Conic bundles in projective fourspace

by

R. Braun and K. Ranestad
Conic bundles in projective fourspace

Robert Braun and Kristian Ranestad

P. Ellia and G. Sacchiero have shown that if S is a smooth surface in \mathbb{P}^4 which is ruled in conics, then S has degree 4 or 5 (cf. [ES]). In this paper we give a proof of this result combining the ideas of Ellia and Sacchiero as they are used in the paper of the second author on plane curve fibrations [Ra] and the recent work of G. Fløystad and the first author bounding the degree of smooth surfaces in \mathbb{P}^4 not of general type [BF]. Let S be a smooth conic bundle in \mathbb{P}^4. Let V denote the hypersurface which is the union of the planes of the conics on S. Let $G \subset \mathbb{P}^9$ be the Grassmannian of planes in \mathbb{P}^4 in the Plücker embedding. Since the hypersurface V contains a one dimensional family of planes, we may associate a curve $C_V \subset G$ whose points correspond to the planes in V. In the natural incidence variety in $G \times \mathbb{P}^4$ between points and planes, there is a \mathbb{P}^2-fibration W over C_V whose projection into \mathbb{P}^4 is V. If C_V is not smooth consider its normalization \tilde{C}_V, and the pullback \tilde{W} of W to \tilde{C}_V. The strict transform \tilde{S} of S in \tilde{W} is clearly smooth, since the map $\tilde{S} \rightarrow S$ is birational. So on the complement of some possible (-1)-curves this map is an isomorphism. But if C_V is singular there are two plane curves, possibly infinitely close, which are mapped into the same plane in \mathbb{P}^4, this is a contradiction. Therefore C_V is smooth. Let g be the genus of C_V and let $\delta = \text{deg} C_V$, thus δ is also the degree of the hypersurface V.

The proof is an exploitation of the relations between the invariants of S and C_V. On the one hand they combine with the results of [BF] to give the upper bound $d \leq 42$ for the degree of S. On the other hand the curve C_V in the Grassmannian inside \mathbb{P}^9, has a genus which is high compared to the degree. Thus Castelnuovo bounds show that the span of this curve is a subspace of \mathbb{P}^9. We analyse the intersection of the linear span of C_V and the Grassmannian, which is a variety T cut out by quadrics. The lines and conics on this variety give rise to special curves on S which together with the bound for the degree allow us to conclude. We work over an algebraically closed field of characteristic 0.

(1.1) Lemma. If S has degree d and sectional genus π, then

(a) $3d \geq 4\delta,$

(b) $\pi - 1 = d + 2g - 2 - \delta,$

(c) $d^2 - 9d - 8(2g - 2) + 2\delta = 0.$

(d) $\pi - 1 = \frac{d^2}{8} - \frac{d}{8} - \frac{3\delta}{4}.$
Proof. Part (a) is the fact that there is a positive number of singularities for the map\[\pi : S \rightarrow C_V: \] If a fibre is nonreduced i.e. a double line, then the line would have nonpositive selfintersection on S, but every fibre is a conic in a plane so computing the arithmetic genus of a fibre in two ways we get a contradiction. Therefore the number\[c_2(\Omega_S - \pi^*\Omega_{C_V}) = 3d - 4\delta \]
counts a nonnegative finite number of singular points.
Part (b) is a straightforward calculation using adjunction on W. Part (c) is the double point formula for smooth surfaces in \(\mathbb{P}^4\) applied to S (cf.[HR,p.434]). Part (d) follows from (b) and (c). □

(1.2) Remark. From Severis theorem it follows that the projection of W into \(\mathbb{P}^4\) is linearly normal. Thus by Riemann Roch \(\delta \leq 2 + 3g\).

(1.3) Remark. Smooth surfaces on quadrics are well understood and those on cubics are classified recently (cf. [A],[K]) so we only need to worry about \(\delta \geq 4\). In fact there are conic bundles on quadrics, and any conic bundle on a cubic is also on a quadric.

(1.4) Lemma. \(\delta \leq 3\) or\[g - 1 \geq \frac{1}{9}\delta^2 - \frac{5}{8}\delta.\]
Proof. Since \(\frac{4}{3}\delta - \frac{3}{2} \geq 0\) when \(\delta \geq 4\), the relations (1.1c) and (1.1a) yields
\[0 = a^2 - 9d - 8(2g - 2) + 2\delta\]
\[\geq \frac{16}{9}\delta^2 - 12\delta - 8(2g - 2) + 2\delta\]
from which the lemma follows. □

This inequality beats the genus bound for curves in \(\mathbb{P}^6\) (cf. [HJ]):

(1.5) Proposition. \(C_V\) is contained in a \(\mathbb{P}^5\), and if \(C_V\) spans a \(\mathbb{P}^5\), then it lies on a surface of degree 4.

Proof. If \(C_V\) spans a \(\mathbb{P}^6\), then the genus bound says that
\[\frac{1}{10}(\delta^2 - 7\delta + 12) \geq \frac{1}{9}\delta^2 - \frac{5}{8}\delta + 1,\]
which yields
\[\delta^2 + \frac{27}{4}\delta - 18 \leq 0.\]
i.e. \(\delta \leq 2\).
If \(C_V\) is not contained in a surface of degree 4 in \(\mathbb{P}^5\), then the genus formula (cf.[HJ]) yields
\[\frac{1}{10}(\delta^2 - 5\delta + 10) \geq \frac{1}{9}\delta^2 - \frac{5}{8}\delta + 1.\]
Thus
\[\delta^2 - \frac{45}{4}\delta \leq 0.\]
Thus the proposition follows from...
(1.6) Lemma. If \(C_V \) spans \(\mathbb{P}^5 \) and does not lie on a surface of degree 4, then \(\delta \geq 12 \).

Proof. If \(C_V \) is rational or elliptic, then its degree is at least 5 or 6, while the above Castelnuovo bound says that \(g \leq 7 \) when \(\delta \leq 11 \). It remains only to check that (1.1c) has no integral solutions, which is straightforward. □

2 Bound for the degree of \(S \)

From the results of [BF] we can show

(2.1) Proposition. If \(S \) is not on a cubic hypersurface, then \(d \leq 42 \).

Proof. We distinguish between the cases whether \(S \) lies on a quartic or a quintic hypersurface or not, and apply Roth's theorem [Ro] to study the genus of a general hyperplane section.

Case 1: Assume \(S \) is not contained in a quintic and \(d > 25 \). Then by Roth's theorem a general hyperplane section of \(S \) is also not contained in a quintic (in \(\mathbb{P}^5 \)). Hence the genus bound for space curves (cf. [GP]) gives

\[
\pi - 1 \leq \frac{d^2}{12} + d.
\]

Combined with (1.1d) and using \(\delta \leq \frac{3d}{4} \) from (1.1a) we find \(d \leq 40 \) in this case.

Case 2: Assume \(S \) is contained in a quintic, not contained in a quartic and \(d > 17 \). As in [BF 1.1b] let

\[
\gamma = \frac{d^2}{10} + \frac{d}{2} + 1 - \frac{2r(5-r)}{5} - \pi
\]

where \(0 \leq r \leq 4 \) and \(d+r \equiv 0 \pmod{5} \). By the genus bound for space curves (cf. [GP]) \(\gamma \) is a non-negative integer satisfying

\[
\pi - 1 \leq \frac{d^2}{10} + \frac{d}{2} - \gamma
\]

and furthermore (cf. [BF 1.1e])

\[
\frac{d^3}{150} - \frac{d}{6} \leq \chi(\mathcal{O}_S) + \frac{\gamma^2}{2} + \gamma(\frac{d}{5} + \frac{5}{2}).
\]

The first inequality combined with (1.1d) leads to

\[
\gamma \leq \frac{d}{80}(95 - 2d).
\]

Hence a priori \(d \leq 47 \). Moreover the maximal value of \(\gamma \) in the range \(18 \leq d \leq 47 \) is 14. Now (1.1c) combined with (1.1a) yields

\[
\chi(\mathcal{O}_S) = 1 - g = \frac{d^2}{16} + \frac{9d}{16} - \frac{\delta}{8} \leq -\frac{d^2}{16} + \frac{9d}{16}.
\]
Inserting this and $\gamma = 14$ in the second inequality gives

$$\frac{d^3}{150} - \frac{d}{6} \leq -\frac{d^2}{16} + \frac{9d}{16} + \frac{14d}{5} + 133.$$

Evaluating shows that $d \leq 30$ in this case.

Case 3: Assume S is contained in a quartic and $d > 10$. As in [BF 1.1b] let

$$\gamma = \frac{d^2}{8} + 1 - \frac{3r(4 - r)}{8} - \pi$$

where $0 \leq r \leq 3$ and $d + r \equiv 0 \pmod{4}$. By the genus bound for space curves (cf. [GP]) γ is a non-negative integer and

$$\pi - 1 \leq \frac{d^2}{8} - \gamma.$$

Combined with (1.1d) and (1.1a) this gives

$$\gamma \leq \frac{d}{8} + \frac{3\delta}{4} \leq \frac{11d}{16}.$$

We have (cf. [BF 1.1e])

$$\frac{d^3}{96} - \frac{d^2}{16} - \frac{d}{24} + \frac{5}{4} \leq \chi(\mathcal{O}_S) + \frac{\gamma^2}{2} + \gamma\left(\frac{d}{4} + \frac{3}{2}\right).$$

Putting things together (as in case 2) leads to

$$\frac{d^3}{96} - \frac{209d^2}{512} - \frac{157d}{96} + \frac{5}{4} \leq 0$$

which yields $d \leq 42$.\[2.2\]

Corollary. If S is not on a cubic, then $\delta \leq 31$.

Proof Combine (2.1) with (1.1a).\[2.1\]

3 Some geometry of C_V

Now C_V is a curve on the Grassmannian G, which is a variety cut out by quadrics. If L is the linear span of C_V, and T is the irreducible component of $G \cap L$ which contains C_V, then T is a quadric or lies on more than one quadric in L. In each possible case we may describe the family of planes in \mathbb{P}^4 corresponding to the closed points of T.

(3.1) **Lemma.** The closed points on a line in G correspond to the pencil of planes through a line in a \mathbb{P}^3.

The closed points on a conic in G whose plane is not contained in G, correspond to the planes of one of the pencils of a quadric of rank 4 in \mathbb{P}^4.

Proof. Easy.\[3.1\]
(3.2) Lemma. The curve \(C_V \) is rational or elliptic, or \(T \) is a plane, or a quadric surface in a \(\mathbb{P}^3 \) or the whole \(\mathbb{P}^3 \), or a cubic scroll or a cone over a quartic curve or a del Pezzo in \(\mathbb{P}^4 \), or a quadric hypersurface in \(\mathbb{P}^4 \), or \(C_V \) spans a \(\mathbb{P}^5 \).

Proof. The linear span \(L \) of \(C_V \) is at most a \(\mathbb{P}^5 \) by (1.4). If \(L \) is a \(\mathbb{P}^4 \) and \(T \) is a curve, then the intersection \(L \cap G \) is proper and \(C_V \) has degree at most 5 and is rational or elliptic. If \(T \) is a surface, then \(T \) is a cubic scroll or a complete intersection of two quadrics. In the latter case \(T \) is a cone or a del Pezzo surface.

If \(T \) is neither a curve nor a surface in a \(\mathbb{P}^4 \), then it must be a quadric hypersurface.

If \(L \) is a \(\mathbb{P}^3 \), then \(T \) is a curve of degree at most 4, or \(T \) is a quadric or \(T \) is all of \(L \).

If \(L \) is contained in a plane, then \(T \) is the whole plane, a conic or a line. \(\square \)

This exhausts the list of possibilities for \(T \). Lemma (3.1) simplifies the analysis of each case. Thus if \(T \) is a quadric, then all the plane conics of \(T \) correspond to quadrics of rank 4. Now if two conics in \(T \) meet in two points, then the corresponding quadrics of rank 4 have a common vertex. By choosing different conics, we may conclude that the planes corresponding to the points on \(T \) all have a common point, i.e. \(V \) is a cone.

If \(T \) is a (possibly degenerate) del Pezzo surface, we may again find a conic on it such that the hyperplanes through it cuts out a pencil of conics on \(T \). The preceding argument shows that \(V \) is a cone also in this case.

If \(T \) is a cone over an elliptic quartic curve, then \(C_V \) has degree \(\delta = 4\alpha + 1 \) or \(\delta = 4\alpha \) for some \(\alpha \) depending on whether \(C_V \) meets the vertex of \(T \) or not. The corresponding genera are given by \(2g - 2 = 2(2\alpha + 1)(\alpha - 1) \) and \(2g - 2 = 4\alpha(\alpha - 1) \) respectively. Combined with the inequality \(\delta \leq 31 \) from (2.2) it is easily checked that (1.1c) has a numerical solution only if \(\alpha = 1 \), i.e. when \(C_V \) is elliptic.

If \(T \) is a \(\mathbb{P}^3 \), then the planes corresponding to the points of \(T \) must all lie in a \(\mathbb{P}^3 \), so \(V \) and \(S \) is degenerate.

If \(T \) is a quadric, then the argument above applies to show that \(V \) is a cone.

If \(T \) is a curve in \(\mathbb{P}^3 \), then \(C_V \) is rational or elliptic. If \(T \) is contained in a plane, then \(V \) is either contained in a \(\mathbb{P}^3 \) or it is a cone. Combined with (1.5) we have shown that

(3.3) Lemma. \(C_V \) is rational or elliptic, or it lies on a cubic scroll in a \(\mathbb{P}^4 \) or it lies on a quartic surface in \(\mathbb{P}^5 \) or \(V \) is a cone.

4 The cone case

(4.1) Proposition. If \(V \) is a cone, then it is a quadric or a \(\mathbb{P}^3 \).

Proof. If \(V \) is a cone then there is some curve on \(W \) which is contracted by the projection into \(\mathbb{P}^4 \). Since it is contracted the numerical class of this curve must be a multiple of the class \(h^2 - \delta h \cdot f \), where \(h \) is the class of a hyperplane section and \(f \) is the class of a fibre. Unless \(C_V \) is rational (i.e. of degree \(\delta \leq 2 \)), \(S \) meets this curve in at most one point, so

\[
0 \leq d - 2\delta \leq 1.
\]

If \(d = 2\delta \), then (1.1) yields

\[
2g - 2 = \frac{1}{2} \delta^2 - 2\delta,
\]

5
while if \(d = 2\delta + 1 \), then (1.1) yields

\[
2g - 2 = \frac{1}{2}\delta^2 - \frac{3}{2}\delta - 1.
\]

In both cases a comparison with Castelnuovos bound for the genus of space curves and with the genus of plane curves shows that \(\delta \leq 2 \). \(\Box \)

5 The cubic scroll case

Assume that \(C_V \) lies on a cubic scroll. Let \(E \) be a hyperplane section of the scroll and let \(F \) be a member of the ruling, then numerically \(C_V \equiv \alpha E + \beta F \) where \(\alpha \geq 0 \) and \(\beta \geq -2\alpha \) \(\delta \geq -2\alpha \) and \(\beta = 4\alpha + \beta \). Since \(C_V \) is smooth we get by adjunction \(2g - 2 = 3\alpha^2 - 6\alpha + 2\alpha \beta - 6\beta \) even if \(T \) is singular. With the inequality \(\delta \leq 31 \) of (2.2), a simple program checks the possibilities and allow us to conclude that (1.1c) has no integral solutions in the given range. Thus

(5.1) Proposition. \(C_V \) is not a cubic scroll.

6 The quartic surface in \(\mathbb{P}^5 \) case.

First assume that \(C_V \) lies on a rational quartic scroll. Let \(E \) be a hyperplane section of the scroll and let \(F \) be a member of the ruling, then numerically \(C_V \equiv \alpha E + \beta F \) where \(\alpha \geq 0 \) and \(\beta \geq -2\alpha \) and \(\delta = 4\alpha + \beta \). Since \(C_V \) is smooth we get by adjunction \(2g - 2 = 4\alpha^2 - 6\alpha + 2\alpha \beta - 2\beta \) even if the scroll is singular. With the inequality \(\delta \leq 31 \) of (2.2), a simple program checks the possibilities and allow us to conclude that (1.1) has only two integral solutions in the given range. Thus

(6.1) Lemma. If \(C_V \) lies on a rational quartic scroll, then its numerical class is \(3E - F \) or \(6E + 2F \).

If the quartic surface is not a scroll then it is a Veronese surface. So \(C_V \) is a plane curve of degree \(a \) embedded by conics in \(\mathbb{P}^5 \). Thus \(\delta = 2a \) and \(2g - 2 = a(a - 3) \). As above the relation (1.1c) is checked for \(\delta \leq 31 \) i.e. \(a \leq 15 \), and there are no integral solutions. We have shown

(6.2) Lemma. If \(C_V \) spans \(\mathbb{P}^5 \), then it does not lie on a Veronese surface.

We want to exclude the possibilities of (6.1) by a geometric argument: First let \(C_V \) be of numerical type \(3E - F \) on a scroll in the grassmannian. Then the degree of the conic bundle \(S \) is 15 and the sectional genus is 19. Now, by (3.1), for any general line in the ruling of the scroll there is a hyperplane section of \(S \) consisting of three conic sections and a residual curve \(A \). The family of lines is rational so by Bertini the curve \(A \) is irreducible for a general line in the ruling. The degree of \(A \) is 9 while the arithmetic genus is 16. This is impossible. Similarly let \(C_V \) be of numerical type \(6E + 2F \) on a scroll in the grassmannian. Then the degree of the conic bundle \(S \) is 36 and the sectional genus is 139. For a general line in the ruling of the scroll there is a hyperplane section of \(S \) consisting of six conic sections and an irreducible residual curve \(A \). The degree of \(A \) is 24 while the arithmetic genus is 133. This is impossible, so we may conclude
(6.3) Proposition. C_V does not span \mathbb{P}^5.

7 Conclusion

Combining (3.3), (4.1), (5.1) and (6.3) we are left with case that C_V is rational or elliptic. But by (1.4) this means that $2 \leq \delta \leq 5$. The relations in (1.1) leave us with the possibility that V is a quadric and the surface has degree 4 or 5 or that V is a quartic and the surface is a conic bundle of degree 8 over an elliptic curve. The latter possibility was excluded by Okonek (cf. [Ok]). Therefore we have

(7.1) Theorem (Ellia, Sacchiero). The degree of a conic bundle in \mathbb{P}^4 is 4 or 5.

(7.2) Remark. There are surfaces with a 1-dimensional family of conic sections which are not conic bundles, these surfaces are easily seen to be rational and are the cubic scrolls and the Veronese surfaces.

References

addresses:
Robert Braun
Mathematisches Institut
Universität Bayreuth
D-8580 Bayreuth
Germany

Kristian Ranestad
Matematisk Inst:tutt
boks 1053
N-0316 Oslo 3
Norway