Vector fields and deformations of isotropic super-Grassmannians of maximal type

by

A. L. Onishchik, A. A. Serov*
VECTOR FIELDS AND DEFORMATIONS
OF ISOTROPIC SUPER-GRASSMANNIANS
OF MAXIMAL TYPE

A.L. ONISHCHIK, A.A. SEROV

Yaroslavl University and Tver Institute for Agriculture

October 26, 1993

ABSTRACT. One determines the holomorphic vector fields and the deformations of
the isotropic super-Grassmannians of maximal type $F^{o} \text{Gr}_{2r|2s,r\mid s}$ associated with the
complex or-hosymplectic Lie superalgebras.

1. Preliminaries

In [2,6,7] the holomorphic vector fields and the deformations of complex super-
Grassmannians were studied. It was proved, in particular, that, for a wide class
of super-Grassmannians, all holomorphic vector fields are induced by linear trans-
formations and the tangent sheaf 1-cohomology vanishes. Here we want to apply
the same methods in order to get similar results for isotropic super-Grassmannians
of maximal type associated with orthosymplectic Lie superalgebras. It turns out
that the super-Grassmannian of maximal type associated with the Lie superalge-
bra $\mathfrak{osp}_{2r-1|2s}(\mathbb{C})$ is isomorphic to a connected component of that associated with
$\mathfrak{osp}_{2r|2s}(\mathbb{C})$ (which is well known in the classical situation), and so we shall study
only the latter case.

Let us denote by $\text{IGr}_{2r|2s,r\mid s}$ the isotropic super-Grassmannian of maximal type
associated with the classical Lie superalgebra $\mathfrak{osp}_{2r|2s}(\mathbb{C})$ (see [4]). Its reduction
is the product of two isotropic complex Grassmannians $\text{IGr}_{2r,r}^{s,s} \times \text{IGr}_{2s,s}^{s,s}$, where
the first factor is the Grassmannian of isotropic r-planes in the vector space \mathbb{C}^{2r}
endowed with a non-degenerate symmetric bilinear form, while the second one is
that of isotropic s-planes in \mathbb{C}^{2s} endowed with a non-degenerate skew-symmetric
bilinear form. The supermanifold $\text{IGr}_{2r|2s,r\mid s}$ admits a natural transitive action
of the orthosymplectic Lie supergroup $\text{OSP}_{2r|2s}(\mathbb{C})$, inducing on its reduction the
standard transitive action of the Lie group $\text{O}_{2r}(\mathbb{C}) \times \text{Sp}_{2s}(\mathbb{C})$.

1991 Mathematics Subject Classification. Primary 58A50, 17C70.

Key words and phrases. Supermanifold, Lie superalgebra, isotropic super-Grassmannian.

The work partially supported by 'Centre for Advanced Study at The Norwegian Academy of
Science and Letters' and by 'International Sophus Lie Centre'

Typeset by A4S-TeX
Let \((e_1, \ldots, e_{2r}), (f_1, \ldots, f_{2s})\) be the standard bases of \(\mathbb{C}^{2r}, \mathbb{C}^{2s}\) respectively. We suppose that the orthosymplectic Lie supergroup leaves invariant the bilinear form in \(\mathbb{C}^{2r|2s}\) given in the basis \((e_1, \ldots, e_{2r}, f_1, \ldots, f_{2s})\) by the matrix

\[
\begin{pmatrix}
0 & 1_r & 0 & 0 \\
1_r & 0 & 0 & 0 \\
0 & 0 & 0 & 1_s \\
0 & 0 & -1_s & 0
\end{pmatrix}
\]

We denote by \(o\) the graded isotropy subspace of maximal dimension

\[o = (e_{r+1}, \ldots, e_{2r}, f_{s+1}, \ldots, f_{2s})\]

of \(\mathbb{C}^{2r|2s}\). It is well known that the manifold \(\text{IGr}^a_{2r,r}\) has two connected components, while \(\text{IGr}^a_{2s,s}\) is connected. We choose the connected component

\[M = \text{I}^a\text{Gr}^a_{2r, r} \times \text{IGr}^a_{2s, s}\]

of \(\text{IGr}^a_{2r, r} \times \text{IGr}^a_{2s, s}\), containing the point \(o\), and denote by \(\text{I}^a\text{Gr}^a_{2r|2s, r|s}\) the corresponding connected component of \(\text{IGr}_{2r|2s, r|s}\). Sometimes we will denote this supermanifold by \((M, \mathcal{O})\), where \(\mathcal{O}\) is its structure sheaf.

The natural action of the Lie supergroup \(\text{OSp}_{2r|2s}(\mathbb{C})\) induces the transitive action of its identity component \(\text{SOSp}_{2r|2s}(\mathbb{C})\) on \((M, \mathcal{O})\). The reduction of the latter supergroup is

\[G = G_0 \times G_1,\]

where

\[G_0 = \text{SO}_{2r}(\mathbb{C}), \quad G_1 = \text{Sp}_{2s}(\mathbb{C}).\]

Let \(P\) denote the stabilizer \(G_o\) of the point \(o \in M\) in \(G\); we have

\[P = P_0 \times P_1,\]

where \(P_0 \subset G_0, P_1 \subset G_1\). The subgroup

\[R = R_0 \times R_1,\]

where

\[R_0 \simeq \text{GL}_r(\mathbb{C}), \quad R_1 \simeq \text{GL}_s(\mathbb{C}),\]

leaving invariant the subspaces

\[(e_1, \ldots, e_r), (e_{r+1}, \ldots, e_{2r}), (f_1, \ldots, f_s), (f_{s+1}, \ldots, f_{2s}),\]

is the reductive part of \(P\). The matrices from \(R\) are of the form

\[
\begin{pmatrix}
A & 0 & 0 & 0 \\
0 & (A^t)^{-1} & 0 & 0 \\
0 & 0 & B & 0 \\
0 & 0 & 0 & (B^t)^{-1}
\end{pmatrix},
\]
where \(A \in \text{GL}_r(\mathbb{C}), \ B \in \text{GL}_s(\mathbb{C}), \) while those from \(P \) have the form

\[
\begin{pmatrix}
A & 0 & 0 & 0 \\
U & (A^t)^{-1} & 0 & 0 \\
0 & 0 & B & 0 \\
0 & 0 & V & (B^t)^{-1}
\end{pmatrix}.
\]

The tangent Lie algebras and Lie superalgebras of Lie groups and Lie supergroups will be denoted, as usually, by the corresponding Gothic lower case letters. We have

\[
g = g_0 \oplus g_1, \quad g_0 = \mathfrak{so}_{2r}(\mathbb{C}), \quad g_1 = \mathfrak{sp}_{2s}(\mathbb{C}).
\]

The Lie algebra \(p \) of \(P \) admits the semi-direct decomposition

\[
p = r + n,
\]

where \(n \) is the nil-radical of \(p \). We have

\[
n = n_0 \oplus n_1,
\]

where \(n_0 \subset g_0, \ n_1 \subset g_1 \) consist of the matrices

\[
u = \begin{pmatrix}
0 & 0 \\
U & 0
\end{pmatrix}, \quad v = \begin{pmatrix}
0 & 0 \\
V & 0
\end{pmatrix},
\]

\(U \) and \(V \) being a skew-symmetric \(r \times r \) and a symmetric \(s \times s \)-matrix respectively. The subalgebra \(n \) is commutative.

We shall use the standard coordinate system on \(\text{IGr}_{2r|2s}, \) in a neighborhood of \(o \) introduced in [4, Ch. 5, Sec. 6], changing slightly the notation; more precisely, transposing the coordinate matrix. This matrix will have the form

\[
\begin{pmatrix}
X & \Xi \\
1_r & 0 \\
-\Xi^t & Y \\
0 & 1_s
\end{pmatrix},
\]

where \(X = (x_{\alpha \beta}) \) and \(Y = (y_{ij}) \) are a \(r \times r \)-matrix and a \(s \times s \)-matrix of even coordinates, \(X^t = -X, \ Y^t = -Y, \) and \(\Xi = (\xi_{as}) \) is a \(r \times s \)-matrix of odd entries. At the point \(o \) we have \(x_{\alpha \beta} = y_{ij} = 0. \) The natural action of \(\text{OSp}_{2r|2s}(\mathbb{C}) \) on \(\text{IGr}_{2r|2s}, \) is given by the matrix multiplication from the left.

Let \(\rho_0, \rho_1 \) be the standard representations of \(\text{GL}_r(\mathbb{C}), \text{GL}_s(\mathbb{C}) \) and \(\sigma_0, \sigma_1 \) their adjoint representations in the corresponding derived algebras \(\mathfrak{sl}_r(\mathbb{C}), \ p = r, s. \) The trivial 1-dimensional representation of any group will be denoted by 1. In what follows, we shall omit for simplicity the trivial factors 1 in the notation of the representations.

As in [6], we exploit the theory of homogeneous vector bundles. Let \(E = E_\psi \) be a finite-dimensional \(P \)-module determined by a holomorphic linear representation \(\psi \) of \(P. \) We denote by \(E = E_\psi \) the corresponding homogeneous vector bundle over \(M \) and by \(\mathcal{E} = \mathcal{E}_\psi \) the sheaf of its holomorphic sections. As is well known, the
tangent sheaf Θ on M is isomorphic to \mathcal{E}_τ, where the isotropy representation τ of P is completely reducible and satisfies the condition

$$(3) \quad \tau|_R = \bigwedge^2 \rho_0 + S^2 \rho_1.$$

The supermanifold (M, \mathcal{O}) is, in general, non-split. As usually, we associate with it the split supermanifold $(M, \mathrm{gr} \mathcal{O})$. Its structure sheaf is the graded sheaf associated with the filtration

$$(4) \quad \mathcal{O} = \mathcal{J}^0 \supset \mathcal{J}^1 \supset \mathcal{J}^2 \supset \ldots,$$

where $\mathcal{J} = (\mathcal{O}_1)$. We have $\mathrm{gr} \mathcal{O} \simeq \bigwedge \mathcal{E}$, where $\mathcal{E} = \mathcal{J}/\mathcal{J}^2$. The holomorphic vector bundle \mathcal{E} over M associated with \mathcal{E} has the fibers $\mathcal{E}_x = \mathcal{J}_x/m_x \mathcal{J}_x$, $x \in M$, where m_x is the maximal ideal of \mathcal{O}_x.

Clearly, the action of $\mathrm{OSp}_{2|2} (\mathbb{C})$ on the super-Grassmannian induces actions of G on the sheaves \mathcal{O}, \mathcal{J}, \mathcal{E} and on the vector bundle \mathcal{E}, covering the standard action of G on M. Thus, \mathcal{E} is a homogeneous vector bundle over M.

Proposition 1. We have

$$\mathrm{gr} \mathcal{O} \simeq \bigwedge \mathcal{E}_\varphi,$$

where φ is the irreducible representation of P such that

$$\varphi|_R = \rho_0^* \otimes \rho_1^*.$$

Proof. Clearly, $\mathcal{J}/\mathcal{J}^2 = \mathcal{E}_\varphi$, where φ is the representation of P induced in the fibre $\mathcal{E}_o = \mathcal{J}_o/m_0 \mathcal{J}_o$. To calculate it, we use the coordinate matrix (2). The action of P on (M, \mathcal{O}) is expressed by means of the coordinates in the following way:

$$\tilde{Z} = \left(\begin{array}{cccc} A & 0 & 0 & 0 \\ U & (A^t)^{-1} & 0 & 0 \\ 0 & 0 & B & 0 \\ 0 & 0 & V & (B^t)^{-1} \end{array} \right) \left(\begin{array}{cc} X & \Xi \\ 1_x & 0 \\ -\Xi^t & Y \\ 0 & 1_s \end{array} \right),$$

$$(5) \quad = \left(\begin{array}{cc} AX & A\Xi \\ (A^t)^{-1} + UX & U\Xi \\ -B\Xi^t & BY \\ -V\Xi^t & (B^t)^{-1} + VY \end{array} \right).$$

We must reduce the result to the form (2) by multiplying from the right by the matrix $\left(\begin{array}{cc} (A^t)^{-1} + UX & U\Xi \\ -V\Xi^t & (B^t)^{-1} + VY \end{array} \right)^{-1}$. We may set $X = 0, Y = 0$ which simplifies the calculation. Then

$$\left(\begin{array}{cc} (A^t)^{-1} & U\Xi \\ -V\Xi^t & (B^t)^{-1} \end{array} \right)^{-1} \equiv \left(\begin{array}{cc} A^t & -A^t U\Xi B^t \\ B^t V\Xi^t A^t & B^t \end{array} \right)$$
modulo \mathcal{J}_o^2. Hence,
\[
\tilde{Z} \equiv \begin{pmatrix}
0 & A^2B^t \\
1_r & 0 \\
-B^tA^t & 0 \\
0 & 1_s
\end{pmatrix}
\]
modulo $m_o\mathcal{J}_o^2$. Since the entries of Ξ determine a basis of E_o, this implies our assertion.

Our goal is to calculate the 0- and 1-cohomology of the tangent sheaf $\mathcal{T} = \text{Der} \mathcal{O}$ of $\text{IGr}_{2r|2s,r|s}$. As in [6], we consider first the \mathbb{Z}-graded sheaf $\hat{\mathcal{T}} = \text{Der} \text{ gr} \mathcal{O}$. It is known (see [4]) that for any $q \geq -1$ there exists a natural exact sequence of sheaves
\[
0 \to \mathcal{T}_{(q+1)} \to \mathcal{T}_{(q)} \to \hat{T}_q \to 0,
\]
where $\mathcal{T}_{(q)}$ are the subsheaves of \mathcal{T} forming a filtration of this sheaf and defined by
\[
\mathcal{T}_{(-1)} = \mathcal{T},
\]
\[
\mathcal{T}_{(q)} = \{ \delta \in \mathcal{T} | \delta \mathcal{O} \subset \mathcal{J}^q, \delta \mathcal{J} \subset \mathcal{J}^{q+1} \}, \quad q \geq 0.
\]
The sequence (6) will permit us to relate the cohomology of \mathcal{T} to that of \hat{T}. To calculate the cohomology of the latter sheaf, one uses the exact sequence
\[
0 \to \mathcal{A}_{q+1} \overset{\alpha}{\to} \hat{T}_q \overset{\beta}{\to} \mathcal{B}_q \to 0.
\]
Here
\[
\mathcal{A}_q = \mathcal{E}_\varphi^* \otimes \bigwedge^q \mathcal{E}_\varphi = \mathcal{E}_{\Phi_q}
\]
with
\[
\Phi_q = \varphi^* \otimes \bigwedge^q \varphi,
\]
and
\[
\mathcal{B}_q = \Theta \otimes \bigwedge^q \mathcal{E}_\varphi = \mathcal{E}_{T_q},
\]
with
\[
T_q = \tau \otimes \bigwedge^q \varphi.
\]
The mapping β is the restriction of a derivation of degree q onto the structure sheaf \mathcal{F} of M, and α identifies any sheaf homomorphism $\mathcal{E}_\varphi \to \bigwedge^{p+1} \mathcal{E}_\varphi$ with its extension which is a derivation of degree q and is zero on \mathcal{F}. In particular,
\[
\mathcal{T}_{(-1)} \simeq \mathcal{A}_0 = \mathcal{E}_{\Phi}^* = \mathcal{E}_{\varphi^*}.
\]

Now we make some remarks concerning the action of the group G on the sheaves involved. Clearly, the action of G on the structure sheaf \mathcal{O} induces an action of
G on T, preserving the parities. It follows that G preserves the filtrations (4) and (7), inducing an action on the sheaf \mathcal{T}. Thus, \mathcal{T}_q for any q is a locally free analytic sheaf on M which is homogeneous with respect to G. One sees easily that the homomorphisms in the exact sequences (6) and (8) are G-equivariant.

To conclude these preliminaries, we shall write explicitly certain fundamental vector fields on (M, \mathcal{O}) associated with the action of G, using the local coordinates from (2). Let us denote by $X \mapsto X^*$ the Lie superalgebra homomorphism $\mathfrak{osp}_{2r|2s}(\mathbb{C}) \to H^0(M, T)$ induced by the action of $\text{SOSp}_{2r|2s}(\mathbb{C})$ on (M, \mathcal{O}).

Let

$$H = \text{diag}(\lambda_1, \ldots, \lambda_r, -\lambda_1, \ldots, -\lambda_r, \mu_1, \ldots, \mu_s, -\mu_1, \ldots, -\mu_s)$$

be the general diagonal matrix lying in \mathfrak{g}. Using (5), we get

$$(11) \quad H^* = \sum_{\alpha < \beta} (\lambda_\alpha + \lambda_\beta)x_{\alpha\beta} \frac{\partial}{\partial x_{\alpha\beta}} + \sum_{i \leq j} (\mu_i + \mu_j)y_{ij} \frac{\partial}{\partial y_{ij}} + \sum_{\alpha, i} (\lambda_\alpha + \mu_i)\xi_{\alpha i} \frac{\partial}{\partial \xi_{\alpha i}}.$$

Now, for the elements $u, v \in n$ given by (1), we get, using (5) again:

$$u^* = \sum_{\alpha, \beta} (\mathcal{X} U X)_{\alpha\beta} \frac{\partial}{\partial x_{\alpha\beta}} - \sum_{i, j} (\Xi^t U \Xi)_{ij} \frac{\partial}{\partial y_{ij}} + \sum_{\alpha, k} (\mathcal{X} U \Xi)_{\alpha k} \frac{\partial}{\partial \xi_{\alpha k}},$$

$$v^* = -\sum_{\alpha, \beta} (\Xi V \Xi^t)_{\alpha\beta} \frac{\partial}{\partial x_{\alpha\beta}} + \sum_{i, j} (\mathcal{Y} V Y)_{ij} \frac{\partial}{\partial y_{ij}} + \sum_{\alpha, k} (\Xi V \Xi)_{\alpha k} \frac{\partial}{\partial \xi_{\alpha k}}.$$

Let us choose the basis $X_{\alpha\beta} (\alpha < \beta)$, $Y_{ij} (i < j)$ of n given by

$$X_{\alpha\beta} = \frac{1}{2}(E_{\alpha\beta} - E_{\beta\alpha}),$$

$$Y_{ij} = \frac{1}{2}(F_{ij} + F_{ji}) (i \neq j),$$

$$Y_{ii} = F_{ii},$$

where $E_{\alpha\beta}$ and F_{ij} are the natural bases of the vector spaces of matrices $M_r(\mathbb{C})$ and $M_s(\mathbb{C})$ respectively. Then, in particular, we have

$$(13) \quad X_{\gamma\delta}^* = \sum_{\gamma, \delta} x_{\gamma\delta} x_{\gamma\delta} \frac{\partial}{\partial x_{\gamma\delta}} - \sum_{i, j} \xi_{\alpha i} \xi_{\beta j} \frac{\partial}{\partial y_{ij}}$$

$$+ \frac{1}{2} \sum_{\gamma, k} (x_{\gamma\alpha} \xi_{\beta k} - x_{\gamma\beta} \xi_{\alpha k}) \frac{\partial}{\partial \xi_{\gamma k}},$$

$$Y_{ij}^* = -\sum_{\alpha, \beta} \xi_{\alpha i} \xi_{\beta j} \frac{\partial}{\partial x_{\alpha\beta}} + \sum_{k, l} y_{ki} y_{lj} \frac{\partial}{\partial y_{kl}}$$

$$+ \frac{1}{2} \sum_{\gamma, k} (y_{jk \gamma} \xi_{\gamma i} + y_{ik} \xi_{\gamma j}) \frac{\partial}{\partial \xi_{\gamma k}} (i \neq j),$$

$$Y_{ii}^* = -\sum_{\alpha, \beta} \xi_{\alpha i} \xi_{\beta i} \frac{\partial}{\partial x_{\alpha\beta}} + \sum_{k, l} y_{ki} y_{li} \frac{\partial}{\partial y_{kl}}$$

$$+ \sum_{\gamma, k} y_{ik \gamma} \xi_{\gamma i} \frac{\partial}{\partial \xi_{\gamma k}}.$$
Let now n^- be the nilpotent subalgebra of \mathfrak{g} complementary to \mathfrak{p}; it has the form

$$n^- = n^-_0 + n^-_1,$$

where $n^-_0 \subset \mathfrak{g}_0$, $n^-_1 \subset \mathfrak{g}_1$ consist of the matrices

$$u = \begin{pmatrix} 0 & U \\ 0 & 0 \end{pmatrix}, \quad v = \begin{pmatrix} 0 & V \\ 0 & 0 \end{pmatrix},$$

U and V being a skew-symmetric $r \times r$ and a symmetric $s \times s$ matrix respectively (cf. (1)). Consider the basis of n^- formed by the elements $U_{\alpha \beta}$ ($\alpha < \beta$), V_{ij} ($i < j$), V_{ii} corresponding to the matrices $U = E_{\alpha \beta} - E_{\beta \alpha}$, $V = E_{ij} + E_{ji}$ ($i < j$); E_{ii} respectively. One sees easily that

(14)

$$U^*_{\alpha \beta} = \frac{\partial}{\partial x_{\alpha \beta}}, \quad V^*_{ij} = \frac{\partial}{\partial y_{ij}}.$$

2. The cohomology of A_q and B_q

In this section we shall calculate the 0- and 1-cohomology of the sheaves A_q and B_q. As in [6,7], we use the theorem of Bott (see [1], Theorem IV') permitting to calculate the cohomology of the homogeneous sheaf \mathcal{E}_ψ on M defined by a completely reducible representation ψ of P. More precisely, this theorem gives an algorithm for determining the highest weights of the G-modules $H^p(M, \mathcal{E}_\psi)$ in terms of the highest weights of ψ. To apply it, we have to introduce some notation related to weights and roots of G.

We choose the Cartan subalgebra $t = t_0 \oplus t_1$ in the tangent Lie algebra $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ of G such that t_0 and t_1 are the Cartan subalgebras of \mathfrak{g}_0 and \mathfrak{g}_1, respectively, formed by all diagonal matrices

$$H_0 = \text{diag}(\lambda_1, \ldots, \lambda_r, -\lambda_1, \ldots, -\lambda_r),$$

$$H_1 = \text{diag}(\mu_1, \ldots, \mu_s, -\mu_1, \ldots, -\mu_s).$$

We consider the following system of positive roots:

$$\Delta^+ = \Delta^+_0 \cup \Delta^+_1,$$

where

$$\Delta^+_0 = \{\lambda_i - \lambda_j, \lambda_i + \lambda_j (i < j)\},$$

$$\Delta^+_1 = \{\mu_p - \mu_q (p < q), \mu_p + \mu_q (p < q)\}.$$

The half of the sum of all positive roots of \mathfrak{g}_0, \mathfrak{g}_1, \mathfrak{g} will be denoted by γ_0, γ_1, γ respectively; we have $\gamma = \gamma_0 + \gamma_1$. The corresponding system of simple roots of \mathfrak{g} is

$$\Pi = \Pi_0 \cup \Pi_1,$$

where

$$\Pi_0 = \{\alpha_1, \ldots, \alpha_r\}, \quad \Pi_1 = \{\beta_1, \ldots, \beta_s\}$$
are the systems of simple roots of \mathfrak{g}_0, \mathfrak{g}_1 respectively; here we denote
\[
\alpha_1 = \lambda_1 - \lambda_2, \ldots, \alpha_{r-1} = \lambda_{r-1} - \lambda_r, \alpha_r = \lambda_{r-1} + \lambda_r;
\beta_1 = \mu_1 - \mu_2, \ldots, \beta_{s-1} = \mu_{s-1} - \mu_s, \beta_s = 2\mu_s.
\]
We denote by $t^*(\mathbb{R})$ the real subspace of t^* spanned by all λ_i, μ_p, and define the scalar product on $t^*(\mathbb{R})$ such that λ_i, μ_p form its orthonormal basis. As usually, $\lambda \in t^*(\mathbb{R})$ is called dominant if $(\lambda, \alpha) \geq 0$ for all $\alpha \in \Delta^+$ or, equivalently, for all $\alpha \in \Pi$. Following Bott [1], we say that λ has index 1 if $(\lambda, \alpha) > 0$ for all $\alpha \in \Delta^+$ except of one root $\beta \in \Delta^+$, for which $(\lambda, \beta) < 0$. Now, λ is called singular if $(\lambda, \alpha) = 0$ for a certain $\alpha \in \Delta$. These definitions will be used with respect to \mathfrak{g}_0, \mathfrak{g}_1 as well.

Clearly, the subgroup $P = G_o$ defined above is a parabolic subgroup of G containing the Borel subgroup B^- corresponding to $-\Delta^+$. The system of simple roots of its reductive part R is $\Sigma = \Pi - \{\alpha_r, \beta_s\}$. An element $\lambda \in t^*(\mathbb{R})$ is called R-dominant if $(\lambda, \alpha) \geq 0$ for all $\alpha \in \Sigma$.

It is convenient to characterize an element $\lambda \in t^*(\mathbb{R})$ by the numbers $\lambda_\alpha = 2(\lambda, \alpha)/(\alpha, \alpha)$, $\alpha \in \Pi$, which are actually the coordinates of λ in the basis of the so-called fundamental weights. We have $\gamma_\alpha = 1$ for all $\alpha \in \Pi$. An element λ is dominant if and only if $\lambda_\alpha \geq 0$ for all $\alpha \in \Pi$.

The following proposition is well known and very easy to verify:

Proposition 2. An element

$$
\lambda = \sum_{i=1}^{r} k_i \lambda_i, \ k_i \in \mathbb{R},
$$

is dominant if and only if $k_1 \geq k_2 \geq \ldots \geq |k_r|$. It is R-dominant if and only if $k_1 \geq k_2 \geq \ldots \geq k_r$.

An element

$$
\lambda = \sum_{j=1}^{s} l_i \mu_j, \ l_j \in \mathbb{R},
$$

is dominant if and only if $l_1 \geq l_2 \geq \ldots \geq l_s \geq 0$. It is R-dominant if and only if $l_1 \geq l_2 \geq \ldots \geq l_s$.

We have to study the highest weights of the representations Φ_q and T_q of P defined by (9) and (10), respectively. It follows from Proposition 1 that

$$
\Phi_q|R = (\rho_0 \otimes \rho_1)^q \bigwedge (\rho_0^* \otimes \rho_1^*).
$$

Denote by i, i_a indices running over $1, \ldots, r$, and by j, j_β those running over $1, \ldots, s$. The weights of Φ_q have the form

$$
\Lambda = \Lambda_0 + \Lambda_1,
$$

where

$$
\Lambda_0 = \lambda_i - \lambda_{i_1} - \ldots - \lambda_{i_q},
\Lambda_1 = \mu_j - \mu_{j_1} - \ldots - \mu_{j_\beta}.
$$
Similarly, (3) implies that
\[T_q = T'_q + T''_q, \]
where
\[
T'_q | R = \bigwedge^2 (\mathcal{R}_0) \bigwedge^q (\mathcal{R}_0^* \otimes \mathcal{R}_1^*),
\]
\[
T''_q | R = (S^2 \rho_1) \bigwedge^q (\mathcal{R}_0^* \otimes \mathcal{R}_1^*).
\]
The weights of \(T'_q, T''_q \) have the form
\begin{equation}
\Lambda = \Lambda_0 + \Lambda_1,
\end{equation}
where for \(T'_q \) we have
\begin{equation}
\begin{aligned}
\Lambda_0 &= \lambda_i + \lambda_k - \lambda_{i_1} - \ldots - \lambda_{i_q}, \quad i < k, \\
\Lambda_1 &= -\mu_{j_1} - \ldots - \mu_{j_q},
\end{aligned}
\end{equation}
and for \(T''_q \)
\begin{equation}
\begin{aligned}
\Lambda_0 &= -\lambda_{i_1} - \ldots - \lambda_{i_q}, \\
\Lambda_1 &= \mu_j + \mu_k - \mu_{j_1} - \ldots - \mu_{j_q}, \quad j \leq l.
\end{aligned}
\end{equation}

We denote by \(I_0, I_1 \) the standard representations and by \(A_0, A_1 \) the adjoint representations of \(G_0, G_1 \) respectively. Remark that in the case \(r = 1 \) we have \(G_0 = R_0 \simeq \text{GL}_1(\mathbb{C}) \), and \(I_0 = \rho_0 + \rho_0^* \).

Proposition 3. Suppose that \(r \geq 2, s \geq 1 \). Then the \(G \)-module \(H^0(M, \mathcal{A}_0) \simeq \mathbb{C}^{2r} \otimes \mathbb{C}^{2s} \) is irreducible with the representation \(I_0 \otimes I_1 \). For \(r = 1, s \geq 1 \), the \(G \)-module \(H^0(M, \mathcal{A}_0) \simeq \mathbb{C}^{2s} \) is irreducible with the representation \(\rho_0 \otimes I_1 \).

We have
\[
H^p(M, \mathcal{A}_0) = 0
\]
for any \(p \geq 1 \).

Proof. The highest weight of \(\Phi_0 = \varphi^* \) is \(\lambda_1 + \mu_1 \). It is dominant and is the highest weight of the representation \(I_0 \otimes I_1 \) (for \(r \geq 2 \)) or \(\rho_0 \otimes I_1 \) (for \(r = 1 \)) of \(G \). Our assertions follow from the theorem of Bott.

Proposition 4. Suppose that \(r \geq 1, r \neq 2, s \geq 1 \). Then
\[
H^0(M, \mathcal{A}_1) \simeq \mathbb{C}
\]
(the trivial \(G \)-module). In the case \(r = 2, s \geq 1 \) we have
\[
H^0(M, \mathcal{A}_1) \simeq \mathbb{C} \oplus \mathfrak{sl}_2(\mathbb{C}),
\]
where the first summand is the trivial \(G \)-module and the second one is the irreducible \(G \)-module with highest weight \(\lambda_1 - \lambda_2 \). In both cases we have
\[
H^p(M, \mathcal{A}_1) = 0, \ p \geq 1.
\]
Proof. Clearly, for \(r \geq 2, s \geq 2 \) we have
\[
\Phi_1 \mid R = (\rho_0 \rho_0^*) \otimes (\rho_1 \rho_1^*)
= (1 + \sigma_0) \otimes (1 + \sigma_1) = 1 + \sigma_0 + \sigma_1 + \sigma_0 \otimes \sigma_1.
\]
The trivial component gives the 1-dimensional trivial \(G \)-module. The highest weights of the non-trivial components are
\[
\Lambda_0 = \lambda_1 - \lambda_r, \quad \Lambda_1 = \mu_1 - \mu_s, \quad \Lambda_0 + \Lambda_1.
\]
The weight \(\Lambda_0 + \gamma \) is singular for \(r \geq 3 \), since
\[
(\Lambda_0 + \gamma)_{\alpha_r} = (\Lambda_0 + \gamma_0)_{\alpha_r} = -1.
\]
In the case when \(r = 2 \) the weight \(\Lambda_0 = \lambda_1 - \lambda_2 \) is dominant and determines the restriction of \(\text{Ad}_0 \) onto one of the simple ideals of \(\mathfrak{g}_0 \simeq \mathfrak{sl}_2(\mathbb{C}) \oplus \mathfrak{sl}_2(\mathbb{C}) \) (which coincides actually with \([t_0, t_0] \)). Now, \(\Lambda_1 + \gamma \) is singular for \(s \geq 2 \), since
\[
(\Lambda_1 + \gamma)_{\beta_s} = (\Lambda_1 + \gamma_1)_{\beta_s} = -1.
\]
Therefore, \(\Lambda_0 + \Lambda_1 + \gamma \) is singular, too.

Thus, the proposition follows from the theorem of Bott. In the cases \(r = 1 \) or \(s = 1 \) the corresponding adjoint representation does not enter into the expression of \(\Phi_1 \), and we get the same result.

Proposition 5. For any \(r \geq 1, s \geq 1 \) we have
\[
H^0(M, \mathcal{A}_q) = H^1(M, \mathcal{A}_q) = 0, \quad q \geq 2.
\]

Proof. Let \(\Lambda \) be a highest weight of \(\Phi_q \). Using its expression given by (15) and (16), we easily see from Proposition 2 that \(\Lambda_0 \) and \(\Lambda_1 \) can not be dominant. Therefore the situation when \(\Lambda \) is dominant or \(\Lambda + \gamma \) has index 1 is impossible.

Proposition 6. For \(r \geq 3, s \geq 1 \), the \(G \)-module
\[
H^0(M, \mathcal{B}_0) \simeq \mathfrak{so}_{2r}(\mathbb{C}) \oplus \mathfrak{sp}_{2s}(\mathbb{C})
\]
splits into the sum of two irreducible components with the representations \(\text{Ad}_0 \), \(\text{Ad}_1 \). In the case \(r = 2 \), \(s \geq 1 \) the \(G \)-module
\[
H^0(M, \mathcal{B}_0) \simeq \mathfrak{sl}_2(\mathbb{C}) \oplus \mathfrak{sp}_{2s}(\mathbb{C})
\]
splits into the sum of two irreducible components the first of which has the highest weight \(\lambda_1 + \lambda_2 \) while the second one is \(\text{Ad}_1 \). In the case \(r = 1, s \geq 1 \) we have the irreducible \(G \)-module
\[
H^0(M, \mathcal{B}_0) \simeq \mathfrak{sp}_{2s}(\mathbb{C})
\]
with the representation \(\text{Ad}_1 \).

We have
\[
H^p(M, \mathcal{B}_0) = 0
\]
for any \(p \geq 1 \) and all \(r \geq 1, s \geq 1 \).

Proof. By (3), the highest weights of \(T_0 = \tau \) are \(\lambda_1 + \lambda_2 \) (for \(r \geq 2 \)) and \(2\mu_1 \). These are the highest weights of \(\text{Ad}_0 \) (if \(r \geq 3 \)) and \(\text{Ad}_1 \). If \(r = 2 \), then \(\lambda_1 + \lambda_2 \) is the highest weight of the restriction of \(\text{Ad}_0 \) onto a simple ideal of \(\mathfrak{g}_0 \) (the complement to the ideal considered in Proposition 4).
Proposition 7. If \(r \geq 2, s \geq 1 \), then we have
\[
H^p(M, B_1) = 0
\]
for any \(p \geq 0 \). If \(r = 1, s \geq 1 \), then
\[
H^0(M, B_1) \simeq \mathbb{C}^{2s}
\]
is the irreducible \(G \)-module with the representation \(\rho_0^* \otimes Id_1 \) and
\[
H^p(M, B_1) = 0
\]
for any \(p \geq 1 \).

Proof. One see easily that, for \(r \geq 2 \),
\[
T_1 | R = (\bigwedge^2 \rho_0 \rho_0^*) \otimes \rho_1^* + \rho_0^* \otimes (S^2 \rho_1) \rho_1^*.
\]
Clearly, \(\lambda_r + \gamma \) and \(\mu_s + \gamma \) are singular, and hence \(\Lambda + \gamma \) is singular for any weight of \(T_1 \). The theorem of Bott implies our assertion.

In the case \(r = 1 \) we have
\[
T_1 | R = \rho_0^* \otimes (S^2 \rho_1) \rho_1^*.
\]
The highest weights of this representation are \(-\lambda_1 + \mu_1\) and (for \(s \geq 2 \)) \(2\mu_1 - \mu_s \).
The first weight is dominant and gives the representation \(\rho_0^* \otimes Id_1 \), while the sum of the second one with \(\gamma \) is singular.

Proposition 8. Suppose that \(r \geq 2, s \geq 1 \). Then
\[
H^0(M, B_2) = 0, \; H^1(M, B_2) \simeq \mathbb{C}^2
\]
(the trivial \(G \)-module). If \(r = 1, s \geq 1 \), then
\[
H^p(M, B_2) = 0, \; p = 0, 1.
\]

Proof. By (3) we have
\[
T_2 | R = (\bigwedge^2 \rho_0 + S^2 \rho_1) \bigwedge (\rho_0^* \otimes \rho_1^*)
\]
\[
= (\bigwedge^2 \rho_0 + S^2 \rho_1)(\bigwedge^2 \rho_0^* \otimes S^2 \rho_1^* + S^2 \rho_1^* \otimes \bigwedge^2 \rho_1^*)
\]
\[
= (\bigwedge^2 \rho_0)(\bigwedge^2 \rho_0^*) \otimes S^2 \rho_1^* + (\bigwedge^2 \rho_0)(S^2 \rho_0^*) \otimes \bigwedge^2 \rho_1^*
\]
\[
+ (\bigwedge^2 \rho_0) \otimes (S^2 \rho_1)(S^2 \rho_1^*) + (S^2 \rho_0^*) \otimes (S^2 \rho_1)(\bigwedge^2 \rho_1^*).
\]
The first three of these four summands exist only when \(r \geq 2 \). For the first one, any highest weight has the form (see (17),(18),(19))

\[
\Lambda = \Lambda_0 + \Lambda_1,
\]

where

\[
\Lambda_0 = \lambda_i + \lambda_j - \lambda_k - \lambda_l, \quad \Lambda_1 = -2\mu_s.
\]

Clearly,

\[
r_{\beta_+}(\Lambda_1 + \gamma_1) = r_{\beta_+}(-\beta_+ + \gamma_1) = \beta_+ + \gamma_1 - \beta_+ = \gamma_1.
\]

Hence, \(\Lambda_1 + \gamma_1 \) has index 1. Therefore, we have interest only in the case when \(\Lambda_0 \) is dominant. Using Proposition 2, one sees easily that this is possible only for \(\Lambda_0 = 0 \) (which is a highest weight indeed!). Then \(\Lambda + \gamma \) has index 1. By the algorithm of Bott, there corresponds to \(\Lambda \) an irreducible component of the \(G \)-module \(H^1(M, B_2) \) with highest weight \(r_{\beta_+}(\Lambda + \gamma) - \gamma = 0 \). Quite similarly, the third summand gives (if \(r \geq 2 \)) only the 1-dimensional trivial component of \(H^1(M, B_2) \).

Now let \(\Lambda = \Lambda_0 + \Lambda_1 \) be a highest weight of one of two remaining summands. One sees easily from Proposition 2 that neither \(\Lambda_0 \), nor \(\Lambda_1 \) is dominant (\(\Lambda_0 = 0 \) is not a highest weight in these cases!). Therefore \(\Lambda \) can not be dominant, nor can \(\Lambda + \gamma \) have index 1.

Proposition 9. Suppose that \(r \geq 1, s \geq 1 \). Then

\[
H^0(M, B_q) = H^1(M, B_q) = 0
\]

for any \(q \geq 3 \).

Proof. Let \(\Lambda \) be a weight of \(T'_q \). Using (18), we see, by Proposition 3, that \(\Lambda_0 \) can not be dominant if \(q \geq 3 \) and that \(\Lambda_1 \) can not be dominant if \(q \geq 1 \). Quite similarly, for any weight \(\Lambda \) of \(T'_q \) we see, using (19), that \(\Lambda_0 \) can not be dominant if \(q \geq 1 \) and that \(\Lambda_1 \) can not be dominant if \(q \geq 3 \). Thus, \(\Lambda \) can not be dominant, nor can \(\Lambda + \gamma \) have index 1. The proposition follows now from the theorem of Bott.

3. The cohomology of \(\tilde{T} \)

As in [6], we shall use here some further results of Bott’s paper [1]. Let \(E \) be a holomorphic \(P \)-module. Then (see [1], Theorem I and Corollary 2 of Theorem W2) we have an isomorphism

\[
H^p(M, E)^G \simeq H^p(n, E)^r
\]

between the \(G \) invariants and the \(r \) invariants of the corresponding cohomology groups. This isomorphism is compatible with the homomorphisms induced by homomorphisms of \(P \)-modules.

These considerations can be applied to calculate the cohomology of \(\mathcal{A}_q \) and \(\mathcal{B}_q \) by expressing explicitly the cocycles which represent the basic cohomology classes. We need such an expression for the group \(H^1(M, B_2) \).

We shall use the standard coordinate system on \(\text{IGr}_{2r|r,2s|s} \) in a neighborhood of \(o \) given by (2). As in [6], we note that the adjoint action of \(\mathfrak{p} \) on \(\mathfrak{n} \) coincides with \(\tau^* \); hence \(\mathfrak{n} \), as a \(\mathfrak{p} \)-module, is isomorphic to the cotangent space \(T_o(M)^* \) of \(M \). By
this isomorphism, the basis $dx_{\alpha\beta}$ ($\alpha < \beta$), dy_{ij} ($i \leq j$) of $T_0(M)^*$ corresponds to the basis (12) of n.

The result of Bott mentioned above gives the identification

$$H^1(M, B_2) = H^1(n, T_0(M) \otimes \bigwedge^2 E_0)^\tau.$$

Since τ and ϕ are completely reducible, n acts on the coefficients trivially, and hence the coboundary δ of the cochain complex $C(n, T_0(M) \otimes \bigwedge^2 E_0)$ is zero. It follows that

$$(20) \quad H^1(n, T_0(M) \otimes \bigwedge^2 E_0)^\tau = C^1(n, T_0(M) \otimes \bigwedge^2 E_0)^\tau \simeq (T_0(M) \otimes T_0(M) \otimes \bigwedge^2 E_0)^\tau.$$

We are going to describe this vector space explicitly in terms of 1-cochains.

Proposition 10. The following two cochains c_0, c_1 form a basis of $C^1(n, T_0(M) \otimes \bigwedge^2 E_0)^\tau$:

$$c_0(X_{\alpha\beta}) = \sum_{i,j} \frac{\partial}{\partial y_{ij}} \otimes \xi_{\alpha i} \xi_{\beta j} + \sum_i \frac{\partial}{\partial y_{ii}} \otimes \xi_{\alpha i} \xi_{\beta i}, \quad c_0(Y_{ij}) = 0;$$

$$c_1(Y_{ij}) = \sum_{\alpha,\beta} \frac{\partial}{\partial x_{\alpha\beta}} \otimes \xi_{\alpha i} \xi_{\beta j}, \quad c_1(X_{\alpha\beta}) = 0.$$

Proof. By Proposition 1, the P-module E_0 is identified with $(C^r)^* \otimes (C^s)^*$ in such a way that $\xi_{\alpha i} = x_{\alpha} \otimes y_i$, where x_{α}, y_i are the standard coordinates. Then $\bigwedge^2 E_0 = \bigwedge^2((C^r)^* \otimes (C^s)^*)$ will contain an irreducible P-submodule isomorphic to $\bigwedge^2(C^r)^* \otimes S^2(C^s)^*$ which is spanned by the elements

$$(x_{\alpha} \otimes x_{\beta} - x_{\beta} \otimes x_{\alpha}) \otimes (y_i \otimes y_j + y_j \otimes y_i) =$$

$$\xi_{\alpha i} \otimes \xi_{\beta j} - \xi_{\beta i} \otimes \xi_{\alpha j} + \xi_{\alpha j} \otimes \xi_{\beta i} - \xi_{\beta i} \otimes \xi_{\alpha j} = 2(\xi_{\alpha i} \xi_{\beta j} - \xi_{\beta j} \xi_{\alpha i}).$$

Then, by (20), $H^1(n, T_0(M) \otimes \bigwedge^2 E_0)^\tau$ contains the invariants of the submodule $T_0(M) \otimes T_0(M) \otimes \bigwedge^2(C^r)^* \otimes S^2(C^s)^*$. Using (3), we see that precisely two linearly independent invariants lie there, while the complementary submodule does not contain any non-zero invariant. Since the basis $\frac{\partial}{\partial x_{\alpha\beta}}$ ($\alpha < \beta$), $\frac{\partial}{\partial y_{ij}}$ ($i \leq j$) is dual to (12), we get the basic invariants c_0, c_1 given by:

$$c_0(X_{\alpha\beta}) = \sum_{i<j} \frac{\partial}{\partial y_{ij}} \otimes (\xi_{\alpha i} \xi_{\beta j} + \xi_{\alpha j} \xi_{\beta i}) + 2 \sum_i \frac{\partial}{\partial y_{ii}} \otimes \xi_{\alpha i} \xi_{\beta i}$$

$$= \sum_{i,j} \frac{\partial}{\partial y_{ij}} \otimes \xi_{\alpha i} \xi_{\beta j} + \sum_i \frac{\partial}{\partial y_{ii}} \otimes \xi_{\alpha i} \xi_{\beta i},$$

$$c_0(Y_{ij}) = 0;$$

$$c_1(Y_{ij}) = \sum_{\alpha < \beta} \frac{\partial}{\partial x_{\alpha\beta}} \otimes (\xi_{\alpha i} \xi_{\beta j} + \xi_{\alpha j} \xi_{\beta i}) = \sum_{\alpha,\beta} \frac{\partial}{\partial x_{\alpha\beta}} \otimes \xi_{\alpha i} \xi_{\beta j},$$

$$c_1(Y_{ii}) = 2 \sum_{\alpha < \beta} \frac{\partial}{\partial x_{\alpha\beta}} \otimes \xi_{\alpha i} \xi_{\beta i} = \sum_{\alpha,\beta} \frac{\partial}{\partial x_{\alpha\beta}} \otimes \xi_{\alpha i} \xi_{\beta i},$$

$$c_1(X_{\alpha\beta}) = 0.$$
We are now able to calculate $H^p(M, \tilde{T}), \ p = 0, 1$.

Theorem 1. Suppose that $r \geq 2$, $s \geq 2$ or $r \geq 3$, $s \geq 1$. Then the G-modules $H^p(M, \tilde{T}_q), \ p = 0, 1; q \geq -1$, are indicated in the following table:

\[
\begin{array}{cccc}
q = & -1 & 0 & 1 & 2 & \geq 3 \\
p = 0 & \mathfrak{osp}_{2r|2s}(\mathbb{C})_1 & \mathfrak{osp}_{2r|2s}(\mathbb{C})_0 & \mathbb{C} & 0 & 0 \\
p = 1 & 0 & 0 & 0 & \mathbb{C}^2 & 0 \\
\end{array}
\]

Here $\mathfrak{osp}_{2r|2s}(\mathbb{C})_0$ and $\mathfrak{osp}_{2r|2s}(\mathbb{C})_1$ are endowed with the adjoint representation of G, and \mathbb{C} is the trivial G-module.

If $r = 2$, $s = 1$, then the table has the form

\[
\begin{array}{cccc}
q = & -1 & 0 & 1 & 2 & \geq 3 \\
p = 0 & \mathfrak{osp}_{4|2}(\mathbb{C})_1 & \mathfrak{osp}_{4|2}(\mathbb{C})_0 & \mathbb{C}^2 & 0 & 0 \\
p = 1 & 0 & 0 & 0 & \mathbb{C}^2 & 0 \\
\end{array}
\]

Here \mathbb{C}^2 is the trivial G-module.

If $r = 1$, $s \geq 1$, then the corresponding table is as follows:

\[
\begin{array}{cccc}
q = & -1 & 0 & 1 & 2 & \geq 3 \\
p = 0 & \mathbb{C}^{2s} & \mathfrak{sp}_{2s}(\mathbb{C}) & \mathbb{C}^{2s} & 0 & 0 \\
p = 1 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Here $\mathfrak{sp}_{2s}(\mathbb{C})$ is endowed with the adjoint representation of G, \mathbb{C} is the trivial G-module and \mathbb{C}^{2s} for $q = -1, 1$ is endowed with the representation $\rho_0 \otimes \text{Id}_1$ or $\rho_0^* \otimes \text{Id}_1$ respectively.

Proof. We use the cohomology exact sequences associated with (8). Almost in all cases the mappings in these sequences are determined uniquely. The only difficulty occurs when we try to calculate $H^1(M, \tilde{T}_2)$ with the help of the exact sequence

\[0 \to \mathcal{A}_3 \xrightarrow{\alpha} \tilde{T}_2 \xrightarrow{\beta} B_2 \to 0.\]

By Proposition 5, we have the exact sequence

\[0 \to H^1(M, \tilde{T}_2) \xrightarrow{\beta^*} H^1(M, B_2).\]

If $r = 1$ then, by Proposition 8, we have $H^1(M, B_2) = 0$. Hence, $H^1(M, \tilde{T}_2) = 0$ in this case. In what follows we assume that $r \geq 2$.

By Proposition 8, $H^1(M, B_2) \cong \mathbb{C}^2$ (the trivial G-module). The sheaves \tilde{T}_2 and B_2 are the sheaves of holomorphic sections of homogeneous vector bundles \tilde{T}_2 and $B_2 = T(M) \otimes \mathfrak{g}^2 \mathbf{E}_\phi$, and β is induced by a homomorphism of these bundles. As we have seen in the beginning of this section, β^* is interpreted as the homomorphism of the invariant 1-cohomology of the Lie algebra \mathfrak{n}:

\[H^1(\mathfrak{n}, (\tilde{T}_2)_o)^\dagger \to H^1(\mathfrak{n}, T_o(M) \otimes \bigwedge^2 \mathbf{E}_\phi)^\dagger,\]
where \((\tilde{T}_2)_o\) is the fibre of \(\tilde{T}_2\) at the point \(o\) endowed with a natural structure of the \(p\)-module. The group \(H^1(n,(\tilde{T}_2)_o)^r\) coincides with the 1-cohomology of the complex \(C(n,(\tilde{T}_2)_o)^r\) of \(r\)-invariant cochains. Since \(H^1(M,A_3) = 0\) by Proposition 5, the vector space \(C^1(n,(\tilde{T}_2)_o)^r\) is mapped isomorphically onto \(C^1(n,T_o(M) \otimes \Lambda^2 E_0)^r\).

It follows from Proposition 10 that the cochains \(c \in C^1(n,(\tilde{T}_2)_o)^r\) have the form

\[
\begin{align*}
c(X_{\alpha \beta}) &= a \left(\sum_{i,j} \xi_{\alpha i} \xi_{\beta j} \frac{\partial}{\partial y_{ij}} + \sum_i \frac{\partial}{\partial y_{ii}} \right), \\
c(Y_{ij}) &= b \sum_{\alpha, \beta} \xi_{\alpha i} \xi_{\beta j} \frac{\partial}{\partial x_{\alpha \beta}},
\end{align*}
\]

where \(a, b \in \mathbb{C}\). Clearly,

\[
H^1(n,(\tilde{T}_2)_o)^r \simeq \{ c \in C^1(n,(\tilde{T}_2)_o)^r | \delta c = 0 \}.
\]

By the definition of \(\delta\) we have

\[
(\delta c)(x,y) = xc(y) - yc(x), \quad x, y \in n.
\]

The action of \(r\) on \((\tilde{T}_2)_o\) is induced by commuting the fundamental vector fields of the action of \(G\) on \(IGr_{2r|r,2s|s}\) with the elements of \(\tilde{T}_2\), followed by evaluating the commutator at \(X = 0, Y = 0\). It follows from (13) that

\[
(\delta c)(X_{\alpha \beta}, X_{\gamma \delta}) = (\delta c)(Y_{ij}, Y_{kl}) = 0
\]

and that

\[
(\delta c)(X_{\alpha \beta}, Y_{ij}) = (b - a) \sum_{\gamma, k} (\xi_{\alpha j} \xi_{\beta k} \xi_{\gamma i} + \xi_{\alpha k} \xi_{\beta j} \xi_{\gamma i} + \xi_{\alpha i} \xi_{\beta j} \xi_{\gamma i} + \xi_{\alpha k} \xi_{\beta j} \xi_{\gamma i}) \frac{\partial}{\partial \xi_{\gamma i}}.
\]

One sees easily that if \(r \geq 2, s \geq 2\) then \(\delta c = 0\) is equivalent to \(a = b\). The same is true if \(s = 1, r \geq 3\). In the remaining case \(r = 2, s = 1\) we have \(\delta c = 0\) for any invariant cochain \(c\). Thus,

\[
H^1(M,\tilde{T}_2) \simeq H^1(n,(\tilde{T}_2)_o)^r \simeq \begin{cases}
\mathbb{C} & \text{if } r \geq 2, s \geq 2 \text{ or } r \geq 3, s = 1 \\
\mathbb{C}^2 & \text{if } r = 2, s = 1.
\end{cases}
\]

4. The cohomology of \(T\)

In this section, we prove our main theorem about 0- and 1-cohomology of the isotropic super-Grassmannian with values in the tangent sheaf. The proof repeats that of Theorem 2 of [6]. First we state a proposition that will play the main part in it.

It is clear that on the split supermanifold \((M, \text{gr} O)\) there exists a vector field \(\varepsilon \in H^0(M, \tilde{T}_0)\) such that \(\varepsilon(f) = qf\) for any \(f \in \text{gr}_q O\). This vector field commutes with any \(X^*, X \in \mathfrak{g}\), and hence is a basic element of the trivial \(G\)-submodule \(\mathbb{C} \subset H^0(M, \tilde{T}_0)\) (see Theorem 1).
Proposition 11. If \(r \geq 2 \), then \(\varepsilon \) does not lie in the image of the canonical mapping \(H^0(M, \mathcal{T}_0) \to H^0(M, \mathcal{T}_0) \).

Proof. We take as odd coordinates in a neighborhood of \(o \) in \((M, \mathfrak{g}_0 \mathcal{O})\) the elements \(\xi_{\alpha i} = \xi_{\alpha i} + J^2 \). Then, clearly, \(\varepsilon \) is expressed in this neighborhood as

\[
\varepsilon = \sum_{\alpha, i} \xi_{\alpha i} \frac{\partial}{\partial \xi_{\alpha i}}.
\]

Suppose that there exists \(\hat{\varepsilon} \in H^0(M, \mathcal{T}_0) \) inducing the vector field \(\varepsilon \). One may suppose that \(\hat{\varepsilon} \in (H^0(M, \mathcal{T}_0)_\beta)^G \). Then \([\hat{\varepsilon}, X^*] = 0 \) for any \(X \in \mathfrak{g} \). Consider the action of the derivation \(\hat{\varepsilon} \) in \(\mathcal{O}_o \). The mapping \(X \to X^* \) is a linear representation of the Cartan subalgebra \(\mathfrak{t} \) of \(\mathfrak{g} \), commuting with \(\hat{\varepsilon} \). We see from (11) that \(x_{\alpha \beta}, y_{ij}, \xi_{\alpha i} \) lie in the weight subspaces of this representation, corresponding to the weights \(\lambda_\alpha + \lambda_\beta, \mu_i + \mu_j, \lambda_\alpha + \mu_i \) respectively. It is clear that all these weight subspaces have dimension 1. Since \(\hat{\varepsilon} \) maps any weight subspace into itself, we have

\[
\hat{\varepsilon} = \sum_{\alpha, i} \xi_{\alpha i} \frac{\partial}{\partial \xi_{\alpha i}} + \sum_{\alpha < \beta} a_{\alpha \beta} x_{\alpha \beta} \frac{\partial}{\partial x_{\alpha \beta}} + \sum_{i \leq j} b_{ij} y_{ij} \frac{\partial}{\partial y_{ij}},
\]

where \(a_{\alpha \beta}, b_{ij} \in \mathbb{C} \). Now, we have \([\hat{\varepsilon}, U_{\alpha \beta}^*] = [\hat{\varepsilon}, V_{ij}^*] = 0 \) which, by (14), implies that \(a_{\alpha \beta} = b_{ij} = 0 \) for all \(\alpha < \beta, i \leq j \). Thus,

\[
\hat{\varepsilon} = \sum_{\alpha, i} \xi_{\alpha i} \frac{\partial}{\partial \xi_{\alpha i}}.
\]

Now, by (13) we see that

\[
[\hat{\varepsilon}, X_{\alpha \beta}^*](y_{ij}) = 2\xi_{\alpha i} \xi_{\beta j}.
\]

This cannot be 0 if \(r \geq 2 \), giving a contradiction.

As a corollary, we want to characterize the split isotropic super-Grassmannians.

Corollary. The super-Grassmannian \(\Gamma^{0}\mathfrak{Gr}_2[r, 2s]_s \) is split if and only if \(r = 1 \).

Proof. Proposition 11 shows that the super-Grassmannian is non-split if \(r \geq 2 \). Now, for \(r = 1 \) we have \(H^1(M, B_q) = 0 \) for all \(q \geq 2 \), by Propositions 8 and 9. Thus, all the obstructions to the splitness are 0 (see [4], Ch.4, Sec. 2), and hence \(\Gamma^{0}\mathfrak{Gr}_2[1, 2s]_s \) is split.

Theorem 2. We have, for any \(r \geq 1, s \geq 1 \),

\[
H^0(M, T) \simeq \mathfrak{osp}_{2r|2s}(\mathbb{C})
\]

as Lie superalgebras, isomorphism being defined by the standard action of \(\mathbb{OSp}_{2r|2s}(\mathbb{C}) \). Also

\[
H^1(M, T) = \begin{cases}
0 & \text{if } (r, s) \neq (2, 1) \\
\mathbb{C}^{1|0} & \text{if } r = 2, s = 1.
\end{cases}
\]
Proof. Suppose first that \((r, s) \neq (1, s)\) and \(\neq (2, 1)\). Then the proof goes precisely as in [6]. Using Theorem 1 and the cohomology exact sequence corresponding to (6), we see that \(H^0(M, T_{(q)}) = H^1(M, T_{(q)}) = 0\) for \(q \geq 3\). For \(q = 2\) this exact sequence shows that \(H^0(M, T_{(2)}) = 0\) and that \(H^1(M, T_{(2)})\) is mapped injectively into \(H^1(M, \tilde{T}_2) \simeq \mathbb{C}^{11}\). Thus, \(H^1(M, T_{(2)}) \simeq \mathbb{C}^{k|0}\), \(k \leq 1\). For \(q = 1\) the exact sequence shows that \(H^0(M, T_{(1)}) = 0\) and that \(H^1(M, T_{(1)}) \simeq \mathbb{C}^{k|0}\). For \(q = 0\) we get the exact sequence

\[
0 \to H^0(M, T_{(1)}) \to H^0(M, T_{(0)}) \to H^0(M, \tilde{T}_0) \\
\to H^1(M, T_{(1)}) \to H^1(M, T_{(0)}) \to H^1(M, \tilde{T}_0).
\]

(21)

This implies that \(H^0(M, T_{(0)})\) is mapped injectively into \(H^0(M, \tilde{T}_0)\). By Proposition 11, the trivial submodule \(\mathbb{C}\) does not lie in the image. Therefore \(H^1(M, T_{(1)}) \neq 0\), and hence \(H^1(M, T_{(1)}) \simeq \mathbb{C}^{1|0}\), \(H^1(M, T_{(0)}) = 0\). Also, \(H^0(M, T_{(0)}) \simeq \mathfrak{osp}_{2r|2s}(\mathbb{C})\). Now, for \(q = -1\) we get the exact sequence

\[
0 \to H^0(M, T_{(0)}) \to H^0(M, T) \to H^0(M, \tilde{T}_{-1}) \\
\to H^1(M, T_{(0)}) \to H^1(M, T) \to H^1(M, \tilde{T}_{-1}).
\]

It implies that

\[
H^0(M, T) \simeq H^0(M, T_{(0)}) \oplus H^0(M, \tilde{T}_{-1}) \simeq \mathfrak{osp}_{2r|2s}(\mathbb{C}), \\
H^1(M, T) = 0.
\]

For the 0-cohomology we mean here an isomorphism of \(G\)-modules. Since \(\mathfrak{osp}_{2r|2s}(\mathbb{C})\) is simple [3], the homomorphism \(X \leadsto X^*\) of this superalgebra into \(H^0(M, T)\) is injective. Therefore it is an isomorphism of Lie superalgebras.

Suppose that \(r = 2, s = 1\). Then the super-Grassmannian has dimension \(2|2\). Using Theorem 1, we see that \(H^1(M, T_{(1)}) \simeq H^1(M, T_{(2)}) \simeq \mathbb{C}^{2|0}\). Then the exact sequence (21) and Proposition 11 give that \(H^1(M, T_{(0)}) \simeq \mathbb{C}^{1|0}\). It follows that \(H^1(M, T) \simeq \mathbb{C}^{1|0}\).

The case \(r = 1\) is the simplest one, and we omit the proof.

It follows from Theorem 2 that the supermanifold \(\Pi^c\text{Gr}^{2r|2s}_{2r|2s}\) is rigid if \((r, s) \neq (2, 1)\) (see [8]). The remaining case \(r = 2, s = 1\) was actually studied before. It is easy to see that \(\Pi^c\text{Gr}_{4|2,2|1}\) is precisely the supermanifold \(G(1, 1)\) from the family \(G(t_1, t_2)\) constructed in [2], where the corresponding part of Theorem 2 was proved. By Theorem 4 of [2], this family is a versal deformation of \(\Pi^c\text{Gr}^{2r|2s}_{2r|2s}\). Thus, we get

Corollary. The super-Grassmannian \(\Pi^c\text{Gr}^{2r|2s}_{2r|2s}\) is a rigid supermanifold if and only if \((r, s) \neq (2, 1)\).

References

YAROSLAVL UNIVERSITY, 150 000 YAROSLAVL, RUSSIA

TVER INSTITUTE FOR AGRICULTURE, 171 314 TVER, RUSSIA