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Abstract 

In this article we describe the deformation theory of sandwiched singularities 
in terms of 6-constant deformations of plane curves, and a divisor of points on 
it. This leads to an immediate understanding of the smoothings of sandwiched 
singularities in terms of pictures: certain configurations of points and curves 
with only d-fold points in the plane. The topology of a smoothing can be 
described completely in terms of the associated picture. 

Introduction 
A sandwiched singularity is, by definition, a normal surface singularity which ad
mits a birational map to ( C 2 , 0). They therefore belong to the simplest class of 
rational surface singularities. A surprisingly large number of geometerically rele
vant singularities are sandwiched, for example cyclic quotient singularities, or more 
generally rational singularities with reduced fundamental cycle. Sandwiched singu
larities were studied by various authors like Zariski [35], Lipman [22], Hironaka [13] 
and Spivakovsky [28], who also seems to have invented the name. In this article we 
study deformations of sandwiched singularities. Our main result is a geometric in
terpretation of deformations of sandwiched singularities, the picture method, which 
we will describe now. 

Let Z be obtained from Z = (C 2 ,0) by a finite sequence of blow-ups. Any sand
wiched singularity can be obtained from some Z by blowing down the non ( -1) 
curves. Any Z as above can be obtained as the total space of a (not necessarily min
imal) embedded resolution of a plane curve singularity C. We therefore can assign to 
every sandwiched singularity a so-called decorated curve (C, l). Here lis a function, 
assigning to each branch Ci of C a number l( i) which expresses how non-minimal the 
embedded resolution of Cis. For a precise definition, see (1.3). Conversely, any dec
orated curve (C,l) gives rise to a sandwiched singularity X(C,l). A representation 
of a singularity X as an X( C, l) we call a sandwiched representation. A sandwiched 
representation is not given naturally, and in fact, it usually happens that there are 
many different ways to get a sandwiched representation for a given singularity. 

We can interprete the function l as defining a subscheme of length Z( i) on the normal
isation of each branch Ci of C. We define the notion of one-parameter deformation 
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of decorated curve in (4.2) as a a-constant deformation of C, and a deformation of 
the subscheme l which satisfies a simple condition. The main result of this article 
( 4.4) could be stated as: 

Any one-parameter deformation of a decorated curve ( C, l) gives rise to a 
one-parameter deformation of the corresponding sandwiched singularity X(C, l), 

and all one-parameter deformations of X(C, l) can be obtained this way. 

If the general fibre of the deformation of the subscheme is reduced (from which it 
follows that the general fiber of the deformation of the curve only has d-fold points), 
then the corresponding deformation of the sandwiched singularity is a smoothing. 
Therefore, by looking at special configurations of curves in the plane, we can con
struct many interesting smoothings components. The Milnor fibre can be understood 
completely from the associated picture. We describe H1, H2, the intersection form 
and in some cases 1r1 of the Milnor fibre. 

In order to prove ( 4.4) we use the so-called projection method, which we review in 
the appendix. Consider a projection Y in cn+l of a normal CM singularity X of 
dimension n, in such a way that X can be obtained as normalisation of Y. If one con
siders so-called R.C. deformations of Y, then the total space can be simultaneously 
normalised. Moreover, any deformation of X is obtained from an R.C. deformation 
of Y. In the second section we therefore consider a very special projection of the 
surface X(C, l) into C3 . The equations of these projected sandwiched singularities 
are ridiculously simple: they are just of the form: 

zf(x,y) = g(x,y) 

Here f(x,y) = 0 is a defining equation for C, and the vanishing order ofthe function 
g(x, y) on the normalisation of branch Ci of Cis related to the number l( i). The main 
point concerning deformations of sandwiched singularities is, as proved in section 3, 
that they can all be obtained from normalising R.C. deformations of Y of the form 
(Sis some parameter space): 

zfs(x, y)- gs(x, y) = 0 

Here fs(x,y) defines a a-constant deformation of C. So we have a ridiculously sim
ple equation for a projection of any deformation of a sandwiched singularity as well! 
This immediately leads to the picture method, see section 4. 

The structure of the paper is as follows. In the first section we review some notions 
related to sandwiched singularities. In the second section we consider the very spe
cial projection of the surface X ( C, l) into C 3 . In the third and fourth section we use 
our theory of R.C. deformations to establish the picture method. In section 5 we 
give a more detailed account of the topological aspects of the situation. In section 
6 we give examples and applications. Finally, there is an appendix reviewing the 
most important aspects of R.C. deformations. 

What is missing in this paper is a discussion of Kollar's conjectures. According 
to these conjectures, smoothings of rational surface singularities should correspond 
to so-called P-resolutions. The existence of P-resolutions depends on the finite 

2 



generation of the relative canonical ring of a smoothing. Using our picture method, 
we can prove that this finite generation is equivalent to the finite generation of 
the symbolic algebra of the curve in (C 3 , 0), swept out by the points of the picture 
deformation, counted with certain multiplicities. Hopefully this can be used to shed 
light on Kollar's conjectures for sandwiched singularities. These matters will be 
discussed in a future paper. 
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§1 Sandwiched Singularities 

In this paragraph we review the basic construction and properties of a special class of 
surface singularities called sandwiched singularities. We refer to [28] for all unproven 
statements about sandwiched singularities 
Consider a normal surface singularity X= (X,p) and a resolution 

1r : M -----t X. 

If X admits a birational map ¢to Z := (C 2 , 0), then we get a diagram 

1T 4J M -----t X -----t Z. 

So X is "sandwiched" between two smooth spaces via birational maps, and this is the 
reason for calling such singularities sandwiched singularities. The simplest example 
of a sandwiched singularity is the A 1-singularity X= {(x,y,z) E C3 : xz-y2 = 0}. 
The projection onto the x, y-plane Z gives a birational isomorphism ¢ :X -----t Z. 

A1 as sandwiched singularity 
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It is easy to see that such a sandwiched singularity must be rational (use Leray's 
spectral sequence), but not all rational surface singularities are sandwiched. For ex
ample, it follows from the construction that a gemeral hyperplane section of such a 
singularity is a curve singularity that has a smooth branch. From this it follows that 
the D 4-singularity is not sandwiched. Being a sandwiched singularity is a property 
of the dual resolution graph r, so it makes sense to talk about sandwiched graphs. 
The class of sandwiched graphs is closed under taking sub-graphs and decreasing 
self intersections. On the other hand, a non-sandwiched sub-graph makes a graph 
non-sandwiched. As a consequence, of the rational double points only the Ak's are 
sandwiched, because the others have a D4-sub-graph. In general it is rather cumber
some to recognize sandwiched graphs; in fact we do not know any other algorithm 
than just trying. In any case, the class of sandwiched graphs is surprisingly big. For 
example it includes the cyclic quotient singularities and more general, the rational 
surface singularities with a reduced fundamental cycle (sometimes called minimal 
singularities). So we have the following hierarchy of rational surface singularities. 

{Ak} C {cyclic quotients} C {minimal} C {sandwiched} C {rational} 

Each of the inclusions is proper. 

Decorated Curves 

Let p: Z -----* Z = (C 2 ,0) be a sequence of point blow-ups with exceptional set 
F := p-1(0). 

Definition (1.1): _ 
The sandwiched singularity X determined by p : Z ----t Z is obtained by contracting 
the set E of all non ( -1)-curves of Z. (We assume for now that this configuration 
is connected). 

So if we choose some neighbourhood M of E, we get the minimal resolution 

1r : (M, E) -----* (X, 0) 

Let T be the set of ( -1 )-curves in Z. For i E T choose a curvetta Ci transverse to 
the ( -1)-curve Ei. We put C = UiETCi and C = p(C) = UiETCi where Ci = p(Ci)· 
It is well known that p: Z-----* Z can be seen as a good (but not necesarily minimal) 
embedded resolution of C. So we have a diagram 

c <---7 z 
p l p l 
c <---7 z 

As any embedded resolution of Cis obtained from the minimal resolution by anum
ber of further blowing ups at points on the branches of the strict transforms, we can 
label modifications Z -----* Z by what we call a decorated curve. 

Definition (1.2): 
For a plane curve germ C = UiETCi we define numbers: 
1. m( i) =sum of multiplicities of branch i in the multiplicity sequence of the minimal 
resolution of C. 
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2. M( i)=sum of multiplicities of branch i in the multiplicity sequence of the minimal 
good resolution of C. 

For example, for the ordinary cusp we have m = 2, M = 4. 

Definition ( 1.3): A decorated curve is a pair ( C, l) consisting of: 

2. A function l : T ----+ ::Z assigning to each branch of C a number. 

3. With the condition that l( i) 2: m( i). 

The decoration l defines a unique sub-schemes oflength l( i) in Ci. So we could as well 
define a decorated curve as a curve, together with a sub-scheme of the normalisation 
that maps to the singular point. This point of view will be useful in §4. 

Definition (1.4): Let ( C, l) be a decorated curve. 
1. The modification Z( C, l) ----+ Z determined by ( C, l) is obtained from the minimal 
embedded resolution of C by l( i) - m( i) consecutive blow-ups at the i-th branch of 
c. 
2. The analytic space X(C,l) is obtained from Z(C,l)- C by blowing down the 
maximal compact set, that is, the union of all exceptional divisors not intersecting 
the strict transform C C Z(C, l). 

The analytic space X(C, l) can be smooth, or have several singularities. If however 
the decoration satisfies the stronger condition 

l(i) 2: M(i) + 1, 

then the space Z( C, l) lies over the minimal good resolution and the maximal com
pact set is connected, hence X( C, l) has a unique singular point, which by abuse 
of notation we call the sandwiched singularity X( C, l). It is clear that every sand
wiched singularity is ofthe form X(C, l) for certain C and l(i) 2: M( i) + 1. However, 
a singularity X can have very well have many different representations as X(C, l) 
with various ( C, l). We now will give some examples to clearify these definitions. 

Examples (1.5): 

1) Ak = X(Line, k + 1). 
Indeed, after blowing up (k + 1) times, we create a chain of k ( -2)-curves (and one 
( -1)-curve). 

2) Let C be an ordinary m-fold point, that is, a union of m smooth branches with 
distinct tangents. 
If l( i) = 2 for each branch, then X( C, l) is isomorphic to the cone over the rational 
normal curve of degree m + 1. If l( i) = 1 or 2 (but at least one oft hem is 1), then 
Z( C, l)- C does not contain any exceptional curves, so X( C, l) is smooth. 

3) Let C be the ordinary cusp y2 - x 3 = 0. Then X(C,2) and X(C,3) are smooth, 
X(C,4) contains two singular points, X(C,5) is a cyclic quotient and X(C,6) has 
non-reduced fundamental cycle. 
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4) If X is a rational surface singularity with reduced fundamental cycle, then it has 
a sandwiched representation with a curve C all whose branches are smooth. In fact, 
the strict transform of the generic hyperplane section consists of mult(X) curvetta's. 
If we pick out one of these, and replace the others by ( -1 )-curves, we get a space Z 
that contracts to c 2 . If we blow down curvetta's ci transverse to the ( -1 )-curves, 
we get our sandwiched representation as X(C, l) with smooth branches, and where 
l(i) is the length between the picked curvetta of the hyperplane section and Ci. 
From this it is already clear that X has many different sandwiched representations, 
by picking other branches of the hyperplane section. The first blown-up curve in the 
sandwiched representation is the exceptional curve that intersects the chosen branch 
of the gene~al hypersurface section. 
But note also that X(A2, 5) of example 3) is isomorphic to X(A1, 2, 4)! So a 
singularity with reduced fundamental cycle can very well have representions with 
non-smooth branches. 

The ideals I( 0, l) 

Another way to describe a sandwiched singularity is as the singularity occurring in 
the blow-up of Z in a complete ideal. We will denote by I( C, l) the ideal needed to 
get X(C, l). This ideal can be described in several ways. 

Proposition (1.6): 

1. Let (. )c denote the compact part of the divisor of the pull-back of a function to 
Z( C, l). Then: 

I(C,l)= {g E C{x,y}[(g)c2 (f)c} 

Here f = 0 is a defining equation for C. 

2. Let ( t~1 , ••• , t~r) = I c Oc c Oc 
n:c~c. 

Tii=1 C{ ti} be the conductor ideal of 

I(C,l) = {g E C{x,y}[(Ci-(g = 0)) 2 ci + l(i)} 

3. If we "shift" the curvetta's ci on Z(C, l) transverse to themselves, we get by 
blowing down a curve C', defined by some equation g = 0. I(C, l) is the ideal 
generated by these g 's. 

Obviously, I(C,l') ~ I(C,l) if l'(i) 2 l(i). The largest of these ideals is I(C,m), 
with m( i) as in (1.2). This ideal is also exactly the ideal Iev, introduced in the 
appendix, and plays an important role in this article. 

Multiplicity Matrix 

Consider as before an embedded resolution of the curve C: 

c '---? z 
Pl Pl 
c '---? z 

The map p : Z ~ Z can be factored into a finite sequence of blow-ups p = 
PN 0 PN-1 0 PN-2 .. ·P1 where Pk : zk ~ zk-1 is the blow up in a finite number 
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of points of Zk-l· The totality of points in which we blow up, that is, the set of 
infinitely near points, we denote by I. For p E In Zk, we put: 

Ep strict transform of (Pk+t)-1 (p) m Z 
E; total transform of Ep in Z 

It is usual to identify the Ep 's on the different zk 's. Let p := Pic( z I Z) be the 
lattice of divisors contracted by p. It is clear that both Ep, p E I and E;, p E I form 
bases for P. The Ep are I!D 1's, whereas the E; in general are reducible, but have 
self-intersection -1. The relation between the EP and E; is expressed in terms of 
the multiplicity and proximity matrices. 

Definition/Proposition (1. 7): 
The multiplicity matrix is defined as: 

(Mp,q)p,qEI :=multiplicity of ck in Ep 

Here Ck is the strict transform of C in Zk, where q E Zk. 
One says that q E I is proximate top E I, notation q --t p, if q is on EP' One 
then has: 

Ep = E;- I: E: == L:rrq,pE: 
q->p q 

ITp,q is called the proximity matrix. One has E; = :Eq Mq,pEq so the multiplicity 
matrix is the inverse of the proximity matrix. 

Example (1.8): 
Take the minimal resolution of the ordinary cusp to a divisor with normal cross
ings. We have to blow up three times. Denote the arising exceptional divisors by 
Et,E2,E3. 

The multiplicity and proximity matrices are: 

M= 
1 

-1 
-1 

0 0) 
1 0 

-1 1 

We let L be the free :Z-module spanned by the ( -1)-curves Ei, i E T. There is a 
natural map 

I: p--+ L; X H L(Ci.X).Ei 
iET 
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Clearly, the kernel H of this map is the sub-lattice spanned by all Ep, where p is 
~ T. So this is the lattice of the resolution graph of X(C, l). If we choose as basis 
for P the divisors E;, then the intersection form becomes diagonal. If we choose for 
H the natural basis consisting of Ep, p ~ T, then matrix of the inclusion H <--t P 
is described by the restricted proximity matrix, obtained by removing all colums 
corresponding to a ( -1 )-curve. The natural basis for L is Ei, i E T. The matrix 
of the map P ~ L with respect to these bases now is that part of the restricted 
multiplicity matrix, obtained by keeping only the rows corresponding to the ( -1 )
curves. This state of affairs can be formulated as: 
The rows of the restricted multiplicity matrix are the coefficients of the equa
tions for the resolution graph inside the trivial diagonal lattice P. 

This restricted multiplicity matrix is essentially the same thing as the multiplicity 
sequence of C. 

Example {1.9): For the cusp the map I: P ~Lis given by looking at the third 
row of multiplicity matrix, that is, the multiplicity sequence of C. 

LZ3 (~) iZ 

Indeed, the resolution graph can be obtained by looking at the first two columns of 
the matrix II. One finds a ( -2) and a disjoint ( -3). If we blow up further, we get 

3 (2,1,1, ... ,1) 
iZ ~ iZ 

which has as kernel elements of the form 

1 0 0 
-1 1 0 
-1 -1 
0 0 ' ... ' 0 

1 
0 0 -1 

These vectors make up precisely the diagram 

@!-----------tlr--------· ~· - • • • • 

• : (-2)-curve @ : (-3)-curve 

The series of the ordinary cusp 

Note that the map I: P ~ L defines a priori its kernel H as lattice, but from the 
structure of the proximity matrix we in fact can find a natural basis in it. 

The Infinitely Near Points made Visible 

The set I of infinitely near points are points on some blow up. However, one 
can make these points visible by a small deformation of the curve. This was first 
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described in a nice paper by Scott, [27]. For this reason we will call it informally 
the Scott-deformation. The same deformation was also used by A'Campo [1] and 
Gusein-Zade [12]. For convenience of the reader we include a proof: 

Proposition (1.10): Let C C Z be an isolated plane curve singularity of multi
plicity m. Then there exists a 1-parameter a-constant deformation of C, such that 
on a general fibre one has the following singularities: 

1. The singularities occuring on the strict transform of C under the blow-up of 
C 2 at the origin. 

2. A singularity consisting of m smooth branches intersecting mutually trans
verse. (We will call such a singularity an ordinary m-fold point from now 
on.) 

Proof: After a change of coordinates, we may assume that C is given by the zero 
set of a Weierstrass polynomial f: 

f(x, y) = ym + a1(x)ym-1 + ... + am(x) = 0 

Because we assumed C to have multiplicity m, the vanishing order of ai at the origin 
is at least i. The total transform after the blow-up (in the interesting chart) is given 
by: 

xm(ym+ a1(x)Ym-1+ ... + am(x))=O 
X xm 

The intersection multiplicity of the exceptional divisor with the strict transform is 
m. Now move the strict transform "down" by replacing x by x- s. We then have 
as singularities the singularities of the strict transform, and we have m intersection 
points with the exceptional divisor. Blowing down gives the ordinary m-fold point. 
In terms off itself, we are looking at the deformation: 

f _ m a1(x-s) m-1 am(x-s) m_ 
s - Y + Y X + ... + ( )m X - 0 x-s x-s 

We may assume that each branch Ci of C (whose multiplicity is mi) is given by a 
parametrization of the form: 

One then checks that the deformation of this parametrisation 

is a parametrisation of fs(x, y) = 0. D 

From a repeated application of the above proposition it now follows that: 

Corollary ( 1.11): There exists a one-parameter deformation of the curve C such 
that for generic s =/= 0 there are points Pq, q E I in the plane, which are ordinary 
Mi,q-fold points of Cis· 

For pictures we refer to [27], [1], [12], [26]. 
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The corollary has a very nice interpretation: the matrix of the map I, that is, the 
multiplicity matrix, is the incidence matrix of a set of points Pq, q E I and the 
curve C8 • The a-constancy of the family is then equivalent to the classical formula 
of M. Noether for the a-invariant of the curve singularity C: 

with mq = 'EiET Mi,q· 

We will see later that this particular deformation corresponds to the Artin
component deformation of X(C,l). Moreover, in a similar way every smoothing 
of X(C, l) corresponds to a certain a-constant deformation of C, and certain points 
on it. This description of the smoothings of X(C, l) is what we call the picture 
method, because the curves and points are conveniently drawn in the plane. We 
consider it as the most important result of this paper. A precise statement and the 
proof will be given in section 4. 

§2 The Shape of the Surface 

To get a feeling for what is going on, we need some insight into the shape of the 
surface. 

The spaces X (C) and Y (C) 

Remark that sandwiched singularities come naturally in series, indexed essentially 
by the l( i). So what will happen if we let the l( i) go to infinity? According to [32], 
we can re:find the series by deforming the improvement of the limit which we call 
X( C). This improvement can be described as follows. Take for each branch i ETa 
smooth plane (C 2 ,0)i and an embedding Ci ~ (C 2 ,0)i. Take 

and identify the curves Ci in Z and ( C 2 , 0 )i. It is now clear that this space is the 
improvement of the following singularity: 

Definition (2.1): 
Let C = UiETCi C Z. Consider the normalisation map 

Choose an embedding 

n: c = II ci------+ UiETci =C. 
iET 

II ci ~ II(c2 ,0)i 
iET iET 

Then the space X( C) is defined to be the push-out: 

lliETCi ~ 
nl 

UiETCi ~ 

z lliET(C 2 ' O)i 
l 

X( C) 
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We say: X(C) is the space obtained by glueing planes along the branches X(C). 
This X(C) will naturally be a weakly normal Cohen-Macaulay space, with singu
lar locus C. Note that under the identification map the smooth planes ( C 2 , 0) get 
mapped in general to something singular in X( C); the corresponding components 
will then be non-Cohen-Macaulay. 

The use of projections of surface singularities into three space in order to understand 
the deformations and equations has turned out to be very fruitful: in [17] this idea 
was used to obtain the structure of the base space for rational quadruple points. 
Here we use the same method to study sandwiched singularities. For a review of the 
method of projections we refer to the appendix. We start with a special projection 
of the limit X(C), which is a surface that is very easy to define. 

Definition (2.3): Let C be an isolated plane curve singularity defined by f = 0, 
where f E C { x, y} C C { x, y, z}. We put 

Y(C) := {(x,y,z): zf(x,y) = 0} C («:: 3 ,0) 

So Y(C) consists of a smooth plane {z = 0} together with the product ofthe z-axis 
with the curve C. The singular locus of Y (C) therefore consists of two parts: 1) the 
curve C in the plane {z = 0} and 2) the z-axis through the singular point of C. 
It is easy to construct a finite, generically 1:1 map from X(C) to Y(C): we can 
resolve the curve C by a sequence of point blow-ups. We now can apply the same 
sequence of blow-ups crossed with the z-axis to Y(C) to construct a modification 

Z(C)-------+ Y(C) 

This Z(C) is exactly the improvement of X(C) constructed above, and by the uni
versal property of glueing and blowing down, we get a factorization 

Z(C)-------+ X(C)-------+ Y(C) 

To put it in another way, X(C) is obtained from Y(C) by a partial normalisation 
that removes only the singularities on the z-axis. 

Example (2.4): We consider the ordinary cusp C: x 2 - y3 = 0: 

Improvement of the surface X( C) 
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The surface Y( C) : z(y2 - x 3 ) = 0 

The spaces X(C,l) and Y(C,l) 

As X(C, l) should be a small deformation of X( C), one expects to be able to define a 
Y(C, l) as a small deformation ofY(C) (which in fact is a so called R.C.-deformation, 
see the appendix), from which X( C, l) can be obtained as normalisation. This in 
fact is the case, as we will show now. 

Theorem/Definition (2.5): Let (C,l) be a decorated curve, and X(C,l) the 
analytic space determined by it. 
Let ( t~1 , ••• , t~~) = I C Oc C 0 0 = ITi=l C{ ti} be the conductor ideal of n : C ----+ 

c. 
Then, for every function g E C { x, y} such that its restriction 9i has exact vanishing 
order Ci + l(i) on ci, X(C, l) is the normalisation of the surface 

Y(C, l) = {(x, y, z)lzf(x,y)- g(x, y) = 0} C C X Z 

proof: Let Z = Z(C,l) be the modification of Z determined by (C,l). On it we 
have functions x and y, pull-backs of the functions x and y on C 2 . The function 
f( x, y) on Z vanishes exactly on F U C. 
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Then we define a meromorphic function z on Z by 

z=gff. 

Replacing g by g + af we can arrange that the divisors (f) and (g) on Z have the 
same compact part. As the vanishing order of gi on 8i is assumed to be exactly 
Ci + l(i), it follows that the non-compact parts of (f) and (g) are disjoint, see (1.6). 
So z has a simple pole along 8 and is zero along the non-compact part of (g). In 
particular, z is non-constant on every compact curve in Z intersecting 8. So we get 
a holomorphic map 

(x,y,z): Z- 8 --t C X Z 

As X(C,l) is obtained from Z- 8 by contracting the maximal compact set, the 
above map factorizes to give a map: 

p: X(C,l) --t Y(C,l) C C x Z 

Clearly, p is birational, as the map to Z already is birational. The inverse image on 
Z of the z-axis C C 3 is the set F. The function z is finite (because non-constant) on 
each of the exceptional curves intersecting 8. It follows that p : X ( C, l) -t Y ( C, l) 
is the normalisation map. D 

Remarks (2.6): 
We note that strictly speaking the spaceY( C, l) depends on the choice of a g. How
ever, its normalisation X(C, l) only depends on g via its vanishing orders encoded 
in the l( i) and therefore we don't mind. 
Note also that the surface Y( C, l) has a natural partial compactification Y( C, l) C 

Jlllx Z. The normalisation ofthis space could be called X(C, l), which is also precisely 
the space obtained by blowing up Z in the complete ideal I( C, l). 

Example (2. 7): We consider the decorated curve ( C, 6), where C is the cusp 
x2-'-- y3 = 0: 

Resolution of the surface X(C, 6) 
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The surface Y(C, 6): z(y2 - x 3 ) + (0.05)x4 = 0 

We now turn to the algebraic relation between X( C) andY( C) and between X( C, l) 
and Y(C, l). 
Let I be the conductor of the normalisation map C --t C. Consider the extension 
of I to C{x,y,z}, which we denote by J. The ideal offunctions 

rv := {g E C{x,y}iord(gi) ~ Ci + m(i)} 

plays an important role in the R.C.-description of the 8-constant deformations of 
the curve C, see appendix. We note that because l( i) ~ m( i) the particular g con
structed in (2.5) is E rv. Because Iev is an ideal we conclude that both zf and 
zf- g are elements of Iev, So the ideal I satisfies R.C. both for Y( C) andY( C, l). 

Theorem (2.8): 

Ox( C)= H omy(c)(J,l); Ox(C,l) = H omY(c,l)(J,l) 

proof: We give the proof of the second statement only. The singular locus of 
Y( C, l) is exactly the z-axis. Taking H omY(c,l)(J,l) commutes with localization, so 
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for a generic z, zf- g gives the general fiber of a a-constant deformation of c, so 
for generic z, H omY( c,l) (I, I) describes a smooth space. We conclude that the space 

defined by H omy(c,l)(I,I) is CM and has codimension two singular locus. Thus 

H omy(c,l)(I,I) is the normalization of OY(c,l) which by (2.5) is Ox(C,l)· D 

This description of Ox(C) and Ox(C,l) is very useful to get explicit equations for 
these spaces in ambient space. This is explained in the appendix, and illustrated by 
the following example. 

Example (2.9): Take the decorated curve C consisting ofthe Es singularity, defined 
by y3 - a:4 = 0, and the function l defined by the number 8 attached to its only 
branch. The equation for Y(C) is z(y3 - a:4 ) = 0. Equations for the limit X(C) in 
the space with coordinates a:, y, z, u, v can be obtained, as explained in the appendix, 
as follows. The conductor I= (a:,y) 2 ofthe curve is obtained as the ideal of minors 
of the matrix 

( ~ ; ~) 
A presentation matrix of Ox(C) as O(ca,ormodule is then : 

Thus, we get linear equations: 

zy + ua: = 0; uy + va: = 0; -za:2 + vy = 0, 

and the quadratic equations are: 

Now we have to choose a g. The E6 singularity is parametrized by a: = t 3 ; y = t 4 . 

The conductor is given by the ideal (t6 ) = (a:,y) 2• Hence the function g has to have 
vanishing order 6 + 8 = 14. So a: 2 y 2 = t14 will do. We conclude that the projection 
Y(C,8) has equation: 

z(y3 _ a:4) = a:2y2 

From this information equations of X(C, 8) can be computed. For the corresponding 
presentation matrix of Ox(C,s) we get: 

From this we get linear equations: 

zy + ua: = 0; a:y + uy + va: = 0; -za:2 + vy = 0, 

and quadratic equations: 
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for the sandwiched singularity X(C, 8). 

In general, the equations for the limit X( C) are easy to describe in terms of the 
equations of C as in the appendix. 

Proposition (2.10): 
If 

t 

LMijUi = 0; 
i=O 

t 

uk uz = L Y1zui 
i=O 

are the linear resp. quadractic equations for C 1 then the linear resp. quadratic 
equations equations for X (C) are: 

t 

zMlj + LMijUi = 0; 
i=l 

(Recall that in the module basis u0 = 1). 

Remarks (2.11): 
a) There is a one parameter R.C. deformation: 

zf(x, y)- sg(x, y) = 0 

For the special fibre s = 0 we have the space Y(C), and for all sf- 0 the fibre is a 
Y(C, l). If we consider the normalization, we get a one parameter deformation of 
X( C) such that for all sf- 0 the fibre is isomorphic to X(C,l). We remark that this 
deformation can be obtained from the minimal improvement of X( C) by deforming 
away the A00-singularity at Ci to an Az(i)-m(itsingularity, in the way also described 
in [32]. 
Similarly, there is a one-parameter deformation Xs ~ S with zero-fibre X(C, l) 
and all other fibres isomorphic to X ( C, l') if l( i) ~ l'( i) for all i: just look at 

zf(x,y)- sg'(x,y)- g(x,y). 

These deformations are useful in various situations. 

b) Although in Example (2.8) the computation of equations of X( C, l) was quite 
easy, the computation of equations for X( C, l) will in general become very lengthy 
and boring. This will even be more true for deformations, which we will consider 
later. The crux of the theory of R.C. deformations is that one can circumvent these 
calculations. One only needs to take care of the linear equations, while the R.C. 
condition exactly says that one can compute the quadratic equations, without actu
ally doing so. 

c) The resulting embedding of X( C, l) need not to be minimal, although it will be 
in most cases. For example, take the sandwiched singularity with the following dual 
resolution graph. 
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• : (-2)-curve ® : ( -3)-curve 

There exists no sandwiched representation for this singularity such that the resulting 
embedding is minimal. Note that this example is the standard counterexample to 
the T 1 and T 2 formulae, see [6] and [4]. 

§3 Deformations of Sandwiched Singularities 
In section 2 we have seen how to get equations for X( C, l) using a projection to a 
surface Y ( C, l). With the same ease, the theory of R. C. deformations can be used 
to describe the deformations of X ( C, l) in terms of Y ( C, l). The main result of this 
section is the theorem, that expr~sses the stability of the normal form zf- g = 0 
of the projection under arbitrary deformations, in a strong sense. To formulate this 
appropriately, we need to define a new deformation functor. 
To simplify notation we shall put X= X(C,l) andY= Y(C,l). 

The Functor Def(~, C, g) 

Let Y be defined by an equation of the form zf- g = 0. As usual, f = 0 is 
an equation for the curve C, I: the fat point defined by the conductor I of the 
normalisation. We denote by ~ the fat line defined by I in C 3 . We will define a 
functor Def(I:,C,g) of what we call normal form deformations. 

Definition (3.1): LetS be an local analytic space. A tripel (I:s,Cs,gs) called a 
nice tripel if and only if: 
1} (I:s,Cs) is an R.C. deformation of(I:,C) overS. 
2} (I:s,gs) is an R.C. deformation of(I:,g) overS. 
Two nice tripels (I:s,Cs,gs) and (I:8,C,S,g5) are called isomorphic if there is a 
coordinate transformation in the x, y-plane overS which maps (I:s, Cs) to (I:s, C,S) 
and gs to g,S modulo some multiple of fs· 
We define the functor Def(I:, C,g) by putting: 

Def(I:,C,g)(S) := {(I:s,Cs,gs); nice tripel over S}/{isomorphism} 

It is easy to see that this is a semi-homogeneous functor, and we will see in a moment 
that Def(I:,G,g)(C[E]/(E2)) is finite dimensional, so that by Schlessinger's theorem 
it has a hull. 

Proposition (3.2): There is a a natural transformation of functors 

Def(I:, C,g) ~ Def(~, Y(C, l)) 

(I:s, Cs, gs) H (I:s, Ys = {zfs- gs = 0}) 

proof: Given a nice tripel (I:s, Cs,gs), the function fs defining Cs is determined 
up to a unit u, and gs is determined up to a multiple a E mos{:c,y} of fs. In the 
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equation zfs- 9S = 0, these ambiguities can be absorbed in z by the replacement 
z ~ uz +a, so Ys is well-defined. The pair (~s, Ys) satisfies R.C. if and only if 
the evaluation map eVzfs-gs is the zero map. We have: eVzfs-gs = z · evfs - evgs· 
As both (~s,fs) and (~,9s) satisfy R.C., we have evfs = evgs = 0. So indeed 
P:~s, zfs- 9s) satisfies R.C. and we get a well-defined transformation of functors. 
D 

Hence, we have a chain of transformations of functors 

Def(~, C,9) ~ Def(f., Y) ~ Def(X ~ Y) ---t Def(X) 

The main result of this section is: 

Theorem (3.3): The composed transformation of functors 

Def(~, C,9) ~ Def(X) 

is formally smooth. 

This formal smoothness is a strong form of surjectivity. It means in particular that 
every flat deformation of X over S can be projected into three-space to an R.C.
admissible family of the form zfs - 9S = 0. 

Infinitesimal Deformations 

As before, let C be described by an equation f = 0, f E C{x,y} =: 0, and let 
(~) = (~17 ... , ~t) =I C 0 be the conductor ideal, ~ the fat point it defines. 
The infinitesimal deformations of the functor Def(~, C, 9) are represented by ad
missible triples 

A( I, f,9) = {(n, fll91) I (n, h) E A( I, f) and (n, 91) E A(I,9)} C NE EB 0 EB 0 

The infinitesimal coordinate transformations, i.e. vector fields () E 0 := 8c2 ,o give 
a submodule of triples of the form 

( 0( ~), O(f), 0(9)) 

Furthermore, the equation of C is determined up to a unit, and the function 9 up 
to multiples of f. As a consequence, the triples (0, f, 0), (0, O,j) are zero in 
T1 (~,C,9) := Def(~,C,9))(C[E]/(E2 )). As a result we have 

Proposition (3.4): There is an exact sequence of the form: 

Here Be = { () E 0 I O(f) C (f)} is the module of vector fields tangent to the curve 
C. In particular1 T 1 ( ~, C, 9) is a finite dimensional vector space as soon as g is not 
identically zero on any branch of C. 

Our next aim is to prove that the map T1 (~, C,g) ---t T 1(X) is surjective. For this 
it is useful first to look at the limit X= X( C), for which T 1(X) can be understood 
completely. We will use the following notation: if M is any C{x,y}-module, we 
write M for its extension to C{x,y,z}. Similarly for spaces. 
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Proposition (3.5): Let TJ = Ker(hJ: T 1(:E)-+ N*/I). Then there are exact 
sequences: 

0 ----t -p;; j(f, zJ·E(f)) ----t T1 (~, Y(C)) ----t TJ ----t 0 

0-+ (rv j(f)) Ef) (zrv j(zJy,(f), zf)------* T 1(X(C)) ----t T~ -+ 0 

Proof: We first determine the admissible pairs A( I, zf) C Ny, X NY( C) of the func

tion zf. Elements of the form (0, h) are admissible iff h E -p;;_ Furthermore, if 
(n,fn) E A(I,f), then (n,zfn) E A(I,zf). One has (n,h) E A(I,zf) if and only if 

hzJ(n) = 0, where hzf : Ny, ----t Ji0 is the hessian map. As hzJ(n) = zhJ(n), and ------ ------N*/1 is C{z}-free, one sees ker(hzJ) = ker(hJ) which means that there is nothing 
else. To obtain the first exact sequence, one has to note that that az maps to the 
pair (0, f). 
For the second exact sequence, we recall that, according to the appendix, one ob
tains T 1(X(C)) as a quotient ofT1 (~, Y(C)) by dividing out the image of the vector 
fields of the form uk8x, etc, in the space of admissible pairs. As G is smooth, we 
have T 1 ( G) = 0. This means that all of A( I, f) is obtained by applying uk8x, etc. 
From the explicit equations for X( C) in terms ofthe equations of G, (2.10) and the 
description of the R.C. admissible pairs obtained from vector fields in the appendix, 
one concludes that if (n, h) is an R.C. admissible pair for C, then (zn, z2h) gives an 
R. C. admissible pair for X (C), which then is a trivial infinitesimal deformation of 
X( C). Dividing out these elements in the first sequence gives the second sequence. 
D 

Corollary (3.6): 
The map T1 (:E, C, 0) ----t T 1(X) is an isomorphism. It sits in a diagram: 

rv /(f) 

l 
-+ T1 (:E, C, 0) 

(lev /(f)) Ef) (ziev /(zjy,(f), zf) -+ 
~l 

T 1(X(C)) 

-+0 

-+0 

Here we see one of the main reasons for introducing Def(:E, C, g): it maps natu
rally to Def(:E, C), whereas T 1(X(C)) only maps to TJ. Using the isomorphism, 
T 1 (X (C)) gets a beautiful structure: it has a finite dimensional piece T 1(:E, C) cor
responding to the a-constant deformations of c' and an infinite dimensional piece 
rv /(f) corresponding to the "series" deformations, the deformations which deform 
X( C) to sandwiched singularities X( C, l). Remark that this infinite dimensional 
part Iev j(f) has support on C, the singular locus of X( C). 
Let us turn to sandwiched singularities, so we let X= X(C,l), Y = Y(C,l), etc. 
For these we do not have such an explicit description of T 1 . But what matters for 
now 1s: 

Proposition (3.7) The map 

is surjective. 
In other words, the vector space T 1 (X) of infinitesimal deformations has basis rep
resented by admissible pairs of the form: 

(0, h), hE rev Ef) zrv 
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(n,zfn- 9n) with (n,fn) E A(!, f) and (n,gn) E A(I,g) 

proof: Recall from (2.9) that the normalisation Xs ---t S of the one-parameter 
family {zf- sg = 0} has special fibre X(C) and all other fibres isomorphic to 
X ( C, l). It follows from general principles that there is a relative T 1-sequence that 
reads as follows: 

By proposition (3.4), there is a basis of T 1(X(C)) consisting of elements ofthe form 
(O,h) E rv Ell zlev and elements of the form (n,zfn) with (n,fn) E A(!, f). The 
question now first is which of these elements can be lifted to T}-ez(Xs). Obviously, 
the elements (0, h) can be lifted in the trivial way. Elements of the form (n, zfn) 
can be lifted if hg(n) = 0, because then for some 9n one has (n,gn) E A(I,g), so 
(n,zfn- sgn) is a lift to A(I,zf- sg). The condition hg(n) = 0 is also necessary: 
take any lift n + sm, m E N of n. Then n + sm can be extended to an element of 

A(i, zf- sg) if and only if hzf-sg(n + sm) = 0 in the free C{z, s}-module ;;;-;J. 
But this is zht(n) + zsht(m)- shg(n)- s2hg(m). The coeficient of s, hg(n), has 
to vanish. So T}-ez(Xs) has S-module generators of the stated type. Now we can 
restrict to any fibre, e.g. s = 1, to get the result for T 1(X( C, l)). D 

Proof of Theorem (3.3) for l(i) big 

We first prove Theorem(3.3) in the case that all the l(i) are big. In fact we need 
that for all i: 

l( i) ~ Ci. 

Then one can choose g( x, y) E 12 . The crucial consequence of this condition is that 
the hessian map 

hg : N ---t N* I I 
is the zero-map. Recall that formal smoothness of a transformation of functors 
F ---t G means that for all small extensions 0 ---t V ---t T ---t S ---t 0 the 
canonical map 

F(T) ---t F(S) Xa(S) G(T) 

is surjective. Assume that we have ('Es,Cs,gs) representing an element of 
Def('E, C,g)(S). We have corresponding elements ('Es, Ys) E Def('E, Y)(S) and 
Def(X)(S). Assume that we can lift the corresponding deformation of X toT. We 
will show that then we can find ('ET, CT, 9T) lifting ('Es, Cs, gs) and mapping to the 
corresponding deformation of X over T. 
The functor of 6-constant deformations of the curve C is unobstructed, so we can 
lift fs to fT and 'Es to 'ET in an R.C.-admissible way. Consider an arbitrary lift of 
gs to 9T· The condition of R.C. admissibility of the family zfT- 9T is expressed by 
the vanishing of the evaluation map 

By construction of the lift ('ET, fT ), evh = 0, and so the condition for admissibility 
on 9T becomes independent of z, that is, 
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The obstruction element of the family zfs- gs = 0 E Dej(f:., Y)(S) is given by the 
class of eVzfT-gT = -ev9T in the obstruction space: 

Because l(i) 2: Ci we know that h9 (N) = 0, hence the obstruction space is equal to: 

As the element of Def(X)(S) can be lifted to Def(X)(T) by assumption, this 
obstruction element in fact has to vanish. This means that 

Hence ev9 T is of the form n ~ n( h) for some h E I® V. Change the chosen lift to 
gT =9T-h to get ev9~ = 0. This means that we have lifted (~s,Cs,gs) toT. As 
the possible lifts of Def(X)(S) to Def(X)(T) form a principal homogeneous space 
for T 1 ® V, the result follows from (3.7). D 

The argument for l ( i) small 

As the transformation Def(~, C, g)~ Def(X) is smooth for large l, one has that 
the complete local ring R1 of the base space of the formal semi-universal deformation 
of Def(~, C,g) is of the form R[[st, ... , sN]], where R is the complete local ring of 
the base space of X(C, l). As we know that one can take R to be the completion 
of an analytic local ring, the same is true for R1. Because the R.C. conditions are 
expressed by polynomial equations, it follows from the ordinary Artin approximation 
theorem that one can construct an analytic family that is formally semi-universal 
for Def(~,C,g). (Alternatively, one could argue as in [16].) So we get a smooth 
map of analytic spaces 

B(~,C,g) ~ B(X) 

as base spaces for Def(~, C,g) ~ Def(X). Recall that according to (2.9), X(C, l') 
occurs as a small deformation of X(C,l) if l'(i):::; l(i). We can apply the theorem 
of openness of versality to conclude that theorem (3.3) is true for smalll as well. D 

Remark (3.8): Also in case that all the l(i) are big, we can get a clearer description 
of it T 1 . In fact one has a diagram: 

0 ~ 

0 ~ 

lev j(f, 0c(g)) 

t 
lev j(j, 0E(g)) 

T 1 ('E, C,g) ~ 
t 

T1 (X) ~ 

T 1('E, C) 
~t 

T1 (~,C) 

~ 0 

~ 0 

where eE is the module of vector fields on c generated by to I at. In particular one 
has a dimension formula: 

dim(T1(X)) = L(l(i)- m(i)) + dim(T1('E, C)) 
iET 

It is also known that dim(T1 (~, C)= T(C)- 8. 
It is unclear, however, how big one has to take the l(i), to have the above formula. 

For lack of better place, we state and prove here the stability result: 
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Theorem (3.9): Consider two decorated curves (C,l) and (C,l'). Suppose that 
for all i one of the following cases occurs: 
1.l(i)=l'(i) 
2. l(i) 2:: Ci, l'(i) 2:: Ci 

Then the base spaces of a semi-universal deformation of X ( C, l) and X ( C, l') are 
isomorphic up to a smooth factor. 

proof: Under the assumption of the theorem one choose a g for Y(C, l) and g1 for 
Y(C, l') with the property that g- g1 E J2 • The theorem follows from the principle 
of J2-equivalence [14] (1.16). D 

In case that for all i the second case of (3.9) occurs, the theorem is sharp, as then 
there always is a special smoothing existing if l( i) = Ci for all i, but not existing if 
for at least one i we have l( i) < ci, see ( 4.13). 
We will refer to the singularities with l( i) ;::: Ci as being in the stable range, because 
here the general phenomenon of stability has set in: if we go higher in the series, the 
base space gets crossed with a smooth factor, and hence the component structure is 
the same. 

§4 Pictures and Components 

We have seen in §3 that the base space of the semi-universal deformation B(X) of a 
sandwiched singularity X= X(C, l) is, up to a smooth factor, the same as the base 
space B(~, C, g). This will lead us to a description of smoothing of X in terms of 
geometry in the plane. 

Decoration as Divisor on C 

When a sandwiched singularity X(C, l) is constructed as the normalisation of zf
g = 0, it is only the vanishing order of g on C that matters. In other words, the 
functor Def('£, C, g) contains a little bit too much information. 
It will be useful to change the perspective, and try to reformulate everything in terms 
of divisors on C. For example, in (1.3) we introduced the concept of a decorated 
curve as a curve with numbers attached to its branches. From now on we will think 
of the l( i) as information encoding the unique sub-scheme C C, whose components 
c Ci have length l(i). Equivalently, we may think of it as a divisor on C. We will 
be sloppy and denote this subscheme or divisor by the same symbol: l C C, with 
components l( i) c ci. 
The divisor (g) of the function g on C consists of sub schemes of length ord(g, Ci) = 
Ci + l(i), or in terms of divisors: 

(g)= c + l 
In our construction of sandwiched singularities, we had to assume that l( i) ;::: m( i). 
This means that l has to contain a certain other scheme: 

m C l 

Here of course m := m(C,p) is the unique subscheme on C with length m(i) on 
branch i. These concepts now can be globalised as follows: 
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Definition (4.1): Let n: C ---t C be the normalisation of any plane curve. 
We define its multiplicity scheme m(C) C C as 

m(C) = UpEcm(C,p). 

Here m( C, p) denotes the local multiplicity scheme of length m( i) on the i-th branch 
ofCi. 
A pair (C, l) consisting of a curve and a subscheme l C C is called a decorated 
curve if 

m(C) C l. 

We also can define what we call a one-parameter deformation of a decorated curve. 
For this, let S be the germ of a smooth curve, {0} is the special point, and 
S* = S- {0} the set of generic points. 

Definition ( 4.2): A one-parameter deformation of a decorated curve ( C, l) over 
S consists of 

1} A a-constant deformation Cs ---t S of C. 

2) A flat deformation ls C Cs = C X S of the scheme l. 

3) With the condition that 
ms C ls 

Here we define the relative ms of Cs ---t Cs as 

We want to stress here that the formation of m is in general not compatible with 
base change in the sense that m(Co) ::/:- (ms)o. But in any case we have an inclusion 
m(Co) C (ms)o. 

The idea of course is that a one-parameter deformation of a decorated curve gives 
rise to a one-parameter deformation of the corresponding sandwiched singularity. 
We first construct geometrically the fibre X(C8 ,D8 ), s E S*, which is nothing but a 
global version of the construction of a sandwiched singularity,see (1.4) and (2.5). 

Construction ( 4.3): Let ( C, l) be a decorated curve (in the sense of ( 4.1)), where 
C is a curve in a smooth surface Z. Locally on Z we have the situation as in (1.4), 
so we can construct a modification 

p: Z(C,l) ---t z 

by blowing up in points p = n( q), q E supp( l). The analytic space X ( C, l) is obtained 
from Z(C,l)\C by blowing down the maximal compact set. 

As the above construction involves blowing up, it is not obvious how to obtain a 
flat family of surfaces X( Cs, ls) directly from any one-parameter deformation of 
decorated curves (Cs,ls). The problem of obtaining the deformation directly via 
blow-up is related to the problem of finding P-resolutions. We hope to come back 
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to this theme on a future occasion. 

The central theorem of this section is the following 

Theorem (4.4): For any one-parameter deformation (Cs,ls) of a decorated curve 
( C, D) there exist a fiat one-parameter deformation 

with the property that: 

1} X 0 = X(C, l). 

2} X 8 = X(Cs,ls) for all s E S*. 

Xs -----+ S 

Moreover, every one-parameter deformation of X(C, l) is obtained in this way. 
proof: For X(C,l) we choose g E C{x,y}, so that n: X(C,l)-----+ Y(C,l), where 
Y(C,l) = {(x,y,z): zf(x,y)- g(x,y) = 0}, as in §2. Write g = ah, with a,h E 0 0 
such that a generates the conductor I C 0 0 , ann the divisor of h is l. This is 
possible, because the vanishing order of 9i was Ci + l( i). 
Suppose we are given a one-parameter deformation (Cs,ls) of (C,l). The a
constancy implies that the conductor Is C Oc5 C 0 05 is S-:flat. So we can lift 

a,h to elements as,hs E 0 05 . Pick any gs E Os{x,y} lifting g and hsas. De

fine a family of surfaces Ys C C 3 X S by the equation zfs - gs = 0. It follows 
from the description of rv from the appendix and the fact that m( Cs) c ls that 
in fact (~s, Ys) E Def(~, Y(C, l)). So we can normalise over S to obtain a fam
ily ns : Xs -----+ Ys, which is a flat deformation of X(C, l). As the construction of 
X(Cs,ls) is local on Z, one can use theorem (2.5) to conclude that the normalisation 
of Y(Cs, ls) = {(x, y, z)izfs- 9s = 0} is X(Cs, ls)· 
Conversely, any deformation Xs-----+ S of X(C, l) can be obtained from Def(~, C,g) 
by (3.3), so is of the above type. D 

Examples ( 4.5): A first remark is that it follows from the theorem that sandwiched 
singularities only deform into sandwiched singularities. We consider Example (2.7) 
and the following one-parameter deformation of the decorated curve: 

6 • 
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Deformation of Y( C, 6) corresponding 
to smoothing of X( C, 6). 

z(y2 - x2 (x + (0.3))) + (0.2)(x2)(x- (0.3))(x- (0.6)) = 0 

As a second example, we consider the following deformation of a decorated curve: 

7 • 

\I 
2 • • 

4 2 • • • 

This gives a deformation of the rational surface singularity with the following dual 
resolution graph: 
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• : ( -2)-curve @ : (-4)-curve 

On the general fibre we have singularities coming from X(A2,4), X(A1, 2, 2) and 
X(A1 ,1,1), so we have two cones over the rational normal curve of degree 3 and an 
A1 singularity, see (1.5). 

Picture deformations and Smoothing components 

Every singularity X has a collection S(X) of smoothing components, that is irre
ducible components of its base space B(X) over which smoothing occurs. It is well 
known that for rational singularities all components of B(X) are smoothing compo
nents. 
Let us try to describe the smoothing components for a sandwiched singularity. 
Any (non-trivial) one-parameter deformation Xs -----+ S is induced from a map 
j: S -----+ B(X). If Xs -----+ Sis a smoothing, then j(S) is contained in a well-defined 
component of B(X). In principle, theorem ( 4.4) gives us a complete description of 
all one-parameter deformations, in particular of all smoothings. The general fibre 
Cs of the corresponding family of curves can have all sorts of singularities, see for 
example (1.5) 3). We will show however that a generic one-parameter smoothing is 
of a very particular type. 

Definition (4.6): A one-parameter deformation (Cs,ls) is called a picture de
formation if for generic s f::. 0 the followinJ! holds: 

The divisor l8 on Cs is reduced 

This implies in particular that the singularities of Cs only consist of ordinary m

tuple points, for various m. By convention, we call an ordinary 1-tuple point a free 
point. So these are the points of the divisor l8 that map to a non-singular point of 
Cs. 

Lemma ( 4. 7): A generic smoothing of X( C,l) is realized by a picture deformation 
of (C,l). Hence for every picture deformation P : Xs -----+ S a well defined smoothing 
component C(P) E S(X). 
proof: By openness of versality, it suffices to show that for any decorated curve 
(C,l), there exists a one parameter picture deformation. To see this, use the Scott
deformation of the curve singularity C, see (1.11). Because one has l(i) 2:: m(i) for 
all i one can make a one-parameter deformation of the decorated curve, such that 
on the general fibre of the deformation of the curve C we have just ordinary m-fold 
points. Having done this, it is easy to make a one-parameter deformation of the 
decorated curve, for which on the general fibre the divisor l 8 is reduced. D 
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We remark the the procedure in the proof oflemma ( 4. 7) defines a preferred smooth
ing for each sandwiched singularity X. It should not surprise the reader that this 
smoothing occurs on the Artin-component, as was already stated at the end of the 
first section. 

Example (4.8): The cone over the rational normal curve of degree 4 has two dif
ferent smoothing components, as was discovered by Pinkham, [24]. We will explain 
how to see this with our method. 
As curve C we take three lines in the plane, with the number 2 attached to each 
branch. The corresponding surface Y( C, 2, 2, 2) in three space looks as follows: 

The surface Y( C, 2, 2, 2) : z(3x2 - y2 )y + (O.l)x4 = 0 

There are two possible picture deformations: 
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2 2 

The picture at the right corresponds to the Artin-component, the picture at the left 
is the qG-smoothing, occuring on the one dimensional component of the base space, 
The corresponding surfaces in three space look like: 

Deformation of Y( C, 2, 2, 2) corresponding 

to smoothing of X(C, 2, 2, 2) over the Artin component 

z(3x2 - y2 )y + (O.l)(x3)(x- (0.35)) = 0 
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Deformation of Y( C, 2, 2, 2) corresponding to smoothing 

of X( C, 2, 2, 2) over the one-dimensional component 

z(3x2 - y2 )(y + (0.3)) + (0.02)(3x2 + (0.3)y)2 

The map ¢ : S(X) ---+I( C, l) 

Using the picture interpretation of smoothing components, we can define a discrete 
invariant that contains a lot of interesting information. 

Definition ( 4.9): 
Consider a picture deformation P : Xs ~ S. Let Ps be the set of points of Cs 
obtained as the image of l8 , counted without multiplicity. 
Let P be the free 7l-module on the set P8 , and L be the free 7l-module on the branches 
Ci of C {or the branches Cis of C s). Then we define the incidence map of a picture 
deformation 

I:P~L 

by defining it for the basis elements p E P8 by: 

I(p) = 2: m(Cis,p)Ci 
pEGi 

Here m( Cis,p) denotes the multiplicity of the branch Cis at the point p. 
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The information of the incidence map is of course the same as that of the incidence 
matrix with respect to the natural bases of the curves and the points. This matrix 
is determined up to permutation of columns ( utpoc), because the lattice P has a 
natural bases of points which are determined up to an ordering. The branches of 
the curve C however can be ordered once and for all, so this gives the lattice L a 
fixed basis. 
We will use the notation IArtin : PArtin ----+ L for the incidence map of the special 
deformation considered in (1.11). 

Example ( 4.10): In example ( 4.8) we get for the incidence matrices for the Artin
component and the small component: 

( ~ ~ ~ ~ ) resp. ( ~ ~ ~ ) 
1 0 0 1 1 1 0 

We will define a set I( C, l) of maps that could a priori occur as incidence maps of 
picture deformations of X(C, l). 

Notation (4.11): For any free /Z-module P* with an (unordered) set of basis 
elements pEP* we define: 
1. the trivial inner product by< p,p >= -1, < p, q >= 0 for p-:/= q. 
2. the characteristic vector K = LpEP p. 
3. The quadratic function Q : P* ----+ !Z; v r--+ ~( < v, v > + < K, v >) 
4. Every linear map I P ----+ L induces by composition with its transpose a 
quadratic function 

QI: L*----+ !Z; v r--+ Q(l*(v)) 

5. In particular, we become a quadratic function QArtin belonging to 
IArtin :PArtin ----+ L. 

Definition ( 4.12): Let ( C, l) be a decorated curve, L the free module spanned by 
its branches. We define: 

I(C,l) ={I: P----+ L I Ql = QArtin} 

Here P runs over all possible free !Z-modules with an unordered set P of basis el
ements, and I over all possible linear maps with I(p) > 0 for all p E P. We call 
I(C,l) the set of combinatorial smoothing components of X(C,l), or of(C,l). 

In more down to earth terms, elements of I(C, l) can be represented by incidence 
matrices I consisting of r row vectors Vi = (vil,vi2, ... ). The condition on the 
quadratic function QI is translated into the following properties: 

1. :E; Vi;( 'lJij - 1) = 26( Ci) for all i. 

2. <vi,v;>=(Ci.C;) for all i-/=j. 

3. Lj Vij = l( i) for all i. 

We see that the first two conditions express numerically the 6-constancy of the de
formation of C, whereas the third expresses the flatness of l, that is, the conservation 
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of the number of points on each branch of C. 
Therefore, every picture deformation gives us an element of I( C, l). As result we 
get a well-defined map 

¢: S(X(C, l)) ---t I(C, l) 

This map ¢ is our first approximation of a combinatorial description of S(X). In 
ideal situations one would have that this map is an isomorphism. This happens for 
instance for cyclic quotient singularities in their standard sandwiched representa
tions, see (6.18). The determination of the image of¢ is equivalent to the problem 
of realising a combinatorial possibility by a picture deformation of the curve. This 
can be a very difficult and delicate problem, and depends in general on the moduli of 
the singularity X( C, l), see (6.4). The fibres of the map ¢ correspond to irreducible 
strata in the 8-constant base space of C which realise on their generic point the 
given incidence map, forgetting about the free points. We do not have any example 
where injectivity fails, and hope that ¢ is always injective, or at least if the Ci are 
smooth. 
In some cases we know the irreducibility of these strata: 

Cases (4.13): 
1. There is one component corresponding to IArtin, the Artin component. 
2. In case l( i) ;:::: Ci for all i, there is one component corresponding to lgen, the 
incidence matrix of the generic 8-constant deformation of C, where Cs has only 
ordinary double points. 
3. The multiplicity of C less then 4. 
proof: The second case is easy, as the corresponding stratum in the 8-constant base 
space of C is in fact the base space itself. For 3, the cases that the multiplicity of C 
is 1 or 2 is trivial, the case that the multiplicity is 3 follows from [17]. To give a proof 
of the first case it suffices to show that the deformation of X ( C, l) has simultaneous 
resolution after base change, if the incidence matrix is the multiplicity matrix. So 
suppose one has a one-parameter 8-constant deformation Cs ---t S of the curve C 
over a small disc S, which has the desired incidence matrix. In particular there is 
an ordinary m-fold point, where m is the multiplicity of the curve C. After a finite 
base change one has a section: a : S ---t C 2 X S, with the property that a maps 
all s E S- {0} to the ordinary m-fold point, and such that a(S) is smooth. Let 
us first look what happens in the limit. The 8-constant deformation induces a one 
parameter R.C. deformation Ys ---t S of Y(C) and a one-parameter deformation 
Xs ---t S of X( C). We blow up C 3 X Sin a(S) x z-axis. This induces a modification 
of Y s of Ys, and therefore a modification X s of Xs. The special fibre is obtained 
from the blow up of C 2 by glueing smooth planes along the branches of the strict 
transform of C. On the general fibre the same is done at the ordinary m-fold 
point. Blowing up sections one after another we conclude that the deformation 
Xs ---t S has simultaneous improvement. To conclude the proof for the sandwiched 
singularity X(C,l) one uses the deformation (2.11) of X(C), which is unobstructed 
against our deformation Xs ---t S. This deformation is realised by a deformation of 
the improvement so one deduces that the deformation of X( C, l) has, after finite base 
change, a modification for which on every fibre just rational double points occur. D 

Reduced fundamental cycle 

Suppose one has X= X(C,l) ~ X(C',l'), two different sandwiched representations 
of the same singularity. We then have two different maps ¢ : S(X) ---t I( C, l), 
¢': S(X) ---t I(C', l'). The question arises how to relate the incidence matrix of a 
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smoothing of X in the sandwiched representation ( C, l) to the incidence matrix of 
the same smoothing of X in the sandwiched representation ( C', l1). 

If C and C' have different numbers of branches, it is not clear at all how to re
late combinatorial solutions for ( C, l) and ( C', l'). In fact, it may very well happen 
that I(C,l) and I(C1,l1) have different number of elements, see (4.20). The com
plete combinatorial information contained in all different sandwiched representations 
seems to require some new information. We hope to come back to this matter in a 
future paper. 
There is however a simple answer if both curves C and C' only have smooth branches. 
Then X = X(C, l) ~ X(C', l') is a rational surface singularity with reduced funda
mental cycle. There are at most mult(X) sandwiched representations, with curves 
just having smooth branches, see (1.5). In this case it is true that each represen
tation gives equivalent information, and that the combinatorial structure can be 
related directly to the resolution graph r. In order to formulate the result we need 
some notions from [18]. 
Let X be a rational surface singularity of multiplicity m = mult(X) and with re
duced fundamental cycle, and resolution graph r. A general hypersurface section 
of X is isomorphic to them coordinate axes in em. We denote by {Hp : p E 1t} 
the set of irreducible components of this general hypersurface section. We can lift 
the general hypersurface section to the minimal resolution of X. Then the strict 
transform .iiP of Hp intersects exactly one exceptional curve which we call Ep. 

Definition ( 4.14): 
1. For p, q E 1t, p of:. q, one puts l(p, q) to be one plus the number of exceptional 
curves in the chain from Ep to Eq. 
2. For p, q, r E 1t, p, q, r all different, one puts p(p, q; r) to be the number of excep
tional curves in the intersection of the chain from Ep to Er and the chain form Eq 
to Er. 
3. We call the l(p, q) and p(p, q; r) the length and overlap functions of the graph r. 

Definition ( 4.15): Let X be a rational surface singularity with reduced fundamen
tal cycle. A r -representation of X consist of vectors 

Vpq = Vqp E {0, l}n for some n; p of:. q E 1t 

with the conditions: 
1. The number of non-zero entries in Vpq is l(p, q) 
2. Vpq + Vqr + Vrp = 0 modulo 2 
3. < Vpq,Vpr >= p(q,r;p). 
Here < ·, · > denotes the ordinary inner product. 

So in a r -representation, the vectors Vpq represent the chains in r' and inner products 
represent lengths and overlaps of chains. Of course, r-representations are considered 
utpoc, that is, up to permutation of columns. 
Recall from (1.5) that for every choice p E 1t we get a sandwiched representation 
(C, l). A combinatoral solution of the smoothing problem for the (C, l) gives us 
vectors Vpq with exactly l(p, q) non-zero entries, for this fixed chosen p and arbitrary 
q E 1t, q of:. p. Moreover, one has< Vpq,vpr >= p(q,r;p). Therefore, it is trivial that 
any r-representation of X= X(C, l) gives a combinatorial smoothing of (C, l). The 
main result on r-representations is that the converse also holds. 

Theorem ( 4.16): Let X( C, l) be a sandwiched representation with smooth 
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branches of X 1 corresponding to a p E 1t. Then any solution of the combinato
rial smoothing problem for ( C, l) gives rise to a r -representation of X 1 and vice 

versa. 
It follows that if one has a decorated curve ( C', l') 1 such that C' has smooth branches 
and X~ X(C',l') 1 then there is a bijection: 'ljJ: T(C,l) ~ T(C',l') 
proof: As described above, we have already Vpq for some fixed p E 1t, satisfy
ing the statement about the intersection product. The second condition for a r
representation for X gives that one can define Vrq = Vpr + Vpq mod 2. Having done 
that, one has Vrq + V8r + Vqs = Vpr + Vpq + Vps + Vpr + Vpq + Vps = Orm mod 2. We 
have to prove that the number of nonzero entries in Vqr is equal to l(q,r). But this 
is by definition equal to 

l(p, q) + l(p, r )- < Vpq, Vpr >= l(p, q) + l(p, r)- p(q, r; p). 

It follows from an easy property of trees that this number is equal to l(q;r). Finally, 
we must show that < Vq 8 , Vqr >= p(r, s; q). We do this for the case s = p first. 
Because Vqr = Vpr + Vpq mod 2, this translates to < Vpq, Vpr > + < Vpq, Vpq > -2 < 
vpr, Vpq >= p(r,p; q). But the left hand side we know to be l(p, q)- p(r, q;p). The 
general case is similar, as we now also know all < Vqp, Vqr > for all q. D 

We need some results from [18]. A general fibre of a one-parameter smoothing of 
a rational surface singularity with reduced fundamental cycle X can also be given 
directly (i.e. without using projections) by the following system of equations: 

ZpqZqp = Tpq( X) ; Zpq - Zqr = cf>(p, q; r )(X) 

satisfying the so-called Rim equations: 

Tpq = ¢(r,q;p)¢(r,p;q) 

¢(p, q; s) + ¢( q, r; s) + ¢( r, p; s) = 0 

We may supposse that all roots of Tpq are distinct. 

Definition ( 4.17): One can define vectors Vpq in the following way: 
Look at the roots of all Tpq on the complex line. The total number of them (counted 
without multiplicity) we call n. Take any numbering Pb .. ·Pn of these roots. Then 
entry j of Vpq is 1 exactly when Pi is a root of the function Tpq. 

Lemma (4.18): With these definitions ofvpq one gets a a r-representation of X. 
proof: Because of the Rim equations Tpq = ¢(r,q;p)¢(r,p;q) one sees that the 
roots of cf>(r, q;p) and of cf>(r,p; q) are different and all of multiplicity one. Look at 
the product TpqTqrTrp, which by the Rim equations is equal to 

¢(r,p;q)¢(r,q;p)¢(p,q;r)¢(p,r;q)¢(q,r;p)¢(q,p;r) 

which is equal to 

So every root appears twice, from which Vpq + Vqr + Vrp = 0 modulo two follows. For 
the same reason and because the number of roots of cf>(q,r;p) is equal to p(q,r;p) 
the statement< Vpq,vpr >= p(q,r;p) follows. D 
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Theorem ( 4.19): Suppose X = X(C, l) ~ X(C', l'), with both C and C' having 
smooth branches. Then the diagram: 

¢: S(X) 
=l 

¢1 : S(X) 

is commutative, with 'if; as in (4.16). 

~ I(C,l) 

7/Jl 
~ I(C', l') 

proof: Fix apE 1t, and somes E 1t, different from p. To make notation simpler, 
we put: 

Zq = Zqp j Tpq = Tq j Zps = y j ¢(q, s;p) = ¢(q) 

in the above equations. 

One can eliminate variables in the equations of the smoothing, as to get the following 
system of equations: 

zq(Y- ¢q(x) = Tq 

Tr Tq 
ZqZr = cPq(x)- cPr(x)Zq- cPq(x)- cPr(x)Zr· 

We can interprete the equations IJ(y- cPq) as a a-constant deformation of a curve 
C, and the Tq as divisors on the branch defined by (y- ¢q) = 0. In this way one 
gets a pair ( C, l), and it is left to the reader to show that the equations just given 
gives the space X( C, l) of (2.5). D 

Example (4.20): It is not true in general that I(C,l) = I(C',l'), for decorated 
curves such that X( C, l) ~ X( C', l'). For example, take ( C, l) the decorated curve 
(C, 9), with C the curve given by the equation y5 + x4 = 0. The sandwiched singu
larity X( C, l) is a cyclic quotient singularity with dual graph ofresolution: 

@----~·~----~~-~~·· 

e : (-2)-curve ® : ( -5)-curve 

In a sandwiched representation X( C', l1) with smooth branches as considered in 
the subsection on cyclic quotient singularities, we have that the set I( C', l') 
consists of two elements. However, the set I(C, l) consists of the elements 
(4,1,1,1,1,1), (3,2,2,2) and (3,3,1,1,1). As one can realise the first two inci
dence matrices, it follows that there exist no deformation of the curve {y5 + x4 = 0} 
to a curve with two D4 singularities. An elementary argument for the non-existence 
of such an adjacency runs for example as follows: consider the line L between the 
two D4-singularities. So L intersects the curve with multiplicity ;:::: 6. If we degener
ate to {y5 + x4 = 0}, L becomes a smooth curve with contact ;:::: 6. But the maximal 
contact with {y5 + x4 = 0} is only 4. 
This example clearly shows that in case C has non-smooth branches the set I( C, l) 
does not contain all combinatorial information of the situation. 

§5 Topological Aspects 
In this section we will study in more detail the topology of the smoothing obtained 
from a picture deformation as explained in section 4. 
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Let as always X = X(C, l) be a sandwiched singularity. The first remark is that a 
picture deformation P : Xs ~ S gives us a precise description of the Milnor :fibre 
F := X 8 occuring on the component C(P) E S(X). One has: 

Proposition (5.1): Choose a small contractible disc D representing the smooth 
space Z. Let P8 and C 8 the points and the curves in D of the general fibre of the 
picture deformation Ys ~ S. Then the Milnor fibre F := Xs is diffeomorphic to 
the complement of the strict transform of C 8 on D blown up in P8 • 

proof: This is just a special case of the construction in ( 4.5). The remark is that 
because we have a picture deformation, the curve C8 has only ordinary d-fold points, 
which are resolved by one blow up. D 

Model of the Milnor fibre 

over the small component of the ( -4). 

The Homology of the Milnor fibre 

From this model one readily obtains a description of the homology of the Milnor 
fibre F in terms of the incidence map I : P ---t L. (In the sequel, all (co )homology 
is with integer coefficients.) 

Theorem (5.2): There is an exact sequence: 

I 
0 ~ H2(F) ~ P ~ L ~ H1(F) ~ 0 

proof: This is an easy_ application of the Mayer-Viet oris sequence. Nevertheless, 
let us spell it out: let D be the space D blown up in the points P8 and denote by 
c = u ci c jj the strict transform of c. The space D* obtained by removing the 
interior of a small tubular neighbourhood T = UTi around C, is diffeomorphic to the 
Milnor fibre. Note that T n D* = af, the boundary of the tubular neighbourhood. 
We write the Mayer-Vietoris sequence for the pair (T, D*): 

... H2(D* n f) ~ H2(D*) E9 H2(T) ~ H2(D) ~ H1(D* n f) ... 

which reduces to: 

0 ~ H2(D*) ~ H2(D) ~ H1(8T) ~ H1(D*) ~ o 

One has an isomorphism P ~ H2(D), by taking a point pEPs to the fundamental 
class [Ep] of the exceptional I!D1 over p. Furthermore, L ~ H1( 8T), via the map that 
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associates to a branch of C a small loop running in the positive direction on the 
boundary D* n T = 8T of the T. From the definition of the boundary map in the 
Mayer-Vietoris sequence one gets that the geometrical description of t~e resulting 
map P --t L is as follows: take p E P8 , look at Ep, intersect this with T, and take 
its boundary; this is a collection of circles around C, hence an element of L. This 
means, the resulting map P --t L is exactly the incidence map I. D 

With the same easy we get the cohomology of the Milnor fibre: 

Corollary (5.3): Applying H om71.( -, :?::) to P --t L we get the map 

L*~P* 

with kernel H1 (F) = 0 and cokernel H 2 (F). 
We note that the vanishing of H1(F) for general normal surface singularities is due 
Greuel and Steenbrink, [10]. Equivalently, the group H1(F) is finite. It is not clear 
to us how to see directly that the incidence map has maximal rank. Also note that 
we have a f..L = 0-smoothing, meaning that f..L(F) := rk(H2(F)) = 0 exactly when 
rk(L) = rk(P), that is, if the incidence matrix is a square matrix. 

Example (5.4): For the two components in Pinkhams example we find immediately 
from the incidence matrices ( 4.10): 
Artin-component: H1(F) = 0; H2(F) =:?:: 
Small component: H1(F) = Z/2; H2(F) = 0 
Remark also that in case there is a free point on every branch, H1 (F) = 0. It turns 
out that even the fundamental group is zero. For this we refer to the discussion on 
the fundamental group at the end of this section. 

The Intersection form 

Recall that we have an intersection form on the Milnor fibre. To be more precise, 
we have a natural map 

which by transposition gives us the intersection form 

This intersection form is very easy to describe in terms of the incidence matrix. For 
this, we put on P the trivial inner product, < p, q >= 0 if p -::f. q; p, q E P8 and < 
p,p >= -1 for all p E P8 as in (4.9). Using < -,- > we get an identification 
p --t P*. 

Theorem (5.5): The intersection form on H 2(F) C P is the restriction of the 
trivial inner product on P. 
proof: It is clear that P ~ H2(D) is an isomorphism of inner product spaces. The 
statement is a formal consequence of how homology and cohomology are related, 
but let us give a geometrical argument. According to (5.2) a cycle c = 'E Cp·P E 
H2(F) C Pis represented by closed surfaces that consist of parts of two types: 1) 
some Ep's, with discs removed around the intersection points C n Ep and 2) some 
cylinders running inside the boundary 8T of the tubular neighbourhood. Now the 
self-intersection of a cycle can be computed by shifting the cycle to one that is 
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transverse to the original one, and then count the number of intersection points. We 
can shift the cylinders in and out without introducing intersection points by varying 
the radius of the tubular neighbourhood, so the self intersection is as if the cylinders 
just were not there. So we see that the self-intersection of a cycle is computed as 
the self-intersection of 2..: Cp.[Ep] E P as stated in the proposition. D 

Corollary (5.6): The intersection form on the Milnor fibre is negative definite. 
Of course, this is well known for any smoothing of a rational surface singularity, but 
here we see it really happen. 

On the Monodromy Group 

The Milnor fibres form a fibration over C(P)*, the complement of the discriminant 
in C(P). If we fix a base point s, we get a monodromy representation 

11"1 (S(P)*, s) --t Aut(H2(F), < -,- >) 

whose image we denote by G(P). If we look at what happens to our picture (Ps, Cs) 
when we move with s over the whole smoothing component, we see that when we 
return, our points P8 undergo some permutation, whereas the curves are not per
muted. But obviously, the incidence structure must remain intact. As a consequence 
we see: 

Proposition (5. 7): 

G(P) ~ G(P) := {M: P --t P permutation matrix I I.M =I } 

Conjecture (5.8): We claim that in fact one has 

G(P) = G(P). 

We think it is true in all the examples we have studied. It is true for the Artin
component, and furthermore it is true for all components of a cyclic quotient sin
gularity, by a result of K. Behnke and J. Christophersen, [5]. It is not obvious to 
us that the group G(P) is independent of the chosen sandwiched representation. 
However, in case of reduced fundamental cycle G can be characterized in terms of 
the r-representation as the group of permutations of {0, l}n that operate trivial on 
all vectors Vpq· 

Divisors on smoothings 

One can give a complete description of divisor classes on X and the total space 
X := Xs of a smoothing in terms of the incidence matrix. 
Recall that on any normal singularity one defines the class group as 

Cl(X) := {Weil divisors on X} j {Principal divisors} 

One has for a rational surface singularity Cl(X) ~ H1(X- {0}) ~ H1 (L), where L 
is the link of the singulartity. In general one has for rational singularities Cl(X) = 

H 2(X - {0} ), by a theorem of Flenner. By a result of Looijenga-Wahl one has 
furthermore that 
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where H 2(F)7r C H 2(F) denotes that part of the cohomology that is invariant under 
the monodromy of the family Xs-----+ S. Because in our case the monodromy is of 
finite order, we can always make a finite base-change to arrive at the situation that 
the monodromy is trivial, so that we have 

From now on we always will assume we have done this. The link Lis isomorphic to 
the boundary 8F of the Milnor fibre. The specialisation map 

Cl(X)-----+ Cl(X) 

can be identified with a map 

This map is part of the long exact homology sequence of the the pair (8F, F) when 
we use the isomorphism H2(F) ~ H2(F, 8F). This can now be put in a big exact 
diagram, describing in a combinatorial way the specialisation of divisors: 

Diagram (5.9): 

0 0 

l l 
L* = L* -----+ 

I*l Jl 

0 ker(I) p I 
L Coker(I) 0 -----+ -----+ -----+ -----+ -----+ 

~l l l ~l 
0 -----+ H2(F) -----+ H 2(F) -----+ H1(8F) -----+ H1(F) -----+ 0 

l l 
0 -----+ 0 

The map J : L * -----+ L is defined as the composition II*. It is easy to see that the 
associated quadratic form L* X L* -----+ Z is just the same as the quadratic form 
belonging to QArtin of (4.11). 

So we see that a sandwiched representation gives rise to a particular realisation of 
the class group as the discriminant of a quadratic form on a preferred set of gener
ators. 

Corollary (5.10): [23]. For any (combinatorial) JL = 0 smoothing jH1(L)I zs a 
square. 
proof: This number is det(J) = det(I.I*) = det(I)2 • D 

The Canonical Class 

The relative canonical class of a smoothing restricts to the canonical class K E 
H 2(F) of the Milnor fibre. There is a natural lift of this class to an element of 
P* = P. 

Theorem (5.11): The canonical class is represented by 
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that is by the vector (1, 1, ... , 1) in P*. 
proof: The Milnor fibre is just an open part of D, the blow up of Z in t}_:e points 
p E P8 • Hence, its canonical class is the restriction of the canonical of D, which 
clearly is as stated. D 

Corollary (5.12): A smoothing P : X ~ S is a qG-smoothing in the sense of 
[20], if and only if 

K E Jm(L* ® Q ~ P* ® Q), 

that is, if and only if ( 1, 1, ... , 1) is a rational linear combination of the rows of the 
incidence matrix. 

The proof of the following theorem illustrates our lack of insight into combinatorial 
matters: 

Theorem (5.13): A gG-smoothing of a sandwiched singularity X( C,l) has no free 
points. 
proof: Suppose there is a free point on, say, the first branch. We claim that then 
also the singularity X(C,lk), defined by the same curve C, and with lk(i) = l(i) 
for all i -j 1 and lk(1) = l( i) + k, will have a qG-smoothing. It suffices to show 
the claim for k = 1. Having a picture deformation of X(C,l), one gets a picture 
deformation of X(C, it), by plotting some extra point somewhere, not at one of 
the points of the picture deformation of X(C,l). So the incidence matrix l1 of the 
picture deformation of X( C, h) is obtained from the incidence matrix I of X( C, l) 
by adding the column (1,0, ... ,oy. Because we have a qG-smoothing for X(C,l) 
one has: 

K = (1, ... ,1) = L aii*(Ci) 

for some Ui E Q by (5.11). But then it follows that 

hence one has a qG-smoothing for X(C, h) by (5.11). This shows the claim. 
We arrive at a contradiction as follows. According to Kollar [20] (6.3) one has the 
following Theorem: 
Let (M, F) C (X, E), where X is the minimal resolution of a rational surface singu
larity X. Suppose that M is the resolution of a qG-singularity. Then, contracting F 
and all ( -2) curves of E not intersecting F, one gets a P-modification of X, giving 
rise to a smoothing component of X. 
Applying this to X ( C, lk) one deduces that the number of smoothing components of 
X(C,lk) is unbounded if k ~ oo. This is in contradiction with the stability result 
(3.9). D 

On the fundamental group of the Milnor fibre 

As the Milnor fibre is the complement of C in the smooth surface D, its fundamental 
group can be described in a manner similar to the Lefschetz-van Kampen-Zariski 
method for the fundamental group of a plane curve complement. It turns out that 
again in the case that all branches of the curve C are smooth, so in the case that X 
has reduced fundamental cycle, there is a really simple presentation for 1r1(F). 
Consider as before a picture deformation P: Xs ~ S of X= X(C,l). We fix a 
generic projection to a line with coordinate x. We may assume that for all s -j 0 the 
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curve Cis has precisely m- r vertical tangents, or, ramification points Q1, ... , Qm-r 

(m=multiplicity of C, r number of branches). Also we can assume that each ofthese 
points is distinct from each of the points P8 of the picture, and all the points have 
distinct projections on the x-axis. We fix a value for s. We will choose a represen
tative of Z of the form U X V , where U is a disc in the y-axis, and V a disc in the 
x-axis in such a way that: 
1. Ps and Qi C Interior(U XV) 
2. a( Cis) nUX V C U X av. 
We choose a base point a E au X av Denote by X1J x2, ... ' XN, the x-coordinates of 
all the points of the picture, by XN+l, .. . , XN+m-r the x-coordinates of the ramifi
cation points. Then for all x E V- {x1, x2, ... , XN+m-r} the intersection of U X x 
consists of a finite number of points, equal to the number r of branches of C. We 
choose non-intersecting paths a1, a2, ... , ar running from b E U to each of the r 

intersection point C n U X { c }, and back again, in the usual way, such that the 
product 

is homotopic to the loop consisting of au, with positive direction. This implies a 
certain ordering of the components ci. 
Also we choose a system of non-intersecting paths '}'1, ... , '}'N, ... , 'YN+m-r running 
to the points Xt, x2, ... , XN+m-r and back. 

u ~uxv 

v 
'Y 

N+m-r 

The usual systems of paths 

It is clear that the paths a1, a2, ... , ar form a system of generators for 1r1 ( U -
U n C, c) --7) 1r1(F, a). By van Kampen's theorem, all the relations between these 
generators arise from the identifications that occur above the points Xi. To see what 
these relations are, we only have to analyse what happens over the preimage of that 
paths 'Yi· There are two cases: 
1. Fori= 1, 2, ... , N, we have that above 'Yi some of the generators "come together" 
at a point p E Ps. If these generators are ai1 , ai2 , ••• , ai1c, with i1 < i2 < ... < ik, 
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then one gets a relation 

because in the blow-up at p one introduces precisely a JID1 with holes, the boundary 
circles of which correspond to the a's. 
2. For i = N + 1, ... , N + m - r, something different happens. When we make 
a detour around 'Yi, the set of non-intersecting curves aj gets conjugated to some 
system aj. One then gets the relations as usual: 

a-:-1 ·a'·= 1 J J 

These are usually very difficult to determine. In the case where m = r, i.e. if all the 
branches are smooth, we only have relations oftype 1, and therefore an nice answer: 

Theorem (5.14): Let X = X(C, l) a sandwiched singularity, with all branches 
of C smooth. Let P : Xs ----+ S be a picture deformation, with incidence matrix I. 
Choose an ordering of the branches of C. A presentation of the fundamental group 
of the Milnor fibre 1r1 (F) of the Milnor fibre F is given by 

where R is the set of relations generated by 

for each p E Ps, where Ci1 , Ci2 , ••• , Ci,. are the branches of C that come together at 
p, and i1 < i2 < ... < ir. 

Corollary (5.15): If there are free points on each branch, then 1r(F) = {1}. 

Because of this we see that topologically the most interesting things will happen if 
there are few points, that is in the unstable range. 

§6 Examples and Applications 
In this section we collect some interesting examples of smoothings that can be ob
tained from the picture method as explained in section 4. 

Line Configurations 

The study of line configurations is a classical field of research. Most of the literature 
is concerned with special configurations that arise from geometrical constructions. 
Furthermore, there is the book of Griinbaum, [11] that is mainly concerned with 
real line configuartions, and also configurations involving "bended" lines, which he 
calls pseudolines. In any case, it will be clear that anything interesting on line con
figurations will have a bearing on smoothing components of certain rational surface 
singularities. We will discuss this now in some more detail. 

One to Six lines 

We start with curves C that consist of at most 6 lines (or smooth branches). Of 
course, the case of 1line is trivial. We just get an Ak singularity, see (1.5). The case 
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of two lines is hardly more interesting, as such a curve has no non-trivial a-constant 
deformation. The corresponding singularity is a rational triple point, and it is well 
known that the base space of such a singularity is smooth, as it is Cohen-Macaulay 
of codimension two. 

Example(6.1): The first interesting example occurs with three lines: this is 
Pinkhams example, see ( 4.8). All singularities with resolution graph as indicated 
below have two smoothing components, corresponding to the two line configurations 
of ( 4.8). 

• 

• • .. .J ______ ..... 
• : (-2)-curve ® : (-4)-curve 

Example(6.2): Next we come to four lines. This is already more interesting. We 
have a four parameter series of singularities, with resolution graph as in the left 
hand side of the picture: 

• 

• • • • e------0-----· . • . • 

• e : (-2)-curve ® : (-5)-curve 

The stable range, see (3.9), starts with the graph with five curves at the right hand 
side. This singularity has six smoothing components, corresponding to the following 
3 different line configurations. 

lx 4x 
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Note that for the second configuration we had to pick out one of the four lines and 
shift it away. So this line configuration gives us four smoothing components. This 
is indicated by the 4 in the picture. It is also interesting to see what happens in the 
sub-stable range. For example, for ( -5) we get only one component. If there are one, 
two or three ( -2)'s around the ( -5), then one has two, three or four components 
corresponding to the second line configuration. Only if all four ( -2)'s are present, 
we find all six smoothing components. 

Example (6.3): The case of five lines are treated in the same way. Below we 
indicate the dual resolution graphs and the beginning of the stable range. As before, 
the numbers indicate how many smoothing components correspond to the given line 
configuration. 

• 
• • . r . . . 

X 
• • 

e : (-2)-curve @ : (-6)-curve 

lx 5x lOx 

15x lx 

So in total we have 32 components. We remark that the line configuration with 
weight 15 occurs as picture deformation of the singularity with dual resolution graph 
consisting of a ( -6) surrounded by four·( -2)'s. As was shown by Stevens [31], this 
singularity has three qG-smoothing components. Here we can also see how it hap
pens: the line connecting the two tripel points in the configuration is distinguished. 
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The four others have to be paired in two groups. This is possible in three ways. 
From (5.12) we see that these smoothings indeed are qG. 

Example (6.4): The case of six lines: 

• 
• • . r . . . 

.. ¥ .. 
• • 

• 
e ; (-2)-curve 0 ; (-7)-curve 

lx 6x 15x 

20x 90x 

60x lOx 
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This case leads to a new phenomenon: the curve singularity consisting of six general 
lines through one point, does not have an adjacency to the last curve configuration. 
For such an adjacency to exist, the tangent directions of the six lines have to satisfy 
a certain relation. In fact, the six lines correspond to six points on lP\ and the 
condition is that these points are paired in an involution, i.e. are inverse image of 
three points under a 2 : 1 map JP1 ---t JP 1. This is a divisor in the moduli space of six 
points on J1D1 . As a consequence, we see that a general singularity with exceptional 
set a ( -7) curve, with 6 ( -2) curves intersecting this ( -7) curve, does not have a 
smoothing component corresponding to the last line configuration, but that for a 
divisor in moduli space there is such an extra component. An example of this type 
was known to exist by J. Wahl (unpublished) but this one has reduced fundamental 
cycle. 

In principle one can go on with this game with more lines. There arise more and 
more special configurations, in an ever increasing complexity. The only thing one 
might hope for is, that it would be possible to say something about what happens 
for generic moduli. This generic number of line configurations seems to be unknown, 
and we gave up after listing configurations with 9 lines. 

Some special configurations 
It is of some interest to look at special configurations, and to see if their existence 
leads to interesting smoothing components. We have seen the first special configu
ration with six lines. But what to say about the following? Example (6.5): 

This is the well-known Pappas-configuration. This is an incidence theorem in the 
sense that due to the incidence structure of the lines, the constructed points a, b, c 
are on the dashed line. So we have 9 lines, the 8 we started with, and the dashed 
ninth line. We can degenerate the configuration to 9 lines through one point by 
parallel shifting. The resulting curve singularity has an interesting property: If we 
only apply deformations of negative weight, we get several components, including 
the one corresponding to the Pappas-configuration. But there is somthing we do not 
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obtain in this way: the pseudo Pappas-configuration where the dashed line is slightly 
bended as to go through a and b, but misses c. To obtain the adjacency to this curve 
configuration, and hence a corresponding smoothing of the singularity, we need to 
include in our deformation terms of positive weight. 

Example (6.6): Another thing we can look at is the fundamental group. If all 
branches are smooth, a presentation of this group was decribed in (5.14). If one 
computes the fundamental groups in the examples we discussed before, one will 
find that these groups are abelian. In general however, there is no reason for these 
fundamental groups to be abelian, and indeed J. Wahl has found an example of a 
smoothing of a rational surface singularity whose Milnor fibre has a non-abelian, 
but finite, fundamental group (unpublished). We will give an example of a Milnor 
fibre whose fundamental group is infinite. 
Consider the nine flex points of a smooth cubic curve in P 2 . It is well known that 
the line connecting two flexes intersects the cubic in another flex point. In total one 
gets in this way 12 flex-lines, each containing three of the flex points. We take the 
dual of this configuration. So we get 9 lines and 12 points, and through each of the 
12 points there are 3 of the nine lines, and there are no further intersection points. 
If denote the lines by 1, 2, ... , 9, then the 12 intersecting triples are: 

123 147 159 168 
456 258 267 249 
789 369 348 357 

We denote the generators of the fundamental group by the same numbers 1, ... , 9. 
The above 12 products are, according to (5.14), precisely the defining relations for 
the fundamental group. We consider the quotient G of this group by putting: 

X := 1 = 2 = 3; y := 4 = 5 = 6; Z := 7 = 8 = 9 

It is immediate from the relations of the fundamental group that a presentation for 
G is: 

3 3 3 < x, y, z : x = y = z = xyz = e > 
This is the well-known triangle group (3, 3, 3), corresponding to the tesellation of the 
Euclidean plane by equilateral triangles, see [8] p. 25. In particular it is an infinite 
group. 
The fundamental group has other interesting quotients. For example, by putting 
the element 3 equal to the identity one gets a group with presentation: 

One deduces that y 9 = e, hence we get a finite non-abelian group of order 27. This 
group itself is the fundamental group of the Milnor fibre of a smoothing of the 
sandwiched singularity obtained by forgetting the third line. 

p, = 0-smoothings 

We have seen that for the small component of Pinkham's example ( 4.8) one gets 
a smoothing with f.L = 0. Equivalently, the incidence matrix is a square matrix; 
there are as many points as curves in the configuration. It is interesting to see what 
other singularities admit such a f.L = 0-smoothing. An obvious way to generalise the 
triangle is as follows: 
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These configurations are called near pencils in [11]. These are the only line config
urations with as many lines as points. 
This is another way to make configurations with as many points as curves: 

If one looks for a moment, one will realise that in fact here we have a three parameter 
family of such curves. The curve C(p, q, r) roughly has the shape of a triangle, where 
the sides consist of bundles of p, q and r curves respectively, which are nearly straight 
lines. 
The dual resolution graph of the corresponding sandwiched singularity is: 

o--. 
-(p+l) 

• • 

:} q-2 

~-··-() 
-4 ~ -(q+l) 

This series was discovered by Wahl [34]. These are the simplest examples of J.L = 0 
smoothings. Nate that in case the p = q = r there are two disctinct J.L = 0 smooth
ings, as we have a choice of rotation to the left or to the right. Are there any more 
J.L = 0 smoothings? The answer is: yes, but not too many. It is quite hard to pro
duce such examples. There is a secret list compiled by J. Wahl, and the singularities 
in his list are sandwiched. We did the exercise of writing down the corresponding 
incidence matrices, but it is much harder to see that the deformation of the curve 
singularity really exists. One can try to construct other examples with the picture 
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method, and sometimes one gets interesting candidates, but in all cases there was 
no new 1-L = 0-smoothing for some reason. The question is: 

Is Wahl's list complete? 

To conclude the discussion, what about the following? 

Example (6.7): 

The heavy line has intersection one with all the other lines. But such a configuration 
can not occur in a small deformation of any curve singularity consisting of seven lines: 
the adjacency is forbidden for example by the semi-continuity of the singularity 
spectrum, [29]. On the other hand, such a configuration is possible in characteristic 
2: the incidence structure is just P 2 over the field of two elements. So it seems that 
in characteristic 2 the singularity has an extra smoothing component, which will 
have fL = 0. Of course, this is just the tip of the iceberg. 

Cyclic Quotient Singularities 

The deformation theory of cyclic quotient singularities (CQS) has been investigated 
by several authors, see (25], (21] [7], (30] [5] and [2]. One of the beautiful results 
is the correspondence between the components of a versal deformation and chains 
representing zero, or, what is the same, triangulations of this m-gon. ( m is the mul
tiplicity of the singularity.) This correspondence was discovered by Christophersen, 
who constructed smoothings for every chain representing zero. Subsequently Stevens 
proved that all smoothings can be constructed this way. 
Let us be more precise. The dual graph of the resolution of a CQS is a chain. We 
take as first blown up curve in the sandwiched representation an endpoint of the 
resolution graph, and such that the curve C has just smooth branches, see (1.5). For 
the incidence matrix of a smoothing of a CQS , one gets then a matrix with the 
following properties, which follow from the fact that the dual resolution graph is a 
chain: 

Definition (6.8): A matrix M with r 2 2 rows 

v· - (v· ·) · v· · E {0 1} t - tJ l lJ l 
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is called a CQS-matrix if the formula: 

< Vi,Vj >=<Vi, Vi> -1 for all1::; i < j::; r 

holds. Here< vi,Vj >= I:.kvikVjk· 

Let \vi\ be the number of non-zero entries in Vi. We define numbers: 

A cyclic quotient singularity can also be labelled by those numbers, thus we may 
write X ( a1, . .. , ar) for a cyclic quotient. 

Let 
1 

Kr = {[k1, ... kr]: k1- ------.1- = 0} 
k2- ---1:-

. - kr 

be the set of chains representing zero of length r. The central result about deforma
tions of cyclic quotient singularities is the following: 

Theorem (6.9): [7], [30]. LetX(a1, ... ,ar) be a CQS. Then there is a bijection 
between S(X( a1, ... , ar )) and {[k1, ... , kr] E Kr with ki ::; ai for all i}. 

The purpose of this subsection is to discuss this Theorem with the picture method. 
The first thing to do is to discuss the combinatorial components. 

Lemma/Definition (6.10): A CQS-matrix M has the following structure: 

where Mtriv consist of columns of the type: 

(0, ... ' 0, 1, ... ' 1t 

We call M reduced if there are no such columns. 

proof: This is completely trivial. D 

So this is a very trivial way to make new CQS-matrices out of old one. But there 
is another, more interesting, way to produce CQS matrices of bigger size out of an 
old one: 

Lemma (6.11): Let M be a CQS-matrix with r rows v1, ... vr, and 0 ::; k ::; r 
be a number. Then we produce a new CQS-matrix with r + 1 rows w1, ... , Wr+l by 
putting for the case k = 0: 

In case k ~ 1, we define: 

w1 = ( 1, 0, ... , 0) 

Wi = (0, Vi-1) fori~ 1 

Wi = (0, vi) for i ::; k - 1 

Wk = (1, Vk) j Wk+l = (0, Vk) 
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Wi = (1,vi-1) fori~ k + 2 

Then this gives us a new CQS-matrix, and all CQS-matrices with r + 1 rows can be 
obtained for an CQS-matrix with r rows by this procedure. 

proof: The fact that the constructed matrix is a CQS-matrix is trivial. It is obvious 
that it suffices to prove the second statement for reduced matrices, and this is the 
content of the following proposition. D 

Proposition (6.12): Let M be a reduced CQS-matrix with r rows. Then M is a 
matrix of size r by r - 1. Then we have one of the following cases: 

A There is a column of type (1, 0, ... , O)f and the first row is equal to (1, 0, ... , 0) 

B There exists a column (which we can and will suppose to be the first one) of 
type 

(0 ... 101 ... 1y 

i 
k 

{The case of a column of type (0, ... , 0, 1, O)t is also allowed). Moreover, all entries 
of Vk and vk+1 are identical, except for the first entry (where they are different). 

proof: We proceed by proving by induction on r the above statements plus the fact 
that by adding a row Vr+1 to a reduced CQS-matrix never leads to a CQS-matrix. 
If r = 2, there is just one reduced CQS-matrix: 

Consider a reduced CQS-matrix M with r rows. Deleting the last row Vr we get a 
CQS-matrix, which by induction cannot be reduced. Because M is reduced itself, 
we conclude that there exists a column of type 

a:= (0, ... ,0, 1, ... , 1,0)t 

By induction we also have a column of type 

or of type: 

b := ( 0 . . . 1 0 1 . . . 1 * y 
i 
k 

(1, 0, ... ' 0, * )t 
in M. Here * denotes the entry of Vr in that column. The second case is easy. From 
< Vt,Vr >=< v1,v1 > -1 one concludes that*= 0. The last entry in v1 also has 
to be zero, (all others are by induction) for the same reason. For the :first case, we 
have either a = b, or a :/:- b. If a = b, delete the :first column to get a CQS-matrix. 
Some easy arguments show that Vr = Vr-1 up to the entry in the :first colum n. If 
a:/:- bit follows from the assumption< Vr,Vr-1 >=< Vr-1,vr-1 > -1 that entry* 
is equal to 1. (In case that the entry of column b is 0 for Vr_1, use Vr_ 2 instead.) 
This shows the existence of the claimed column. But the induction hypothesis gives 
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us more. It also says that there exist two consecutive rows, say the k-th and k +1-st 
row, of type (utpoc): 

The first column corresponds column b the last column to the column a = 
(0, ... , 0, 1, ... , 1, O)f. We claim that the case *1 = 0; *2 = 1 cannot occur. Suppose 
it does. Then the number of nonzero entries in Vk and Vk+l are equal. We already 
proved that Vr has a 1 in the first column, and a 0 in the last column. Then we get 
a contradiction by using 

We still have to prove that the matrix M cannot be extended by adding a row Vr+1 

to M to get a CQS-matrix. Suppose it were possible. By using 

we deduce that this Vr+1 has a 1 in the first column. Therefore one can delete the 
first column and the k + 1-st row to get a CQS-matrix of smaller size. Now use 
induction. D 

In order to establish the correspondence with triangulation we will introduce the 
Difference Matrix l:l.M of a CQS-matrix M. 

Definition (6.13): Let M be a CQS matrix with r rows V1, ... Vr· Then the 
difference matrix l:l.M has r rows 61, ... 6r with entries in {0, 1} defined by: 

(These calculations are done modulo 2). 

A reduced CQS-matrix M gives rise to a reduced difference matrix l:l.M, which is 
a matrix without a column which has just one non-zero entry. We can no describe 
the correspondence between triangulations of the ( r + 1 )-gon and reduced difference 
matrices l:l.M obtained from CQS-matrices: 

Theorem (6.14): Consider a triangulation of the r + 1-gon, with distinguished 
vertex *. Number the vertices 61, ... , Or anti-clockwise beginning at the vertex closest 
to *· The triangulation consist of r - 1 triangles P1, ... , Pr-1, with we list in any 
order we like. Consider the matrix l:l.M = (mij) of size r by r- 1 with entries in 
{ 0, 1} by the condition: 

mij = 1 if 6i is a vertex of triangle Pj 

mij = 0 otherwise. 

Then l:l.M is the difference matrix of a reduced CQS-matrix M, and all reduced 
difference matrices of CQS-matrices can be obtained this way. 

proof: It is known that any triangulation of the (r + 2)-gon can be obtained from 
that of an ( r + 1 )-gon by the following procedure. Place a new vertex between two 
vertices of the ( r + 1)-gon, and connect the new vertex to both vertices, where it is 
placed between, by a line. This construction corresponds exactly to the difference 
of the construction of a new reduced CQS-matrix out of an old one (6.11). D 
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Lemma (6.15): [30] There is a 1-1 correspondence between chains representing 
zero of length and triangulations of the r + 1-gon, by defining 

ki = #{triangles of which Oi is a vertex} 

So we see that we can write down a difference matrix (and hence an incidence 
matrix for the cyclic quotient singularity X(a1, ... , ar) exactly when ki :=:; ai for all 
i. So we proved: 

Theorem (6.16): Let X(a1 , .. . ,ar) be a CQS. Then there is a 1-1 correspon
dence between the combinatorial components of a semi-universal deformation of 
X(at, ... , ar) and the [kt, ... , kr] E Kr with ki :=:; ai for all i. 

Example (6.17): Consider the following triangulation of the 6-gon: 

The k- chain is [3, 1, 3, 1, 3]. Moreover the difference matrix t::.M, and the CQS
matrix M belonging to the triangulation are 

1 1 1 0 
0 0 1 0 
0 1 1 1 
0 0 0 1 
1 1 0 1 

1 1 1 0 
1 1 0 0 
1 0 1 1 
1 0 1 0 
0 1 1 1 

Theorem (6.18:) For a CQS X = X(C, l), with C having smoothing branches, 
the map¢: S(X) -t I(C, l) is bijective. 

proof: Because one knows already that the number of smoothing components of a 
CQS by (6.9), it suffices to show that by the previous Theorem that every combi
natorial smoothing can in fact be realised. This will be done by induction on the 
number of branches, the case of two branches being trivial. According to lemma 
(6.14) we know how combinatorially the smoothings are realised inductively. We 
consider the second case only, the first one being even easier. So in the first case we 
have a distinguished row, the ( k + 1 )st. One knows by induction that there is a delta 
constant deformation of the curve C', obtained from C by throwing away branch 
Ck+1 , with incidence matrix obtained from the CQS matrix by throwing away col
umn k + 1. Similarly for the curve C", obtained from C by throwing away branch 
Ck. We may even assume by induction that those deformations are compatible in 
the sense that they induce the same deformation of the curve obtained from C by 
throwing away both branch Ck and Ck+l· So we can glue these two deformations, 
as to realise a 8-constant deformation of the curve C. It is not so difficult to show 
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that this 6-constant deformation of C has the desired incidence matrix. D 

These curves belonging to smoothing components of cyclic quotients look rather 
strange. For example, the curve of example (6.19) looks like: 

3 

5 

This discussion on smoothings of cyclic quotient singularities gives evidence for the 
conjecture on the monodromy group, see (5.8), because Behnke and Christophersen 
[5] proved that for a CQS X( at, ... , ar) the monodromy group on the component 
corresponding to the chain representing zero [kt, ... kr] is precisely Ili Sai-ki. 

Corollary (6.19): The Milnor fibre of a smoothing of a cyclic quotient singularity 
has cyclic fundamental group. 
proof: Theorem (5.14) gives a presentation of the fundamental group of the Milnor 
fibre in terms of the incidence matrix, in case the curve C has smooth branches. 
It suffices to show that the group, constructed in a way analogous to (5.14) for a 
reduced CQS-matrix is isomorphic to !Z.. But this group is in fact equal to the group 
constructed in this way by using the difference matrix !:1M. The proof is now easy 
using induction. D 
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On a conjecture of Kollar 

It might be obvious to the reader by now, that iffor a sandwiched singularity X(C, l), 
the function lis big, there will be a lot of components. If, on the contrary, lis small 
we have difficulties occupying the inverse images of the singular points on the nor
malisation. This is related to the following conjecture of Kollar. 

Conjecture (6.22): Let X be a rational surface singularity. Suppose that all ex
ceptional curves on the minimal resolution have self-intersection at most -5. Then 
the base space of a semi-universal deformation of X has just one component, the 
Artin component. 

The conjecture is sharp in the sense that if there is an exceptional ( -4) curve, then 
there are at least two components, as was proved by Kollar [20]. Not all singularities 
as in Conjecture (6.22) are sandwiched, but the simplest counterexample we could 
find has more than 100 exceptional curves on the minimal resolution. 
Proving Conjecture (6.22) for sandwiched singularities in general turned out to be 
too difficult for us. As usual however, the case of reduced fundamental cycle is eas
Ier: 

Theorem (6.23): Conjecture {6.22) is true if X has reduced fundamental cycle. 
proof: We put the dual resolution graph r in the following schematic form: 

The Ej's and R/s have the property that l(E;, F) :::; j for all curves F from R;. 
This can always be done: one chooses E1 to be an end-point of a longest chain in 
the resolution graph, etc. 
We suppose that the self intersections of all curves are at most -5, except maybe 
Ek, which might have self-intersection -4. We take a sandwiched representation as 
in (1.5), and choose E1 as first blown up curve. The branches of C are all smooth, 
and correspond to the chains running from the chosen hyperplane branch at E1 to 
the other hyperplane branches. 
The proof goes by (double) induction over k and the number of exceptional curves in 
the resolution. The induction hypothesis is that if the self-intersection of Ek is less 
than -4 there is one combinatorial smoothing, and that if the self-intersection of Ek 
is -4 there will be two combinatorial smoothings, together with statements about 
the structure of the incidence matrices. The case k = 1 is easy, the case k = 2 is left 
as a (boring) exercise to the reader. The induction hypothesis about the structure 
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of the incidence matrix is that there is a submatrix of one of the following types. 

1 1 
1 1 
1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 

or 
1 1 1 0 1 1 1 
1 1 1 0 1 1 1 
1 1 1 0 1 1 1 
1 1 1 1 1 1 1 1 1 0 
1 1 1 1 1 1 1 1 0 1 
1 1 1 1 1 1 1 0 1 1 

Moreover, we have just ones in the first column of the incidence matrix. The vectors 
in the first three rows of the matrix are part of vectors vf, which belong to chains at 
E 1 . Those of the second three rows are part of vectors v~, i = 1, 2, 3, belonging to 
chains running to hyperplane branches at E2 or in R2, etc, the vectors v; correspond 
a chains running to a hyperplane branch at Ej or an exceptional curve of Rj- They 
are chosen in such a way that < vi, vj >= min( i, j). (* denotes any index). The fact 
that there are at least three vectors v; for fixed j follows from the assumption that 
the selfintersections of the exceptional curve is at most -5, or -4 for Ek. Consider 
a resolution graph as above with k + 1 curves Ei in the chain. In the incidence 
matrix of a smoothing we have vectors vt+l, corresponding to chains running to a 
hyperplane branch at Ek+l or an exceptional curve belonging to Rk+l· The number 
of non-zero entries in such a vt+l is at most 2k+2, because the length of a chain with 
endpoint Ek+l in Rk+1 is at most k + 1. Hence the length of a chain with endpoint 
E1 is at most 2k + 1. Deleting all rows belonging to vt+l we get an incidence matrix 
of art other singularity, which has (by induction) a submatrix as described above. 
Let us now take a vector v out of these vt+l" We claim that it must have a one 
in the first row. Suppose not. Consider the case that the submatrix is of the first 
type. The way to get at least < v, v; >= j - 1 with the least number of ones 
used by v is by putting ones in the second through k - th row (in the case of the 
first submatrix). But then the intersection is still not ok. Because of the condition 
< vi,vj >= min(i,j), we have to use at least 3k extra ones in the vector v to get 
the desired intersections. So in total we need k + 3k ones in the vector v, but we 
have at most 2k + 2 ones at our disposaL So the claim follows if k 2: 2. The case of 
a submatrix of the second type is similar, only somewhat more complicated. 
At this moment we conclude that in the incidence matrix there is a columns of ones. 
Deleting this column, and all rows where the number of nonzero entries is two, 
we have the solution of the combinatorial smoothing problem for the singularity 
obtained from the original singularity by deleting the exceptional curve E 1 . We now 
have the possibility of taking another sandwiched representation, with an endpoint 
of the resolution graph as first blown-up curve. Because the combinatorial solutions 
to the deformation problem is independent of the sandwiched representation if the 
curves have smooth branches only, see (4.16), we can deduce (by double induction 
on k and the number of exceptional curves) that there is only one solution to the 
combinatorial smoothing problem. 
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This solution must be the Artin component combinatorial solution, as this solution 
always exists, and any smoothing with this incidence matrix can indeed simultane
ously be resolved after base change, see ( 4.13). This completes the proof. D 

7 Appendix: R.C. Deformations 

We review some facts on R.C. deformations from [14] and [15]. Consider a (multi-) 
germ X of a Cohen-Macaulay space, and a map X -t Y which is finite, surjective 
and generically 1-1. Consider the conductor 

I:= Homy(Ox,Oy), 

and let ~ be the space defined by I. 
Suppose Y is Gorenstein. Then the conductor I satisfies the Ring Condition (R.C.): 

Homy(I,I) = Homy(I, Oy). 

Indeed, by duality for finite maps we have that Ox = H omy(I, Oy ), and the 
ring condition says exactly that the Oy-module Ox in fact has a ring structure. 
Conversely, starting withY and any R.C. ideal I, we can construct an X mapping 
to Y whose conductor is exactly I. 

Equations for X 

In case that Y is a hypersurface in Ocn one can obtain equations for X as follows: 
The Ocn-module I is Cohen-Macaulay, as it is the dual of Ox. As such, I is isomor
phic to the co kernel of a ( t+ 1) X ( t) matrix M* with entries in Oc n. Furthermore, the 
maximal minors of M* give generators of the ideal I, so that I= (.6.o, .6.1, ... , ..6.t)· 
Consider the transposed matrix M. Because f E I we can, by adding a (upper) 
row to M, make a matrix M, such that f = det(M). This matrix defines a map 
M : 0~+1 ~ 0~+1 , whose cokernel is isomorphic to H omy(I, I)= H omy(I, Oy) ~ 
Ox. 
Therefore, the i - th row of M corresponds to a certain element Ui E 0 x, 
i = 0, 1, ... , t. Note that u 0 = 1. 
One can embed X in ct X en with coordinates ul, 0 0 0 'Ut, Xt, 0 0 0' Xn· If we write 
M = ( Mij), then each column gives us an equation: 

Linear Equations (7.1): 
t 

LMijUi = 0 
i=O 

which we refer to as the linear equations. Because H omy(I, I) is a ring we have 
that UkUz is in H omy(I,J). As such there must exist g11 in Oy such that: 

Quadratic Equations (7.2): 

t 

ukuz = L9lzui fork, l ~ 1 
i=O 
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which we refer to as the quadratic equations. Take lifts of g1z to Ocn. The quadratic 
equations are now uniquely determined up to the linear equations. These linear and 
quadratic equations give an embedding of X in cn+t. 

In fact, starting from the matrix M one can construct a projective resolution, see 
[19]. 

R.C. Deformations 

The R.C. condition makes sense in a relative situation over any ring. Therefore, one 
can talk about R.C. deformations. 

Definition (7 .3): 
An R.C. Deformation of (1:, Y) over a germ of an analytic space S is given by a 
flat deformation 1:s ~ Ys of 1: ~ Y over S, such that the ideal Is C CJy5 of 1:s. 
satisfies R.C.: 

H omy5 (Is, Is)= H omy5 (Is, CJy5 ). 

We denote by Def(1:, Y) the functor of R.C. deformations of (1:, Y). 

The main theorems to be applied in this paper are: 

Theorem (7.4): ([15], (1.1)) 
In the above situation, there is a natural equivalence of functors: 

Def(1:, Y)~Def(X --t Y) 

This theorem is particularly useful for Y a hypersurface singularity, because of: 

Theorem (7.5): ([15], (1.16)) Suppose moreover that Y is a hypersurface singu
larity. Then the forgetful functor 

Def(X --t Y)-+ Dej(X) 

is smooth. 

In case that Y is a hypersurface singularity in en, given by J = 0, then the R.C. 
condition can be expressed in terms of the evaluation map. For this, consider the 
normal module NE = H omE(I, CJE)· Over a baseS we just add everywhere a suffix 
S, so for example NE 5 = H omE5 (Is, OE5 ), etc. Suppose 1:s --t Ys is a deformation 
of 1: --t Y. Then one has: 

Lemma (7.6): ([15] (1.12)). (1:s-+ Ys) E Def(1:, Y)(S) if and only if: 

n H n(Js) 

is the zero map. Here fs = 0 is an equation ofYs. 
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Infinitesimal considerations 

It follows from the above lemma that first order R.C. deformations are represented 
by admissible pairs: 

Definition ( 7. 7): In the above situation, we define R. C. admissible pairs by: 
A( I, f)= {(n,g) ENE EEl CJ I f + t:g E (.6.1 + m(.6.1), ... , b.p + m(b.p)) such that 

evf+eg = 0} 
Furthermore, for an ideal I we denote by Iev = {g E I: ev9 = 0} 

There is an obvious map A---t NE, whose kernel is seen to be exactly lev. The image 
of the map can be computed as the kernel of Hessian map 

ht : NE ---t N* I I, 

as defined in ([14] (3.7)). The latter module is the cokernel of the double duality 
map 

I/12 ---t Ni = Hom(NE, CJE)· 

So we have an exact sequence of the form: 

The module written at the right plays the role as obstruction space: the obstruction 
to extend a given deformation over S to one over a small extension 0 ---+ V ---+ 

S' ---+ S ---+ 0 turns out to be exactly the class of 

where we have chosen arbitrary lifts for fs and :Es to S', see [14]. 

First order R.C. deformations are obtained from these admissible pairs, by dividing 
out the action of the coordinate transformations and multiplication of the equation 
by a unit. 

Proposition (7.8) (see [14]) Let h(f) = {8(!) : 8(1) C J}. Then there is an 
exact sequence: 

Here, of course, T 1 (:E, Y) describes the infinitesimal R.C. deformations of (:E, Y). 

As we have a smooth map Def(:E, Y) ---+ Def(X) there is an induced surjection 
on the level of tangent spaces. To describe this, one has to recall the embedding of 
X as described in (7.1), (7.2), and see which admissible pairs arise from coordinate 
transformations in this bigger space. 
An R.C. admissible pair (n, g) can be given by a peturbation of the matrix M. Indeed 
n gives a deformation of :E, which by well known facts on deformations of Cohen
Macaulay codimension two spaces, can be given by a deformation, say M + t:N, of 
the matrix M. The upper row of M is also deformed, to give a matrix M + t:N 
such that f + t:g = det(M + t:N). Consider a vectorfield of the form uk8 on cn+t, 
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where () is a vectorfield on en. We can let it act on the linear equations defining the 
embedding of H omy(I, I) in cn+t-1 . Of course, in general, quadratic terms appear, 
by they can and will be removed by using the quadratic equations. In this way, one 
gets a peturbation of the matrix M, which will give an R.C. admissible pair. This 
procedure gives us a map: Ox® 0cn --+A. 

Theorem (7.9) (see [15]). 

T 1(X) = Coker(Ox ® 0cn --+A) 

8-constant deformations of plane curves 

Let Y = C C C 2 be an isolated plane curve singularity, X = C ----t C be the 
normalization. It is well-known that the deforming C in a 8-constant way is the 
"same" as studying deformations of C that admit simultaneous normalisation. So 
the tangent space to semi-universal 8-constant deformation will be 

If the map C--+ C 2 is given by t--+ (x(t),y(t)), then an arbitrary perturbation to 
(x(t) + E~(t), y(t) + e'l(t)) will give rise to a 8-constant deformation. The coordinate 
changes in source and target will divide out J := 0 0(8xj8t, 8yj8t) resp. (OcEBOc ), 
so that 

In this article we use what we call the R. C. description of a-constant deformations 
of plane curves. Let I be as usual the conductor, and ~ the fat point defined by it. 
Because the deformation functors are equivalent, we have an isomorphism 

On the level of representatives, this map is given by 

for b. an element of I, as an explicit computation learns. Remark that, in general, 
the forgetful functor Def(~, C) ----t Def( C) is not injective. Indeed, for plane curve 
singularities C, with normalisation C, Buchweitz [3] proved that the kernel of the 
map: 

has dimension m- r, where m is the multiplicity, and r the number of branches 
of C. For example the deformation y2 - a:3 + Ea:2 gives a trivial deformation of the 
cusp C but is not a trivial deformation of the diagram C ----t C. This is in contrast 
with the theory of admissible deformations. In ([14] (1.11)) it is proved that under 
reasonable circumstances the corresponding forgetful functor for admissible defor
mations is injective. 

Example (7.10): We consider Y, the E6 singularity given by y3 - x4 = 0, and ~ 
the space defined by the conductor of the normalization. The conductor is given by 
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the ideal I = ( :z: 2 , xy, y2). We first determine equations describing C in C 4 . For the 
matrix M one can take: 

Calling u1 = u and u 2 = v, we therefore have as linear equations 

y + ux = 0; uy + vx = 0; -:z:2 + vy = 0 

From these one can compute the quadratic equations, and they turn out to be: 

u 2 = v; uv = -:z:; v2 = y 

Remark that v can be eliminated to give the parametrization :z: = -u3 ; y = u4 of 
the E6 singularity. 
We describe the vectorspace T 1 p:;, C). It is tedious to check K er(hJ : T1 (~) --t 

N*/I) is represented by the normal module element (:z:2 ,:z:y,y2) --t (y,O,O). Fur
thermore, rev = (:z:, y)3, and JE(f) = (y3, y2:z:, x3y, :z:4 ). One concludes that T1 (~, Y) 
is three dimensional. 
To see the vectorspace T 1(C), we still have to divide out the vector fields 
uox, vox, uoy and voy. We will just do '!lOy leaving the others to the reader. The 
action is: 

(y + ux) --tv; (uy + vx) --t uv; (:z:2 + vy) --t v 2 

Because uv = -x and v2 = y we see that this is the same as: 

(y + ux) --tv; (uy + vx) --t -:z:; (:z: 2 + vy) --t y 

Therefore, the deformation of the matrix is: 

( 
y -EX -:z:2 + EY ) 
:z: y 0 
E :z: y 

Hence we see that the R.C. admissible pair maps to the unique element in K er(hJ : 
T1 (~) --t N* /I). After dividing out all elements one sees that 
T 1 (C) = 0, as it should be, because Cis the normalization of the E6 singularity, 
which is a smooth space. 

The following Theorem is of crucial importance in this paper: 

Theorem (7.11): 

rv = {g E C{:z:,y}: ord(gi) 2:: Ci + m(i)} 

Here m(i) is the sum of multiplicities as defined in {1.2). 

Proof: The lemma is easy for a curve consisting om m smooth brances intersect
ing mutually transverse. In that case the conductor is I = mm-l, where m is the 
maximal ideal. Every n E Hom( I, tJj I) has values in mm-2 and conversely, every 
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assignment of values in mm-2 to a minimal set of generators of I defines an element 
in Hom(I,Oji). (Easy to check, and left to the reader.) Hence forgE I to satisfy 
ev9 = 0, it is necessary and sufficient that g E mm. This gives the lemma for this 
case. 
In the general case we use the one-parameter deformation of Scott, see (1.11), and 
induction. So we have the deformed curve Cs, defined by fs = 0. It has branches 
Cis, which has (possibly) two singular points: 

A: mi branches passing through the m-fold point. (Here we put mi to be the mul
tiplicity of branch ci.) 

B: the singularity of the first blow up of C which is on the branch Ci. 

We let c~ be the conductor of this singularity described under B. 
Every g E rv defines an infinitesimal a-constant deformation of C by the formula 
f + Eg = 0. As the functor of a-constant deformations of a plane curve singularity is 
smooth, we can find a lift g to a 9s such that fs + E9s = 0 defines a relative a-constant 
deformation for any g E rv. It is necessary that the following two conditions hold 
for restriction 9is of 9i to Cis, in order for g to be in Iev: 

1) It vanishes with order m at any of the mi points of Ci,s mapping to A. 

2) (By induction) It vanishes with order m(i)- mi + ci at B. 

Because the conductor I is flat over the parameter space, we have 

If we now let s go to zero, we see that 9i has to vanish with order 

On the other hand, if the vanishing order of 9i is ~ m( i) + Ci we can lift 9i to 9is 
etc. D 
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