 2, §1, it follows that 

(1) 

fori= 1, 2. Thus, the mapping rp takes equivalence classes of curves passing through 
the point a to equivalence classes of curves passing through the point b = rp( a). 

Identifying tangent vectors v a with the equivalence classes of curves, we obtain the 
mapping 

darp : Ta1P1.2 ---+ nn:t2 . 

This mapping is called the differential of rp at the point a. From formula (1) it follows 
that the mapping da rp takes a tangent vector ( v1, v2) E Ta1P1. 2 to 

In other words, rp is a linear mapping of tangent spaces and, in the standard basis, its 
matrix has the form: 

( 
!!.:£1. (a) 

J(a) = axl 
!2.P.2 (a) axl 

Note that it is the Jakobi matrix of the mapping rp at the point a. 

Examples. 
1) Let rp be the identity mapping of the plane. Obviously, darp is the identity 

mapping of the tangent space Ta1P1.2 for each a E JP1.2 . 2) Let rp be the parallel translation 
by a vector v = (v1 , v2 ). We have 
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It can be easily shown that at every point a E IR.2, the Jakobi matrix of cp is the 
identity matrix. 

3) Let cp be a linear transformation of the plane: 

Then 

for each a E IR.2. This means that the J akobi matrix of cp is scalar and equal to the 
matrix of cp (cp. (ax)'= a, \fx E IR.). 

Exercise. Show that if the Jakobi matrix of a smooth mapping cp is constant, then cp 
is an affine mapping. 

Further, let cp and 1jJ be two smooth mapping of IR.2 into IR.2 and a some point of 
the plane. From the definition of the differential it follows that 

In particular, suppose cp is a diffeomorphism of the plane and 1/J = cp-1; then the last 
expression has the form 

Since the differential of the identity of the plane at a point a is the identity of the 
tangent space Ta:IR.2 , we have 

Thus, the differential of a diffeomorphism at every point is a non-singular linear map­
ping. 

4.2. Action of diffeornorphisms on vector fields. Suppose vis a vector field on 
the plane and cp is some diffeomorphism. We can consider the vector field cp.v given 
by 

(2) 

Since dacp is a mapping of Ta:IR.2 into Tcp(a)IR.2 , we see that cp.v is well-defined. 

Example. Suppose cp(x1,x2) = (cpi(xi,x2),cp2(xi,x2)) and v = 8~i,i = 1,2. Then 

Substituting a for cp-1(a) in the expression above, we obtain 
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or 

c.p.v = (8c.p1 0 c.p-l) ~ + (8c.p2 0 c.p-l) ~. 
axi OX! axi 8x2 

For example, suppose c.p(x1, x 2) = (x1ex2 , x 2). Then c.p-1(x1, x 2) = (x1e-x2 , x 2) and 

( a ) _ x 2 a 
c.p. OX! - e axl' ( a ) a a 

c.p. 8x2 = XI 8x1 + 8x2 · 

Suppose c.p(xl, x2) = (xl + f(x2), X2), where f E C 00 (IR2). Then c.p-1(xl, X2) 
(x1 - j(x2), x2) and 

Exercise. Let c.p be the parallel translation by a vector a = ( a 1, a 2) and 

Find the field c.p.v. 

Exercise. Show that the following relations are true: 
1° c.p.()qv1 + A.2v2) = A1c.p.v1 + A2c.p.v2; 
2° (c.p1 o c.p2).v = c.p1.(c.p2.v); 
3° c.p.(fv) = (! o c.p-1 )c.p.v, 

where AI, ,\2 E IR, c.p, lpl, lp2 E Diff(IR2), f E C 00 (IR2), v, VI, v2 E D(IR). 

In particular, from the previous example and 3° it follows that for 

and 

the vector field c.p. v has the form: 

2 2 

""''"""' ( 8c.pi) -1 8 c.p.v = L L Vj ax. 0 c.p 8x·. 
i=l j=l J ~ 

4.3. Action of diffeomorphisms on functions. We can also define the action of 
diffeomorphisms on smooth functions on the plane: 

def -1 c.p.f = f 0 c.p . 
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Examples. 
1) Let rp = IdJE.2. It is evident that rp.f = f for all f E C00 (IR2 ). 

2) Suppose rp is the parallel translation by a vector v = ( v1 , v2 ). Then 

Exercise. Check that the action of diffeomorphisms on functions has the following 
properties: 

1 o it is linear over IR: 

2° rp.(Jih) = ( rp.fi)( rp.f2); 
3° (rpl 0 rp2).f = i.pl.(rp2.f). 

What form would property 3° take if we defined the action as follows: rp.f = f o rp? 
Let us describe a relationship between the actions of diffeomorphisms on functions 

and on vector fields. 

Theorem 2. For all rp E Diff(IR2), v E V(IR2), f E C00 (IR2), we have 

P rp.(fv) = (rp.f)(rp.v); 
2° rp.(v(f)) = (rp.v)(rp.f). 

Proof. 
1 o. Let 

2°. The proof is quite analogous to that of 1 o and involves only direct calculation. 

Exercise. Do this calculation. 
Now we introduce one of the most important properties of the action of diffeomor­

phisms on vector fields: 
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Theorem 3. 

<p.[v, w] = [<p.v, <p.w] 

for all <p E Diff(JR2 ), v, wE V(JR2 ). 

(3) 

Proof. It is clear that (3) is true when v = w. Let 

Then <p.[v, w] = <p.O = 0 and 

Thus, equality (3) holds for v = a~i, w = a~j, i, j = 1, 2. But if equality (3) is true 

for some vector fields v, w E V(JR2 ) and f is a smooth function on the plane, then it 
is true for the vector fields v, fw: 

<p([v, fw]) = <p(v(J)w + f · [v, w]) = <p.(v(f))(<p.w) + (<p.f)<p.[v, w] = 
(<p.v)(<p.f)<p.w + (<p.f)[<p.v, <p.w] = [<p.v, <p.(Jw)J. 

This proves the theorem. 

Definition. Let 9b 92 be Lie algebras. A homomorphism of the Lie algebras 91, 92 
is a linear mapping <p: 91 -t 92 such that 

<p([x,y]) = [<p(x),<p(y)J for all x,y E 91· 

If <p is an isomorphism of the vector spaces 91 and 92 , then <p is called an iso­
morphism of the algebras 91 and 92. Finally, if 91 = 92, then homomorphisms and 
isomorphisms are called endomorphisms and automorphisms of the Lie algebra 91 
respectively. 

4.4. Equivalence of vector fields. So, for any <p E Diff(JR2 ) the mapping v f----7 <p.v 
is an automorphism of the Lie algebra V(JR2 ). 
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Definition. Let VI, v 2 be two vector fields (gi, g2 be two Lie algebras of vector fields) 
on the plane. Then VI and v 2 (gi and g2) are said to be equivalent if there exists a 
diffeomorphism cp of the plane such that 

Examples. 
1) From the example of item 4.2 it follows that all vector fields of the form 88 + 

Xl 

f(xi) 8~2 are equivalent. 

2) The vector fields 88 and 88 are equivalent. For example, the diffeomorphism 
Xl X2 

cp: (xi,x2) ~---+ (x2,xi) takes one vector field into the other. 
3) The vector fields 88 + 88 and XI 88 + x2 88 are not equivalent, because the 

Xl X2 Xl X2 

first vector field is not equal to zero at any point a E JR2, whereas the second one is 
equal to zero at the point (0, 0). 

4) The Lie algebras gi = {ai 8~ 1 + a2 8~2 la1,a2 E JR.} and g2 = {ai 8~ 1 + (aix2 + 
a2ex1 ) 8~2 1ai, a2 E JR.} are equivalent. The desired diffeomorphism has the form: 

Note that the restriction of the mapping v 1--+ cp.v to gi is an isomorphism of the 
Lie algebras gi and g2. Thus, if the Lie algebras g1 and g2 are equivalent, then they 
are necessarily isomorphic. As we shall see later, the converse statement, generally 
speaking, is not true. 

Let us now describe the local analogues of the definitions given above. Let U and 
V be open subsets of the plane and let V(U) and V(V) be the corresponding Lie alge­
bras of vector fields. Then every diffeomorphism cp: U ---+ V generates two mappings: 
V(U) ---+ V(V) and C00 (U) ---+ C00 (V). All the properties of these mappings still hold 
in this case. 

Example. Let 

and let 

u = {(x1,x2) E JR2 1 o < xi,o < x2 < 21r}, 

V = lR2 \{(xi, 0) I XI~ 0} 

cp: (xi, x2) ~---+ (xi cos x2, XI sinx2) 

be a diffeomorphism of U onto V. Under the action of cp the vector fields 88 and 88 
Xl X2 

are taken to the fields 

and 
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respectively. 

Now, let U C V. To every vector field v on V we assign its restriction vlu to the 
subset U. Thus, we obtain the mapping V(U) -+ V(V). It is easy to verify that it is 
a homomorphism of Lie algebras. Suppose g is a Lie algebra of vector fields on V (i.e. 
g is a subalgebra of the Lie algebra V(V)). Then by glu we denote its image by this 
diffeomorphism. 

Let a be an arbitrary point on the plane and i.p some local diffeomorphism of the 
plane at the point a such that i.p( a) = a. Then it generates a diffeomorphism U -+ V 
for certain neighborhoods U and V of a and therefore an isomorphism V(U)-+ V(V) 
of Lie algebras. 

Definition. Let v1, v 2 be two vector fields (g1 , g2 two Lie algebras of vector fields) on 
the plane. Then v 1 , v 2 (respectively, g1 ,g2 ) are called locally equivalent at the point 
a E IR2 if the following conditions hold: 

(1) there exists a local diffeomorphism i.p of the plane at a such that i.p(a) =a; 
(2) there exist neighborhoods U, V = i.p(U) of the point a such that the diffeomor­

phism i.plu: U-+ V takes the vector field v 1 lu into the vector field v 2lv (i.e. generates 
an isomorphism of the Lie algebras f!1lu and f!2lv ). 

Remark. All objects in this definition (the vector fields, the diffeomorphism i.p, etc.) 
can be defined only on some neighborhood of the point a. 

Examples. 
1) Since the local diffeomorphism 

(x1, x2) ~ ( x1 , x2) 
X1 + X2 + 1 

takes the vector field 88 into the field 
X2 

xi- X1 a a -=-----+-
X2 + 1 ax1 ax2 ' 

we see that these fields are locally equivalent at the point 0. 
2) Let f(x 1 ) 8~ 1 be a vector field such that f(O) i- 0. Then it is locally equivalent 

to the vector field 8~ 1 at the point 0 . Indeed, let (x1, x2) ~ (i.p(xl), x2) be a local 
diffeomorphism of the plane at the point 0. This is equivalent to the following fact: 
i.p1 (0) i- 0. Hence, it takes the vector field 8~ 1 into the field i.p1 o i.p-1(x1) 8~ 1 ; therefore 
the following condition is true for the function i.p: 

i.p1(x) = f(i.p(x)), i.p(O) = 0. 

This ordinary differential equation is uniquely solvable in some neighborhood of 0 and, 
in addition, i.p1 (0) = f(i.p(O)) = f(O) i- 0. So, the mapping (x1,x2) ~ (i.p(x1),x2) is 
really a local diffeomorphism of the plane and takes the vector field 88 into the vector 

Xl 

field f ( x1) 8~ 1 . 

In a similar way one can prove the following theorem: 
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Theorem 4. Let v be a vector field on the plane and v 0 =/=- 0. Then v is locally 
equivalent to the vector field ,8 at the point 0. 

UXl 

§5. ONE-PARAMETER TRANSFORMATION GROUPS 

5.1. Groups of transformations. 

Definition 1. A set G of diffeomorphisms of JR2 is called a transformation group of 
the plane if the following conditions hold: 

(1) IdE G; 
(2) for all !.{JI,!.p2 E G, !.p1 or.p2 E G; 
(3) for all r.p E G, r.p- 1 E G. 

In other words, a transformation group of the plane is a subgroup of the group 
Diff(JR2 ). 

Examples. 
1) Obviously the set that consists of the identity mapping is a trivial example of a 

transformation group of the plane. 
2) The set of all parallel translations, the sets of all linear and affine transformations 

are transformation groups of the plane. 
3) The set of all Euclidean transformations is a transformation group of the plane. 
4) The symmetry group of a regular polygon is the set of all Euclidean transforma­

tions of the plane that take the polygon into itself. Then it is a finite transformation 
group of the plane. 

5) The set of all diffeomorphisms 

is a transformation group of the plane. 

Exercise. Consider the following sets: 
a) the set of Euclidean transformations of the plane that preserve orientation; 
b) the set of Euclidean transformations of the plane that change orientation; 
c) {(u1,x2) r-+ (u1,e>-u 1 X2)I,\ E JR}; 
d) {(u1, u2) r-+ (u1 +a, u2 + eu1+a)la E lR}; 
f) the set of all affine transformations of the plane that preserve area. 
Which of them are transformation groups of the plane? 

5.2. One-parameter transformation groups. We shall say that a family of dif­
feomorphisms { !.pt }tEJtt smoothly depends on parameter t if the mapping t r-+ !.pt (a) is 
a smooth curve on the plane for each a E JR2 . 

Definition 2. Let { r.pt} be a family of diffeomorphisms that smoothly depends on t. 
Then { !.pt} is called a one-parameter transformation group of the plane if the mapping 
t r-+ !.pt is a homomorphism of the group lR into Dif f(JR2 ). 
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The last condition means that 

(1) <p0 =Id; 
(2) SDt1 +t2 = SDt1 ° SDt2; 
(3) sa-t= (sat)- 1 . 

Examples. 
1) The trivial one-parameter transformation group is SDt = Id:oc2 for each t E R 
2) The group of parallel translations along a vector v = (VI, v2 ) E V2 : 

SDt : (xi, xz) f---7 (xi+ VIt, Xz + vzt). 

3) The group of rotations around the origin: 

SDt : (x1, xz) f---7 (xi cost- Xz sin t, XI sin t + xz cost). 

4) The group of shifts: 

where f is some fixed smooth function on the line. 

29 

Exercise. Invent a one-parameter transformation group different from the groups men­
tioned above. 

Let us find a connection between vector fields v E V(Itt2 ) and one-parameter trans­
formation groups { ipt} of the plane. This can be done in the following way. Put 

v a = lim SDt (a) - a = lim SDt (a) - <po (a) 
t>--+0 t t>--+0 t 

for each a E ffi.2 . 

Note that v a is the tangent vector to the curve t f---7 SDt (a) at t = 0. This is in 
agreement with the interpretation of tangent vectors at a point as equivalence classes 
of curves passing through this point. 

The vector field v is called the infinitesimal generator of the one-parameter trans­
formation group { lpt}. 

Examples. 
1) The infinitesimal generator of the trivial one-parameter transformation group is 

the zero vector field. 
2) Let us find the infinitesimal generator of the group of rotations around the origin. 

We get 

d 
v(x1,x2) = dt(xicost-xzsint,xisint+xzcost)lt=O = (-xz,XI)· 

Thus v = -xz_!L + XI_!L· 
OX! OX2 

Exercise. Find the infinitesimal generators of the one-parameter transformation groups 
from examples 2) and 4). 

Let us show that a one-parameter transformation group is uniquely determined by 
its infinitesimal generator. 
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Theorem 1. Let { 'Pt} be a one-parameter transformation group of the plane, v E 

V(JR2 ) its infinitesimal generator. 
1 o. The differential equation 

(1) 

where sa : lR r---+ lR 2 is a smooth curve on the plane, is uniquely solvable for each 
a E JR2 . The solution is defined at each point t E lR and sa(t) = 'Pt(a). 

2°. Suppose v E V(JR2 ) is a vector field on the plane such that the differential 
equation (1) is globally solvable for each a E JR2 . Then the set of mappings { 'Pt : JR2 ~ 
JR2 } determined by the equation 'Pt(a) = sa(t) forms a one-parameter transformation 
group of the plane. 

Proof. 
1°. Suppose sa(t) = 'Pt(a). Then 

s~(t) = lim sa(t +c)- sa(t) = lim 'Pt+c:(a)- 'Pt(a) = 
c~---'0 c c~---'0 c 

l . 'Pc:('Pt(a))- 'Pt(a) 
liD = V<pt(a) = Vsa(t)· 

c~---'0 c 

Thus the curve sa(t) is a solution of differential equation (1). This differential 
equation is uniquely solvable. Hence, the curve sa ( t) is the unique solution and it is 
determined at each point of the line. 

2°. Consider the diffeomorphisms 'Pt, t E JR, determined by the equation 'Pt (a) = 
sa(t). Let us prove that { 'Pt} is a one-parameter transformation group. Clearly 
<po = Id:oc2. We claim that 

(2) 

Indeed, the curve s(t) = sa(t + t 2 ) is a solution of the differential equation 

But this equation has exactly one solution, which is equal to s<pt2(a)(t). Hence we get 

This completes the proof. 

Example. Consider the vector field v = x 1 ,a + x2 ,a . In this case the differential 
UXl UX2 

equation (1) has the form: 

s1(0) = a1; 

s2(0) = a2, 
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where s(t) = (s 1(t), s2(t)). Hence we get 

s1(t) = a1et,s2(t) = a2et. 

The corresponding one-parameter transformation group has the form: 

I{Jt : (x1, x2) r----+ (etx1, etx2) 

In other words, I{Jt is the homothety with ratio et. 

31 

Now we assume that v E 'D(IR.2 ) is a vector field such that equation (1) does not 
have any global solutions. 

For example, put v = xi 8~ 1 . The corresponding differential equation has the form: 

Solving this equation we obtain 

s1(0) = a1 

s2 (0) = a2. 

al 
s1(t) = , s2(t) = a2. 

1- a1t 

We see that the solution is defined only in a certain neighborhood of the point 0, for 

example, on the interval ( - 1; 11 ; 1; 11 ). Moreover, we cannot define the diffeomorphism 

I{Jt whenever t # 0. However, for each t E IR. it is possible to find a domain on the 
plane such that the diffeomorphism I{Jt is defined. In our case I{Jt can be defined on 
the open subset vt = {(x1,x2)[tx1 # 1; x2 E IR.}. 

Now we introduce the following concept. 

Definition 3. Let { rpt} be a family of diffeomorphisms that smoothly depends on t 
and suppose that the following conditions hold: 

(1) each diffeomorphism I{Jt is defined on some open domain vt C IR.2 and V0 = IR.2 ; 

(2) the set { (t, a) E IR. x IR.2 [a E vt} is open; 
(3) rpo = Idllt2 : I{Jt 1 +t2 = rph o I{Jt2 whenever both sides of the equality make sense. 

Then { rpt} is called a local one-parameter transformation group of the plane. 

Examples. 
1) Any one-parameter transformation group is a local one-parameter transformation 

group, where for vt one can take the whole plane for all t E IR.2 . 

2) The family of diffeomorphisms 

( -1-~-~-1-t' X 2 ) 

is also a local one-parameter transformation group. Moreover, for vt we can take 

t = 0; 
t > 0; 
t < 0. 
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Indeed, 

'Ph ( 'Ptz (xb x2)) = 'Pt1 ( x1 ; x2) = 
1- X1t2 

(1-~·t1 ; x,) = C-~(t,t2 ); x,) 
for all t1, t2 E IR2, (x1, x2) E IR2 such that these expressions make sense. 

As before, to every local one-parameter transformation group { 'Pt} of the plane we 
can assign a certain vector field. Indeed, for each point a E IR2 the curve sa(t) = 'Pt(a), 
according the definition, is defined in some neighborhood of 0. If we assign to every 
point a the tangent vector to the curve sa at the point t = 0, we shall get the vector 
field v: 

v a = s~ ( 0) for all a E IR 2 . 

This vector field is said to be the infinitesimal generator of the local one-parameter 
transformation group { 'Pt}. Moreover, from the proof ot theorem 1 it follows that the 
following statement is true: 

Theorem 2. There is a one-to-one correspondence between vector fields on the plane 
and local one-parameter transformation groups of the plane. 

Let us now show how local one-parameter transformation groups appear naturally. 
Let 8 2 be the two-dimensional sphere given by the equation xi + x~ + x§ = 1 in IR3 . 

Let us introduce a parametrization on the sphere by means of two parameters x1 and 
x 2 . Since the sphere is not homeomorphic to the plane, we can do it only in some 
neighborhood U on the sphere. For U we take the set 8 2 \ {0, 0, 1} and project it on the 
plane {x3 = 0} by means of stereographic projection. In this case a point (x 1 , x 2 , x 3 ) 

of the sphere is transformed into the point ( 1 =~3 ; 1 =~3 ) of the plane. The inverse 

mapping is given by 

( 2y1 2y2 YI + y§ - 1) 
(y1, Y2) f-t 2 + 2 + 1 ; 2 + 2 + 1 ; 2 + 2 + 1 · Y1 Y2 Y1 Y2 Y1 Y2 

Consider the one-parameter group of rotations of IR3 with respect to Ox2-axis: 

Since the sphere is stable under these rotations, we see that they induce a one­
parameter transformation group of the sphere. Consider its action on points of U 
in the coordinates introduced above: 

'Pt : 
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Consequently, diffeomorphisms lpt are defined not for all points of the plane, i.e. { cpt} 
is a local one-parameter transformation group. 

Exercise. 
1) Find all points of JR2 where cpt is not defined. 
2) Show that the infinitesimal generator of the given-above local one-parameter 

transformation group of the sphere has the form: 

2 (( 2 2 ) a a ) 
v= (yi+Y~+ 1 ) 2 · YI-Y2+1 ay1 +2YIY2ay2 

Thus, we see that the global one-parameter transformation group of the sphere 
becomes local if we consider its action on some parametrized neighborhood, which we 
identify with the plane. 

§6. INTRODUCTION TO LIE TRANSFORMATION GROUPS 

6.1. Lie transformation groups. In the sequel we shall be interested only in those 
transformation groups of the plane that possess an additional topological structure 
(not arbitrary transformation groups of the plane). 

A parametrization of a transformation group G is a homeomorphism of some open 
domain in JRr onto a neighborhood of the identity mapping in G: 

p: 0---+ G, 

where 0 C JRr, p(O) is a neighborhood of identity in G. 
In the sequel we shall assume that 0 3 0 and p(O) = IdlR!.2. 

Definition. A group G of transformations of the plane is called an r-parameter 
transformation group (or an r-dimensional Lie transformation group) if there exists a 
parametrization p: 0---+ G, where 0 C JRr, such that the following condition holds: 

if s: lR---+ 0 is a smooth curve in 0, then the family of diffeomorphisms cpt = p(s(t)) 
of the plane smoothly depends on parameter t. 

Examples. 
1) Any one-parameter transformation group is a 1-parameter transformation group 

in the sense of the definition given above. 
2) The group of parallel translations on the plane is a 2-parameter transformation 

group, where for 0 one can take the whole plane: 

p: (x1, x2) f--7 T(x 1 ,x2 )· 

Here T(x 1 ,x2 ) is a parallel translation by a vector (x1, x2) E V2. Note that in this case 
p(O) =G. 

3) The group of all linear transformations of the plane is a 4-parameter transfor­
mation group; the parametrization, for instance, has the form: p(x1 , x2 , x 3 , x4 ) is a 
linear transformation with matrix 
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Exercise. Find the largest number r E JlR such that the open ball 

can be chosen for 0. 
4) Similarly, it is possible to show that the group of all affine transformations of 

the plane is a 6-parameter transformation group. 
5) The group of all Euclidean transformations of the plane is a 3-parameter trans­

formation group. The parametrization, for example, has the form: 

where R'P is a rotation by the angle rp around the origin of coordinates. For 0 we can 
take the neighborhood 

6) The group of all transformations of the plane is not an r-parameter transforma­
tion group whenever r EN. It is really so, because there does not exist a neighborhood 
of the identity mapping that can be parametrized by a finite number of parameters. 

Exercise. Show that the group of all linear transformations of the plane with deter­
minant 1 is a 3-parameter transformation group. 

To every r-parameter transformation group of the line it is possible to assign some 
r-dimensional Lie algebra of vector fields on the plane. Let s: JlR ---+ 0 be a smooth 
curve in a neighbourhood 0, where s(O) = 0, and {SOt = p(s(t))} a corresponding 
family of diffeomorphisms. Then to the curve S we can assign the vector field v 8 on 
the plane: 

s - 1' SOt (a) - a va- 1m . 
t-->0 t 

The following theorem is a fundamental result of theory of Lie groups and is given 
without proof. 

Theorem 1. 
1) The set g = { v 8 I s: JlR ---+ 0, s(O) = 0} is an r-dimensional Lie algebra on the 

plane and does not depend on parametrization p. 
2) The vector field v 8 depends only on the vector v = s' ( 0). The map JJRr 3 v ~--t 

v 8 E g is an isomorphism of vector spaces. 
3) For each v E g, differential equation (1) is globally solvable. Diffeomorphisms 

from corresponding one-parameter subgroups lie in G and generate the connected 
component of the identity of the group G. 

The Lie algebra g is called the Lie algebra of vector fields of the Lie transformation 
group G. 

This theorem shows that the Lie algebra g almost completely determines the Lie 
transformation group G. 
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Examples. 
1) Assume that G is the group of parallel translations on the plane and s: t 1--7 

(a1t, a2t) is a smooth curve in a neighborhood 0. Then the family of diffeomorphisms 
corresponding to s has the form: 

Therefore, the corresponding vector field has the form: 

From item 2 of theorem 1 it follows that the Lie algebra g does not contain any 
other vector fields except those given above. Thus, g = { a1 8~ 1 + a2 8~2 I a1, a2 E IP!. } 
and the map 

is really an isomorphism of vector spaces. 
2) Let G be the group of all linear transformations of the plane. Then to a curve of 

the form t 1--7 (a1t, a2t, a3t, a4t) E 0 there corresponds the family of diffeomorphisms 

The corresponding vector field at a point (x1 , x 2 ) has the form: 

Hence, 

Exercise. Find the Lie algebras of vector fields for the following Lie groups of trans­
formations of the plane: 

a) a one-parameter transformation group with infinitesimal generator v E V(IP!.2 ); 

b) the group of affine transformations of the plane; 
c) the group of Euclidean transformations of the plane. 

6.2. Local Lie transformation groups. Let us now consider local analogues of 
Lie transformation group. 

Let G be a Lie transformation group. Now we assume that diffeomorphisms from 
G are defined not on the entire plane but on some open domain except for the identity 
map, defined everywhere. We also assume that for every point a E IP!.2 there exists 
an open neighborhood of the identity of G such that it contains only those diffeomor­
phisms which are defined at the point a. Transformation groups of this type are called 
local Lie transformation groups. 
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Example. To every non-singular matrix from Mat3 x 3 (IP?.) 

A= (~~~ ~~~ ~~:) 
a31 a32 a33 

assign the following transformation of the plane: 

( ) ( auxl + a12X2 + a13 a21X1 + a22X2 + a23) 
CfJA; X1,X2 f--7 , • 

a31X1 + a32X2 + a33 a31X1 + a32X2 + a33 

Note that it is defined only at those points (x1 , x2) that satisfy the condition 

a31X1 + a32X2 + a33 f. 0. 

Transformations of this type are called linear fractional or projective. 

Exercise. Check that 

10. CfJACfJB = CfJABi 

20. Cfl>..A = CfJA, 

for all non-singular matrices A, B and ,\ E Ill?.*. 
In particular, we have (rpA)-1 = CfJA-1, i.e. CfJA o CfJA-1(a) = CfJA-1 o CfJA(a) =a for 

all points a E IP?.2 for which these equalities make sense. 
Since ct?>..A = CfJA, in the sequel we shall consider only matrices with determinant 1. 

Exercise. 
1) Show that for any two different matrices A, B with determinant 1 the transfor­

mations cpA and cp B are different. 
2) Find all matrices A such that the transformation cpA is defined everywhere. 
It is possible to show that the set of all projective transformations of the plane is 

an 8-parameter Lie transformation group. 
To every local transformation group of the plane there also corresponds a certain 

Lie algebra of vector fields on the plane. We can construct it in just the same way. 

6.3. Transitive transformation groups of the plane. 

Definition. A transformation group of the plane G is called transitive if for any 
points a, bE IP?.2 there exists a diffeomorphism cp E G such that cp(a) =b. 

Examples. 
1) The groups of parallel translations and affine transformations are obviously tran­

sitive. 
2) The group of linear transformations of the plane is not transitive, since the point 

(0, 0) is stable under any linear transformation of the plane. 

Exercise. Which of the followings transformation groups are transitive: 
a) the group of Euclidean transformations of the plane; 
b) the group of shifts: 

G = {(xl,x2) f--7 (xi,f(xl) +x2) If E c~0 (IP?.2 )}? 
Now suppose G is a Lie transformation group of the plane and g is the corresponding 

Lie algebra of vector fields. There is a simple criterion for the group G to be transitive. 
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Theorem 2. A Lie transformation group of the plane G is transitive if and only if 
for each point a E JPl.2 the space 9a = { v a I v E g} coincides with Tallll.2 . 

Exercise. 
1) Check that for the group of parallel translations the condition of theorem 2 is 

satisfied. 
2) Let G be the group of linear transformations of the plane and g the corresponding 

Lie algebra of vector fields. Find a point a E JPl.2 such that 9a =/= Tallll.2 . Theorem 2 is 
a basis for a local analogue of the concept of transitivity. 

Definition. A Lie algebra g of vector fields on the plane is said to be transitive at a 
point a E lPl. 2 if 9a = TalPl. 2 . 

Thus, a Lie transformation group G of the plane is transitive if the corresponding 
Lie algebra of vector fields is transitive at every point of the plane. 

Exercise. Suppose that a Lie algebra g of vector fields on the plane is transitive at a 
point a E lPl. 2 . Show that there exists a neighborhood U of a such that g is transitive 
at each point bE U. 

§7. LOCAL CLASSIFICATION 

7.1. One-dimensional case. Our nearest aim is to describe all finite-dimensional 
transitive Lie algebras of vector fields on the plane up to local equivalence. 

However, now we consider the same problem on the line. It is obvious that all 
definitions given above can be formulated for any space JPl.n, where n E N. 

Each vector field on the line has the form f /x for some f E C00 (llll.2 ) and the 
operation of commutation is given by 

We shall employ the following notation: for linearly independent vectors e1 , ... , ek 

of some vector space V by ( e1 , ... , ek ) we shall denote the subspace of V spanned 
by these vectors. 

Theorem 1. Let g be a finite-dimensional Lie algebra of vector field on the line and 
suppose that g is transitive at x = 0. Then g is locally equivalent to one and only one 
of the following Lie algebras: 

a 
( ox ) ; 
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Proof. Since g is transitive at 0, there exists a vector field v E g such that v 0 =I 0. 
Then, as it was shown in section 3, it is locally equivalent to the vector field fx. Now 
consider the set of functions 

It is easy to show that :F is a finite-dimensional vector space. Besides, since fx E g 

and [ fx, f fx J = f' fx, we see that it is closed under differentiation of functions. 
Hence, :F is the set of all solutions of some homogeneous linear differential equation 
with constant coefficients (see appendix B). In particular, it follows that all functions 
from :F are analytic in a certain neighborhood of the point a = 0. To complete the 
proof of the theorem we need the following lemmas: 

Lemma 1. Let v, w be nonzero vector fields on the line. If [v, w] = 0, then there 
exists ,\ E lPI.. * such that v = ,\ w. 

Proof of lemma 1. Indeed, let v = f(x) fx, w = g(x) fx. Then the equality [v, w] = 0 
is equivalent to the equality 

fg'- J'g = 0. 

Consequently, 

(f)' f'g- fg' 
.:.__:_---=-c.__c:_ = 0 

g2 

for all x E lPI.. such that g( x) =I 0. Similarly, ( J-)' = 0 for all points x of the line such 

that f ( x) =I 0. Hence, the zero sets of the functions f and g coincide and f = ,\g for 
a certain ,\ E lPI... 

In the sequel we shall say that a vector field v E D(IPI..) has zero of order n at a 
point a E lPI.. if v = (x- a)n · f(x)fx, where f(a) =I 0. If Va =I 0, then we shall say 
that the vector field v has zero of order 0 at the point a. 

Lemma 2. Suppose that vector fields v, w E V(IPI..) have zeros of order n and m, 
respectively, at the point 0. Then the vector field [v, w] has zero of order not less than 
n + m -1 at 0. 

Proof of lemma 2. Indeed, if v = xn f(x) fx, w = xmg(x) fx, then we have 

[v, w] = (xn f(x) · (xmg'(x) + mxm- 1g(x))-

(xn J'(x) + nxn-1 f(x)) · xmg(x)) :x = 

xn+m- 1 (xf(x)g'(x) + (m- n)f(x)g(x)- xf'(x)g(x)) :x; 

i.e. the vector field [v, w] has the zero of order greater or equal to n + m- 1 at the 
point 0. 
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Lemma 3. Dimension of the Lie algebra g is not greater than 3. 

Proof of lemma 3. Choose a basis v1, v2, ... , Vn of the Lie algebra g so that v1 = !/x 
and every next vector field has zero of order greater then that of the previous one at 
the point 0. We can always do it by means of linear transformations of an arbitrary 
basis. Now, let us assume that n ;?: 4 and p, q are orders of zeros of the vector fields 
Vn_1 and Vn respectively (since all functions from :Fare analytic, we see that p and 
q are finite). Then n- 2 ::::; p < q. Consequently, the vector field [vn-1, vn] has zero 
of order not less than p + q- 1 ;?: q + n- 3;?: q + 1 at the point 0. Since all nonzero 
vector fields from g have zero of order not greater than q at the origin and [vn-1, vn] 
is a nonzero vector field from g, we come to a contradiction. This proves the lemma. 

Consider now the following cases: 
1) dim g = 1. Since !/x E g, we see that g has form 1 o. 

2) dimg = 2. In such a situation :F is the solution set some second-order differential 
equation and 1 E F. Hence, this equation has the form: 

f" + A.j' = 0. 

If A. = 0, then g has form 2°. Suppose A. =f. 0. Then g = ( !/x; e->-x !/x ) . It is easy 
to show that the local diffeomorphism x ~---+ 1 -ex!>- takes this subalgebra into the 

( a a· subalgebra ax, x ax). 
3) dimg = 3. Let {v1, v 2, v 3} be a basis of the Lie algebra g chosen as in the proof 

of lemma 3. In this case it is not difficult to show that at the point 0 the vector fields 
v 2 and v 3 have zero of order 1 and 2 respectively. Without loss of generality we can 
assume that 

Then we get 

[v1, v2] = v1 + av2 + {3v3; 

[v1, v3] = 2v2 + 1v3; 

[v2, v3] = v3 

for certain numbers a, {3, 1 E Jlll... Passing to the new basis 

we obtain 

w1 = v1 + (!3- a2
1 ) v3, 

I 
w 2 = 2v2 + 2v3, 

w3 = v3, 

(1) 
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where b =a+ r· 
From the Jacoby identity 

it follows that b = 0. 
Since the vector field WI is nonzero at the point 0, we see that there exists a local 

diffeomorphism that takes WI into the vector field tx. Suppose as well that the vector 
fields w2 and w3 pass into j(x) tx and g(x) tx, respectively, under this diffeomorphism. 
Then from equalities (1) it follows that 

f'=l, g1 =2J, fg'-j'g=g. 

Hence, j(x) = x, g(x) = x2, and we have g = \tx' xtx' x2 tx). This completes the 
proof of the theorem. 

7.2. Two-dimensional case. The analogous theorem for finite-dimensional Lie 
algebras on the plane is more complicated and has the following form: 

7.1. ( 8~1; 
8.1. (8~1; 
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§8. GLOBAL REALIZATIONS 

Let us show how the Lie algebras of vector fields that have been listed in theorem 
2 can be realized as Lie algebras of local Lie transformation groups of the plane. 
Moreover, we shall show that every local Lie transformation group like this is a global 
Lie transformation group of a certain two-dimensional surface with the action written 
in coordinates of some domain on this surface. (This way, for example, in §6 we obtain 
a local one-parameter transformation group of the sphere.) 

8.1. One-dimensional case. Let us first consider at first global realizations of the 
transformation groups of the line. 

1 o. Let g = ( tx ) . Then it is easy to see that the one-parameter transformation 
group of the line corresponding to the vector field a tx , a E Tit has the form: 

i.pt:X~------+X+at. 

Besides, for all t E llR diffeomorphisms r.pt are completely defined on the line. So, the 
corresponding Lie transformation group of the line is the group of parallel translations: 

2°. Let g = ( lx , x tx). Then the one-parameter transformation group of the line 
corresponding to the vector field v = (a + bx) tx has the form: 

(1) 

r.pt: x ~------+ x +at when b = 0. 

Diffeomorphisms r.pt for all t E llR are also defined on the whole line. All transformations 
of type (1) generate the group of affine transformations on the line: 

G = { x ~------+ ax + b I a E TIR+ , b E llR}. 

3 o. Now let g = ( tx ; x tx ; x2 tx). In this case the one-parameter transformation 
group of the line corresponding to the vector field (a + bx + cx2 ) tx, where c -/=- 0, can 
be determined only locally. 
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Consider the group of linear fractional transformations of the line: 

Since transformation of the form x f---+ ~:!~, where c /= 0, is not defined for the point 

x = - ~, we see that G is a local Lie transformation group. Let us describe its Lie 
algebra of vector fields on the line. To do it, we shall draw smooth curves in G passing 
trough the identity and then find the vector fields on the line corresponding to these 
curves. For example, suppose 

is one of these curves. Then the corresponding family of diffeomorphisms of the line 
that depends smoothly on parameter t has the form: 

. 2t rpt. x f---+ e x. 

The corresponding vector field has the form: 

. rpt(x)- x 
Vx = hm = 2x, x E Iffi., 

t-+0 t 

i.e. 

Exercise. Check that the curves 

t (1 
f---+ 0 ~) 

determine the vector fields !x and -x2 !x respectively. Since the group G is a 3-
parameter transformation group, we see that the corresponding Lie algebra g of vector 
fields is three-dimensional. We already know that !x; 2x !x; -x2 !x belong to g. 
Therefore, 

a a 2 a 
g = (OX ; X OX ; X OX). 

Let us now describe the global realization of this transformation group. 
By Iffi.pn denote the set of all straight lines in Iffi.n+l passing through the origin of 

coordinates. This set is called the n-dimensional projective space.(If n = 1 or 2, the 
set Iffi.pn is also called the projective line and projective plane respectively.) It can also 
be described as the quotient set of Iffi.n+ 1 / { 0} by the following equivalence relation: 
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The equivalence class determined by a point (x1, x2, ... , Xn+I) is denoted by [x1 : x 2 : 
· · · : Xn+l]· The set of elements [x1 : x2 : · · · : Xn+l] E J:P!,pn such that Xn+l # 0 
is called the affine chart and can be identified with J:P!,n by means of the following 
correspondence: 

Now let n = 1. Consider the following transformations of the projective line J:Pi,P 1 : 

[x1 : x2] r-+ [(ax1 + bx2) : (cx1 + dx2)]. 

They are well-defined and form a transformation group G. Let us identify the affine 
chart 

with the line J:PI, by means of the following correspondence: 

tr-+ [t: 1], 
XI 

[x1 : x2] r-+ -. 
X2 

If we now consider the action of transformations from G on the domain U in the new 
coordinates, we obtain: 

As we see, this is exactly the group of linear fractional transformations of the line. 
However, diffeomorphisms of G are still defined not on the whole line. 

8.2. Examples for dimension 2. Now for each Lie algebra g of vector fields on the 
plane from theorem 2 we describe a two-dimensional surface S, a Lie group G of its 
transformations, and a parametrization 1r: J:P/,2 --+ S of some open domain U = 1r(J:P1,2 ) 

on S such that the restriction of the action of G to U determines the Lie algebra g. 
Let us first consider the most important examples. 

1) LetS= J:P/,2 and let G be the group of affine transformations of the plane. Then 
the corresponding Lie algebra of vector fields is exactly algebra 15.1 of theorem 3. 

2) Let 
(2) 

be some homogeneous linear differential equation and :F the space of its solutions. 
Consider the set G of transformations of the plane such that 

(x1, x2) r-+ (x1 +a, bx2 + j(x1 +a)), 

where a E J:P/,, b E J:PI,+, f E F. 
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Lemma 1. The set G is a transitive (n + 2)-parameter transformation group of the 
plane. 

Proof. Denote by (a, b, f) the transformation of the plane given by 

It is not difficult to show that 

(a, b, f)= (0, 1, f) o (a, b, 0). 

Let us show that G is a group. Indeed, Idlli2 = (0, 1, 0). Suppose 

Then 

Let us calculate (a1 , b1 , 0) o (0, 1, h). We have: 

= (x1 + a1, b1x2 + b1 (La 1 h) (x1 + a1)), 

where La1 : CC:x) (lP{.) -+ coo (lP{.) is a linear operator of the space coo (lP{.) such that 
(La 1 f)(x) = f(x- a1). But the space F is invariant under the action of La whenever 
a E lP{.. Hence, La1 h E F and 

It means that 

= (0, 1, fr) o (0, 1, b1La1 h) o (a1, b1, 0) o (a2, b2, 0) = 

= (0, 1, fr + b1La2 h) o (a1 + a2, b1b2, 0) = (a1 + a2, b1b2, fr + brLa2 h). 

It is easy to verify that 

Consequently, G is a group of transformations of the plane.· Let us show that it is 
transitive. Let f be an arbitrary nonzero function from :F. Since Laf E F for all 
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a E Im., we can assume that f(O) =I= 0. Then any point (x1, x2 ) of the plane can be 
taken into the point (0, 0) by means of the following transformations: 

Further, let w1,w2, ... ,wn be a basis of the space F. Then the mapping 

is a parametrization of the group. It shows that G is an (n + 2)-parameter transfor­
mation group. 

Exercise. Prove that the corresponding Lie algebra of vector fields has form 4.1 from 
theorem 2. 

3) The example given below is some modification of the previous one. So, let 
:F = Im.n_ 1 [x] be the set of all polynomials of degree not greater than n- 1. It can be 
considered as the set of all solutions of the differential equation f(n) = 0. Note that 
:F is stable under the following transformations of the space coo (Im.): 

where Lca,b)f(x) = f(ax +b) for all a E Im.*, bE Im.. This enables us to construct the 
following transformation group of the plane: 

G = { (xb xz) 1---7 (ax1 + b, cxz + j(ax1 +b)) I a, c E TIR+, bE IIR, f E :F}. 

The proof of the following lemma is similar to that of lemma 1. 

Lemma 2. The group G is a transitive (n + 3)-parameter transformation group of 
the plane. 

The corresponding Lie algebra of vector fields is 5.1 from theorem 2. 
4) As above let :F = I!Rn[x]. Consider the set G of all local diffeomorphisms of the 

plane such that 

Lemma 3. The set G is an (n+5)-parameter local transformation group of the plane. 

The proof of the lemma is analogous to that of lemma 1 if we take into account 
that :F is invariant under the following transformations 

- - (at+ b) f 1---7 j, where f(t) = (ct + d)n · f ct + d · 
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In other words, if 
f(t) = Pntn + · · · + Plt +Po, 

then 
}(t) = Pn(at + b)n + · · · + Pl(at +b)· (ct + b)n-l + Po(ct + b)n. 

Direct calculation shows that the corresponding Lie algebra of vector fields has form 
18.1 of theorem 2. 

Let us describe the global realization of this transformation group. For S consider 
the quotient set of (IPl.2\ {0}) x IPl. by the following equivalence relation: 

(y1,y2,z) rv (>..y1,>..y2,).nz), ). E IPl.*. 

Denote by IPl.n [y1 , y2] the set of all homogeneous polynomials of degree n in variables 
Yl, Y2: 

Consider the following set of transformations of S: 

G = {(y1, Y2, z) ~------+ (ay1 + by2, cy1 + dy2, ez + j(ay1 + by2, cy1 + dy2))1 

( ~ ~) E SL(2, IPl.), e E IPl.'t, f E IPl.n[y1, Y2J}. 

Exercise. Check that these transformations are well-defined and form a group. 
By U denote the following domain inS: 

Let us identify U with the plane by means of the mapping 

Then the inverse mapping has the form: 

It can be easily seen that transformations from G, written in coordinates (xt, x 2 ) of 
U, have the desired form. 

5) Let us construct the global realization of Lie algebra 13.1 of theorem 3. It 
is analogous to the global realization of linear fractional transformations of the line. 
Namely, let S = IPl.P2 and let G be the following set of transformations of the projective 
plane: 

G = {[YI : Y2 : Y3]~----+ [(anYI + a12Y2 + a13y3) : (a21Y1 + a22Y2 + a23y3) : 

(a31Y1 + a32Y2 + a33y3)]l (aij)I~i,j~3 E SL(3, IPl.)}. 



TWO-DIMENSIONAL HOMOGENEOUS SPACES 47 

For a domain U C ~P2 take the affine chart 

Let us parametrize U by the mapping 

Then 

7r-1: U--+ ~2, [Yl: Y2: Y3] r+ (Yl; Y2) 
Y3 Y3 

and transformations from the group G written in the coordinates (x1 , x2 ) of the plane 
are exactly linear fractional transformations of the plane. The corresponding Lie 
algebra of vector fields is the algebra 13.1 of theorem 3. 

6) Let S = ~2 \ {0} and let G be the group of linear transformations of the plane. 
Consider the following parametrization of S: 

The inverse mapping is given by 

and defined on the domain U = {(y1 , y2 ) I y2 > 0}. It is easy to show that the action 
of G restricted to U and written in the coordinates (x1, x2) has the form: 

It is a local 4-parameter transformation group of the plane such that its Lie algebra 
is exactly the Lie algebra 16.1 from theorem 3. 
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CHAPTER II 

ABSTRACT APPROACH 

§1. BASIC CONSTRUCTIONS 

1.1. Action of groups. The central concept of theory of homogeneous spaces is an 
action of a group on a set. 

Definition 1. Let G be an arbitrary group. An action of the group G on a set M is 
a homomorphism 

a : G--+ Aut(M). 

Then any element g E G can be regarded as the transformation a(g) of the 
set M. In the sequel, for the sake of convenience we shall write g. m instead of 
a(g)(m) (g E G,m EM). It is immediate from the definition that the following con­
ditions hold: 

(9192).m = 91·(92·m) 

e.m=m VmEM. 

Taking this into account, definition 1 can be reformulated as follows: 

Definition 1 '. Let G be an arbitrary group. An action of G on a set M is a mapping 
a: G x M--+ M, (g, m) 1-+ g.m such that 

(9192).m = 91·(92·m) V 9b92 E G,m EM 

e.m=m '1/mEM. 

Examples. 
1) For any group G and any set M, put g.m = m for all g E G, mE M. This action 

is called trivial. 
2) The permutation group Sn of degree n acts naturally on a set of n elements. 
3) The group of Euclidean (affine) transformations acts on the plane. 
4) The group of rotations acts on the sphere. 
5) Let M = coo (IP2.) be the set of all smooth functions on lP2. and G the group of 

translations on the line. Note that G can be identified with the set of real numbers. 
Then put 

(a.f)(x) = f(x- a) for a E G, f(x) EM, 

which gives an action of G on M. 

Let us introduce some concepts connected with an action of a group on a set. 
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Definition 2. Suppose that a group G acts on a set M and m is an arbitrary element 
of M. The stabilizer of the element m is the set 

Gm = {g E Glg.m = m}. 

It is easy to show that Gm is a subgroup of G. 
The set M can be supplied with an equivalence relation in the following way: 

m1 rv m2 whenever there exists agE G such that g.m1 = m 2. 

Exercise. Make sure that the relation introduced above is truly an equivalence relation. 

Definition 3. Equivalence classes with respect to the introduced equivalence relation 
are called orbits of the action of G on M. 

Exercise. Suppose m 1, m 2 E M are two elements lying in the same orbit. Show that 
the subgroups Gm1 and Gm2 are conjugate. 

Definition 4. We say that a group G acts transitively on a set M if the action of G 
on M has only one orbit, which is equal toM. 

This is equivalent to the fact that for any two elements m 1, m 2 E M there exists 
a g E G such that g.m1 = m 2. If the element g is unique, then the action is called 
simply transitive. For example, the action of a group G on itself by means of left shifts 
(g.h = gh for g, h E G) is simply transitive. 

Exercise. Show that any simply transitive action can be reduced to the action like 
this. 

Consider one very important example of a transitive action. Suppose G is an 
arbitrary group and G is its subgroup. Let M = GIG be the set of left cosets 
{gGig E G} relative toG in G. Consider the action of G on M defined by 

g.(hG) = ghG. 

Exercise. Check that the action is well-defined and transitive. Find the stabilizer of 
the point eG. 

The following lemma shows that all transitive actions can be reduced to this exam­
ple. 

Lemma. Suppose that a group G acts transitively on a set M, m E M, and G = 
Gm is a stabilizer of the point m. Then the mapping 1r : GIG ---+ M, gG ~-----+ g.m 
establishes the natural isomorphism of the sets GIG and M, and the isomorphism 1r 

is in agreement with the action of G, i.e. 

g. 1r (X) = 1r (g. X) for all g E G, x E GIG. 

The proof is trivial and is left as an exercise. 
Thus, the study of transitive actions can essentially be reduced to the study of 

groups and their subgroups. 
The concept of a homogeneous space is based on the consideration of smooth objects 

in the previous definitions. In doing so groups turn into Lie groups, while sets into 
smooth manifolds. 
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Definition 5. Let G be a Lie group that acts on a smooth manifold M so that the 
mapping G x M --7 M, (g, m) ~--+ g.m is a smooth mapping of manifolds. Then the 
pair ( G, M) is called a homogeneous space. 

All given earlier definitions can be extended to the case of homogeneous spaces. 
Moreover, the following facts are true. 

Proposition. 
1) Let (G, M) be a homogeneous space and m E M. Then G = Gm is a closed 

subgroup of the Lie group G. 
2) Let G be an arbitrary Lie group and G its closed subgroup. Then the set 

M = G / G of left cosets can be uniquely supplied with a structure of a smooth manifold 
so that the natural action of G on M is smooth. 

Therefore, as in general case, the study of homogeneous spaces reduces to the study 
of pairs ( G, G), where G is a Lie group and G is a closed subgroup of G. 

1.2. Examples of homogeneous spaces. Examples 1), 2), and 4) of actions of 
groups on sets are in fact examples of homogeneous spaces. 

1) The groups GL(n,JIR) and SL(n,llR) act transitively on the set llRn\{0}, which can 
be naturally supplied with a structure of a smooth manifold. 

2) The action of the groups GL(n, llR) and SL(n, llR) on llRn generates their action on 
the set of straight lines passing through the origin of coordinates. This way we obtain 
the action of GL(n,llR) and SL(n,llR) on the projective space Jll?.pn-1. Let us write it 
out in an explicit form in terms of homogeneous coordinates of the manifold Jll?.pn-1. 
Let [xo : x1 : · · · : Xn-1] be homogeneous coordinates of a point X E Jll?.pn-1 and let 
A be an element of GL(n, llR). Then the homogeneous coordinates of the point A.X 
have the form [Yo : Y1 : · · · : Yn-1], where the column 

can be obtained as a product of the matrix A by the column 

(5J 
on the right. In particular, this immediately implies that the action is smooth. 

3) Let ( G, M) be a homogeneous space and H a closed Lie subgroup of G. If H 
acts transitively on M, we obtain the new homogeneous space (H, M). In this case 
(H, M) is called a restriction of the homogeneous space ( G, MLit may turn out that 

the action of H on M is not transitive but has an open orbit M. In such a situation 
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the structure of a smooth manifold can be induced toM and the pair (H, M) can be 

turned into a homogeneous space. In this case ( H, M) is said to be a local restriction 
of the homogeneous space ( G, M). 

For example, let G = Aff(n) be the group of affine transformations of the affine 
space An and let x be an arbitrary point of An. Let H be the stabilizer of the point 
x. Then His a closed Lie subgroup of G and it can be identified with GL(n, m). The 
action of H on An is not transitive. However, H acts transitively on An\ { x}. So we 
obtain the new homogeneous space (GL(n,m),An\{x}), which coincides essentially 
with that from example 1). 

Exercise. Describe the stabilizer of some point for each of the homogeneous spaces 
mentioned above. 

We shall say that two homogeneous spaces (G1 , M1 ) and (G2 , M2 ) are equivalent if 
there exists a pair of mappings (j, r.p) such that 

f : G1 -+ G2 is an isomorphism of Lie groups, 

r.p : M 1 -+ M 2 is a diffeomorphism of manifolds, 

and r.p(g.m) = f(g).r.p(m) for all g E G1, mE M1. 
By the dimension of a homogeneous space ( G, 11.1) we shall mean the dimension of 

the manifold M. 
In the sequel, we shall mainly be interested in describing and studying small­

dimensional homogeneous spaces (dim M ~ 4), especially two-dimensional ones. (One­
dimensional homogeneous spaces are rather simple, whereas those of dimensions 3 and 
4 are much more unwieldy.) 

Preparatory to this, we shall impose some more restrictions on homogeneous spaces 
to be considered. 

Definition 6. A homogeneous space ( G, M) is called effective if the identity element 
e E G is the only element of the group G which leaves all points of the manifold M 
stable. The subgroup K = nxEMGx is called the kernel of ineffectiveness of ( G, M). 
In other words, K is the set of all elements of G that leave all points of M stable. 

Note that a homogeneous space (G, M) is effective if and only if its kernel of inef­
fectiveness is trivial. Suppose a : G -+ Diff ( M) is the homomorphism of groups that 
determines the action of G on M; then K is exactly the kernel of a. In particular, this 
implies that K is a normal subgroup of the Lie group G. Since K is an intersection 
of closed Lie subgroups (K = nxEMGx), then K is also a closed Lie subgroup of G. 
This allows to consider the factor group H = G / K, which can be naturally supplied 
with a structure of a Lie group. Moreover, it is possible to define an action of the Lie 
group H on M: 

(xK).m = x.m for x E G, mE M. 

It is easy to show that the action is well-defined, which turns (H, M) into a homoge­
neous space. 
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Exercise. Check that (H, M) is an effective homogeneous space. 
In the study of homogeneous spaces (for instance, while various different invariants) 

it is important to consider not a group G itself but its image in Diff(M). Therefore, 
we shall further be interested only in effective homogeneous spaces. 

Another restriction that we impose on the homogeneous spaces to be studied is 
that G is a connected Lie group. It can always be achieved by considering the action 
of the connected component of the identity element instead of the whole Lie group's 
action. 

So, our immediate task is to describe small-dimensional effective homogeneous 
spaces ( G, M) such that G is a connected Lie group. 

Since there is a one-to-one correspondence between the set of homogeneous spaces 
and the set of pairs (G, G), where G is a Lie group and G its connected Lie subgroup, 
we can extend the previous definitions to the case of pairs ( G, G). 

Theorem. 
1. The homogeneous spaces defined by pairs (G1, G1) and (G2, G2) are equivalent 

if and only if there exists an isomorphism of Lie groups f : G1 -----+ G2 such that 
j(G1) ~ G2. 

2. The kernel of ineffectiveness of the homogeneous space defined by a pair ( G, G) 
is exactly the largest normal Lie subgroup of G that belongs to G. 

3. The dimension of the homogeneous space defined by a pair ( G, G) is equal to 
the codimension of the subgroup G in the Lie group G. 

Proof. 
1. Indeed, suppose f : G1 -----+ G2 is an isomorphism of Lie groups such that 

f(G1) = G2. Then consider the smooth mapping 

defined by so(xG1) = f(x)G2 for x E G1. It is easy to check that <pis well-defined and 
is a diffeomorphism of manifolds, and that the pair (!, <p) establishes equivalence of 
the homogeneous spaces (G1, GI/GI) and (G2, G2/G2). 

Conversely, suppose that a pair of mappings (], <p) establishes equivalence of the 
homogeneous spaces (G1, GI/G1) and (G2, G2/G2). There exists agE G2 such that 
so(eG1) = gG2. Put 

f(x) = g-1 ](x)g for all x E G1. 

It is easy to verify that f: G1 -----+ G2 is an isomorphism of Lie groups and f(GI) = G2. 
2. Suppose K is the kernel of ineffectiveness of the homogeneous space ( G, G /G). 

Then K is a normal Lie subgroup of the Lie group G. Show that K c G. Indeed, if 
x E K, then 

xG = x.(eG) = eG. 

Therefore x E G. 
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Let K' be an arbitrary normal Lie subgroup of G such that K' C G. Then for 
x E K' and g E G, since g- 1xg E K' c G, we have 

x.(gG) = xgG = g(g- 1xg)G = gG. 

This means that K' C K and that K is really the largest normal Lie subgroup of G 
lying in G. 

The converse can be proved in a similar way. 
3. The proof is trivial. 

Definition 7. 
1. We say that pairs ( Gt, G1) and ( G2, G2) are equivalent if there exists an isomor­

phism of Lie groups f: G1-+ G2 such that f(G1) = G2. 
2. We say that a pair (G, G) is effective if G contains no nontrivial normal Lie 

subgroups of G. 
3. By the codimension of a pair ( G, G) we shall mean the codimension of the Lie 

subgroup G in the Lie group G. 

Thus, our problem reduces to finding (up to equivalence) all effective pairs ( G, G) 
of small codimension. 

Example. Let G = SL(2, ~). Suppose G is the set of all upper triangular matrices 

of the Lie group SL(2, ~). This set is normally denoted by ST(2, ~). Since G contains 
the center of G, which is !qual to { ±E}, we see that the pair ( G, G) is not effective. 
Instead of the subgroup G, consider its connected component of the identity element 

The pair ( G, G) is effective. Let us describe the homogeneous space ( G, G /G). Any 
matrix 

can be uniquely written as 

( a b ) = ( c?s <p 
C d Slllip 

- sin<p) (x 
cos <p 0 1fx) ,x E ~~,y E ~,<p E [0,27r). (1) 

Here x and <p are uniquely determined from the condition xei'P = a + ic, and 

y = bcos <p + dsin<p. 

Therefore, each left coset gG, g E G, is uniquely determined by the angle <p in (1), 
which is the same for all elements of the coset. Thus, the factor space M = G/G can 
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be identified with the circle 8 1 . If 8 1 is regarded as the set of those vectors of the 
Euclidean vector space IR2 whose norm is equal to 1: 

8 1 = {v E 1R2 , ivl = 1}, 

then the identification has the form 

( cos cp) 
cp 1---7 sin cp · 

Now describe the action of G on M. Let 

v = (c~scp) 
smcp 

be an arbitrary element of M and g 

corresponding to g. v has the form: 

( ~ ~ ) an element of G. The left coset 

- sin cp ) G = ( a cos cp + b s~n cp 
cos cp J c cos cp + d sm cp 

-a s~n cp + ~ cos cp ) G. 
- c sm cp + a cos cp 

Therefore g.v = (c~scp;), where cp' = arg((acoscp+bsincp) +i(ccoscp+dsincp)). 
smcp 

This can also be written as 
g(v) 

g.v = lg(v)l' 

where g(v) is the image of v by the linear transformation of JR2 with matrix g. 

Exercise. Show that the homogeneous space defined by the pair ( G, G) is equivalent 
to (SL(2, IR), IRP1 ). 

1.3. Linearization. The study of Lie groups can in many respects be reduced to 
the study of their Lie algebras. Similarly, the study of pairs ( G, G) (and therefore, the 
study of homogeneous spaces) can be reduced to the study of pairs (g, g), where g is 
a Lie algebra and g its subalgebra. 

In the sequel, we shall employ the following three equivalent definitions for the Lie 
algebra g of a Lie group G. 

Definition 8. The Lie algebra g of a Lie group G is 
a) the tangent space to the identity element of G; 
b) the set of left-invariant vector fields on G; 
c) the set of one-parameter subgroups of G. 

All three definitions are in agreement: 
a){:;>b) 
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To each vector v E TeG assign the left-invariant vector field V E D(G) defined by 

V9 = dL9 (v), 

where g E G, L9 : G -t G, x ~---+ gx is the diffeomorphism of G corresponding to the 
element g, and dL9 : TeG -t T9 G is the differential of L9 at the point x =e. 

Conversely, if V is a left-invariant vector field on G, then V is uniquely determined 
by the vector Ve E Te G. 

a) {:}c) 
Let v be an arbitrary element of the tangent space TeG. Define a curve g(t) in the 

Lie group G as a solution of the differential equation 

g(t) = dLg(t)(v) 

with the initial condition g(O) =e. It is easy to show that g(t) is defined for all t E llR 
and that g(t1 + t 2 ) = g(t1)g(t2 ). In other words, g(t) is a one-parameter subgroup of 
G. 

Conversely, each one-parameter subgroup g(t) of G is uniquely determined by the 
tangent vector to g(t) at the point g(O). Since g(O) = e, this vector belongs to TeG. 

If g is regarded as TeG, then g can be supplied with the structure of a vector space 
of dimension equal to that of G. Furthermore, if VI and v2 are two left-invariant 
vector fields on G, then their Lie bracket [V1, V2] is also a left-invariant vector field on 
G. Thus, we have the skew-symmetric bilinear form on g: 

(x, y) ~---+ [x, y] for x, y E g, 

satisfying the Jacobi identity: 

[x, [y, z]] + [y, [z, x]J + [z, [x, y]J = 0 

This turns g into a finite-dimensional real Lie algebra. 

Examples. 

V x,y,z E g. 

1) The Lie algebra of the Lie group GL(n, JJR) can be identified with the set of all 
n-by-n matrices. It is denoted by g((n,JJR). The bracket operation has the form: 

[A, B] = AB - BA for A, B E g((n, JJR). 

Similarly, the Lie algebra of the Lie group SL(n, JJR) is the set of all n-by-n matrices 
with zero trace. It is denoted by s((n, JJR) and has the same bracket operation. 

2) Let G = Aff(n). Fixing a point in An, we can identify G with the group 
GL(n,JJR) /...llRn. The group operation has the form: 
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The Lie algebra of the Lie group G can be identified with the set g((n, IP&) /... m.n. 
The bracket operation has the form: 

Let g be a Lie algebra and g a subspace of g closed under the bracket operation. 
Then g is called a subalgebra of g. In particular, g is a Lie algebra itself. If [9, g] c g, 
then g is called an ideal in g. For example, the subalgebra s((n, IP&) is an ideal in the 
Lie algebra g((n, IP&). 

Exercise. Let t(n, IP&) denote the set of all upper triangular square matrices of order n. 
Show that t(n,IP&) is a subalgebra of g[(n,IP&). Prove that t(n,IP&) is not an ideal when­
ever n ~ 2. 

Let G be a Lie group and g its Lie algebra. Then to any Lie subgroup G of G we 
can assign a subalgebra g of g. If g is regarded as TeG, then g is exactly the subspace 
TeG of the vector space TeG. Therefore, to any pair of Lie groups ( G, G) we can assign 
the pair of Lie algebras (g, g). Moreover, if G is a normal Lie subgroup of G, then g 
is an ideal in g. 

Let g1, g2 be two Lie algebras. A homomorphism of g1 into g2 is a linear mapping 
f : g1 ---> g2 such that 

f([x, y]) = [f(x), f(y)] 

for all x, y E g1. 
Suppose f : G1 ---> G2 is an arbitrary homomorphism of Lie groups. Consider its 

differential df : TeG1 ---> TeG2 at the identity element of G1 . If we identify the Lie 
algebras g1 and g2 of the Lie groups G1 and G2 with the tangent spaces TeG1 and 
TeG2, respectively, then the mapping df : g1 ---> g2 is a homomorphism of Lie algebras. 
If f is an isomorphism of Lie groups, then df is obviously an isomorphism of Lie 
algebras. 

According to all the preceding, we approach the problem of classifying pairs of Lie 
groups ( G, G) in the following way: first, to classify pairs (g, g) of Lie algebras, and 
then for each of the obtained pairs to find all corresponding pairs of Lie groups. 

In terms of pairs (g, g), definition 7 corresponds to the following one: 

Definition 9. 
1) Two pairs (g1, g1) and (92, g2) are said to be equivalent if there exists an isomor­

phism of Lie algebras f : 91 ---> g2 such that f(g1) = g2. 
2) A pair (g, g) is called effective if g contains no nontrivial ideals of g. 
3) The codimension of a pair (g, g) is the codimension of the subspace g in the 

vector space g. 

The correspondence between definitions 7 and 9 can be established by the following 

Theorem. 
1) The equivalence of pairs (G1, G1) and (G2, G2) implies the equivalence of the 

corresponding pairs (g1, g1) and (g2, g2)· 
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2) If a pair ( G, G) is effective, then the corresponding pair (g, g) is also effective. 
3) The codimension of a pair ( G, G) is equal to that of the corresponding pair (g, g). 

Proof. It is immediate from the outlined correspondence between Lie groups and Lie 
algebras. 

So, we shall first turn to the description of effective pairs (g, g) of small codimension. 

§2. ONE-DIMENSIONAL HOMOGENEOUS SPACES 

2.1. Local description. We now turn to the description of one-dimensional homo­
geneous spaces. First we describe effective pairs (g, g) of codimension 1. 

Theorem. Any effective pair (g, g) of codimension 1 is equivalent to one and only 
one of the following pairs: 

1. g = ~e1, g = {0} 

2. g = ~e1 EB ~e2, where [e1, e2] = e2, g = ~e1 

3. g = .s[(2, ~), g = .st(2, ~) = { ( ~ !X) I x, y E ~} 

Proof. We shall make use of Morozov's theorem and some results of semisimple Lie 
algebras theory. 

Theorem [Morozov]. Let (g, g) be an effective pair such that g is a maximal sub­
algebra. 

(i) Ifg is not semisimple, then there exists a commutative ideal a such that g = gEBa 
and g acts faithfully on a (i.e. the set {x E gl[x, a]= {0}} is zero). 

(ii) If g is semisimple but not simple, then there exists a simple Lie algebra g such 
that g = g x g and g = {(x,x)lx E g}. 

In our case g is a subalgebra of codimension 1. Therefore, g is maximal. Consider 
the following cases: 

(i) The Lie algebra g is not semisimple. Then g = gEBa, where a is a one-dimensional 
ideal, and the set {x E gl[x, a]= {0}} equals {0}. It easily follows that dimg ~ 1. If 
dimg = 0, then the pair (g, g) has the form 1. If dimg = 1, then (g, g) is equivalent 
to the pair 2. 

(ii) The Lie algebra g is semisimple but not simple. Then there exists a simple Lie 
algebra g such that g = g x g and g = {(x, x)lx E g}. It follows that dimg- dimg = 
dimg. However, there exist no simple Lie algebras of dimension less than 3. 

(iii) The Lie algebra g is simple. It is known from semisimple Lie algebras theory 
that in this case rank of g equals 1. There exist two real simple Lie algebras of rank 1: 
.s((2, ~) and .su(2). However, .su(2) contains no subalgebras of codimension 1. There­
fore g = .s[(2, ~). There exists a unique (up to the group Aut(g)) two-dimensional 
subalgebra in .s((2, ~). So, the pair (g, g) is equivalent to the pair 3. 
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2.2. Globalization. Now we proceed to fulfillment of the second part of our plan. 
For each pair of Lie algebras (g, g) we shall describe all pairs of Lie groups ( G, G) and 
the corresponding homogeneous spaces ( G, GIG). 

The process of globalization was described by Mostow in 1950 (G.D.Mostow "The 
extensibility of local Lie groups of transformations and groups on surfaces", Ann. of 
Math, v.52, No 3.) Let us cite the basic results of this work. 

Let ( G, G) be a pair of Lie groups, g the Lie algebra of G, and g the subalgebra 
of g corresponding to the subgroup G. In this case we say that the pair ( G, G) is 
associated with the pair (g, g). 

Theorem 1. Let (g, g) be an effective pair of codimension ::( 4. Then there exists a 
unique effective pair ( G, G) associated with (g, g) such that G is a connected subgroup 
of G and the manifold GIG is simply connected. 

The pair ( G, G) mentioned in theorem 1 can be constructed in the following way. 
For the Lie algebra g there exists a unique simply connected Lie group H such that g 
is the Lie algebra of H. The group H contains a uniquely determined connected Lie 
subgroup H (which is not necessarily closed) corresponding to the subalgebra g. In 
particular, if the codimension of the pair (g, g) is not greater than 4, then it is imme­
diate from theorem 1 that the subgroup H is closed. Since H is a simply connected 
Lie group, we see that the quotient manifold HI H is simply connected. However the 
pair ( H, H) is not necessarily effective. 

Lemma. The kernel of ineffectiveness of the pair ( H, H) is discrete and equals Z (H) n 
H. 

Proof. Let K be the kernel of ineffectiveness of the pair (H, H). Then K is a normal 
closed Lie subgroup of the Lie group H and K C H. Therefore, K is discrete; 
otherwise the pair (g, g) would not be effective. On the other hand, any normal 
discrete subgroup belongs to the center Z (H). Thus K C Z (H) n H. Conversely, 
Z(H) n His a normal Lie subgroup of H lying in H. Therefore K ::J Z(H) n H. It 
follows that K = Z(H) n H. 

The lemma implies that the pair (HI K, HI K) satisfies the conditions of theorem 1. 

Examples. 

1. Let (g, g) = (IP2., {0} ). The simply connected Lie group with Lie algebra g is also 
IP2.; the connected subgroup corresponding to the subalgebra g is zero. The pair of 
Lie groups (IP2., { 0}) is effective. So, we have ( G, G) = (IP2., { 0}). The corresponding 
homogeneous space is the group of translations on the line. 

2. Let g = IP2.e1 EB IP2.e2, where [e1, e2] = e2, and g = IP2.e1. Then the simply connected 
Lie group with Lie algebra g is the set G = IP2.+ x lP2. supplied with the following group 
operation: 

(x1, Yl) · (x2, Y2) = (x1x2, Yl + X1Y2). 

The subgroup corresponding to the subalgebra g is IP2.+ x {0}. 
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Exercise. Check that Z( G) = { e }. 
Therefore, the pair (G, G) is effective. Consider the homogeneous space (G, G/G). 

Note that each element ( x, y) E G can be uniquely written as 

(x, y) = (1, y) · (x, 0). 

It follows that we can take the number p = y for a coordinate on the coset (x, y)G. 
Then the action of G on M = G / G can be written as follows: 

(x, y).p = (x, y).((l,p)G) = (x, y + px)G = y + px. 

Thus, the homogeneous space (G, G/G) is exactly the group of affine transforma­
tions of Ill?. preserving the orientation (since x > 0). 

The following result obtained by Mostow gives the description of all effective pairs 
( G, G) associated with a given pair (g, g). 

Theorem 2. Let (g, g) be an effective pair of codimension ::( 4 and ( G, G) the effective 
pair associated with (g, g) such that G is connected and GjG is simply connected. Now 
suppose Z is the center of G and N (G) is the normalizer of G in G. Then any effective 
pair associated with (g, g) has the form: 

(Gj(S n Z), Gj(S n Z)), 

where S is a Lie subgroup of the Lie group N (G) such that S ::=> G and the Lie group 
S / G is discrete. 

Example. Let us describe all pairs associated with the pair (Ill?., {0} ). Recall that in 
this case G =Ill?. and G = {0}. It is easy to check that Z = G and N(G) =G. Thus, 
all discrete subgroups of the group of real numbers are to be found. All of them have 
the form Sa = { anln E ~}. Since the mapping x ~----+ax, where x E Ill?. and a 1- 0, is an 
automorphism of G preserving G, we see that (up to equivalence) Sis equal to either 
~ or {0}. In the latter case we obtain no new homogeneous spaces. On the contrary, 
if S = ~' we obtain the new pair (Ill?./~, {0} ). The corresponding homogeneous space 
is the group of rotations of the circle. 

Exercise. Turn back to example 2 and show that S = G and that no new homogeneous 
spaces can be obtained. 

2.3. The simply connected covering group SL(2, Ill?.). Let us describe all homo­
geneous spaces corresponding to the pair 

(,s[(2,IP?.), st(2,IP?.)). 

We have already considered two of them. One of the associated pairs is 

G = SL(2, Ill?.), 
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The corresponding homogeneous space can be described as follows: the group SL(2, JR.) 
acts on the circle S 1 = {v E JR.2 IIvl = 1} so that 

g(v) 
g.v = lg(v)l' v E 5 1 , g E SL(2, JR.). 

In the second case the group SL(2, JR.) acts on the projective space JR.P 1 , which is 
also homeomorphic to the circle. Since the element - E acts trivially on JR.P 1 , we 
see that the action is not effective. However, we can consider the group PSL(2, JR.) = 

SL(2,1R.)/{±E}, which acts effectively on JR.P 1 . 

As we can see, in both cases the manifold M is not simply connected. This follows 
from the fact that the Lie group SL(2, JR.) is not simply connected and is diffeomorphic ______... 
to S1 x JR.2 . By SL(2, JR.) denote the simply connected Lie group such that its Lie 
algebra equals .sl(2, JR.). It is called the simply connected covering group of SL(2, JR.). 
So, in order to describe the homogeneous spaces to be found, we have first to describe ______... 
the group SL(2, JR.). 

Recall that every element of the group SL(2, JR.) can be uniquely written as 

- sin r.p ) . (\ x x~ 1 ) , 
cos r.p 0 

where r.p E [0, 21r), x E JR.+, y E JR.. This establishes a diffeomorphism of the Lie groups 
---------SL(2, JR.) and S 1 X JR.+ X JR. :::::::5 S1 X JR.2 . Therefore, the group SL(2, JR.) is diffeomorphic 

to JR.3 . For a covering mapping it is convenient to consider the mapping 

( cosz 
1r: (x,y,z) f-----+ • 

smz 
-sinz). (Vx 
cosz 0 -Tx) 1 . 

Vx 

Now it remains to introduce a group operation on JR.+ x JR.2 so that 1r would be a 
surjection of Lie groups. 

Let us just give the result, omitting detailed calculation. 

Theorem. The operation on JR.+ x JP1.2 given by 

(x1,y1,z1) · (x2,Y2,z2) = 

= (X(x1, Y1, z2)x2, Y(x1, Y1, z2) + X(x1, Y1, z2)Y2, z1 + Z(x1, Y1, z2)), 

where 
X ( ) _ ( x cos z + y sin z) 2 + sin 2 z 

x,y,z - , 
X 

( ) _ ( x cos z + y sin z) (-x sin z + y cos z) + sin z cos z 
Y x,y,z - , 

X 

l z xdt 
Z(x, y, z) = , 

0 ( x cos t + y sin t) 2 + sin 2 t 
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turns llll+ x Jlll2 into a Lie group such that 1f is a surjective homomorphism of Lie 
groups. 

Exercise. Check that 
a) Z(x, y, 1rk) = 1rk, whenever k E .::Z; 
b) for 1rk < z < 1r(k + 1) the following condition holds: 

Exercise. Check that 

Z ( x, y, z) = 1r k + cot -I ( x cot z + y). 

X(x, y, 0) = x, 

Y(x, y, 0) = y, 

Z(x, y, 0) = 0, 

~ 

X(1,0,z) = 1, 

Y(1, 0, z) = 0, 

Z(1, 0, z) = z. 

Let us find the center of the group SL(2, lPl). Suppose that an element (x, y, z) belongs 
to the center. Then for any s E lPl we have 

(x,y,z) · (1,0,s) = (1,0,s) · (x,y,z). 

It follows that 

for all s E Jlll. 

{
X(x,y,s)=x, 

Y(x, y, s) = y, 

Z(x, y, s) = s 

The first of the equations may be rearranged to give 

( x2 - y2 - 1) cos 2s + 2xy sin 2s = x2 - y2 - 1 

for all s E Jlll. 
This takes place only if 

x2 - y2 - 1 = 2xy = 0. 

Since x E llll+, we have y = 0 and x = 1. Then two other equalities of the system above 
are also satisfied. So, every element of the center has the form (1, 0, z). If (1, 0, z) 
belongs to the center, then the following conditions hold: 

for all x E llll+ , y E lPl. 

{ 
X(x, y, z) = x, 

Y(x, y, z) = y, 

Z(x,y,z) = z 
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The first equation can be rearranged to give 

x2 (cos 2z - 1) + 2xy sin 2z - y2 (cos 2z - 1) = cos 2z - 1 

for all X E lR't, y E JR. 
This takes place only if 

sin2z = cos2z -1 = 0. 

It follows that z = 71k, k E ~. 

Conversely, it is easy to show that for k E ~' the element (1, 0, 71k) belongs to the 
center. 

So, we have proved the following 

Theorem. The center of the Lie group SL(2, JR) is infinite and has the form 

{ (1, 0, 71kl k E ~}. 

The connected subgroup of SL(2, JR) corresponding to the subalgebra st(2, JR) of 
s((2, JR) has the form 

H = { ( xo ~ 1 ) I X E JR+* ' y E lR ~ . 
X -) J 

Then the inverse image of H by 71 has the same Lie algebra, and the connected sub-
....------.__.. 

group of SL(2, JR) corresponding to the subalgebra st(2, JR) is the connected component 
of the identity of 71-l (H). It is easy to check that 

71- 1 (H) = {(x,y,271k)lx E JR+, y E lR, k E ~}. 

Then G = { ( x, y, 0) I x E lR't, y E lR}. 

Exercise. Show that N(H) = 71(N(G)). 
Note that 

and 
71- 1 (N(H)) = {(x,y,71k)lx E JR+, y E lR, k E ~}. 

Direct calculation shows that 71- 1 (N(H)) c N(G). Therefore N(G) = 71- 1 (N(H)). 
LetS be a Lie subgroup of the normalizer N(G) such that S ~G. Then S has the 

f 
form: 

Sn = { (x,y,71nk) I x E JR+, y E lR, k E ~} (n EN). 

For any n E N, the Lie group Sn/G is discrete and the intersection of Sn and the 
center Z of G has the form 

Zn = Sn n Z = {(1, 0, 71nk)l k E ~}. 

So, any effective pair associated with the pair (s((2,JR),st(2,JR)) is equivalent to one 
and only one of the following pairs: 

a) (G, G), 
b) (G/Zn, Sn/Zn), n EN. 
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§3. TWO-DIMENSIONAL HOMOGENEOUS SPACES. 

LOCAL CLASSIFICATION 

3.1. Preliminaries. We now turn to the description of effective pairs (g, g) of codi­
mension 2. Preparatory to formulating the basic theorem, we shall introduce some 
auxiliary constructions. 

1. Let V be an arbitrary finite-dimensional vector space and G a Lie subgroup of 
the Lie group GL(V). The set G x V can be turned into a Lie group by putting 

(cp1,v1) · (cp2,v2) = (cp1Cf?2,vl +cp1(v2)) 

for all ( Cf?I, v1), (cp2, v2) E G x V. 

Exercise. Check that the operation above actually turns G x V into a Lie group. 
We shall denote the Lie group constructed this way by G /.. V. For example, the 

group Aff(n) of affine transformations can be identified with GL(n, m.) /.. m_n, and the 
group of transformations of the plane preserving the orientation with the Lie group 

80(2) /.. m.2 ' where 80(2) = . { ( cosa 
sma 

- sin a ) I a E m_} . 
cos a 

Now find the Lie algebra of the Lie group G /.. V. Let g be the subalgebra of gl(V) 
corresponding to the subgroup G. It can be defined as 

g = { x E gl(V)I exp(tx) E G Vt Em.}. 

Then the Lie algebra to be found is the vector space g x V with the following bracket 
operation: 

[(cp1,v1), (cp2,v2)] = ([cpl,cp2],cp1(v2)- cp2(v1)). 

For example, the subalgebra corresponding to the Lie subgroup 80(2) has the form 

then the Lie algebra of 80(2) A. m.2 is so(2) /.. m.2 . 

Remark. If V is regarded as a commutative Lie group (Lie algebra), then our con­
struction is a particular case of a semidirect product of Lie groups (Lie algebras). 

Exercise. Suppose H is the Lie group of similitude transformations of the plane. Find 
the Lie algebra of H. 

2. Recall that an elementary Frobenius matrix is a matrix of the form: 

0 0 -ao 
1 0 0 -a1 

0 1 0 -a2 

0 0 -an-2 
0 0 1 -an-1 
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Its characteristic and minimal polynomials coincide. They are equal to 

( -1)n(xn + an-IXn-l + · · · + a1x + ao). 

Let p(x) be an arbitrary polynomial of nonzero degree. By F(p) denote the elemen­
tary Frobenius matrix such that its characteristic polynomial equals (up to a constant 
factor) the polynomial p. The size of F(p) is equal exactly to the degree of p. For 
example, 

. 0 0) 
· 0 0 (n-by-n matrix). . . . 
. 1 0 

Exercise. Show that F(p) is a nilpotent matrix if and only if p = axn, a =/ 0. 

Problem. Suppose p E IPI.[x] is an arbitrary polynomial of nonzero degree. Prove that 
matrices 

(1) F(p(x)) and F(p(x + >.)) + >.E, >. E IPI.; 
(2) F(p(x)) and >.F(p(xj>.)), >. E IPI.* 

are conjugate. 
3. By IPI.n[x, y] denote the vector space of homogeneous polynomials in x, y of the 

n-th degree. Then dimiPI.n[x, y] = n + 1. Note that differential operators of the form 
(ax + cy) !/x + ( bx + dy) !/y leave the space IPI. n [ x, y] invariant and can be regarded as 
linear operators on IPI. n [ x, y ]. Moreover, the set of these operators is a vector space 
and is closed under the bracket operation. In other words, it is a subalgebra of the 
Lie algebra g((IPI.n [x, y]). 

Exercise. Show that the mapping 

7rn : ( ~ ~) ~(ax+ cy) :x + (bx + dy) :y 

establishes an isomorphism of the Lie algebra g((2, IPI.) and the subalgebra outlined 
above. 

For a subalgebra a E g((2, IPI.), by a A.1rn IPI.n[x, y] denote the Lie algebra 7rn(a) A 
IPI.n[x,y]. Ifn = 2, the Lie algebra 7rn(sl(2,IPI.)), in terms of the basis {x 2 ,xy,y2 }, has 
the form: 

{ (
2x y 0 ) 
2z 0 2y 
0 z -2x 

Further we shall use the following notation: 

(1) for the subalgebras of gl(2, IPI.) 

x,y,z E liR}. 

t( 2' IPI.) = { ( ~ ~ ) I X' y' z E IPI.} ' 

st(2, IPI.) = { ( ~ !.x) I x, y E IPI.} = t(2, IPI.) n sl(2, IPI.); 
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(2) for the Lie algebra of orthogonal matrices 

so(n) ={A E gf(n, JR)IA +t A= 0}; 

(3) for the n-by-n matrices 

0 1 0 0 0 cl 0 

n 
0 0 1 0 0 

and Sn = ~ 
-2 

Nn= 
0 0 1 
0 0 0 

0 -n 

3.2. Classification of pairs. Now we are able to formulate the central theorem. 

Classification theorem. Any effective pair (g, g) of codimension 2 is equivalent to 
one of tbe following pairs: 

1.1 
- T!Tl2 g=m., g = {0}. 

2.1(>.) 

2.2(>.) 

3.1 

g = a A JR2 , g =ax {0}, wbere a= { ( ~ ~)I x, y E JR}. 

3.2 

g = a A JR2 , g = a x { 0}, wbere a = { ( ~ ~y ) I x, y E lR} . 

4.1 (p) 

g = {xF(p)jx E lR} A lRn, 

g = {0} x { ( x~~~) x; E I+ where p E llt[x], n = degp;, 1 

in addition, if p = axn, tben n ;? 2. 
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5.1(p) 

iJ = {xEn + yF(p)lx, y E lP2.} /._ JP2.n, 

g = { xEnlx E llt} x { ( x~~1 ) Xi E llt l, where p E llt[x[, n =degp) 2 

6.1(n, >..) 

iJ = { x(>..En + Sn) + yNnlx, y E lP2.} A JP2.n, 

g = { x(.\En+ Sn)lx E llt} / ( (i:) Xi E llt l, where n) 2, .\ E llt, .\ 7' n. 

7.1(n) 

9 = { (xn(nEn + Sn) + yNn, CJ) Xi E llt, y E llt} C 9.1(n), 

g= { ( Xn(nEn +Sn), ( ::) ) Xi E llt l, where n) 2. 

8.1 (n) 

iJ = {xEn + ySn + zNnlx, y, z E JP2.} /._ JP2.n, 

g = {xEn +ySnlx, y E llt} X ( (i:) Xi E llt}, where n) 2. 

9.1 (n) 

iJ = {x(nEn + Sn) + yNnlx, y E lP2.} A JP2.n, 

g = { x(nEn + Sn)lx E l~} x { (j:) Xi E l+ wl1ere n) 2. 



10.1 

11.1 

11.2 

1103 
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g = s((2, ~), g = { ( ~ ~)I x E ~} 0 

g = s((2, ~), g = { ( ~ ~x) I x E ~}. 

_ { ( ix y + iz ) I } { ( ix 0 ) I } g = su(2) = -y + iz -ix x, y, z E ~ , g = 0 -ix x E ~ 0 

12.1 
g = s((2, ~) x s[(2, ~), g = st(2, ~) x st(2, ~)o 

12.2 

13.1 

14.1 

15.1 
g = g((2, ~)A ~2 , g = g((2, ~) X {0}. 

16.1 

17.1(n) 

g = s((2, ~) /T<n ~n[x, y], 

g = st(2, ~) A1rn {aoxn + · · · + an-IXn-lyiai E ~}, where n ~ 0. 

18o1(n) 

g = g((2, ~) /1fn ~n[x, y], 

g = t(2, ~) A1rn { aoxn + · · · + an-IXn-lyiai E ~ }, where n ~ 1. 

67 
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Pairs from different items are not equivalent to each other. Two pairs from 4.1 
corresponding to polynomials Pl and P2 are equivalent if and only if there exist a, A E 

m.* such that Pl = ap2(Ax). 
Two pairs from 5.1 corresponding to polynomials p 1 and p2 are equivalent if and 

only if there exist a, A Em.* and f-L Em. such that p 1 = ap2(Ax + f-L). 
Any two pairs from any other item are not equivalent. 

Remark 1. The Lie algebras g from items 1.1-9.1 are solvable; g from items 10.1-13.1 
are semisimple; g from items 14.1-18.1 have the nontrivial radical. 

Remark 2. If we omitted the restrictions imposed on parameters in the theorem, the 
following pairs would be equivalent: 

4.1(x) ~ 1.1; 

5.1(x- A) ~ 2.1(0); 

6.1(n, n) rv 9.1(n); 

6.1(1, A) rv 2.1(A- 1); 

9.1(1) rv 2.1(0); 

8.1(1) rv 3.1. 

§4. TWO-DIMENSIONAL HOMOGENEOUS SPACES. 

GLOBAL CLASSIFICATION 

4.1 The process of globalization. Let us modify the basic constructions described 
by Mostow. We shall first generalize the concept of an effective homogeneous space. 

Definition. A homogeneous space (G, M) is called locally effective if its kernel of 
ineffectiveness is discrete. 

Let ( G, G) be a pair corresponding to a locally effective homogeneous space. This is 
equivalent to the fact that any normal Lie subgroup of G lying in G is discrete. In this 
case we say that the pair ( G, G) is locally effective. Nevertheless, the corresponding 
pair of Lie algebras is effective. Moreover, the following is true: 

Proposition 1. Let ( G, G) be a pair of Lie groups and (g, g) the corresponding pair 
of Lie algebras. The pair (G, G) is locally effective if and only if the pair (g, g) is 
effective. 

Exercise. Prove the proposition above. 
The proposition shows that the concept of a locally effective pair is somewhat more 

natural than that of an effective pair. To each locally effective pair ( G, G) we assign 
the effective pair ( G I K, G I K), where K is the kernel of ineffectiveness of ( G, G). 

Definition. We shall say that two locally equivalent pairs are similar if the corre­
sponding effective pairs are equivalent. 

For each effective pair (g, g) we shall find (up to similarity) all locally effective 
pairs associated with (g, g). We shall then be able to describe (up to equivalence) 
all effective pairs associated with (g, g) by passing from locally effective pairs just 
obtained to the corresponding effective pairs. In doing so we shall use the following 
result: 
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Proposition 2. Let ( G, G) be a locally effective pair and K its kernel of ineffective­
ness. Then K = G n Z (G), where Z (G) is the center of G. 

Proof. Since any subgroup of the center is normal, we see that G n Z(G) c K. 
Conversely, since K is a normal discrete subgroup, we see that the subgroup K is 
central (why?). Therefore K c G n Z(G), which concludes the proof. 

Let (g, g) be an effective pair of codimension 2. Recall that there exists a unique 
pair ( G, G) associated with (g, g) such that the subgroup G is connected and the 
manifold GIG is simply connected. The following result follows immediately from the 
results of Most ow. 

Proposition 3. Every locally effective pair associated with (g, g) is similar to a pair 
of the form (G, S), where Sis a Lie subgroup of N(G) such that S::) G and the Lie 
group S I G is discrete. 

Note that there is a one-to-one correspondence between the set of subgroups S 
described in proposition 3 and the set of all discrete subgroups of the Lie group 
N(G)IG. 

Theorem. Let ( G, M) be the homogeneous space corresponding to the pair ( G, G). 
a) The mapping g r---+ gG gives a one-to-one correspondence between elements of 

the group N(G)IG and points x E Jvf such that Gx =G. 
b) Put C = {x E MIGx = G}. Then the group operation on C given by 

turns C into a Lie group isomorphic to N (G) I G. 
c) The equality 

nG.(gG) = (gn)G, 

where n E N (G) and g E G, gives a right action of C on M. 
d) The action of C on M commutes with the action of G on M, i.e. 

for all g E G, c E C, x E M. 

Proof. 

c.(g.x) = g.(c.x) 

a) Let x = gG. Then Gx = gGg- 1. Therefore, Gx = G if and only if g E N(G). 
b) It is sufficient to check that the operation is well-defined. Indeed, for h1 , h2 E G 

we have 

n1h1G · n2h2G = n1h1n2h2G = n1h1n2G = n1n2(n:;1h1n2)G = n1n2G. 

The statements of items c) and d) can be proved in a similar way. 

Remark. The action of C on M can be rewritten as 

c.(gG) = nG.gG = gnG = g.(nG) = g.c, 
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where c = nG E C, n E N( G), and g E G. 
Now let D be an arbitrary discrete subgroup of C. Then D determines a regular 

equivalence relation on M: XI rv X2 if there exists a d E D such that d.xl = X2. 

Let MID denote the quotient manifold of M by the relation just introduced. Item 
d) of the theorem above implies that this relation is invariant under the action of 
the Lie group G. This allows to define an action of G on the manifold Ml D. This 
way we obtain the new homogeneous space ( G, MID). It is easy to check that the 
corresponding pair of Lie groups has the form (G, S), where SIG =D. 

We shall say that discrete subgroups D 1 and D 2 of the Lie group C are equivalent 
if there exists an automorphism (n, T) of (G, M) such that T(D1) = D2. 

Further, for each effective pair (g, g) from the classification theorem, we shall de­
scribe the corresponding pair (G, G), the homogeneous space (G, M), where M = 

GIG, the set C, the action of Con M, discrete subgroups D of C (up to equivalence), 
and the manifolds MID. 

4.2. Examples. 
1. Let (g, g) be the pair 1.1 from the classification theorem. Then the corresponding 

pair ( G, G) has the form (JR 2 , { 0}), where lR 2 is considered as an abelian additive group. 
The homogeneous space is the plane with the simply transitive action of the group of 
translations. In other words, M = lR2 = {(p,q)lp,q E lR}, G = {(x,y)lx,y E JR}, and 
the action of G on lvf can be written as 

(x, y).(p, q) = (x + p, y + q) 

for(x,y)EG, (p,q)EM. 
In this case the stabilizer of any point of the plane equals G. Therefore, the sub­

group C coincides with M and the group operation on C has the form: 

Every discrete subgroup of C is equivalent to one and only one of the following 
subgroups: 

a) {(0, 0)}; b) {(n, O)ln E LZ}; c) {(n, m)ln, mE LZ}. 
Factorization of M by the corresponding equivalence relation gives a transitive action 
of the group G on the plane JR2 ' cylinder S 1 X JR, and torus S 1 X S 1 respectively. 

2. Let (g, g) be the pair 2.1 from the classification theorem. Then the corresponding 
pair ( G, G) has the form 

G =A A. JR2 , G =Ax {0} , where 

The manifold M can be identified with the plane M = JR2 = {(p,q)l p,q E JR}. (In 
the sequel, by the plane we shall always mean the manifold JR2 with the standard 
coordinates (p, q)). The action of G on M can be written as 

(x, (y, z)).(p, q) = (xp + y, x>-q + z), 
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where x E Ill(.+ , (y, z) E IP(.2 . 

Now find all points (p, q) E M such that the stabilizer of (p, q) equals G. This takes 
place if and only if the following condition holds: 

(p.q) = (xp, x>-q) for all x E Ill(.~ . 

Therefore, if>.. i= 0, then C = { (0, 0)} and we obtain no new homogeneous spaces. If 
>.. = 0, then C = {(0, a)J a E Ill(.}. We have 

(0, a).(p, q) = (0, a).((1,p, q)G) = (1,p, q).(O, a)= (p, q +a). 

So, the action of the group C on M has the form: 

(0, a).(p, q) = (p, q +a). 

All nonzero discrete subgroups of C are equivalent to the subgroup { ( 0, n) J n E lZ}. 
The corresponding quotient manifold is the cylinder Ill(. X S 1 . Identifying the circle S 1 

with the factor group IP(.j.!Z (x f-----+ e21rix), we can write the action of G on Ill(. x S 1 as 

(x, (y, z)).(p, q) = (xp + y, (q + z) mod 1). 

3. Let (g, g) be the pair 10.1 from the classification theorem: 

Then the corresponding pair ( G, G) has the form 

G = SL(2,IP(.), G = {(1,y,O)Jy E Ill(.}. 

The manifold M can be identified with the infinite half-plane 

The action of G on M has the form: 

(x, y, z).(p, q) = (pX(x, y, q) , Z(x, y, q) + z). 

Now find the group C. A point (p, q) belongs to C if 

(p,q) = (1,y,O).(p,q) = (pX(l,y,q), Z(1,y,q)) 

for all y E Ill(.. Therefore, for all y E Ill(. the following condition holds: 
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This is true for q = nk , k E .2Z. If nk < q < n(k + 1), then the last condition is 
equivalent to the following one: 

q- nk = cot- 1 (cot q + y) for ally E IP?., 

which is impossible. Hence q = nk , k E .2Z. Then pX(1, y, q) = p and therefore 

C = {(a,nk)l a E IP?.'t, k E .2Z}. 

The action of C on M has the form: 

(a, nk ).(p, q) = (a, nk ).(p, 0, q)G = (p, 0, q).(a, nk) = ( ap, q + nk ). 

Every nonzero discrete subgroup of C is equivalent to one and only one of the 
following subgroups: 

a) {(1,nkn)l k E .2Z}, n EN; 
b) {(ak,nkn)l k E 2}, n EN, a E lP?.'t; 
c) {(ak, nln)l k, l E 2} , n EN , a E lP?.'t. 

The corresponding quotient manifolds are 
a), b) the cylinder IP?. x S\ 
c) the torus 8 1 x S 1 . 

4. Let (g, g) be the pair 11.1 from the classification theorem: 

~ 

If we put G = SL(2, IP?.) with the group operation described earlier, it would hardly 
be possible to find the action of G on Min an explicit form (try to do it !). We shall 

~ 

do it in a different way. Let G be the set S£(2, IP?.) supplied with the following group 
operation: 

gl * g2 = g2gl for g1, g2 E S£(2, IP?.). 

_...-..._...- * 
We denote this group by S£(2, IP?.) . In coordinates, the group operation has the form: 

(xl,Yl,zl) * (x2,y2,z2) = 

= (X(x2, Y2, z1)x1 , Y(x2, Y2, z1) + X(x2, Y2, z1)Y1 , z2 + Z(x2, Y2, z1)). 

(Compare with that on S£(2, IP?.)). The Lie group S£(2, IP?.) is isomorphic to SL(2, IP?.). 
~ 

The isomorphism can be established by the mapping g f-+ g-I, g E SL(2,IP?.). The 
subgroup G has the form: 

G = {(x,O,O)I x E IP?.:;_}. 
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It is easy to check that the manifold M = G / G can be identified with the plane and 
the action of G on M can be written as 

(x, y, z).(p, q) = (Y(x, y, q) + X(x, y, q)p, z + Z(x, y, q)). 

Now find the set C. A point (p, q) belongs to C if 

(p, q) = (x, 0, O).(p, q) = (Y(x, 0, q) + X(x, 0, q)p , Z(x, 0, q)) 

for all x E IR+. Therefore, 

for all x E IR+. 

Note that the condition holds if q = 1rk, k E ;::z, If 1rk < q < 1r(k+l), this is equivalent 
to the following condition 

q- 1rk = coC1 (x cot q) for all x E IR+. 

This takes place if and only if cot q = 0 or q = 1rk + 1r /2. Therefore q = Kk/2 , k E ;::z. 
It immediately follows that p = 0 and 

C = {(O,Kk/2)1 k E ;::z}. 

The action of the group C has the form: 

(0, 1rkj2).(p, q) = (0, 7rk/2).((1,p, q)G) = (l,p, q).(O, 1rkj2) = (( -llp, q + 1rkj2). 

Every nonzero discrete subgroup of C is equivalent to one and only one of the 
following subgroups: 

a) {(0,1rnk)l k E ;::z}, n EN; 
b) {(0, (2n- l)Kk/2)1 k E ;::z}, n E I\1. 

The corresponding quotient manifolds are the cylinder and Mobius strip respectively. 
5. Let (g, g) be the pair 4.1 given by the polynomial 

For a smooth function f E c= (IR), put 

E(f) = f(n) + an_If(n-l) +···+ad'+ aof. 

Then E(f) = 0 is a linear ordinary differential equation with constant coefficients. 
It is know from theory of differential equations that solutions of our equation form 
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an n-dimensional vector space. (See appendix B.) Let Fp denote the vector space of 
solutions. In addition, if 

s t 

p(x) =IT (x- ai)ki. IT ((x- Aj)2 + JLJ)lj' 
i=l j=l 

then the functions 
0 ~ n ~ ki - 1, 1 ~ i ~ s, 

form a basis of Fp. 

Problem. Prove that there exists a solution w(x) of the equation E(f) = 0 such that 
the functions 

w(x), w'(x), ... ,wn-1(x) 

form a basis of the space of solutions. 
Let us describe the pair ( G, G) corresponding to (g, g). First, consider the action 

of the group lP?. on the set coo (JP?.) defined by 

(x.f)(a) = f(a- x) 

for x E JP?., a E JP?., f E C00 (JP?.). 

Problem*. Prove that the action is linear, i.e. 

x.(f +g)= x.f + x.g and x.(>.f) = >.(x.f). 

Prove that for any finite-dimensional subspace V C coo (IP?.) invariant under this action 
there exists a polynomial p E IP?.[x] such V equals Fp. 

Now put G = { (x, f) I x E IP?., f E Fp }, where the group operation has the form: 

(x1, !I)· (x2, !2) = (x1 + x2, !I+ x1.f2), 

and G = { (0, f) I f E Fp, f(O) = 0}. It can be shown that ( G, G) is the desired pair. 
The corresponding homogeneous space is the plane with the following action of the 
Lie group G: 

(x, f).(p, q) = (x + p, q + f(x + p)). 

Exercise. Check that G(o,o) =G. ~ 

Let us now describe the set C. By Fp denote the set {f E Fp I f(O) = 0}. A point 
(p, q) belongs to C if 

(p, q) = (0, f).(p, q) = (p, q + f(p)) 

for all f E Fp· This takes place if f(p) = 0 for all functions f E Fp· It is obvious that 
C ~ {(0, a) I a E IP?.}. 
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Lemma. Let C -f. { ( 0, a) I a E l.PI.}. Then the polynomial p( x) is equivalent to one of 
the following polynomials: 

k 
a) p(x) =IT ((x- A) 2 + bT), A E l.PI., bi E 22; 

i=l 

k 
b) p(x) =IT ((x- A) 2 + bT), A E l.PI., bi E 22 + 1; 

i=l 

k 
c) p(x) = (x- A) IT ((x- A) 2 + bT), A E l.PI., bi E 22; 

i=l 

Proof. Since C -f. { (0, a) I a E l.PI. }, we see that functions from Fp have nonzero common 
roots. Let a be the nonzero common root with the least absolute value. Since the 
space Fp is finite-dimensional and consists of smooth functions, we see that this root 
always exists. Two pairs 4.1 defined by polynomials p(x) and Ap(f.1x), A,f-1 E l.PI.*, are 
equivalent. Therefore, it can be assumed that a= 7f. Let L be the linear operator on 
:F given by Lf(x) = f(x + 1r). It is easy to show that the subspace Fp is invariant 

with respect to L. Therefore, :Fp is invariant with respect to the operator Lk ( k E 2) 

and the points 1rk, k E 2, are also common roots of all functions from Fp· 
Consider the forms on Fp given by f f-----+ j(1rk), ly___ E 2. Note that they are pro-

portional. If the functions WI, ... , Wn form a basis of Fp, then in the dual basis, these 
forms have the coordinates 

(WI ( 7f k) , W2 ( 7f k), ... , Wn ( 7f k)). 

Therefore, all basis functions are eigenvectors of L belonging to the same eigenvalue. 
This proves the lemma. Note that the eigenvalue equals e>-1r in cases a), c) and -e>-1r 

in case b). 

We say that cases a), b), and c) are special and the other cases are nonspecial. 
Now find the action of C on M. Not that for any point (p, q) E M, an element 

(p, f) E G such that f(p) = q takes the point (0, 0) into (p, q). In nonspecial cases we 
have 

(0, a).(p, q) = (0, a).(p, f)G = (p, !).(0, a)= (p, a+ f(p)) = (p, q +a), 

where (0, a) E C. 
All nonzero discrete subgroups of Care equivalent to the subgroup { (0, n) I n E 2}. 

The corresponding quotient manifold is the cylinder. 
Consider the special cases. We have 

(1rk, a).(p, q) = (p, f).(1rk, a)= (p + 1rk, a+ f(p + 1rk)) = (p + 1rk, a+ Lk f(p)). 
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Therefore, the action of C on M has the following form: 

a), c) (1rk, a).(p, q) = (p + 1rk, e>-.7rkq +a), 

b) (1rk, a).(p, q) = (p + 1rk, ( -1)ke>-.1rkq +a). 

Let us now describe discrete subgroups D of the group C and the corresponding 
manifolds M /D. 

a), c) It is easy to check that the group operation on C has the form: 

If.\ =I= 0, then every nonzero discrete subgroup of Cis equivalent to one and only one 
of the following subgroups: 

{(1rnk, 0) I k ELl}, nEW; 

{(0, k) I k ELl}. 

The corresponding quotient manifolds are cylinders. If .\ 
subgroup in addition to the subgroups just mentioned: 

{(21Tnk, m) I k, mE Ll}, nEW. 

The corresponding quotient manifold is the torus. 
b) The group operation on C has the form: 

0, we have one more 

If.\ =I= 0, then all nonzero discrete subgroups viewed up to equivalence have the form: 

{ (21Tnk, 0) I k ELl}, nEW; 

{(0, k) I k ELl}; 

{((2n-1)7Tk,O) I kEil}, nEW. 

In the first two cases the factorization gives the cylinder and in the last case the 
Mobius strip. If.\= 0, we obtain two more discrete subgroups: 

{(21Tnk,m) I k,m ELl}, nEW; 

{((2n -1)1rk,m) I k,m ELl}, n EN. 

The corresponding quotient manifolds are the torus and the Klein bottle respectively. 
6. Let (g, g) be the pair 17.1 from the classification theorem. Let us now find the 

corresponding pair of Lie groups ( G, G). Just as gl(2, JR) can be realized as a subalgebra 
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of g((IJ.lln[x,y]), the Lie group GL(2,1Pl) can be realized as a group of automorphisms 
of the space IPln[x, y]. Let 

9 = ( ~ ~) E GL(2, IPl) and f(x, y) E IPln[x, y]. 

Then put 
(9.f)(x, y) = f(ax + cy, bx + dy). 

Exercise. Check that 
a) 9-f E IPln[x, y] for all 9 E GL(2, IPl), f E IPln[x, y]; 
b) (9192)-f = 91(92!) for all 91l92 E GL(2,1Pl),f E IPln[x,y]. 
~ 

Now let 8L(2, IPl) be the universal covering group of the group 8L(2, IPl) and 1r : 

8L(2, IPl) ----* 8L(2, IJ.ll) the covering homomorphism. Then the action of the Lie group 
~ 

8L(2, IPl) on IPln[x, y] can be defined by 

9·! = 1r(9)-f 

for 9 E SL(2, IPl), f E IPln[x, y]. The Lie group G has the form: 

The group operation on G can be written as 

Then the subgroup G has the form: 

G = {(x, y, O)ix E IPl~, y E IPl} A {f E IPln[x, y]if(O, 1) = 0}. 

The corresponding homogeneous space is the plane with the following action of G: 

(x, y, z, f).(p, q) = (a, x-n12q + f(- sin a, cos a)), 

where a= z + Z(x, y,p), X= X(x, y,p). 
A necessary and sufficient condition for a point (p, q) to belong to the set Cis that 

for all (x, y, 0, f) E G the following condition holds: 

(p, q) = (Z(x, y, p), x-nl2(x, y,p)q + f(- sin Z(x, y,p), cos Z(x, y,p))). 

It follows that 
C = {(1rk, a)ik E 7l, a E IPl} if n = 0 

and 
C = {(1rk, O)ik E 7l} if n > 0. 
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If n = 0, then all nonzero discrete subgroups viewed up to equivalence have the form: 

{(7rnk,O)ikE.IZ}, nEW; 

{(0, k)ik E .IZ}; 

{(1rnk, l)ik, l E .IZ}, nEW. 

In the first two cases the factorization gives the cylinder and in the last case the torus. 
Consider the case n > 0. The action of the Lie group Con Misgiven by 

Each nonzero discrete subgroup is equivalent to the following one: 

{(1rmk,O)ik E lZ}, mEN. 

The corresponding quotient manifold is the cylinder whenever mn is even or the 
Mobius strip whenever mn is odd. 

The complete list fo all two-dimensional homogeneous spaces is given in appendix 
c. 

5. STRUCTURE OF PAIRS (g, g) 

5.1. Isotropically-faithful and reductive pairs. Let us give some definitions and 
then find out which of the pairs mentioned in the classification theorem satisfy their 
conditions. 

Let g be a Lie algebra and V a vector space. Recall that an arbitrary homomorphism 
of Lie algebras p : g -+ gf(V) is called a representation of g on V. If p is injective, 
then the representation is said to be faithful. 

Let p be a representation of g on V. Then each element x E g can be regarded 
as an endomorphism of V denoted by xv. In this case the vector space V is called 
a g-module and we write x.v = xv(v) instead of p(x)(v), x E g, v E V. A g-module 
V is called faithful if the set {x E glx.v = 0 V v E V} is zero. There is a one-to-one 
correspondence between the set of all g-modules and the set of all representations of 
g. In the sequel we shall use both of these terms. 

To each pair (g, g) we can assign a representation of the Lie algebra g on the vector 
space of dimension dimg- dim g. 

Definition. The isotropic representation of a pair (g, g) is the representation of the 
Lie algebra g on the vector space (g, g)/g given by 

p(x)(x +g)= [x, x] + g 

for all x E g, x E g. The pair (g, g) is called isotropically-faithful if its isotropic 
representation is faithful. 
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Examples. 
1) Let (g,g) be the pair 2.1(>.) from the classification theorem: 

g =a,< ~2 , g = ax {0}, where a= { ( ~ >.Ox) I x E ~} . 

The factor space g/ g can be identified with ~ 2 . Then the action of an element 

on gjg is given exactly by the matrix 

Therefore, for any A E ~ the pair (g, g) is isotropically-faithful. 
2) Consider the pair 4.1 (p) from the classification theorem. Then 

g = {0} X ( ( ~1 
) x, E ~ l , 

xn0-1 J 

where n = degp ~ 1 and if p = xn then n ~ 2. Put 

u1 = F (p) + 0 and u2 = 0 + 

0 
0 

0 
1 

Then the cosets u1 + g and u2 + g form a basis of the space gjg. Let 

e = 0 + ( ~1 
) 

Xn-1 

0 

be an arbitrary element of g. Then 

p(e)(u1+g)=[e,u1]+g= ( ; 1 ) +g=Xn-1u2+g, 

Xn-1 

p(e)(u2 +g)= [e,u2] + g = 0 +g. 

79 
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Therefore, the isotropic representation of (9, g), in terms of our basis, has the form: 

( ) = ( 0 Xn-1) pe 0 0 · 

The class of isotropically-faithful pairs turns out to be rather important. In particu­
lar, if a homogeneous space has an invariant affine connection, then the corresponding 
pair (9, g) is isotropically-faithful. 

Exercise. Show that if a pair (9, g) is isotropically-faithful, then it is effective. 

Theorem. Any isotropically-faithful pair (9, g) of codimension 2 is equivalent to one 
and only one of the following pairs from the classification theorem: 

1.1, 2.1, 2.2, 3.1, 3.2, 

4.1(p), where p = x- 1, (x- 1)(x- ,\) (1-\l :( 1), 

x 2 , (x -1) 2 , (x- ,\) 2 + 1 (,\;?: 0); 

5.1(p), where p = x 2 , x(x- 1), x 2 + 1; 

6.1(2, ,\), 7.1(2), 7.1(3), 8.1(2), 9.1(2), 

10.1, 11.1, 11.2, 11.3, 14.1, 15.1, 16.1. 

Proof. It is a matter of direct verification to prove that the pairs mentioned above 
are the only isotropically-faithful pairs among those mentioned in the classification 
theorem. A pair 4.1(p) is isotropically-faithful if and only if degp :( 2. It is easy to 
check that the polynomial p viewed up to transformations of the form 

p(x) f-+ ,\p(J-Lx), ,\, fJ E Im.~, 

is equivalent to one and only one of the polynomials mentioned in the theorem. Sim­
ilarly, a pair 5.1(p) is isotropically-faithful if and only if degp = 2. In this case, p 
can be reduced to one and only one of the polynomials mentioned in the theorem by 
transformations of the form 

Let (9, g) be an arbitrary pair of codimension 2 and p : g ---+ gl(9/ g) its isotropic 
representation. Consider the matrix realizations of the subalgebra p(g) in different 
bases of the space 9/ g. So, to the pair (9, g) we can assign the class of subalgebras of 
gl(2, IPI.) conjugate to each other. 

Definition. Two pairs (91, g1) and (92 , g2 ) are called isotropically-equivalent if the 
corresponding classes of conjugate subalgebras of gl(2, IPI.) coincide. 

Problem. Prove that every class of conjugate subalgebras of the Lie algebra gl(2, Im.) 
can be assigned to a certain isotropically-faithful pair. 

Let us pick out one representative from each class of conjugate subalgebras of 
gl(2, IPI.). This is equivalent to classifying all subalgebras of gl(2, IPI.) up to conjugation. 
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Proposition. Any subalgebra of the Lie algebra g[(2, JR.) is conjugate to one and only 
one of the following subalgebras: 

I {0}; VII { (~ ~y)lx,yEIPI..}; 

II(>.) { (~ >.Ox)lxEIPI..}, 1>.1~1; VIII(>.) {(>.ox ;)lx,yEIPI..}; 

I I I (),) { ( ),: ~: ) I X E JR.} ' ), ~ 0; IX { ( ~ ~)I x, y E JR.}; 

IV { ( ~ ~ ) I X E JR.} ; X { ( ~ ~) I X' y' z E JR.} ; 

V { (~ ~)lxEIPI..}; XI s((2,IPI..); 

VI { (~ ~)lx,yEIPI..};XJJg((2,IPI..). 

Proof. See "Subalgebras of g((n, P)", ISLC Abstracts, Lie-Lobachevsky Colloquium, 
Tartu, Estonia, 1992. 

Representatives from classes of conjugate subalgebras corresponding to all effective 
pairs (g, g) of codimension 2 are listed in appendix C. 

Consider an arbitrary g-module V. A subspace W c V is called invariant if 
g.W C W. It is obvious that the trivial subspaces {0} and V are invariant. The g­
module V is called simple if V contains no nontrivial invariant subspaces. If for each 
invariant subspace wl there exists a complementary invariant subspace w2' then the 
g-module V is called semisimple. 

Now let (g, g) be an arbitrary pair. Then g can be regarded as a g-module, where 

x.x = [x, x] 

for x E g, x E g. It is obvious that g C g is an invariant subspace of the g-module g. 
If there exists an invariant subspace complementary tog, then the pair (g, g) is called 
reductive. The subalgebra g is said to be reductive if the g-module g is semisimple. 

Exercise. Let (g, g) be an effective pair. Prove that 
a) if g is a reductive subalgebra, then the pair (g, g) is reductive; 
b) if (g, g) is a reductive pair, then (g, g) is isotropically-faithful. 
Suppose that the pair (9, g) is reductive and m is an invariant subspace comple­

mentary to g. Then m can be identified with gjg and the action of g on gjg can be 
written as 

x.m = [x,m] 

for x E g, mE m. 
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Theorem. Each isotropically-faithful pair (g, g) of codimension 2 is reductive except 
those equivalent to one of the following pairs from the classification theorem: 

7.1(3), 10.1, 16.1. 

Proof. It is sufficient to consider only isotropically-faithful pairs described in the pre­
vious theorem and for each pair (g, g) of this kind to check if there exists an invariant 
subspace complementary to g. 

Corollary. Let (g, g) be an effective pair of codimension 2 such that g is a reductive 
subalgebra. Then the pair (g, g) is equivalent to one and only one of the following 
pairs: 

1.1, 2.1(>.), 2.2(>.), 3.1, 3.2, 4.1(x- 1), 

11.1, 11.2, 11.3, 14.1, 15.1. 

Proof. From conditions of the corollary it follows that the subalgebra g is either com­
mutative or non-solvable. Moreover, the isotropic representation of the pair (g, g) 
must be semisimple. It can be easily checked the pairs mentioned in the corollary are 
the only pairs that satisfy these conditions. It remains to note that for all of these 
pairs, g is reductive. 

5.2. Inclusions. Let (g, g) be an effective pair and ~ a subalgebra of g such that 
~ + g = g. Put p = ~ n g. 

Proposition. 
1) The pair (~, p) is effective. 
2) The pairs (g, g) and (~, p) have the same codimension. 
3) If the pair (g, g) is isotropically-faithful, then the pair (~, p) is also isotropically­

faithful. 

We say that the pair (~, p) is a restriction of the pair (g, g) and the pair (g, g) is an 
extension of the pair (~, p ). We also say that a restriction (extension) is maximal if~ 
is a maximal subalgebra of g. 

All maximal restrictions for pairs of codimension 2 are given in appendix C. 

Theorem. 
1) All maximal pairs (g, g) of codimension 2 are equivalent to one of the following: 

5.1(p), 12.1, 12.2, 13.1, 18.1(n), (n;:: 2). 

2) All minimal pairs (g, g) of codimension 2 are equivalent to one of the following: 

1.1, 4.1(x- 1), 4.1((x- >.? + 1), 11.3. 

Proof. It immediatly follows from the list of all maximal inclusions. 
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CHAPTER III 

INVARIANTS 

§1. TENSOR INVARIANTS 

Suppose that an arbitrary group G acts on a set M. A point x EM is called an in­
variant of the action if g .x = x for all g E G. Now let ( G, M) be a homogeneous space. 
Since G acts transitively on M, we see that the action has no invariants. However, we 
can consider natural prolongations of the action of the group G to different objects on 
M such as the tangent bundle. Actions obtained this way may have invariants. 

Let T M denote the tangent bundle on the manifold M. Each element g E G gives 
the diffeomorphism of M x f---7 g.x and therefore the isomorphism of tangent spaces 

dg : TxM -+ T9 .xM for all X E M. 

Similarly, each element g E G gives the isomorphism Tx* M -+ T*_ 1 M. This allows g .X 

to prolong the action of G to the space r;:: (T M) of tensor fields of valence ( n, m) 
on _M. For g E G, by g* denote the corresponding transformation. Each tensor field 
w E r;:: (T M) can be regarded as a family of tensors of valence ( n, m) 

{wx E T;::(TxM)}xEM 

which depends smoothly on x. A tensor field w is an invariant if 

* g .Wx = Wg.x 

for all x E M, g E G. 
Let Xo be an arbitrary point of M and put G = Gx0 • Note that each invariant tensor 

field w is uniquely determined by the tensor Wxo E r;::(TxoM). Let g be an element of 
G. Then the mapping dg is an automorphism of the space Tx 0 M. Therefore, dg gives 
an action of the group G on r;::(Tx0 M). This action is called isotropic. Since w is 
invariant, we see that the tensor Wx 0 is invariant under the action of G on T;::(Tx 0 M). 
Conversely, suppose Wx 0 E T;::(Tx 0 M) is an arbitrary tensor invariant under the action 
of G. Putting 

* Wg.x = g Wxo, 

we obtain a tensor field w on M invariant under the action of G. So, we have proved 
the following 

Proposition. There is a one-to-one correspondence between the set of tensor fields 
of valence ( n, m) on M invariant under the action of G and the set of tensors from 
r;::(Tx0 M) invariant under the isotropic action of the Lie group G = Gxo. 

Note that in order to describe tensors invariant under the isotropic action of G, it 
is sufficient to know the action of G on the tangent space Tx 0 M. Since this action is 
linear, we obtain the homomorphism of Lie groups f: G-+ GL(Tx0 M). 
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Theorem. Let (G, M) be a homogeneous space, x an arbitrary point of M, and 
G = G xa. Let (g, g) be the pair of Lie algebras corresponding to the pair ( G, G). 

a) The tangent space Tx 0 M can be naturally identified with the factor space gjg. 
b) The homomorphism of Lie algebras p : g --+ gl(gjg) defined by the homomor­

phism of Lie groups G--+ GL(Tx0 M) coincides with the isotropic representation of the 
pair (g, g). 

Let f: G--+ GL(V) be an arbitrary homomorphism of Lie groups. The homomor­
phism f gives a linear action of the Lie group G on V. Then we can naturally define 
a linear action of G on V*: 

(g.a)(v) = a(g-1.v) 

for g E G, a E V*, v E V. This allows to prolong the action of G to an arbitrary 
tensor space: 

for g E G, v1 , ... , Vn E V, vl, ... , vm E V*. There exists a homomorphism of Lie 
groups G --+ GL(T~ (V)) corresponding to this action. The corresponding homomor­
phism of Lie algebras g--+ g((T~(V)) turns the space T~(V) into a g-module. 

Proposition. 
a) Let V denote the g-module corresponding to the linear action of G on V. Then 

the g-module V* corresponding to the action of G on V* can be given by 

(x.a)(v) = -a(x.v) 

for a E V*, v E V, x E g. 
b) The g-module T~ (V) corresponding to the action of G on the space T~ (V) can 

be given by 

n 

= L V1 0 · · · 0 (x.vi) 0 · · · 0 Vn 0 v1 0 · · · 0 vm+ 
i=l 

m 

+ L v1 0 · · · 0 Vn 0 v1 0 · · · 0 (x.vi) 0 · · · 0 vm. 
i=l 

c) A tensor w E T~ (V) is invariant under the action of G if and only if x.w = 0 for 
all X E g. 

d) A subspace W C V is invariant under the action of G if and only if W is an 
invariant subspace of the g-module V. 

Thus, description of tensors invariant under the isotropic action of the Lie group 
G can be reduced to description of tensor invariants of the g-module gjg. Note that 
if we study tensor invariants of a g-module V, it is important to consider not the Lie 
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algebra g itself but its image by the mapping g --t gl(V), x ~ xv. We shall first of 
all be interested in invariant bilinear forms, operators, vectors and covectors (linear 
forms) as well as invariant subspaces. 

Let us write out conditions for these objects to be invariant. 
1. A vector v E Vis invariant {:} x.v = 0 Vx E g. 
2. A covector a E V* is invariant{:} a(x.v) = 0 Vv E V, x E g or 

x.v C Kera 'Vx E g. 

3. A bilinear form b E Bil(V) is invariant if 

Vv1, Vz E V, x E g. 

4. An operator r.p E gl(V) is invariant if 

x.r.p(v)- r.p(x.v) = 0 Vv E V, x E g 

or 
'Vx E g. 

5. A subspace W C Vis invariant if x.W C W Vx E g. 
To each subalgebra a C g((2, llR) we can assign the natural a-module llR2 . Any two­

dimensional faithful module can be represented as a module of this form. Therefore, 
in order to describe all invariants of a g-module g/ g, it is sufficient to do it for the cor­
responding a-modules llR2 , where a C gl(2,llR). Note that if two pairs are isotropically 
equivalent, then the corresponding g-modules g/ g have the same invariants. 

Invariants of a-modules llR2 such that a is one of the subalgebras of gl(2, llR) obtained 
earlier are tabulated in appendix C. 

Some corollaries. 
1. Only the subalgebras I and III(O) have an invariant positive definite symmetric 

form. Therefore, the only homogeneous spaces to allow an invariant Riemannian 
metric are those whose corresponding pairs of Lie algebras are equivalent to one of 
the following pairs: 

1.1, 2.2(0), 11.2, 11.3. 

2. The only homogeneous spaces to allow an invariant pseudo-Riemannian metric 
are those whose the corresponding pairs of Lie algebras are equal to one of the following 
pairs: 

1.1, 2.1(-1), 11.1. 

§2. JET SPACES AND DIFFERENTIAL INVARIANTS 

2.1. Jet spaces. 
Let a be an arbitrary point on the line. 
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Definition. Two functions f, g E C 00 ("1R) are called k-equivalent at the point a if 

f(x)- g(x) = o ((x- a)k) as x--+ a. 

From the definition it follows that two functions f and g are k-equivalent if and 
only if f(a) = g(a) and f(i)(a) = g(i)(a), 1 :( i :( k. 

It is easy to check that the k-equivalence relation is indeed an equivalence relation. 
The class of functions k-equivalent to f at a point a E JR is called the k-jet off at the 
point a and is denoted by [f] ~. In particular, [f] ~ is the set of all smooth functions 
such that g(a) = f(a). By J~ denote the set of k-equivalence classes at a point a E JR. 
To every class [f]~ we can assign a collection of numbers 

. - (i) (yo, Yb ... , Yk), where Y2 - f (a), 0 :( i :( k, 

which uniquely determine the class. 

Exercise. Show that for any collection of numbers (y0 , y1 , ... , Yk) there exists a smooth 
function f such that Yi = f(i)(a), 0 :( i :( k. 

Thus, for every point a E JR, the set J~ can be identified with JRk+l. 
By Jk denote the union of all J~: 

It follows that we can consider Jk as JRk+2 . Namely, to each element [f]~ E Jk assign 
the set of k + 2 numbers 

. - (i) (x, Yo, YI, ... , Yk), where Y2- f (x). 

To every function f E C00 ("1R) it is possible to assign the curve in Jk: 

sk(f): t r-+ (t, [f]}). 

It is called the k-jet of the function f. For example, if we identity Jk with JRk+ 2 , then 
the curve corresponding to the function f ( x) = x 2 has the form: 

tr-+ (t,t2 ,2t,2,0, ... ,0). 

Exercise. Let s:t r-+ (t,y0 (t),y1(t), ... ,yn(t)) be some curve in the space Jk. Show 
that it has the form s k (f) if and only if Yi ( t) E 0 00 (JR) and Yi+ 1 = y~ ( t) for all 
t E "IR, 0 :( i :( k - 1. 

Consider now the Lie algebra V(JR2 ) of all vector fields on the plane. Let us recall 
that every vector field v E V(JR2 ) generates a local one-parameter group of diffeomor­
phisms { Cf?t} . It is uniquely determined by: 

sa(o) =a, 
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where sa(t) = 'Pt(a) for all a E ~-
Now with every vector field v on the plane we associate a certain vector field 

v(k) on the space Jk. To do it, first, we construct the local one-parameter group 
of diffeomorphisms { 'Pt} corresponding to the vector field v E D (~ 2 ). Further, let 
(a, [f]~) be some element of Jk and let functions gt, ht E C00 (~) be given by 

(gt (X), ht (X)) = 'Pt (X, j (X)) for all X E ~-

Then put 

<p~k)(a, [!]~) = (gt(a), [ht o g; 1 ]~t(a)) · 

For a fixed point (a, [!]~) E Jk all the constructions described above will be well­
defined for sufficiently small t. In particular, if t = 0, then g0 = Id:~p, h0 = f, and 
consequently <p~k) = Id1 k. 

Conversely, for each t E ~the diffeomorphism <p~k) of the space Jk will be defined 
on a certain open domain. Moreover, from the definition it immediately follows that 
<p~~) o <p~:) = <p~~~t2 is defined everywhere, where this equality makes sense. Thus, we 
have obtained a local one-parameter transformation group of Jk. The corresponding 
vector field vk on the space Jk is called the k-th prolongation of the vector field v. 

Theorem 1. The map v ---+ v(k) is a homomorphism of the Lie algebra D(~2 ) into 
the Lie algebra of all vector fields on Jk. 

Examples. 
1) Suppose k = 0. Then an element (a,[!]~) of the space J 0 can be identified with 

the point (a, f (a)) on the plane. The functions gt and ht are defined by the equality 

(gt (X), ht (X)) = 'Pt (X, f (X))· 

Then 

<p~0):(a,b) r-+ (gt(a), [htog; 1 ]~t(a)) = 

(gt(a), ht o gi 1 (gt(a))) = (gt(a), ht(a)) =SOt( a, b). 

So, in our case <p~o) = 'Pt· Hence, v(O) = v. This enables us to identify the spaces 
J 0 and ~2 . In agreement with the identification, we shall denote coordinates on the 
plane by (x, Yo). 

2) Let v = y0 c/L be a vector field on the plane. Find the vector field v(l). The 
uyo 

one-parameter transformation group {SOt} corresponding to the vector field v has the 
form: 

'Pt: (x, Yo) r-+ (x, etyo). 

Let us identify the spaces J 1 and ~ 3 . Suppose (a, y0 , y1 ) is an arbitrary point in ~ 3 . 

The corresponding point in J1 is (a, [yo+ YI(x- a)]~). Then the functions gt and ht 
are determined by 
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so that 

9t(x) = x, 

Then 

Hence 
(1) a a 

v =yo-+Y1-· 
oyo OY1 

As we can see, it is rather difficult to find prolongations of vector fields using only 
definitions. However, there exist simple formulas to do it. Some of them allow to do 
it without finding the corresponding one-parameter transformation groups. 

Theorem 2. Let v = A(x, Yo) fx + Bo(x, Yo) 8~0 be a vector field on the plane, then 

the vector field v(k) has the form: 

where 

and 

Example. Let v = y0 88 - x-88 be a vector field on the plane. Then, from theorem 
x Yo 

2 it follows that 
(1) a a a 

v =yo--x-+B1-, 
ox oyo oy1 

where 
dB0 dA 2 

B1=--y1-=-1-y. 
dx dx 1 

Thus, 
(1) a a 2 ) a v =yo--x--(1+y1 -. 

ox oyo oy1 

2.2. Differential invariants of homogeneous spaces. Suppose now g is a Lie 
algebra of vector fields on the plane. Denote by g(k) its image by the mapping v f--+ 

v(k). From theorem 1 it follows that g(k) is a Lie algebra of vector fields on the space 
Jk. 
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Definition. A differential invariant of the k-th order of a Lie algebra g E V(JR2 ) is a 
function F E c= ( Jk) such that 

v(k) (F) = 0 for all v E g. 

The set of all differential invariants of the k-th order of a Lie algebra g E V(JR2 ) is 
denoted by h (g). 

Using the properties of the action of vector fields on functions, one can easily prove 
the following 

Theorem 3. 
1. The set h(g) is a subalgebra of the algebra c=(Jk). 
2. If fi, ... , fn E h(g) and FE c=(JRn), then F(fi, ... , fn) E h(g). 

Definition. We say that a set of differential invariants h, ... , fr is a (local) basis of 
the Lie algebra Ik(g), if 

(1) the functions are functionally independent (in some neighborhood); 
(2) for any differential invariant f E Ik(g) there exists a smooth function F such 

that f can be (locally) written as f = F(h, ... , fr)· 

For example, let g = s[(2, JR) be the Lie algebra of vector fields on JR2 with basis 

& 
xl =&yo' 

& 
X2 = Yo-;::;-, 

uyo 

Then direct calculation shows that the function x is a basis of the algebra of invariants 
h(g) whenever k = 0, 1, 2. If k = 3, there exists a basis {!I, h} of fs(g), where 

h=x, f _ 2YIY3- 3y~ 
2- 2 2 

YI 

The restriction of the differential invariant h to the 3-jet of a function cp(x) 

2cp' cp"' - 3( cp") 2 

2( cp')2 

is called a Schwartz derivative or Schwartzian of the function cp(x). 
In appendix C, for each transitive Lie algebra g of vector fields on the plane, we 

give a nontrivial differential invariant of the least order. 
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CHAPTER IV 

APPLICATIONS TO DIFFERENTIAL EQUATIONS 

§1. ORDINARY DIFFERENTIAL EQUATIONS 

1.1. Geometrical interpretation of differential equations. Any ordinary dif­
ferential equation of the n-th order can be written as 

F(f(n), ... ,j',j,x) =0, 

where F: :JP;.n+2 ----+ :JP;. is some smooth function. 
From the definition of the space of jets Jn we immediately obtain the following 

interpretation of ordinary differential equations. 
An ordinary differential equation of the n-th order is a smooth function F on the 

space Jn. A solution of this equation is a function f: :JP;. ----+ :JP;. such that F( sn (f)) = 0. 
Let£ be a surface in Jn given by the equation F = 0. Note that different functions 

F can define the same surface E. Besides, solutions of the corresponding differential 
equations coincide. It shows that in order to define a differential equation it is sufficient 
to give a surface £ defined by a function F, but the knowledge of F is not necessary. 

Hence, it makes sense to reformulate the interpretation of an ordinary differential 
equation in the following way. 

An ordinary differential equation of the n-th order is a hypersurface £ in the space 
Jn. A solution of this equation is a function f: :JP;. ----+ :JP;. such that Sn (f) C £. 

Solutions of a differential equation can be characterized internally, i.e. in terms 
of the space Jn itself. Namely, let ( x, p0 , ... , Pn) be the standard coordinates in Jn. 
Consider the set of n differential forms w1 , w2 , ... , Wn on Jn: 

These forms are called the Cartan forms. They are really very important because 
their restrictions to any curve sn(f), where f E C 00 (J11;.), are equal to zero. Indeed, 
any curve Sn (f) has the form: 

sn(f): t r-+ (t, j(t), J' (t), ... , j(n) (t)). 

Then 

Conversely, suppose 
s:t r-+ (t,po(t),pl(t), ... ,Pn(t)) 

is a curve in Jn such that s* ( wi) = 0 for all 1 :S; i :S; n. It means that 

d(Pi-l(t))- Pi(t)dt = (p~_ 1 (t)- Pi(t))dt = 0, 
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i.e. Pi(t) = p~_ 1 (t) for all1::::; i::::; n. 

It immediately follows that Pi(t) = p~i)(t) for alll::::; i::::; n. Thus, s = sn(Po(t)). 
Note that we are interested not in curves s: Tit ---+ Jn themselves, but in their images 

in the space Jn, which are one-dimensional submanifolds { s( t) I t E Tit}. In addition, if 
f is a solution of a differential equation £ C Jn, then the corresponding submanifold 

Lj = { sn(f)(t) I t E Tit} 

has the following properties: 
1) Lt c £; 
2) wiiLt = 0 for all 1 ::::; i ::::; n; 

3) the projection of Lt to the x-axis has no singularities. 
The latest condition means that the restriction of the projection 

1r: (x,po, ... ,Pn) 1--+ x 

to the manifold L f is a smooth diffeomorphism. Moreover, any one-dimensional sub­
manifold L C Jn satisfying properties 1 )-3) uniquely determines a solution of the 
equation E. Indeed, since the projection of L onto the x-axis has no singularities, we 
see that it can be uniquely represented as 

L = { (t,po(t),Pl(t), ... ,pn(t)) It E Tit}. 

It follows that p0 ( t) is a solution of the differential equation £ and L = Lp0 • If we omit 
condition 3), then we arrive at the concept of a generalized solution of a differential 
equation£. 

A generalized solution of a differential equation £ C Jn is a one-dimensional sub­
manifold L C Jn such that the following conditions hold: 

1) Lt c £; 
2) wiiL1 = 0 for alll::::; i::::; n. 

Those of them that can be projected to the x-axis without singularities determine 
classical solutions f E coo (Tit). 

1.2 Symmetries and algorithm of integrating. Now we come to the concept of 
a symmetry of a differential equation. Symmetries play very important role in the 
procedure of solution of equations. 

Definition. A vector field V(nt2 ) is called a (point) symmetry of a differential equation 
£ C Jn if the vector field vCn) is tangent to the surface £, i.e. 

The following proposition follows directly from the definition. 
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Proposition. 
1. The set of all symmetries of an equation £ C Jn is a Lie algebra and is denoted 

by Sym(£). 
2. Let us assume that £ is given by the equation F = 0 for some smooth function 

F E coo ( Jn). Then v E Sym( £) if and only if 

v(n) (F) = ).F 

for a certain smooth function ). E coo ( Jn). 

Corollary. Suppose g is a Lie algebra of vector fields on the plane, F E In (g), and £ 
is an arbitrary differential equation of the n-th order given by the function F. Then 
g c Sym(E). 

Thus, all ordinary differential equations given by differential invariants of a Lie 
algebra g c D(JR2 ) have g as an algebra of their point symmetries. 

In their works Lie and Bianchi showed that it is useful to consider symmetries in 
theory of differential equations. 

Theorem([6],[9]). Suppose g is ann-dimensional solvable symmetry algebra of an 
equation £ C Jn. Then this equation is solvable by quadratures. 

This theorem is constructive. The following algorithm allows to integrate an equa­
tion£ starting from its symmetry algebra g. 

1. Choose a basis VIJ v 2 , ... , Vn of the Lie algebra g so that for every i E N there 
exists ki E N such that the vector fields v1, v2, ... , vki form a basis of the Lie algebra 
1)(i) g. 

2. Consider the restrictions of the forms Wi to the surface £ and construct the 
matrix 

n = (wi(vjn)). 

3. Assume that it is non-singular (otherwise, see item 8). Find the forms w~ from 
the equality 

4. The form w~ is closed. Let us find a function Fn such that w~ = dFn: 

5. Restrict all forms wL ... w~_ 1 to the level surface Fn = en, where Cn is an 
arbitrary real number. 

6. The form w~_ 1 is closed. Let us integrate it, i.e. let us find a function Fn-1 
such that dFn_ 1 = w~_ 1 . Restrict the rest of the forms to the level surface 

{Fn = Cn, Fn-1 = Cn-1}, where Cn-1 E JR. 
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7. Continuing in the same way we obtain the functions FI, F2, ... , Fn. Then any 
solution L can be given as an intersection of some surface { FI = CI, ... , Fn = Cn} and 
the manifold £. 

8. In the case of singular matrix n there exists a vector field v E g such that 
Wi ( v) = 0 for all 1 :::; i :::; n. In such a situation all solutions of the equation £ are 
trajectories of the one-parameter transformation group { = cpt} corresponding to the 
vector field vCn): 

L = { cpt(a) I t E lR }, where a E £. 

Example. Suppose g = ( tx; 8~0 ). The functions PI and P2 form a basis of the 

algebra of invariant J 2(g). Hence, all equations of the form F(pi,p2) = 0 have gas an 
algebra of point symmetries. Now we assume that the equation F(pi,p2) is solvable 
with respect to p2 and can be written as p2 = F(pi) or, in the classical notation, as 
f" = F(f'). Let us apply the algorithm described above to equations of this type. 

1. Since Vg = {0}, we choose the following basis: VI = tx; v2 = 8~0 • One can 

easily check that v(I) = _!}_ v(I) = _2._. 
I ax' 2 8po 

2. Take ( x, p0 , PI) for coordinates on £. Then the restrictions of the forms WI and 
w2 to £, in the coordinates ( x, p0 , PI), have the form: 

The matrix D is: 

3. This matrix is singular only if F(pi) = 0. Otherwise 

(~ -F(~l)) 
-pl . 

F(p!) 

Consequently, 

4. The forms w~ and w; are closed. In addition 

J , J PidPI 
w2 =Po- F(pi). 
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Hence, any solution of the initial differential equation can be found from the functional 
equations 

(1) 

Classical solutions are those of the obtained ones which can be projected to the x-axis 
without singularities. 

For instance, let F(p1) =PI· Then system (1) has the form: 

Solving this system, we obtain 

Finally, every solution has the form 

Thus, classical solutions of the equation f" = (!') 2 have the form: 

j(x) = c2 -ln ICl- xi. 

§2. SUPERPOSITION PRINCIPLE 

Let ( G, M) be a real homogeneous space, where the Lie group G acts effectively on 
the manifold M. Let g be the Lie algebra of G and V(M) the Lie algebra of all vector 
fields on M. Consider the homomorphism of Lie algebras 

p: g---+ V(M) 

corresponding to the action of G on M. Since p is an injection, it is possible to identify 
g with a certain subalgebra of V(M). 

An ordinary differential equation of the first order on the manifold M can be re­
garded as a smooth mapping A : ~---+ V(M). A solution of this equation is a smooth 
mapping cp : ~ ---+ M such that the tangent vector to the curve cp at any point t E ~ 

is equal to >.(t)lcp(t)· 
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Definition. An ordinary differential equation of the first order ,\ : lR -----+ V(M) is 
called automorphic if .\(t) E g for all t E JR. 

Fix a basis XI, ... , Xn of g (n =dim g). Then any automorphic equation is deter­
mined by smooth functions ai : lR -----+ JR, 1 ~ i ~ n, such that 

Theorem([6],[9]). Let g(t) be a curve in G that can be uniquely determined as a 
solution of the equation 

g(t) = g(t)X(t) 

with initial condition g(O) =e. Then any curve 

cp(t) = g(t).cp(O), cp(O) = mo EM, (1) 

in the manifold M is a solution of the equation 

,\ : lR-----+ V(M). 

To prove this it is sufficient to represent cp( t) as a composition of the following 
mappings 

g - 7f - a 
lR --+ G --+ GxM --+ M, 

where 1r is the embedding x ~-+ (x, m 0 ), and a is the action of G on M. 
Since any solution is uniquely defined by initial condition, we see that formula (1) 

gives the set of all solutions of the equation ,\ : lR-----+ V(M). 

Let us explain how to find this mapping g. We shall construct the function of 
superposition F, which allows to construct the mapping g for an equation ,\ : lR -----+ 
V(M) starting from the number k (known beforehand) of particular solutions of the 
equation. 

Now we introduce the following concept. 

Definition. The stiffness of the homogeneous space ( G, M) is the least natural num­

ber k for which there exist points XI' ... 'Xk of M such that the group n~=I Gxi is 
discrete. 

Assume that the stiffness of ( G, M) is equal to k and there exist points XI, ... , x k of 

M such that the group n~=I Gx; is trivial. Consider the action of G on the manifold 
M x M x · · · x M(k times) defined by 

where g E G, mi EM, 1 ~ i ~ k. Then the action of G on the orbit O(x1 , ... , xk) of 
the point (XI, ... , x k) is simply transitive. Consider the function of superposition 
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where F(y1, ... , Yk) is the element of G such that 

In the general case (when the group n7=1 Gxi is discrete), it is also possible to 
define the function of superposition but, generally speaking, it will be many-valued. 

Now suppose A : lR --+ V(M) is an arbitrary automorphic differential equation. 
Assume that cp1, ... , 4?k are its particular solutions with initial conditions Y?i(O) = 
Xi, 1 ~ i ~ k. Then it is clear that ( 4?1 (t), ... , 4?k(t)) E O(x1, ... , xk) for t E R 

The mapping g : lR --+ G is determined by g(t) = F(cp1(t), ... , 4?k(t)). Thus the 
knowledge of k particular solutions of the equation A with definite initial conditions 
allows to write out the general solution: 

cp(t) = F(cp1(t), ... , 4?k(t)).cp(O). 

Example 1. Consider the homogeneous space ( G, M), where G 
M = lR X S 1 : 

G = GL(2, JR) = { ( ~ ~)I ad- be i 0} , 

.zv1 = JR x s1 ~ JR2\{0} 

GL(2, JR) and 

Therefore, coordinates on M coincide with coordinates (x,y) on JR2 . The group G 
acts naturally on M. 

Consider the following basis of the corresponding Lie algebra of vector fields on M: 

The corresponding system of differential equations has the form: 

{ 
~ = a1x + a2y 

y = a3x + a4y 

where ai (i = 1, ... , 4) are arbitrary functions oft. 
Let us now find the stiffness and the superposition function for the homogeneous 

space (G, M). 

The stiffness k equals 2. Indeed, for the points a1 = (1, 0) and a 2 = (0, 1), the 
intersection 

Ga 1 n Ga2 

is discrete, whereas the stabilizers of the points a1, a2 themselves are not discrete. The 
superposition function for the points a1 = (1, 0), a2 = (0, 1) has the form: 

F ( ( ~~ ) ' ( ~~ ) ) = ( ~~ 
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The function F is defined only for those pairs (x1 , y1 ), (x2 , y2 ) whose coordinates 
satisfy the condition 

I X1 X21 # 0. 
Y1 Y2 

Now assume that u1(t) = (x1(t), Yl(t)) and u2(t) = (x2(t), Y2(t)) are two particular 
solutions with the following initial conditions 

u1 (0) = (1, 0), 

u2(0) = (0, 1). 

Then the general solution with initial condition u(O) = (c1 , c2 ) has the form: 

These results are in agreement with theory of differential equations. 

Example 2. Consider the action of the group 

G = {(A, s, f) lA E SL(2, IR), s E IR:;_, f E IRn[x, y]} 

(where by IRn[x, y] we denote the set of all homogeneous polynomials in two variables 
x and y) on the manifold 

where 
(X, Y, Z) rv (AX, AY, An Z) , 

and A E lR *, and n): 0, n E N. 
The action of G on M is given by: 

(A, s, f).(x, y, z) = ((x, y)At, sz + f((x, y)At)). 

Let us consider the local chart on M which contains all points (x, y, z) such that 
y # 0. Since a point ( x, y, z) is equivalent to one and only one point ( ~, 1, yzn) such 
that the second coordinate is equal to 1, the local coordinates (p, q) on M have the 
form: 

X 
p= -, 

y 

z 
q-­- yn' 

Consider the following basis of the corresponding Lie algebra of vector fields on M: 
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The corresponding differential equation has the form: 

where ai (1 ~ i ~ n+5) are arbitrary functions oft. 
Here the stiffness is: 

a) n = 0 or n = 1: k = 3. The points such that the group nf=1 Gai is discrete are: 
a1 = (0, 1, 0), az = (1, 1, 0), a3 = (2, 1, 1); 

b) n > 1: k = n + 2. The points such that the group nf=1 Gai is discrete are: 
a1 = (0, 1, 0), az = (1, 1, 0), ... , an+l = (n, 1, 0), an+2 = (0, 1, 1). 

Proof. It is known that the action of SL(2, JR) on the triples of projectively independent 
points of JRP 1 is simply transitive. Then the stiffness can not be less than 3. 

Assume that n > 1 and k is the stiffness of the homogeneous space ( G, M). Let 
al = (xl, Yl, zl), ... 'ak = (xk, Yk, Zk) be points of M such that the group nr=l Gai is 
discrete. For each point ai its stabilizer G ai is the set of all elements of G satisfying 
the following equations: 

where f(x,y) = L_~=oaixiyn-i. So, we have got n+2 variables: ai,O ~ i ~nand k. 
Consequently, the stiffness can not be less than n + 2 if n > 1. 

The function of superposition has the form: 

where 

and 

a= px2 - >.x1, 

c = J-LYz - >.y1, 

n 

f(x,y) = Laixiyn-i, 
i=O 
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where ai, 0 ( i ( n, can be calculated from: 

For the number s we have: 
a) n > 1 

b) n = 0,1 

s = (2c + d)n ( ~~ - Ln ( ~~)) . 
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So, if we know k particular solutions of this differential equation with the following 
initial conditions 
a) n = 0, 1: k = 3 

b)n>l:k=n+2 

u1(0) = (0,0), 

u2(0) = (1, 0), 

u3(0) = (2, 1); 

U1 (0) = (0, 0), 

u2(0) = (1, 0), 

Un+l(O) = (n,O), 

Un+2(0) = (0, 1); 

we can write out the general solution with initial condition u(O) = (c1, c2): 

( ) _ ( () ( )) _ (a(t)c1 + b(t) s(t)c2 + j(a(t)c1 + b(t), c(t)c1 + d(t))) 
U t - X t , y t - ) ( , ( ) )) , c(t c1 +d t) (c t c1 +d(t n 

where 

(( a(t) 
c( t) 

b(t)) ) -d(t) ,s(t),f -

F((x1(t), 1,y1(t)), (x2(t), 1,y2(t)), ... , (xn+2(t), 1,Yn+2(t))). 
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APPENDIX A 

EXPONENTIAL MAPPING 

Let us consider the complex-number series 

oo zn z2 z3 2::-1 =1+z+ 1 +-1 + .... 
n. 2. 3. 

n=O 

(1) 

Let us find its radius of convergence. It is possible to do it using the Cauchy radical 
test: 

R = 1/l , where l = lim \1'11/n!l. 
n--+oo 

It is possible to show that 

lim \1'11/n!l = lim (n!)-l/n = 0. 
n--+oo n--+oo 

Hence, series ( 1) converges at each z E C. 

Remark. It is possible to show this directly: for each z E C we can find a natural 
number N such that for any n ? N ( n E N) the following condition holds: 

lz/nl ~ 1/2. 

It follows that 

and therefore series (1) is absolutely convergent for all z E C. By ez denote the sum of 
series (1) at a point z E C. The following fact is proved in theory of complex functions. 

Theorem (for term-by-term differentiation). Let the radius of convergence of a 
series 

00 

f(z) = L CnZn (2) 
n=O 

be equal toR? 0. Then in the domain lzl < R, this series is term-by-term differen­
tiable and the series obtained from series (2) by differentiation have the same radius 
of convergence as series (2). 
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Theorem 1 (on properties of the function e2 ). 

1. f(z) = e2 is infinitely continuously differentiable. Besides, (e2 )' = e2 • 

2. e21 +zz = e21 • e22 for all z1, z2 E :!lR and e0 = 1. 
In other words, the map z ~---+ e2 is a homomorphism of the additive group C into the 
multiplicative group C*. 

3. e2 /:- 0 for all z E C. 

Proof. 
1. Since the radius of convergence of series (1) is infinite, we see that the function 

e2 is infinitely differentiable and its derivative can be found from the equality 

2. Since series (1) is absolutely convergent at any z E C, we see that the number 
e21 • e22 can be found as the product of series: 

3. It immediately follows from 2. 

For the further study of the function e2 we have to pass to functions of a real 
variable. Let z = x + iy, where x, y E :!JR. Then e2 = ex · eiy. We shall study the 
functions ex and eix separately. Consider the restriction of e2 to real numbers. Since 
all coefficients of series (1) are real, we obtain the smooth real function ex. 

Theorem 2. The function ex is 
1 o an isomorphism of the groups :!lR and :!JR+; 
2° a monotonically increasing function and lim ex = 0, lim ex = oo. 

x->-co x->co 

Proof. The equalities ex1 +x2 = ex1 • ex2 and e0 = 1 follow from theorem 1. Let us 
show that ex ;:?: 0 for all x E :!JR. Indeed, let x ;:?: 0. Since all terms of series (1) are 
positive, we see that x ;:?: 0. If x ~ 0, then we have ex = e~x ? 0. Moreover, if 
x ;:?: 0 then ex ;:?: 1 and if x ~ 0 then 0 ~ ex ~ 1. Let x, y be real numbers such that 
x ;:?: y. Since ex = eY · ex-y ;:?: eY, we see that ex is monotonic. It is obvious that 
for any x ;:?: 0 the following condition holds: ex ;:?: 1 + x. Hence, lim ex = oo and 

X->CO 
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lim ex = lim -l;;, = 0. This yields the result. Now consider the function eix, where 
X->-CX) X->CX> e 

x E ~. We have: 

ix ~ (ix)n ~ (ix)2k ~ (ix)2k+l 
e = ~ ~ = f::'o (2k)! + 6 (2k + 1)! 

= ( _1)k. x2k . = ( _1)k. x2k+l 

t; (2k)! + 'L t; (2k + 1)! 

Since the series -z=:=o (i~r is convergent, we see that its real and imaginary parts are 
also convergent. By definition put 

cos X = lReix, 

sin x = S'eix. 

Since the function eix is smooth, we see that the functions cos x and sin x are also 
smooth and can be written as 

= ( _1)k. x2k x2 x4 
cos X = L ( k)' = 1 - -, + -, - ... ' 2 . 2. 4. 

k=O 

. = ( _1)k. x2k+l x3 x5 
sm x = L ( k 11 = x - - 1 + - 1 - · .. 

k=O 
2. +1/" 3. 5. 

Theorem 3. For each x E ~the following condition holds 

sin2 + cos2 = 1. 

Proof. Indeed, eix = cos x + i sin x. Then cos x - i sin x eix 
sin2 +cos2 = (cosx + isinx)(cosx- isinx) = eix · e-ix = 1. 

eix. Therefore, 

Corollary. The functions sin x and cos x are bounded on ~. Moreover, I sin xI ~ 1 
and I cos xI ~ 1 for all x E R 

So, the function eix takes real numbers into the circle lzl = 1. We shall see it later 
that eix is surjective. 

Theorem 4. 
1° (COS X)' = sin X, (sin X) 1 = COS X; 
2° cosO= 1, sinO= 0; 
3° sin(x+y) =sinxcosy+sinycosx, 

cos(x + y) = cosxcosy- sinxsiny; 
4 o sin x is an odd function, cos x is an even one. 

Proof. The desired formulas immediately follow from: 
10 

(sin x) 1 + i (cos x) 1 = ( e ix )' = ie ix = i (cos x + i sin x) = (- sin x) + i cos x; 

ei·O- 1· 
- ' 

ei(x+y) = eixeiY 

eix = e-ix. 
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Corollary. There exists an E > 0 such that the function sin x is positive on the 
interval (0, E). 

Proof. Since cos 0 = 1, we see that there exists an E > 0 such that cos x > 0 on 
the interval ( -E, E). Hence, sinx strictly increases on ( -E, E). Using the condition 
sinO= 0, we obtain sinx > 0 for x E (O,E). 

Theorem 5. sin4 < 0. 

Proof. We have 

But 

43 45 47 49 
4-3!+5!-7!+9!= 

and 

1451520- 3870720 + 3096576- 1179648 + 262144 
9! 

-240128 
----<0, 

9! 

( 44k-1 44k+l ' 44k-1 ( 16 ) 
\(4k-1)!- (4k+l)!) = (4k-1)! 1 - (4k+1)4k >O 

for k ): 3. Hence, sin 4 < 0. 

Corollary. The set of positive solutions of the equation sin x = 0 is not empty. 

Proof. Indeed, since sin 4 < 0 and there exists E > 0 such that sin x > 0 for all 
x E (0, E), we see that there exists a number a such that sin a= 0. 

By R denote the set of all positive solutions of the equation sin x = 0. Since 
R = {xl sinx = 0} n [E, +oo) for some E > 0, we see that R is closed. Therefore, R has 
the smallest element. We denote this element by 1r. 

Theorem 6. 
1. The table of the values of sin x and cos x at the points ~; 1r; 3; ; 27r has the 

form: 

X Jr/2 7f 37r/2 27f 

sinx 1 0 -1 0 

cosx 0 -1 0 1 

2. The functions sin x and cos x are periodic with period T = 27r. 
3. The set of all solutions of the equation sin x = 0 has the form R = { 1rk I k E :-z}. 
4. The mapping x f---+ eix is a bijection of the half-open interval [0, 27r) onto the 

circle {z E CC I lzl = 1}. 

Proof. Let us calculate cos 1r. If sin 1r = 0, then cos 1r = ±1. But sin x > 0 for all 
x E (0,1r) and therefore cosx is a strictly decreasing function on (0,1r), cos1r = -1. 
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Furthermore, we have 0 = sin 1r = sin(~ + ~) = 2 sin~ · cos~. But sin~ > 0. Thus, 
cos ~ = 0 and sin ~ = 1. Similarly, we can find the values of sin x and cos x at the 
other points. 

2. Note that 

sin ( x + 1f) = sin x cos 1r + sin 1r cos x = - sin x, 

cos ( x + 1r) = cos x cos 1r - sin x sin 1r = - cos x. 

It follows that sin(x + 2n) = sinx and cos(x + 2n) = cosx, i.e. sinx and cosx are 
periodic with period T = 2n. 

3. It is clear that sin 1r k = 0 for all k E .Z. Moreover, if sin a = 0 then sin( a+1r k) = 0 
for all k E .Z. Since 1r is the smallest positive solution of the equation sin x = 0, we 
see that each solution x 0 of sinx = 0 has the form x 0 = nk, where k is some integer. 

4. Since cos x monotonically decreases from 1 to -1 on [0, n] and sin x > 0 on 
(0, 1r), we see that the mapping x f----+ eix is a bijection of the segment [0, n] onto the 
semicircle {z E C I lzl = 1, S'z ~ 0}. This and the formulas sin(x + 1r) =- sinx and 
cos( x + 1r) = -cos 1r yield the result. 

Corollary. The function e2 is periodic with period T = 2ni and is a surjection 
onto C*. 

In the sequel, as a rule, we shall speak about the exponential of a real argument: 
x f----+ ex, x E ~-

Theorem 7. A solution of the differential equation f' = j, where f is real-valued 
function, with initial condition f(O) = 1 is unique and has the form: 

f(x) =ex. 

Proof. From theory of differential equations it follows that a solution exists and is 
unique. It remains to note that the function f ( x) = ex is a solution of our differential 
equation. 

Corollary. The set of all solution of the differential equation f' = f has the form 
{f(x) I f(x) = cex, c E ~}. 

Theorem 8. Any smooth homomorphism of the group Jill. into the group ~+ has the 
form: 

Proof. Let f : ~-----+ ~+ be a smooth homomorphism of groups. Then f(O) = 1 and 
f(x + y) = f(x)f(y). Put,\= f'(O). We have: 

J'(x) = lim f(x + y)- f(x) = f(x) ·lim f(y)- f(O) = f'(O)f(x) = Aj(x). 
y---+0 y y---+0 y 

In the case of ,\ = 0 we get f(x) = 1 = e0 ·x for all x E ~- Suppose ,\ #- 0. Put 
g(x) = !('!}:,). Then g(O) = f(O) = 1 and g'(x) = ±!'(x) = g(x). From theorem 7 it 
follows that g(x) =ex and f(x) = e>-x. 

Remark. It is possible to show that the theorem is true when f is a continuous homo­
morphism. 
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APPENDIX B 

ORDINARY DIFFERENTIAL EQUATIONS 

In this appendix we shall give basic definitions and formulate some basic results of 
theory of ordinary differential equations. 

Definition 1. An ordinary differential equation of the first order with respect to a 
vector-valued function f: lPI. -+ mn is an equation of the form: 

f' = F(f, t), (1) 

where F: mn X lPI. -+ mn is some fixed function. 

The basic result of theory of first-order differential equations is as follows: 

Theorem 1. Let a E lPI. and fo E mn be some fixed point on the line and vector in 
mn respectively. IfF is a differentiable function, then a solution of equation (1) with 
initial condition f(a) = fo exists and is uniquely determined in a certain neighborhood 
of the point a. 

If the solution of equation (1) can be determined on the whole line for any initial 
conditions, then equation ( 1) is called globally solvable. 

Examples. 
1) The ordinary differential equation f' = f with respect to a real-valued function 

f is globally solvable. Indeed, for all a E IPI., C E lPI. the function f(t) = Cex-a is the 
solution of this equation with initial condition f(a) =C. 

2) Let us consider the ordinary differential equation 

Its solution with initial condition f(O) = C has the form: 

c 
f(t) = 1- tC 

It is easy to see that for C ::/=- 0 this solution is not completely defined. So, the equation 
is not globally solvable. 

Definition 2. An ordinary differential equation of the n-th order with respect to a 
real-valued function f is an equation of the form 

f(n) =F(f(n-l), ... ,j',f,t), (2) 

where F: mn+l -+ lPI. is some function. 
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Any differential equation (2) can be reduced to equation (1) by introducing addi­
tional variables fi = j(i), 1 ~ i ~ n- 1. Define the function g: ~---+ ~n as 

g(t) = (j(t), JI(t), ... ,fn-l(t)). 

Then the function g satisfies the ordinary differential equation 

g'(t) = G(g, t), 

where 

G(xo, x1, ... ,Xn-1, t) = (x1, ... ,Xn-b F(xo, x1, ... , Xn-1, t)). 

Consequently, equation (2) with initial conditions 

j(a) =Co, j'(a) = C1, ... , j(n-l) = Cn-l 

for some fixed a, Co, ... , Cn-1 E ~is also uniquely solvable in a certain neighborhood 
of the point a. 

In the sequel we shall be particularly interesting in so-called homogeneous linear 
ordinary differential equations with constant coefficients. They are n-th order ordinary 
differential equations of the form 

j(n) = F(f(n-1), ... , j', j). 

where F: ~n ---+ ~ is some fixed linear mapping. They are usually written as 

f(n) + an-lf(n-l) + · · · + a1J' + aof = 0, (3) 

where a0 , a 1 , ... , an-l are some constants. To every equation of this form it is possible 
to assign the polynomial 

p(x) = xn + an-lXn-l + · · · + a1x + ao, 

which is called the characteristic polynomial of equation (3). 
Suppose F is the set of all solutions of equation (3). 

Theorem 2. 
1°. The set F is ann-dimensional vector space. 
2°. Assume that 

p(x) = (X- 0:1r1 '···'(X- Cl:mr= '((X- (31) 2 + "fi) 81 '· • •' ((X- f3z) 2 + rf) 81 

is the prime decomposition of the characteristic polynomial of equation (3). Then the 
functions 

0 ~ i ~ rj - 1, 1 ~ j ~ m; 

X i Sl.n"'~·X · ef3jx Xi COS"'~·X · e(3jX 0 /,; / S 1 1 / J. / l 
I) l I) l ::::;: 0 ::::;: j - l ::::;: ::::;: l 

form a basis of the space F. 
3°. The space F is invariant under linear operators La: C00 (~) ---+ C00 (~), a E ~' 

where 
(Laf) (t) = j(t- a) 

for all j E C00 (~). 

As a matter of fact, the latest property is defining for the solution space of equations 
(3). 
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Theorem 3. Let F be a finite-dimensional subspace of the vector space C00 (~) 

invariant under all linear operators of the form La, a E IPL Then F is exactly the 
solution space of some equation of form (3). 
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APPENDIX C 

LISTS 

List 1. TRANSITIVE FINITE-DIMENSIONAL LIE ALGEBRAS OF 

VECTOR FIELDS ON THE PLANE 

1.1. 

a a 
(~; ~~-
UXI UX2 

2.1. 

a a a a 
(~; ~; XI~+ A.x2~), IA.I ~ 1. 
UXI uX2 UXI UX2 

2.2. 

a a a a 
(~; ~· (>,xi- xz)~ + (x1 + A.x2)~), A.;;::: 0. 
UXI ax2' UXI UX2 

3.1. 

a a a a 
(~;~'XI~; X2~J· 
UXI UX2 UXI UX2 

3.2. 

a a a a a a 
(~; ~; XI~+X2~; -X2~+XI~J· 
UXI UX2 UXI uX2 UXI UX2 

4.1. 

a a a 
( ~; <f/I (xi)~; ... ; <f?n(xi)~ ), 
UXI UX2 UX2 

where functions <f/I, ... , <f?n form a basis of solutions of some homogeneous linear dif­
ferential equation 

j(n) + Cn-d(n-I) + · · · + Cof = 0 

with constant coefficients. 
5.1. 

a a a a 
(~; X2~; <f/I(xi)~; ... ;<pn(xi)~), 
UXI UX2 UX2 UX2 

where functions <f/1, ... , <f?n are the same as in 4.1. 
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6.1. 

( a a a a a n-1 a ) 
8x1 ; x1 8x1 + Ax2 8x2; 8x2' x1 8x2; · · · ; x1 8x2 ' 

7.1. 

a a 8 xn-l 8 8 8 n-2 a ) 
(-0 ; x1-8 +(n-1)~+ ( 1 1)1-0 ; ~; x1-8 ; ... ;x1 -8 . 

X1 X1 uX2 n - . X2 uX2 X2 X2 

8.1. 

( 8 a a 8 8 n-1 a ) 
8x1; x1 8x1 ; x2 8x2; 8x2; x1 8x2; · · · ; x1 8x2 · 

9.1. 

( a a ( ) a 8 8 n-1 a ) 
8x1; x1 8x1 + n - 1 x2 8x2; 8x2' x1 8x2; · · · ; x1 8x2 · 

10.1. 

11.1. 

a 2 8 a a 2 8 a) 
(-8 +x2-8 ;xl~-x2-8 ;xl~+~-

xl X2 UXl X2 UXl uX2 

11.3. 

a a 2 2 a a a 2 2) a ) (x1-- x2-; (1 + x1 - x2)~ + 2x1x2~; 2x1x2-8 + (1- x1 + x2 -8 . 
8x2 8x1 ux1 ux2 x1 x2 

a 
(-8 ; 

X1 
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13.1. 

14.1. 

15.1. 

16.1. 

17.1. 

a a a 2 a a a a a 
(-a ; 2xi-a +nx2-a ; xi-a +nxix2-a ; -,xi-a ; ... ;x7-a ). 

XI XI X2 XI X2 ax2 X2 X2 

18.1. 
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List 2. TRANSITIVE LIE TRANSFORMATION GROUPS OF THE PLANE 

G = { (x1, x2) f------+ (ax1 + b1, a>.x2 + b2) I a E JR+, b1, b2 E lR }. 

2.2. s = JR2 . 

G = { (xb x2) f------+ ( e>.a(x1 cos a+ x2 sin a) + b1, 
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e>.a( -x1 sin a+ X2 cos a)+ b2) I a, b1, b2 E lR }. 

3.2. s = JR2 • 

G = { (x1, x2) f-----t (a(x1 cos b + x2 sin b)+ c1, 

a(-x1sinb+x2cosb) +c2) I a E JR+, b,c1,c2 E JR}. 

4.1. s = JR2 • 

where F is the solution space of the differential equation 

G = { (xb x2) f------+ (x1 +a, bx2 + f(xl +a)) I a E JR, bE JR+, f E F}, 

where space F is the same as in 4.1. 
6.1. s = JR2 . 

G = { (xb x2) f------+ (ax1 + b, a>.x2 + J(ax1 +b)) I a E JR+, bE JR, f E 1Rn-l[x] }, 

.A=rfn-1. 

7.1. s = JR2 . 

G = { (x1, x2) f------+ (ax1 + b, an-lx2 + (ax1 + b)n-l + f(axl +b)) I 
a E JR+, bE lR, f E 1Rn-2[x] }. 
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8.1. S=liR2. 

G = { (x1, x2) f----+ (ax1 + b, cx2 + j(ax1 +b)) I a, c E JIR~, bE TIR, f E liRn-l[x] }. 

9.1. s = JIR2 • 

G = { (x1, x2) f----+ (ax1 + b, an-lx2 + f(axl +b)) I a E TIR~, bE TIR, f E liRn-l[x] }. 

10.1. s = TIR 2 \ {0}. 

a 12 ) E SL(2, JIR) } . 
a22 

G = { (Yl: Y2, z1: z2) f----+ ((anYl + a12Y2): (a21Y1 + a22Y2), (a22Z1- a21z2): 

( -a12Z1 + anz2)) I (an a 12 ) E SL(2, JIR) } . 
a21 a22 

11.2. S = { (y1, Y2, Ys) I YI + Y~ = Y5- 1, Ys > 0 }. 

1 )· \/1-xi-x§ · 

E 80(3) } . 
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12.1. s = ~pl X ~P1 . 

G = { (Yl : Y2, z1 : z2) ~-----+ ( (anYl + a12y2) : (a21Y1 + a22Y2), (bnzl + b12z2) : 

(b21Zl + b22Z2)) I ( ~~~ ~~~) ' ( ~~~ ~~~) E SL(2, ~) } 0 

Parametrization 1r: (x1,x2) f---+ (x1: 1,x2: 1): 

12.2. s = CP1 = (C2\{0})/ rv, where 

,\. E C*. 

G = { [z1 : z2 ]~----+ [(anzl + a12z2): (a21Z1 + a22z2)] I ( ~~~ 
Parametrization 1r: z = x1 + ix2 f---+ [z: 1]: 

13.1. s = ~P2 . 

Parametrization 1r: (x1,x2) f---+ [x1: x2: 1]: 

14.1. s = ~2 . 

G = { (x1, x2) ~-----+ (anxl + a12x2 + b1, a21x1 + a22X2 + b2)l 

a 12 ) E SL(2, C) } . 
a22 

( an a 12 ) E SL(2,~), b1,b2 E ~}. 
a21 a22 
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16.1. s = Il!l.2\ {0}. 

G = { (yl, Y2) 1----7 (a11Y1 + a12Y2, a21Y1 + a22Y2) I ( a 11 a 12 ) E GL(2, Il!l.) } . 
a21 a22 

G = { (x1, x 2) 1----7 (a11 x1 + a 12 x 2 , x2 + ln(a21X1 + a22)) } . 
a21x1 + a22x2 

17.1. S = { (y1,y2,z) E Il!l.3 l Yi +y§ #- 0}/ rv, where 

(Yl' Y2' Z) rv CAYl, AY2, )... n Z), A E IJ!l. *; 

G = { (y1, Y2, z) 1----7 ( anY1 + a12y2, a21Y1 + a22Y2, 

z + f(a11Yl + a12Y2, a21Y1 + a22Y2)) I (a11 a 12 ) E SL(2.Il!l.), f E Il!l.n[Yl, Y2] } . 
a21 a22 

x2 j (a11x1 + a12)) I 
(a21X1 + a22)n + a21X1 + a22 

( a 11 a 12 ) E SL(2,Il!l.), J E Il!l.n[x]}. 
a21 a22 

18.1. s = { (yl, Y2, z) E Il!l.3 I Yi + y§ #- 0 }/ rv, where 

G = {(YbY2,z) 1----7 (a11Yl+al2Y2,a21Yl+a22Y2,bz+f(a1lyl+al2Y2, 

a21Y1 +a22Y2)) I (a11 a 12 ) E SL(2,Il!l.),b E Il!l.~,j E Il!l.n[x,y]}. 
a21 a22 

Remark. In all the cases except 11.1 the group G is a transitive transformation group 
of the surface S. As to case 11.1 the group G acts transitively on the set 

{ (Yl : Y2, Zl : Z2) E Il!l.P1 X Il!l.P1 I YlZl + Y2Z2 #- 0 }. 
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List 3. EFFECTIVE PAIRS (g, g) OF CODIMENSION 2 

Here we use the following notation: 

(1) for the subalgebras of g((2, IPI.): 

t(2, IPI.) = { ( ~ ; ) I x, y, z E IPI.} ' 

zt(2, IPI.) = { ( ~ !x) I x, y E IPI.} = t(2, IPI.) n z((2, IPI.); 

(2) for the Lie algebra of orthogonal matrices 

zo(n) ={A E gt(n, IPI.)IA +t A= 0}; 

(3) for the n-by-n matrices 

0 1 0 0 
0 

0 0 1 0 -2 
Nn= 

0 1 
0 0 0 0 

cl and Sn ~ ~ 
0 

~ ) 
-n 

(4) for Frobenius matrix 

0 0 0 -ao 
1 0 0 -a1 

0 1 0 -a2 
F(p) = 

0 0 -an-2 
0 0 1 -an-1 

115 

where p(x) = (-1)n · (xn + an_ 1xn-1 + · · · + a1x + a0) is its characteristic 
polynomial. 

1.1 
- TTJ)2 g=.m., g = {0}. 

2.1(>.) 

g = a/... IPI.2 , g = ax {0}, where a= { ( ~ .2x) I x E IPI.} , i>-1 ~ 1. 

2.2(>.) 
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3.1 

3.2 

4.1(p) 

g = {xF(p)lx E IR} A m.n, 

g = {0} x { ( x~0~ 1 ) Xi E ~}, where p E ~[x], n = degp ~ 1; 

in addition, if p = axn, then n ;;;:: 2. 
5.1(p) 

g = {xEn + yF(p)lx, y E IR} A m.n, 

g = {xEn]x E ~} x ( ( x:;,) x, E ~ l, where p E ~[x],n =degp ~ 2 

6.1(n, .A) 

g = {x(.AEn + Sn) + yNnlx, Y E IR} A m.n, 

g = {x(.\En + Sn)]x E ~}/ { (f) Xi E ~}, where n ~ 2, .\ E ~,.\ 7' n. 

7.l(n) 

jj = { ( Xn(nEn +Sn) + yNn, CJ) Xi E ~,y E ~} C 9.1(n), 

g = { (xn(nEn + Sn), (:.:)) Xi E ~}, where n ~ 2. 



8.1(n) 

9.1(n) 

10.1 

11.1 

11.2 

11.3 

TRANSITIVE FINITE-DIMENSIONAL LIE ALGEBRAS 

g = {xEn + ySn + zNnlx, y, z E JP?.} A JP?.n, 

g = {xEn +YSnlx,y E JR} X I (i:) x, E I+ where n) 2. 

g = { x(nEn + Sn) + yNnlx, y E JP?.} A JP?.n, 

g = {x(nEn + Sn)lx E IR} X I (i:) x, E IR l, where n) 2. 

g = s[(2, JP?.), g = { ( ~ ~)I x E JP?.} . 

g = s[(2, JP?.), g = { ( ~ ~x) I x E JP?.} · 

g = su(2) = { ( i+x . 
-y 'tZ 

y + iz) I } { ( ix 0 ) I } -ix x, y, z E JP?. ' g = 0 -ix X E JP?. . 

12.1 
g = s[(2,JP?.) x s[(2,1P?.), g = st(2,JP?.) x st(2,JP?.). 

12.2 

13.1 

14.1 
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15.1 

16.1 

17.1(n) 

18.1(n) 

B. KOMRAKOV A. CHURYUMOV B. DOUBROV 

9 = s((2,JP?.) ;(7l'n W?.n, 

g = st(2, JP?.) A7l'n {aoxn + · · · + an-1Xn-1yjai E JP?.}, where n) 0. 

n ) 1 : 9 = g((2, JP?.) ;(7l'n W?.n' 

g = t(2, W?.) A7l'n { aoxn + · · · + an-lXn-ly I ai E lP?. }; 

n = 0: 9 = s((2,JP?.) x (JP?.~ A JP?.), 

g = st(2,JP?.) X (JP?.~ X {0}). 
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List 4. ALL TWO-DIMENSIONAL HOMOGENEOUS SPACES 

4. COMLPETE LIST OF TWO-DIMENSIONAL SPACES 

1.1 
G = ~2 , G = {0}. 

M=~2. 

(u,v).(p,q) = (p+u,q+v). 

C=~2. 

Nontrivial discrete subgroups have the form: 

{ ( n, m) I n, m E ~ } - the torus; 

{ (n, 0) I n E ~} -the cylinder. 

2.l(A) 
G =A A ~2 , G =A x {0}, 

where A= { ( ~ xOA) I x E ~~}. 
M=~2. 

(x, (u,v)).(p,q) = (xp+u,xAq+v). 

C _ { { (0, 0) }, A# 0; 
- {(O,p) IPE~}, A=O. 

If A = 0 then nontrivial discrete subgroups have the form: 

{ (0, n) I n E ~} -the cylinder. 

2.2(A) 
G =A A ~2 , G =Ax {0}, 

h A = { Ax ( cos x - sin x ) I Tm } w ere e . x E JJ.<\ • 
smx cosx 

M=~2. 

(x, (u, v) ).(p, q) = (eAx(p cos x- q sinx) + u, eh(psinx + q cos x) + v). 

c = {(0, 0)}. 

There are no any nontrivial discrete subgroups. 
3.1 
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where A = { ( ~ ~) I x, Y E ~~} · 

(x,y, (u,v)).(p,q) = (xp+u,yq+v). 

c = {(0, 0)}. 

There are no any nontrivial discrete subgroups. 
3.2 

G=A./~2 , G=Ax{O}, 

{ ( cos y - sin y ) I * } where A = x . x E ~+, y E ~ . 
smy cosy 

M=~2. 

( x, y, ( u, v)). (p, q) = ( x (p cos y - q sin y) + u, x (p sin y + q cos y) + v). 

c = {(0, 0)}. 

There are no any nontrivial discrete subgroups. 
4.1 (p) 

G = { (x, f) I x E ~' f E Fp }, 

where :Fp is the solution space of the homogeneous linear equation, corresponding to 
the polynomial p. 

G = { (0, f) I f(O) = 0 }. 

M=~2. 

(x,f).(p,q) = (p+x,q+f(p+x)). 

The set C has one of the following forms. 

C = { (1rk, q) I kEN, q E ~}in special cases: 

r 

a) p(x) IJ ((x- ,\)2 + b;), ,\ E ~' bi E iZ; 
i=l 

r 

b) p( X) = II ( (X - ,\) 2 + b;) ' ,\ E ~' bi E 2iZ + 1; 
i=l 

r 

c) p(x) = (x-,\)IJ((x--\)2 +b;), ,\ E ~' bi E 2iZ; 
i=l 

C = { (0, q) I q E ~} in nonspecial cases. 
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All nontrivial discrete subgroups have the form: 

a), c) { (1mk, 0) I k E Z }, n EN- the cylinder, 

{ (O,k) IkE Z}, - the cylinder, 

A= 0: { (21rnk, m) I k, mE Z }, n E N - the torus; 

b) { (21rnk, 0) I k E Z }, n EN- the cylinder, 

{ (O,k) IkE Z}, - the cylinder, 

{ ((2n-1)7rk,O) IkE Z}, n E N - the Mobius strip, 

A =0: { (21rnk, m) I k, mE Z }, n EN- the torus, 

A=O: { ((2n-1)7rk,m) I k,m E Z}, n E N - the Klein bottle; 

in nonspecial cases C = { (0, k) I k E Z}- the cylinder. 
5.1 (p) (Here we use the notation introduced in item 4.1). 

G = {(x, y, f)lx E JP/,, y E JP/,~, f E Fp}, 

G = {(0, y, f)ly E JP/,~, f(O) = 0}. 

M=JP/,2. 

(x, y, f).(p, q) = (p + x, yq + f(p + x)). 

C = {(0, 0)} in inexceptional cases and 

C = {(1rk, O)lk E Z} in exceptional cases. 

Nontrivial discrete subgroups exist only in exceptional cases and have the form: 

6.1 (A, n) 

a), c) : 

b) : 

{(1rnk,O)Ik E Z}, n EN-the cylinder; 

{(27rnk,O)Ik E Z}, n EN-the cylinder; 

{((2n- 1)1rk, O)lk E Z}, n EN-the Mobius strip. 

G = { (x, y, f)lx E JPI,~, Y E JP/,, f E JP/,n-1 [x]}, 

G = { (x, 0, f)lx E JP/,~, j(O) = 0}. 

M=JP/,2. 

(x, y, f).(p, q) = (xp + y, x>--Iq + f(xp + y)). 

C = {(0,0)} if A -=1- 1 and 

C = {(0, a)la E JP~,} if A= 1. 
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In the case A= 1: 
(0, a).(p, q) = (p, q +a). 

Nontrivial discrete subgroups: 

7.1 (n) 

{(0, k)lk E LZ} -the cylinder. 

G = {(x,y,f)lx E JR.~,y E JR.,f E lR.n-2[x]}, 

G = {(x, 0, f)lx E JR.~, f(O) = 0}. 

M = JR.2. 

(x, y, f).(p, q) = (xp + y, xn-lq + (xp + y)n-1 + f(xp + y)). 

c = {(0, 0)}. 

There are no any nontrivial discrete subgroups. 
8.1 (n) 

G = {(x,y,z,f)lx,z E JR.~,y E JR.,f E lR.n-l[x]}, 

G = { (x, 0, z, f) lx, z E JR.~, f(O) = 0}. 

M = JR.2. 

(x, y, z, f).(p, q) = (xp + y, zq + f(xp + y)). 

c = {(0, 0)}. 

There are no any nontrivial discrete subgroups. 
9.1 (n) See 6.1(n, .A) where A= n. 
10.1 

G = SL(2, JR.), G = { (1, y, 0) I y E JR.}. 

(x, y, z).(p, q) = (pX(x, y, q), Z(x, y, q) + z). 

c = { (p, 1Tk) I k E LZ, p E JR.~}. 

Nontrivial discrete subgroups have the form: 

{ (1, 1rnk) I k E LZ }, n E N - the cylinder; 

{(ak, 1rnk) IkE LZ }, n EN, a E JR.~ -the cylinder; 

{(ak,1rln) I k,l E LZ}, n EN, a E JR.~ -the torus. 



11.1 
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----------- * G = 81(2, IR?.) , G = { (x, 0, 0) I y E IR?.~ }. 

M=IR?.2. 

(x,y,z).(p,q) = (Y(x,y,q) +X(x,y,q)p, z+Z(x,y,q)). 

c = { (0, 1fk/2) I k E lZ, p E IR?.~ }. 

Non trivial discrete subgroups have the form: 

11.2 

{(0,1rnk) IkE lZ}, nEW 

{(0, (2n- 1)7rnk/2) IkE lZ }, n EN 

- the cylinder; 

- the Mobius strip. 

G = 8L ( 2, IR?.) = { ( ~ ~) I ad - be = 1 } , 

G = { ( ~~~ ~ ~~~naa) I a E IR?.} . 

M = {z E CJimz > 0} ~ ll<l?. 

( ac b) _ az + b 
d .z- cz + d' 

c = {i}. 

There are no any nontrivial discrete subgroups. 
11.3 

G = 80(3) = {A E 81(3, IR?.) I !4A = E}, 

{ (
cosa -sma 

G = 80(2) = si~a co~a 

M = S2 = { v E m. 3 1 1 v 1 = 1}. 

A.v = Av. 

c = {(0, 0, ±1)}. 

(0, 0, ±1).v = ±v. 

Nontrivial discrete subgroups have the form: 

D aE~} 

{(0, 0, ±1)} -the projective plane IR?.P2 . 
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12.1 
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G = 8~) x 8~) = (~~ x ~2 ) x (~~ x ~2 ), 
G = {(x,y,O)ix E ~~,y E ~} x {(u,v,O)iu E ~~,v E ~}. 

M=~2. 

(x, y, z, u, v, w).(p, q) = (Z(x, y,p) + z, Z(u, v, q) + w). 

C = {(nn,nm)in,m E !Z}. 

(nn, nm).(p, q) = (p + nn, q + nm). 

Nontrivial discrete subgroups have the form: 

12.2 

{(nnk, O)lk E !Z}, n EN -the cylinder; 

{(nnk,nmk)ik E !Z}, n,m E N,n) m -the cylinder; 

{(nnk,1rml)lk,l E !Z}, n,m E N,n) m -the torus. 

G = 81(2, C)/{±E}, 

G = 8T(2, C)/{±E}. 

M = CP1 ~ 8 2 . 

(~ ~) .(p: q) = ((xp+yq): (zp+tq)). 

c = {(1: 0)}. 

There are no any nontrivial discrete subgroups. 
13.1 

G = 81(3,~), 

{ ( ( det A) -l B ) I } G = O A A E G1+ (2, ~), B E Mat1x2(~) . 

M = 82 = { v E ~3 1 lv I = 1} · 

Av 
A.v = IAvl· 

c = {(±1, 0, 0)}. 

(±1, 0, O).v = ±v. 
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Nontrivial discrete subgroups have the form: 

14.1 

{(±1,0,0)}- the projective plane ~P2 . 

G = 81(2,~) A~2 , 

G = 81(2, ~) X {0}. 

M=~2. 

- 2 (A, v ).w = Aw + v, where (A, v) E G, w E ~ . 

c = {0}. 

There are no any nontrivial discrete subgroups. 
15.1 

G = G1(2,~) A ~2 , 

G = G1(2, ~) x {0}. 

M=~2. 

- 2 
(A,v).w=Aw+v, where(A,v)EG,wE~. 

c = {0}. 

There are no any nontrivial discrete subgroups. 
16.1 

---------G = 81(2, ~) X~~' 

G = {(cl, y, 0, t)IY E ~' t E ~~}. 

M=~2. 

(x, y, z, t).(p, q) = (p(tX(x, y, q)) 112 , z + Z(x, y, q)). 

The group C and all nontrivial discrete subgroups here the same as in 10.1. 
17.1 

G = 81(2, ~)A ~n[x, y]. 

G = { (x, y, 0) I X E ~~' y E ~}A { f E ~n[x, Y]l f(O, 1) = 0 }. 

M=~2 

( x, y, z, f) . (p, q) = (a, X-~ q + f (- sin a, cos a)) , 
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where o: = z + Z ( x, y, p), X = X ( x, y, p). 

c- { { (1rk,q) IkE zz, q E IPl.}, 
- { ( 1fk, 0) I k E zz, 

n=O 
n)l. 

Nontrivial discrete subgroups have the form: 

n=O: { (1rmk,O) IkE ZZ}, mEN -the cylinder; 

{(O,k)lkEZZ}, -the cylinder; 

{ (1rmk,l) I k,l E ZZ}, mEN -the torus; 

n) 1: {(1rnk,O)IkEZZ}, nEN { the Mobius strip if nm is odd, 
the cylinder if nm is even. 

18.1 (Here we use the notation of item 17.1). 

__........____. 

G = (SL(2, IPl.) x IPl.~) A IPl.n[x, y] = GL+(2, IPl.) A IPl.n[x, y], 

G = { (X , Y, 0, t) I X, t E IPl.~ , Y E IPl.} X { f E IPl.n [X, Y ]I f ( 0, 1) = 0} . 

M=IPl.2. 

(x, y, z, t, f).(p, q) = (o:, tx-nl2 (x, y,p)q + f(- sino:, coso:)), 

where o: = z + Z(x, y,p). 
C = {(1rk, O)lk E ZZ}. 

Nontrivial discrete subgroups have the form: 

{ (1rmk, O)lk E ZZ}, mEN. 

If mn is even then factormanifold is a cylinder, else- a Mobius strip. 



I 

II(>.) 

III(>.) 

IV 

v 

VI 

ISOTROPIC REPRESENTATIONS OF HOMOGENEOUS SPACES 

List 5. SUBALGEBRAS OF THE LIE ALGEBRA g[(2, J:Pl.). 

{0}; VII { ( ~ ~y) I x, y E IPl.}; 

{ (~ >.0x)lxEIPl.}, 1>.1 ~ 1; VIII(>.) { ( AOX ; ) I x, y E IPl.} ; 

{ ( A: ~: ) I X E IPl.} ' A ~ 0; IX { ( ~ ~)I x, y E IPl.} ; 

{ (~ ~)lxEIPl.}; X { ( ~ ~)I x, y, z E IPl.} ; 

{ (~ ~)lxEIPl.}; XI ,s((2, IPl.); 

{ ( ~ ~)I x, y E IPl.} ; XII g[(2, IPl.). 

List 6. ISOTROPIC REPRESENTATIONS OF TWO-DIMENSIONAL 

HOMOGENEOUS SPACES 

1.1- I; 

2.1(>.)- II(>.); 

2.2(>.)- III(>.); 

3.1- VI; 

3.2- VII; 

4.1(p), degp = 1- I; 

4.1(p), degp ~ 2- V; 

5.1(p)- IX; 

6.1(n, >.)-VIII(>.- 1); 

7.1(2)- IV; 

7.1(n), n ~ 3- VIII(n- 1); 

8.1(n)- X; 

9.1(n)- VIII(n -1); 

10.1- V; 

11.1- II( -1); 

11.2- III(O); 

11.3- III(O); 

12.1- VI; 

12.2- VII; 

13.1- XII; 

14.1- XI; 

15.1- XII; 

16.1- VIII(O); 

17.1(0)- II(O); 

17.1(n), n ~ 1- V III(n/2); 

18.1(0) -VI; 

18.1(n), n ~ 1- X. 
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List 7. MAXIMAL INCLUSIONS OF TWO-DIMENSIONAL 

HOMOGENEOUS SPACES 

2.1 ::J 1.1. 

2.2 ::J 1.1. 

3.1 ::J 2.1(A). 

3.2 ::J 1.1, 2.2(A). 

4.1(p(x)) ::J 4.1(q(x)), where q is a maximal divisor of p. 

5.1(p(x)) ::J 4.1(p(x +a)), (a E IPl.); 

5(q(x)), where q is a maximal divisor of p. 

6.1(n, A) ::J 4.1(xn); 4.1(p), where p(x) = (x- A+ 1) · ... · (x- A+ n); 

6.1(n- 1, A). 

7.1(n) ::J 4.1(xn-1); 4.1(p) where p(x) = (x + 1) · ... · (x + n- 1). 

8.1(n) ::J 5.1(xn); 5.1(p), where p(x) = (x+1) · ... · (x+n); 6.1(n, A); 8.1(n-1). 

9.1(n) ::J 4.1(xn); 4.1(p), where p = x(x + 1) ... (x + n- 1); 6.1(n- 1, n); 7.1(n). 

10.1 ::J 4.1(x- 1). 

11.1 ::J 4.1(x- 1). 

11.2 ::J 4.1(x- 1). 

12.1 ::J 11.1; 18.1(0); 17.1(0). 

12.2 ::J 3.2; 11.2; 11.3. 

13.1 ::J 11.1; 11.2; 11.3; 18.1(1). 

14.1 ::J 6.1(2, 3/2); 10.1. 

15.1 ::J 3.2; 8.1(2); 14.1; 16.1. 

16.1 ::J 10.1. 

17.1(n) ::J 6.1(n + 1, n/2 + 1); 4.1(p), where 

k 

p(x) =II (x2 + (n- 2i)2 ) for n = 2k + 1, 
i=O 

k-1 

p(x) = x II (x2 + (n- 2i) 2 ) for n = 2k. 
i=O 

18.1(n) ::J 8.1(n); 16.1; 17.1(n); 5.1(p), where 

k 

p(x) =II (x2 + (n- 2i) 2 ) for n = 2k + 1, 
i=O 

k-1 

p(x) = x II (x2 + (n- 2i)2 ) for n = 2k. 
i=O 
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Remark. Here we identify the following pairs: 

4.1(x) ~ 1.1; 

6.1(n, n) rv 9.1(n) 

5.1(x- ,\) rv 2.1(0); 

9.1(1) ~ 2.1(0); 

6.1(1, ,\) rv 2.1(,\- 1); 

8.1(1) rv 3.1). 

List 8. TENSOR INVARIANTS OF TWO-DIMENSIONAL 

HOMOGENEOUS SPACES 

Invariants of a-modules IP?.2 such that a is one of the subalgebras of gl(2, Ill?.) obtained 
earlier are tabulated below. Here e1 , e2 denote a basis of IP?.2 and e1 , e2 the corre­
sponding dual basis. Bilinear forms are given by their Gram matrices in the standard 
basis. 
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v V* Bil(V) g[(V) Subspaces 

I xe1 + ye2 xe1 + ye2 (~ ;) (~ ;) \fWcV 

II(>..), 0 < 1>..1 < 1 {0} {0} {0} (~ ~) Jlll.e1, Jlll.e2 

II(O) xe2 xe2 (~ ~) ( ~ ~) Jlll.e1, Jlll.e2 

II(1) {0} {0} {0} (~ ; ) \fWcV 

II( -1) {0} {0} (~ ~) ( ~ ~) Jlll.e1, Jlll.e2 

III(>..), ).. > 0 {0} {0} {0} ( _xy ; ) -

III(O) {0} {0} ( _xy ; ) ( _xy ; ) -

IV {0} {0} {0} (~ ;) Jlll.e1 

v xe1 xe2 
( _xy ~) (~ ;) Jlll.e1 

VI {0} {0} {0} (~ ~) Jlll.e1, Jlll.e2 

VII {0} {0} {0} ( _xy ; ) -

VIII(>..), >.. -1- 0, ±1 {0} {0} {0} (~ ~) Jlll.e1 

VIII(O) {0} xe2 {0} (~ ~) Jlll.e1 

VIII( -1) {0} {0} ( ~y ~) (~ ~) Jlll.e1 

VIII(1) {0} {0} {0} ( ~ ; ) Jlll.e1 

IX xe1 {0} (~ ~) ( ~ ~) Jlll.e1 

X {0} {0} {0} (~ ~) Jlll.e1 

XI {0} {0} ( ~y ~) (~ ~) -

XII {0} {0} {0} (~ ~) -



1.1. 

2.1. 

2.2. 

3.1. 

3.2. 

4.1. 

5.1. 

6.1. 

7.1. 

8.1. 

9.1. 

10.1. 

11.1. 
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List 9. FIRST DIFFERENTIAL INVARIANTS OF TWO-DIMENSIONAL 

HOMOGENEOUS SPACES 

Y1 

).. = 1: 

.\-2 
Y1 . 

.\-1' 
Y2 · 

Y1 

(1 + Yi)! e>- tan-1 Yl 

Y2 

3y1y~ - (1 + Yi)Y3 
y~ 

Yn- Cn-1Yn-1 - · · ·- C1Y1 - CoYO· 

Yn+1 - Cn-1Yn- · · ·- C1Y2- CoY1 

Yn- Cn-1Yn-1 - · · ·- C1Y1 - CoYo 

.\-n-1 
Yn 

A-n · 
Yn+1 

YnYn+2 
2 

Yn+1 

3 

y; 2 (Y2 + 2YoY1 + 2xyi + XYoY2)· 
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11.2. 

11.3. 

12.1. 

12.2. 

where 

13.1. 

where 

14.1. 

15.1. 
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k _ 27yT(20y~- 12Y1Y3Y5 + 18y~y5- 60Y2Y3Y4 + 15y1y~) 
- (3y~ - 2Y1Y3)3 

45 135 
a(1 + y2)3y3 + -y3 + 27y5 + -y7 1 1 2 1 1 14 1' 

a = I ( 3py1 - Yi - 1) 3 + f3' 
3pyl 

f3 = _ 45 + 5(3- Yi) _ 5(17y{ + 2yr + 1) 
2p 2yrp2 6yrp3 

5(1 + yi)(yr- 16yr + y1 - 4) s(1 + Yr) 2(4yr + 1) 
9yrp4 27yrp5 

15p + 2oy1 5(yr + 1) 2(yr + 1) - 6y1p 
r= - + ' pq 2q2 pr 

! 3!-8 
3 2 ' 

h = Y~Y5 - 3Y2Y3Y4 + 2y~, 

Y3 Y4 Y5 Y6 Y7 
Y2 Y3 Y4 Y5 Y6 

h= y2 - 2 0 y§ 2Y3Y4 2Y3Y5 + Y~ 
0 y~ 2Y2Y3 2Y2Y4 + y§ 2Y2Y5 + 2Y3Y4 
0 0 y~ 3Y2Y3 3y§ + 3Y2Y4 

5y§- 3Y2Y4 
8/3 

Y2 



16.1. 

17.1. 

18.1. 

where 
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n+6 n+2 n+4 

( + 2) 2 -n+2 2( + 3)2 n+3 -n+2 n Yn+3Yn+l - n Yn+2 Yn+l · 

(n + 2)(n + 3)p~p4 - 3(n + 3)(n + 4)p~p~- 2(n + 2)(n + 4)p~p~ 
p~((n + 3)p3 - (n + 2)p~) 5 / 2 

Yn+i 
Pi = --, 2 ~ i ~ 4. 

Yn+l 
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List 10. AUTOMORPHIC DIFFERENTIAL EQUATIONS CORRESPONDING TO 

TWO-DIMENSIONAL HOMOGENEOUS SPACES 

Now for each two-dimensional homogeneous space we list: 
1) the corresponding differential equation; 
2) initial conditions for particular solutions ui(t) = (xi(t),Yi(t)), 1 ~ i ~ k, where 

k is the stiffness of homogeneous space; 
3) the general solution. 
1.1. 

u1 (0) = (0, 0) 

2.1. 

u1(0) = (0,0), 
u2(0) = (1, 0). 

{ x = a1. 
. ' y = a2 

u(t) = (x(t), y(t)) = (c1 + x1(t), c2 + YI(t)). 

u(t) = (x(t), y(t)) = (c1(x2(t)- x1(t)) + x1(t), c2(x2(t)- x1(t))" + YI(t)). 

2.2. 

u1 (0) = (0, 0), 
u2(0) = (1, 0). 

{ x=a1(>.x-y)+a2 

iJ = a1 ( ,\y + x) + a3 ' 

U ( t) = (X ( t), y ( t)) = ( eAx ( c1 COS X - c2 sin X) + X I ( t), 

e"x(c1 sinx + c2 cosx) + YI(t)), 

where 

{ { 
X2(t)- X1(t) = 0: X=% 

_ ). = 0: . _ Y2(t)-yl(t) 
X- x2(t)- X1(t) ~ 0. X- arctg x2 (t)-xl(t), 

,\f. 0: x = A ln ((x2(t)- x1(t)) 2 + (y2(t)- YI(t)) 2). 

3.1. 

u1(0) = (0,0), 
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u 2 ( 0) = ( 1 , 1 ) . 

u(t) = (x(t), y(t)) = ((1- c1)x1(t) + c1x2(t), (1- c2)Y1(t) + c2y2(t)). 

3.2. 

U1 (0) = (0, 0), 
u2(0) = (1, 0). 

where 

4.1. 

where 

{ x = a1x- a2y + a3 

iJ = a1y + a2x + a4 ' 

1 ( 2 2) x = 21n (x2(t)- x1(t)) + (y2(t)- Y1(t)) , 

f X2(t)- X1(t) = 0: y = ~' 
y = l x (t)- x (t) -t 0: y = arctg y2 (t)-y1 (t) · 

2 1 I x 2 (t)-xl(t) 

w(i) ( x), 0 ~ i ~ n - 2 is a basis of the solution space of the equation 

f(n) + Cn-1f(n-1) + ... + cd' +Co = 0, 

u1 (0) = (Pl? 0), 
U2 ( 0) = (P2 , 0), 

un(O) = (Pn, 0), where Pj, 1 ~j ~ n, such that det A# 0; here 

where 

u(t) = (x(t), y(t)) = (c1- P1 + X1(t), C2 + j(c1- P1 + X1(t))), 

y = ( YI(t)) ' 
Yn(t) 

135 
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5.1. 

{ ± = a1 

iJ = a2y + '2::~:01 ai+3w(i)(x)' 

where w(i)(x), O~i~n -1, are the same as in 4.1. 
u1(0) = (p1, 0), 

Un(O) = (pn, 0), 
Un+l = (0, 1), where Pj, 1~j~n, are also the same as in 4.1. 

where 

6.1. 

Y=(y,(t)), 
Yn(t) 

u1(0) = (0,0), 
u2(0) = (1, 0), 

un(O) = (n- 1, 0). 

u(t) = (x(t), y(t)) = ((x2(t)- x1 (t))c1 + x1 (t), 

7.1. 

U1 (0) = (0, 0), 
u2(0) = (1, 0), 

(x2(t)- x1(t))>-c2 + j((x2(t)- x1(t))c1 + x1(t))), 
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Un_I(O) = (n- 2, 0). 

u(t) = (x(t),y(t)) = ((x2(t)- xi(t))ci +xi(t), 

(x2 (t) -XI (t) )n-Ic2 + ln(x2( t) -XI (t)) ( (x2 (t) -XI (t) )ci + 

+ XI(t))n-I + j((x2(t)- XI(t))ci + xi(t))), 

~ ni#k(X- Xi(t)) n-I 
f(x) =~IT ( () _ ·( )) (Yk(t) -ln(x2(t)- XI(t))(xi(t)) ) . 

k=I i#k Xk t x~ t 

8.1. 

ui (0) = (0, 0), 

un(O) = (n-1, 0) 
Un+I(O) = (n, 1) 

u(t) = (x(t), y(t)) = ((x2(t)- XI (t))ci + xi(t), 

9.1. 

ui(O) = (0, 0), 
u2(0) = (1, 0), 

Un ( 0) = ( n -1, 0) 

(Yn+I(t)- f(xn+I(t)))c2 + j((x2(t)- XI(t))ci + XI(t))), 

~ ITi#k(x- xi(t)) 
f(x) = ~ ITi#k(xk(t)- xi(t)) Yk(t). 

u(t) = (x(t), y(t)) = ((x2(t)- xi(t))ci + xi(t), 

(x2(t)- xi(t))nc2 + j((x2(t)- xi(t))ci + XI(t))), 

10.1. 
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u1 (0) = (1, 0), 
u2(0) = (0, 1). 
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u(t) = (x(t), y(t)) = (c1x1(t) + c2x2(t), C1Y1(t) + C2Y2(t)). 

11.1 

U1 (0) = (0, 0), 
u2(0) = (1, 1). 

() = ( () ( )) = (A(t)x1(t) + p,(t)c1 p,(t)y1(t) + A(t)c2) 
u t x t 'y t A(t)- p,(t)y1 (t)c1' p,(t)- A(t)yl (t)c2 ' 

where 

11.2. 

U1 (0) = (0, 0), 
u2(0) = (1/2, 0). 

A(t) = 
(x2(t)- X1(t))(1 + X1(t)y1(t))' 

p,(t) = 
(1 + Y1(t)x2(t))(1 + x1(t)y1(t)) · 

{ x = a1 (1- x2 + y 2)- 2a2xy + asy. 

iJ = a2(1 + x2 - y2) - 2a1xy- asx ' 

u(t) = (x(t),y(t)) = (ne (Az1(t) ~:.\c) ,Im (Az1(t) ~:.\c)), 
A+ AZ1C A+ AZ1C 

where 

11.3. 

U1 (0) = (0, 0), 
u2(0) = (1, 0). 

A= 

{ x = a1 (1 - x2 + y 2 ) + 2a2xy + asy . 
iJ = a2(1 + x2 - y2) + 2a1xy- asx ' 

u(t) = (x(t), y(t)) = (ne (Az1(t) ~:.\c) ,Im (Az1(t) ~:.\c)), 
A- AZ1C A- AZ1C 
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where 

Zj(t) = Xj(t) + iyj(t), j = 1, 2, C = C1 + ic2. 

12.1. 

u1 (0) = (0, 0), 
u 2 (0) = (1, 1), 
u3(0) = (2, 2). 

u(t) _ (x(t) y(t)) _ ((2- c1)(x3(t)- x2(t))x1(t) + c1(x2(t)- x1(t))x3(t) 
- ' - (2- c1)(x3(t)- x2(t)) + c1(x2(t)- x1(t)) ' 

12.2. 

u1 (0) = (0, 0), 
u2(0) = (1, 0), 
u3(0) = (0, 1). 

where 

(2- c1)(y3(t)- Y2(t))y1(t) + c1(Y2(t)- Y1(t))y3(t)) 
(2- c1)(y3(t)- Y2(t)) + c1(Y2(t)- YI(t)) . 

[ x = a1(x2- y2) + a2x + a3: 

l iJ = a4xy + asy + a6 ' 

u(t) = (x(t),y(t)) = (Re)..,Im)..), 

A= (z3(t)- z2(t))z1(t) + ic(z3(t)- z1(t))z2(t) + c(z2(t)- z1(t))z3(t) 
z3(t)- z2(t) + ic(z3(t)- z1(t)) + c(z2(t)- z1(t)) ' 

Zj(t) = Xj(t) + iyj(t), J = 1, 2, 3, C = C1 + ic2. 

13.1. 

u1(0) = (0, 0), 
u2(0) = (1, 0), 
u3(0) = (0, 1), 
u4(0) = (1, 1). 

u(t) = (x(t) y(t)) = ( (1- c1- c2).6.234(t)x1(t) + c1.6.134(t)x2(t)- c2.6.124(t)x3(t) 
' (1- c1- c2).6.234(t) + c1.6.134(t)- c2.6.124(t) ' 

(1- c1- c2).6.234(t)y1(t) + c1.6.134(t)y2(t)- c2.6.124(t)y3(t)) 
(1- c1- c2).6.234(t) + c16134(t) - c2.6.124(t) ' 
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where 

14.1. 

u1(0) = (0, 0), 
u2(0) = (1, 0), 
u3(0) = (0, 1). 

B.KOMRAKOV A.CHURYUMOV B.DOUBROV 

1 1 1 
flijk(t) = Xi(t) Xj(t) Xk(t) 

Yi(t) Yj(t) Yk(t) 

u(t) = (x(t), y(t)) = ((1- c1- c2)x1(t) + c1x2(t) + c2x3(t), 

(1- C1- c2)YI(t) + CIYI(t) + C2Y2(t)). 

15.1. 

U1 (0) = (0, 0), 
u2(0) = (1, 0), 
u3(0) = (0, 1). 

u(t) = (x(t), y(t)) = ((1- c1- c2)x1(t) + c1x1(t) + c2x2(t), 

(1- c1- c2)y2(t) + CIYI(t) + C2Y2(t)). 

16.1. (Here we use the standard coordinates on the plane.) 

U1 (0) = (1, 0), 
u2(0) = (0, 1). 

17.1. 

U1 (0) = (0, 0), 
u2(0) = (1, 0), 
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Un+l (0) = (n, 0). 

u(t) = (x(t), y(t)) = (a(t)c1 + b(t), c2 + f(a(t)c1 + b(t), c(t)c1 + d(t))) ' 
c(t)c1 + d(t) (c(t)c1 + d(t))n 

a(t) = p(t)x2(t)- A(t)x1(t), b(t) = A(t)x1(t), c(t) = p(t)- A(t), d(t) = A(t), 

2(x2(t)- x3(t)) 
A(t) = ± (x2(t)- x1(t))(x1(t)- x3(t))' 

XI (t)- X3(t) 
p(t) = ± 2(x2(t)- x1(t))(x2(t)- x3(t))' 

n 

f(x,y) = ~~~>\:iXiYn-i, 
i=O 

and ai, 0 ( i ( n, can be calculated from: 

18.1. 

a) n > 1 
U1 (0) = (0, 0), 
u2(0) = (1, 0), 

~ ni#k (x- Xi(t)) ~ i 
Ln(x) = L IJ ( ( ) _ ·( . ) · Yk(t) = ~ O!iX . 

k=l i#k Xk t X~ t) i=O 

Un+l (0) = (n, 0), 
Un+2(0) = (0, 1). 

b) n = 0,1 
u1 (0) = (0, 0), 
u2(0) = (1, 0), 
u3(0) = (2, 1). 

( ) = ( ( ) ( )) = (a(t)c1 + b(t) s(t)c2 + j(a(t)c1 + b(t), c(t)c1 + d(t))) 
u t x t 'y t c(t)c1 + d(t)' (c(t)c1 + d(t))n ' 

a(t) = JJ(t)x2(t) - A(t)xl (t), 

c(t) = p(t)- A(t), 

b(t) = A(t)x1 (t), 

d(t) = ,\(t), 
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n 

f(x, y) = L aixiyn-i' 
i=O 

and ai, 0 ~ i ~ n, can be calculated from: 

~ ni#k (x- Xi(t)) ~ i 

Ln(x) =~IT ( ( ) _ ·( )) · Yk(t) = ~ CXiX . 
k=l i#k Xk t X~ t i=O 

a) n > 1 

b) n = 0,1 
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