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INTRODUCTION

In two crucial mathematical problems related to the applications—the study and
solution of differential equations and the constructions of mathematical models
for physical theories—the ideas of symmetry developed by the great Norwegian
mathematician Sophus Lie play a decisive role. The methods and ideas related
to the transformation groups now called Lie groups have drastically changed the
aspect of modern mathematics and physics. And this circumstance is basically
connected with the constructive approach that is introduced into mathematics by
the use of Lie groups.

A whole series of problems, mostly having to do with the classification and
study of nonlinear differential equations (where, incidentally, continuous groups
first appeared), were reduced by Sophus Lie to the description of subalgebras in
Lie algebras and their realization in the form of Lie algebras of vector fields on
manifolds. Central in this group of ideas was the following problem, set by Sophus
Lie and solved by him in small dimensions: the problem of classifying transitive
and primitive (i.e., not possessing invariant foliations) actions.

Understood locally, this problem is equivalent to that of classifying (up to con-
jugation) the maximal subalgebras of Lie algebras over the fields C and R. From
the global viewpoint, this problem is equivalent to classifying (up to conjugation)
the maximal subgroups of complex and real lie groups.

In this text, the Sophus Lie problem is solved in its most general formulation,
namely, the text gives the classification (up to conjugation) of mazimal nondiscrete
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subgroups of complex and real Lie groups.

A unified approach to both problem (over C and over R), based on the author’s
notion of almost primitive subalgebra (examples of which are any Lie algebras of
any maximal subgroup of any real or complex Lie group), is presented. In this work
all such subalgebras (up to conjugation) are found; among them, all those which
actually correspond to maximal subgroups are distinguished.

The main results of the text are published in [23-26].

The problem of describing primitive (i.e., not possessing invariant foliations)
transitive and effective actions of connected Lie groups was stated by Sophus Lie
and solved by him in dimensions 1,2 and 3 in [1].

It is natural to call primitive all stationary subalgebras corresponding to primi-
tive, transitive and effective actions of connected Lie groups (without any connec-
tivity requirement on their subgroups).

If a Lie algebra g is not simple or if g is simple and a subalgebra g of g is not
reductive, then it is quite easy to describe all primitive subalgebras g of g.

Thus the problem reduces to describing primitive reductive subalgebras of simple
Lie algebras over C and R.

Maximal semisimple subalgebras of simple Lie algebras over the field C were
classified by E.B. Dynkin [6,7], maximal reductive subalgebras of maximal rank were
classified by A. Borel and J. de Siebenthal [8]. M. Golubitsky and B. Rothshild [9]
classified primitive nonmaximal reductive subalgebras of maximal rank of simple
Lie algebras over C, I.V. Chekalov [10] considered the general situation over C
(irrespective of rank).

The classification of maximal subalgebras of simple Lie algebras over R (the
Sophus Lie problem in its local formulation) remained unsolved. Some examples
of maximal subalgebras in classical Lie algebras over R were presented in the pa-
pers [11,12,13].

This problem (the description of primitive and maximal subalgebras of simple Lie
algebras) is intimately connected with the classification of all reductive subalgebras
of simple Lie algebras up to conjugation; this latter problem is also a classical
one, and recently has been actively stimulated by numerous new applications in
mathematics, mechanics and physics.

This problem was studied over the field of complex numbers by A.I. Maltsev [14]
and E.B. Dynkin [6,7]. Over the field R, E. Cartan began its study [15] by classifying
irreducible subalgebras of gl(n,R), n < 12. These results were strengthened and
simplified by N. Ivahori [16]. Simple subalgebras in simple classical real Lie algebras
were described by F.I. Karpelevich [17]. B.P. Komrakov [23] generalized these
results to arbitrary reductive subalgebras. Real forms of symmetric subalgebras
were found by A.S. Fedenko [18] and M. Berger [19].

Among exceptional Lie algebras, only the symmetric ones (M. Berger [19]), fixed
points of third order automorphisms (A. Gray [20]), and S-algebras in the sense of
E.B. Dynkin (B.P. Komrakov [21]) have been described in the real case.

The complete solutions of these two important problems—the classification of
primitive reductive subalgebras and that of arbitrary subalgebras of real simple Lie
algebras—turn out to be closely connected.

Namely, there exists a natural class of reductive subalgebras in complex semisim-
ple Lie algebras (which we have called almost primitive) such that a description of
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all real forms of subalgebras of this class yields, in principle, the description of
all real forms of any reductive subalgebra containing all primitive reductive real
subalgebras among its real forms.

If the Lie algebra g is semisimple, then a primitive subalgebra may be character-
ized by the condition that the subgroup Aut(g, g) N Int(g) of inner automorphisms
of the Lie algebra g that preserve the subalgebra g is maximal in Int(g), the group
of inner automorphisms of the Lie algebra g. From this point of view almost prim-
itive subalgebras g of the Lie algebra g are characterized by the maximality of the
subgroup Aut(g, g) in the group Aut(g) of all automorphisms of the Lie algebra g.

The class of almost primitive subalgebras apparently seems more natural than
the class of primitive ones. For example, among the symmetric nonsemisimple
subalgebras (which are all almost primitive) there are nonprimitive ones:

A+ A, 1+CC A, Ai1+CC D (1=2k+1), Ds+C C Fg.

This class, been closely connected with the extension of automorphisms, may be
conveniently characterized as the class of primitive subalgebras in intrinsic terms.

The subalgebra g of the Lie algebra g will be called primitive (respectively, almost
primitive) if it is maximal among all subalgebras that are stable with respect to
Aut(g,g) NInt(g) (respectively, Aut(g, g)).

The importance of the class of almost primitive complex subalgebras introduced
above can also be explained by the following circumstance. When we know the real
forms for these subalgebras, this allows us to describe, in principle, the real forms
of arbitrary reductive subalgebras.

The main problem which is entirely solved in this work is the classification of
almost primitive subalgebras of real Lie algebras up to conjugation, the primitive
and maximal subalgebras being specified (i.e., the Sophus Lie problem in its most
complete formulation).

Before achieving this , it is necessary to conclusively carry out the classification
of almost primitive subalgebras of complex Lie algebras and answer a series of other
important questions, which in our context must be considered auxiliary.

1. MAXIMALITY, PRIMITIVITY, ALMOST PRIMITIVITY

Suppose G is a Lie group which acts on a manifold M. (G and M can be thought
of as in either the real or complex category).

Definition 1. A k-foliation on M is a collection of k-dimensional immersed sub-
manifolds {Fy, }amen such that for any m, m/ € M, we have

(a) m € Fp,

(b) F,, is connected and has a countable base for its topology,

(c) either F,, = F,,, or F,, N Fy,, = 0.

The unique submanifold of the foliation containing the point m is called the leaf
through m.

Definition 2. Let F be a foliation on M. We say that F' is invariant under the
action of G, if for any x € G, m € M,

:E-Fm = Fa:.nu




i.e., the action of G on M preserves the leaves of the foliation.

There exist two trivial foliations on any manifold; namely foliation of the mani-
fold

(1) into points, or

(7i) into connected components.
These foliations are invariant under any Lie group action.

Definition 3. The action of G on M is called primitive, if the only foliations on
M invariant under the action of G are the trivial foliations.

The problem posed by Sophus Lie is to classify up to equivalence all of the
primitive transitive and effective actions of real Lie groups on manifolds.

By standard results of the theory of homogeneous spaces, the problem is equiv-
alent to determining all of the pairs (G, G), where G is a Lie group and G is a
closed Lie subgroup of G such that

(a) G acts primitively on G/G, and

(b) G contains no proper normal subgroups of G.

In this case we say that G is a primitive subgroup of G. Thus the Sophus Lie
problem is reduced to describing the set of primitive subgroups of real Lie groups.

The following result was obtained by Golubitsky [3].

Statement.

(i) Let G be a closed maximal Lie subgroup of G which contains no proper
normal subgroups of G. Then G is primitive.

(4) Let G be a nondiscrete primitive subgroup of G, and G° the connected
component of the identity in G. Then

Normg G° = {2 € G| 2G° =G’z }
is a closed maximal Lie subgroup of G. Moreover

dimG°® = dim G = dim Normg G°.

Definition 4. Let g be a proper subalgebra of a Lie algebra g. Then g is called
primitive, if

(a) g contains no proper ideals of g,

(b) there exist a Lie group G and a closed maximal Lie subgroup G of G such
that L(G) = g and L(G) = g.

(For an arbitrary Lie group G, we denote by L(G) the corresponding Lie algebra).

This definition immediately implies that primitive subalgebras are exactly the
isotropy subalgebras corresponding to some primitive effective and transitive action.

It is obvious that any maximal subalgebra g of g containing no proper ideals of
g is primitive. Moreover if G and G are connected Lie groups, then any primitive
subalgebra g of § is maximal and contains no proper ideals of g. However, if we do
not require connectedness, this will not true.
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For example, let G = SL(2, R) and let G' be the maximal of all Lie subgroups
corresponding to the Cartan subalgebra of the Lie algebra sl(2, R):

{5 1) (03

Then G is a closed maximal Lie subgroup of G, whereas the Cartan subalgebra is
not maximal in s/(2, R), since it belongs to the Borel subalgebra:

z 0 ) Ty
(@ 5 )feen)<{ (%)
Thus, in terms of Lie algebras, the Sophus Lie problem is equivalent to the
classification of all primitive subalgebras of real Lie algebras.
Assume § is not simple. Then any primitive subalgebra g of the Lie algebra g is
maximal and has the form given by the following

aelR; i=0,1 }

x,y € ]R} C sl(2, R).

Statement. Suppose g is a primitive subalgebra of the Lie algebra §.

(i) If § is not semisimple, then there exists an abelian ideal a such that g = g®a
and g acts faithfully and irreducibly on a.

(1) If g is semisimple (but not simple), then there exists a simple Lie algebra a
such that § = a @ a and g = {(z, )|z € a}.

This result is true for both R and C and was obtained by V.V. Morozov [2]. It
was proved by M. Golubitsky [3] that primitivity implies maximality.

Furthermore if g is simple and g is a nonreductive subalgebra of g, then the prim-
itivity of g implies that g is a maximal parabolic subalgebra of g. (V.V. Morozov
[4], F.I. Karpelevich [5], M. Golubitsky [3]).

Thus the problem is reduced to describing of all primitive reductive subalgebras
of simple Lie algebras.

Suppose g1, - . - , gk is a set of subalgebras of a Lie algebra g. By Aut(g, g1,...,9%)
denote the group of all automorphisms of g preserving all subalgebras gy, ..., gx. By
Int(g,g1,. - . ,g%) denote the connected component of the identity in Aut(g,g1,... ,8%).

When the Lie algebra § is semisimple, it is possible to introduce the concept of
primitivity of a subalgebra g in a different way.

Definition 4’. Let g be a semisimple Lie algebra and g a proper subalgebra of g.
The subalgebra g is called primitive, if

(a) g contains no proper ideals of g,

(b) g is the maximal of all subalgebras invariant under Int(g, g).

However the class of primitive subalgebras is in many respects inconvenient to
deal with. For example, primitivity of a real subalgebra g in g does not necessarily
imply primitivity of the subalgebra g© in ¢ In other words, not all primitive
subalgebras g of a real Lie algebra g can be obtained as a real form of a primitive
subalgebra of a complex Lie algebra.

In this context, we introduce a new class of subalgebras. This class generalizes
the class of primitive subalgebras.




Definition 5. Let g be a semisimple Lie algebra and g a proper subalgebra of g.
We say that the subalgebra g is almost primitive, if

(a) g contains no proper ideals of g,

(b) g is the maximal of all subalgebras invariant under Aut(g, g).

The classes of primitive and almost primitive subalgebras can be also character-
ized in terms of maximality of the corresponding groups of automorphisms.

Statement. Suppose g a semisimple Lie algebra and g is a proper subalgebra of g
containing no proper ideals of §. The subalgebra g is primitive (almost primitive)
if and only if the subgroup Int(g, g) (Aut(g, g)) is maximal in Int(g) (Aut(g)).

The main advantage of the class of almost primitive subalgebras is that they are
closed under complexification.

Theorem. Let g be a real simple Lie algebra and g an almost primitive reductive
subalgebra of §. Then g€ is an alinost primitive subalgebra of gC.

The theorem allows to solve our problem in the following way:

1° to classify all of the almost primitive reductive subalgebras of complex simple
Lie algebras;

2° to find the real forms of the algebras and subalgebras obtained in 1°;

3° to select all primitive subalgebras of real simple Lie algebras from the set of
subalgebras obtained in 2°.

In the process of classification of almost primitive reductive subalgebras of com-
plex simple Lie algebras, classical and exceptional Lie algebras are examined sep-
arately. But the classical Lie algebra of type Dy (s0(8,C)) is examined together
with exceptional Lie algebras.

In the sequel we shall always assume that g is a simple Lie algebra and g is a
reductive subalgebra of g.

2. ALMOST PRIMITIVE SUBALGEBRAS OF COMPLEX LIE ALGEBRAS

We say that a pair (g, g) is mazimal, primitive, or almost primitive, if the sub-
algebra g has the corresponding characterictic.

Theorem. Let g be an almost primitive reductive subalgebra of a complex simple
Lie algebra g. Then g belongs to one of the following disjoint classes of subalgebras
of g:

(i) the class of simply embedded subalgebras (i.e., the class of centralizers of
semisimple elements of g);

(#) the class of semisimple subalgebras coinciding with their normalizers.

The theorem gives a preliminary description of the subalgebras we are interested
in. The classical and exceptional will be examined separately.

2.1. Classical case.

Suppose g is a classical complex Lie algebra of one of the followings types: 4; (I >
1), Bi (Il =23), C; (I 22), D; (Il > 5). These are the Lie algebras sl(l41, C), so(2]+
1, C), sp(2l, C), and s0(2l, C) respectively.

Let us describe some classes of subalgebras of classical simple Lie algebras:

6




a) Suppose V. =V; ® - @V, is a direct sum of vector spaces. Let us identity
the Lie algebras s{(V;), 1 < ¢ < r, with the corresponding subalgebras of s{(V'). By
3 denote the following commutative subalgebra of sl(V):

y={t1-Idy, +--- +t,-Idy, |t1+ -+t =0}
Then

g=3® > sl(Vi)
=1

is a simply embedded subalgebra of the Lie algebra § = s{(V). In addition the
g-module V is completely reducible. In matrix form we have:

g =sl(n, C), where n = dim V;

AL 0 ... 0 ,
. 0 A4 ... 0 , Aiegl(ng, ©), 1<i<r Y tr A;=00,
0 0 Ay -

where n; =dimV,, 1 <i<r.

For both so(n, C) and sp(2n, C), there exist similar subalgebras which consist
of several ”blocks”.

b) Suppose V =V1 ®---®V, is a tensor product of vector spaces. Let us identity
the Lie algebras s((V;), 1 <1 < r, with the following subalgebras of s[(V):

Idvl R Q Idvi_1 ®5[(Vi) ® Id\/i+1 ®- - ®Idy, .
Then g = Y;_, sl(V;) is a semisimple subalgebra of the Lie algebra g = s{(V) such
that g coincides with its normalizer. In addition the g -module V is irreducible. In
matrix form we have:
g =sl(n, C), where n =dim V;,

r
EZ{ZE711®"'®E712'—1 ®Ai®Eni+1®"'®Enr Aieg[(nia C)) 1{i<7‘},
=1

where n; = dim V;, 1 < i < r. (The action of the matrix X; ® --+ ® X, on the
vector v; ® -+ - @ v, is defined by

X1® - 0X) @ -®v)=(X1v)® - ®(X,v,) ).

Similar subalgebras of the Lie algebras so(n, C) and sp(2n, C) can be con-
structed in an analogous way. However in doing so it must be taken into account
that if A; (1 < ¢ < r) are symmetric matrices and B; (1 € 7 £ [) are skew-
symmetric matrices, then the matrix

X=A41® QA 3B1® -5
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is symmetric whenever (—1)! = 1 and is skew-symmetric whenever (—1)! = —1.
This immediately follows from

X =4, -® 4,080 QB = (—1)lA1®- - QAQBI® QB = (—1)1X'

Following E.B. Dynkin, we say that a subalgebra of a classical Lie algebra is
reducible (irreducible), if its canonical representation is reducible (irreducible).

If g is an almost primitive reductive subalgebra of g, then it belongs to one of
the following pairwise disjoint classes:

(a) the class of simply imbedded (reducible) subalgebras;

(b) the class of reducible semisimple subalgebras;

(c) the class of irreducible nonsimple subalgebras;

(d) the class of irreducible simple subalgebras.

Indeed, if the center of g is not the zero set, then g coincides with the centralizer
of its center. If g is semisimple, then it is clear that g belongs to one of the classes
(b), (c), or (d).

We say that a pair (g, g) is almost primitive and belongs to the class (a), (b), (c),
or (d), if g is an almost primitive subalgebra of § and belongs to the corresponding
class.

In the process of classifying of almost primitive pairs belonging to the class (d),
we restrict ourselves to the case when g is not maximal in g.

Lemma 1. Any almost primitive pair belonging to the class (a) is equivalent to
one of the following pairs:

(la)g = sl(n+m,C), g=slnC)dsi(m,C)dC, 1<n<m

(2a)g = sl(nr, C), g= '6915[(71, C)eCr L, r>3, n>l;

(3a)g = s0(2n,C), a=gl(n,0), n > 5;
g=sp(2n,C),  g=gln,C), nz2;

4a)g =so(n+2,C), g=s0(n,C)adC, n =5, n#6;

ba)g = s0(2n,C), g=C", n > 5.

The subalgebra from (1a) consists of two blocks; the subalgebra from (2a) con-
sists of several (more than two) blocks of the same length; the subalgebra from
(4a) consists of two blocks and one of these blocks is of length n (the condition
n # 6 is imposed, since s0(8,C) is not a classical Lie algebra); in (5a) g is a Cartan
subalgebra.

Consider in detail the case (3a). If § = ap(2n, C), then it can be assumed that

_ A B
g={<c, _tA)lA,B,Ceg[(n,C); B =B, C’-—-tC}.

Then
o= { (‘g _2A>’Aeg[(n,©} ~ gi(n, C).

Similarly, if § = s0(2n,C), then g can be identified with the set of matrices:
[AeslenC) |, A+ A L,=0}, where I, = [ 0 ©n
) n n Y n En 0
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Then

@={(§ _’?A){A,B,Ceg«n,«:); B+ B=0, Ct t0=0}

and g = { (‘g _2A>tA€g[(n,C)} ~ gl(n, C).

Lemma 2. Any almost primitive pair belonging to the class (b) is equivalent to
one of the following pairs:

(1b)g = so(n + m, C), g=2g0(n,C)®so(m,C)dC, 3<n<<m, n+m=7,
n+m # 8;
g= 5p(2(n + m)>©)7 g= Sp(2n7 (C) @sp(va(C), 1 <ng<m;
(D5 =s0(mn,C), 5= & 30(n,0), r<s, n<
8 = sp(2rn, C), g= & sp(2n,C), r>38,n>l

The subalgebras from (1b) consist of two blocks (the condition n + m # 8 is
imposed, since 50(8,C) is not a classical Lie algebra). The subalgebras from (2b)
consist of several (more then two) blocks of the same length.

Lemma 3. Any almost primitive pair belonging to the class (c) is equivalent to
one of the following pairs:

(1¢)g = sl(nm,C), g=ysl(n,C)dsl(mC)dC, 2<nm;
(20)g =sl(n",C), g= @15[(71,, C), r>3, n=>3;
(3¢)g = so(nm, C), g =so0(n,C) @ so(m,C), 3<ngm,
n,m # 4;
g = so(4nm, C), g = sp(2n, C) ® sp(2m, C), 1< n<m,
n,m) # (1,1),
n,m) # (1,2);
g = ap(2nm, C), g = 5p(2n,C) @ sp(m, C), n 2%1, m 2 3,
m }
(4¢)g = s0(4n, C), g=25p(2,C) ®sp(2,C) ®so(n,C), n>=3, n#d4
g = 5p(8n, C), g =5p(2n,C) @sp(2,C) ®sp(2,C), n2>2
(50)3 = s0(n", C), 5= & so(n,C), r>3 m3s,
(s
n # 4;
2r4+1
g zgp((Zn)QT"‘l,C), 4= ,@1 5p(2n,@), nzl rzl
5:
§=50((2n)",C), 8= & 5p(2n,C), nzl, r>2

The subalgebra g from (1c¢) can be identified with the set of matrices:
g={AQ®FE,+E,®B| Acsl(n,C), Besl(m,C)}.
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The subalgebras from (3c¢) have a similar form. In (2c) g can be identified with the
set of matrices:

g={ A1RE,®  -QE,+E,04:® - -QE,+ - +E,® - -QE,®A, | A; € sl(n,C),
1<igr}

The subalgebras from (5¢) can be constructed in a similar way.
A number of conditions in (3c) is imposed, since the following classical Lie alge-

bras are isomorphic:
s0(4,C) = 50(3,C) @ s0(3,C);

50(3,C) 2 51(2,C) = sp(2,C).
Therefore the pairs
g = go(nm,C), g=s50(n,C) ®so(m,C), wheren=3,m=4orn=4,m>4

g = sp(2nm,C), g = sp(2n,C) @ so(m,C), where m = 4,

are included into the separate item (4c).

Allirreducible pairs (g,g) are maximal except 19 ones determined by E.B. Dynkin
[6]. We are interested in the following question: which of these exceptions are almost
primitive? The following lemma gives the answer.

Lemma 4. Suppose (g, g)is an almost primitive pair belonging to the class (d)
and g is not maximal in §. Then the pair (g, g) is equivalent to the following one:

g = 50(495,0),
g has type Dg and the diagram of the g-module C*%® has the form:

Lemmas 1-4 give the complete classification of almost primitive subalgebras of
complex classical Lie algebras. In Table 1 it is indicated which of the obtained
subalgebras are

maximal;

primitive, but not maximal;
almost primitive, but not primitive.

2.2. Exceptional case (including D).
Suppose g is an exceptional complex Lie algebra or Dy. We shall make use of
the following result:

Theorem. Let g be an almost primitive reductive subalgebra of a simple complex
Lie algebra g. Then g belongs to one and only one of the following classes:

(i) g is a simply imbedded, maximal rank subalgebra;

(i) g is a semisimple, maximal rank subalgebra;

(#i) g is a S-subalgebra;

(iv) g is a S-subalgebra of a semisimple, maximal rank subalgebra;
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Lemma 5. The classification of simply imbedded almost primitive, maximal rank,
reductive subalgebras of exceptional Lie algebras has the form:

g = G, the mentioned subalgebras do not exist;

g = Fy4, the mentioned subalgebras do not exist;

g = Fg, g has type Dy @ C%, Ds @ C, C5;
g = Er, g has type Eg ® C, C7;

@ = Eg, g has type C?;

g = D4, g has type Ay @ C2%, A3 C, C%

Note that a Cartan subalgebra is almost primitive in g if and only if the roots of
g are of the same length (this is true for both exceptional and classical Lie algebras).

Lemma 6. The classification of semisimple almost primitive, maximal rank sub-
algebras of exceptional Lie algebras has the form:

G2, ¢ has type A1 + Ag, Ag;

Fy, g has type By, A1 + Cs, Ag + Aa, Dy;

6, § has type Ay + Ay, Ay + Ay + Ag;

7, ¢ has type Av, A1 + Dg, As+ As, TA1, Dy+ A1 + Ay + Ay

3, § has type Dg, By + Ay, Ay+ A4, Ag, Eg+ Az, Dy+ Dy, 8A1, 4A9;
4, § has type 4A4;.

I
SGEG)

I

gl 2l gl al &l i
I

I
-

Lemma 7. The classification of almost primitive S-subalgebras of exceptional Lie
algebras has the form:

I
Q

2, 8 has type A%S)
Fy, g has type A}*°, Gj + A§;
Eg, g has type G3, Gi, G} + A3, F}, A3;
By, g has type AT, AP!, G3+C3", F{ + Ay, G3+A], A%, A}'+ A®
Eg, g has type A{*, A7, A, G+ F{, AY + Al°, B)®, Gi+ G+ AY;
= Dy, g has type B3, A7+ B, A}, Gy.

The characteristic representations (i.e., representations on g) of the subalgebras
determined in lemma 7 have the form:

A%S C Go:

[ |

@l sl al sl sl

2 10
O + O
A%56 C Fy:

10 4 22

2
0+0 +0+0

(D ©0)+ (D ©0) +(GLD © O)

G%—FA? C Fy:

G%CEGI . . .
0 + 0
CfCEGZ , .
0—0—aXLD + O—O0—D
2 2 . 1 1 1
Gi+ 43 C Eg: (0 ® 0—0)+(aD ® 0—0)+

+ (5@@@5—5)
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F} C Eg:
A§ C Eg:
A3 C By
A C Ep:

G+t c B

Fiy AY ¢ By

G%-FAI C Ex:

A%l C By

A24 4 AV C By

A0 C B
AT By
A?20 C FEjs:

G%%—Flll C Fg:

A 1 A6 C By

B%Q C Fg:

o—oio—céﬂl}—o:(:o—o

1 1 14
o0—0 +0—0 + 0—0O

10 14 18 22 26 34

2
0+0+0+0+0+0+0

2 6 10 14 16 18 22 26

O+0+20+0+0+0+0+ 0O
(ozéc;®o—oz§o)+(o£o®5-o:¢o)+
+ (o © 0—aXD)
(o—o@—5®0)+(o—o:¢o—o®c2>)+
+ (0—a<o—0 ®0)

(00 ©0) + (D ©0) +

+ (%0 ©0) + (D ©0)
0—0+0—0
(0®0)+(0®0)+(0®0)+(0®O)+

+ (0©0)+(0©®0)+(0®O)

14 22 26 34 46 58

2
0O+0+0+0+0+0+0

10 14 18 22 26 28 34 38 46

2
0+0+0+0+0+0+0+0+0+0

6 10 14 16 18 22 34 38

0+0+0+0+0+0+20+0+0+0+0
(czéé ®o~oio—o)+(c@®o—o:<:o—é)+
+(clB§O®cl>—o:¢D—o)

(5—5 ®0)+(0—0 ®c2>)+(c3>—o ®c;)+

3 4 2 2 2 1 1

+(0—0 ®0)+(0—0 ®0)+(0—0 ®O)

T30 + G0 + T30

12




Gi+ G3 + AS C Ey: (G0 © 6D ©0)+ (D © LD ©0)+
+(&D®O£O®5)+(CI$D®CIB$O®5)
+ (0 @ G0 © 0)+ (D © D ©0)
Bl cC Dy 1 |
O—Q >0 + O—O 0
(5®oio)+(0®0325)+(5®5310)

A% +B% C Dy

Ag C D4: 1 1 3 3
o0—0+0—0+ 00—
G% C Dy 1 .
=0 +20%0

Lemma 8. The classification of almost primitive S-subalgebras in semisimple,
maximal rank subalgebras of exceptional Lie algebras has the form:

@ = Ex, g has type Dj;

g = Eg, g has type A{°.

The characteristic representations of the subalgebras determined in lemma 8
have the form:

D3 C Ey: g
1 2
o— + O0—Q + O0—( + O0—( )

Alllo C Fg:
10 8 6 4 2
40 +60 +100 +100 + 100
Lemmas 5-8 give the complete classification of almost primitive reductive sub-
algebras of the exceptional Lie algebras (including Dy4). In table 2 it is determined
which of the obtained subalgebras are
maximal;
primitive, but not maximal;
almost primitive, but not primitive.

3. THE CLASSIFICATION OF ALMOST PRIMITIVE
SUBALGEBRAS OF REAL LIE ALGEBRAS.

Let us recall some constructions relating to real forms of complex Lie algebras.

An anti-involution of a complex Lie algebra g is an anti-linear mapping o : g —
g such that 0? = id and o([2,9]) = [o(z),0(y)] for all x,y € g. A real form of
complex Lie algebra g is a subalgebra gy such that gy = g @ 7g. There exists a
one-to-one correspondence between the set of all real forms of the Lie algebra g and
the set of its anti-involutions. Namely, the set of fixed points of an anti-involution
o is a real form of g and is denoted by g. Conversely, any real form g of g defines

an anti-involution o of g by

o(x +1y) = — 1y for z,y € §.
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Here g = g°.

An anti-involution 7 of a Lie algebra g is called a Cartan anti-involution, if it de-
fines a compact real form of g. For any semisimple complex Lie algebra there exists
a Cartan anti-involution. Moreover all its Cartan anti-involutions are conjugate
(up to Int g) .

Let g be a semisimple complex Lie algebra. There is a close connection between
real forms of g and the class of symmetric Lie algebras.

Definition. Let 0 be an involution of § (i.e., an automorphism of second order).
The pair (g, 6) is called a symmetric Lie algebra.

An isomorphism of two symmetric Lie algebras (§1,01) and (g2, 02) is an isomor-
phism f of the Lie algebras §; and g2 such that fof; =60 f.

Suppose g° is the real form of the Lie algebra g defined by an anti-involution
o; then there exists a Cartan anti-involution 7 of § such that & o7 = 70&. Then
6 = & o7 is an involution of §. Thus to any real form §° of § we can assign a
symmetric Lie algebra (§,0). Generally speaking, the correspondence is nonunique.
But all symmetric Lie algebras corresponding to a given real form are isomorphic
to each other.

Conversely, if (g,0) is a symmetric Lie algebra, then there exists a Cartan anti-
involution 7 of the Lie algebra § such that o7 = 7060. Then & = o7 is an
involution of g which defines a certain real form §° of g. This correspondence is
also nonunique however all real forms of g corresponding to a given symmetric Lie
algebra (g, ) are isomorphic to each other.

Thus there exists a one-to-one correspondence (up to isomorphism) between real
forms of the Lie algebra § and symmetric Lie algebras (g, 6).

The constructions described above can be generalized to subalgebra of complex
Lie algebras.

Suppose § is a complex (real) Lie algebra and g is a subalgebra of g. Then
we say that a complex (real) pair (g, g) is given. The pair (g, g) is called mazimal
(primitive, almost primitive), if the subalgebra g is maximal (primitive, almost
primitive) in g. Two pairs (g1,81) and (g2, g2) are said to be equivalent, if there
exists an isomorphism f of the Lie algebras g1 and go such that f(g1) = go.

Definition. A real pair (p,p) is called a real form of a complex pair (g, g), if p is
a real form of the Lie algebra § and p is a real form of the Lie algebra g.

It is easy to show that there exists a one-to-one correspondence between the
set of all real forms of a complex pair (g,g) and the set of anti-involutions of g
preserving the subalgebra g.

Now we introduce the concept of symmetric pair.

Definition.

(i) A symmetric Lie algebra (g,0) is called a subalgebra of a symmetric Lie
algebra (§,0), if g is a subalgebra of g such that 6(g) = g and 8 = 0|,.

(i) A subalgebra (g, 6) of a symmetric Lie algebra (g, 0) is called an ideal, if g
is an ideal in g.

(443) Let (g,6) be a subalgebra of a symmetric Lie algebra (g,8). We say that
the pair ((g,0), (g,0)) is a symmetric pair.
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Two symmetric pairs ((g;, 8;), (g:,6;)), © = 1,2, are said to be equivalent, if there
exists an isomorphism f of the symmetric Lie algebras (gi,0;) and (gg,02) such
that f(g1) = go.

Under some additional conditions on a complex pair (§, g) there exists a one-to-
one correspondence (up to equivalence) between real forms of the pair (g, g) and
symmetric pairs ((g, 9), (g, 6)).

Theorem. Suppose § is a semisimple complex Lie algebra and g is a subalgebra
of g such that g coincides with its own normalizer.

(i) if & is an anti-involution of § such that 6(g) = g, then there exists a Cartan
anti-involution of § preserving the subalgebra g and commuting with &.

(ii) if @ is an involution of § such that 6(g) = g, then there exists a Cartan
anti-involution of § preserving the subalgebra g and commuting with 6.

Let (g,g) be a complex pair satisfying the assumptions of the theorem. Then
there exists a one-to-one correspondence (up to equivalence) between the set of real
forms of the pair (g, g) and the set of symmetric pairs ((g, 8), (g,6)).

Suppose (p,p) is a desired real almost primitive pair such that p is simple and
p is reductive in p. Then the complex pair (§,g), where § = p€ and g = pC, is
also almost primitive. Moreover, g is a reductive subalgebra of the Lie algebra g
coinciding with its own normalizer. However § is not necessarily simple. This case
is described in the following lemma.

Lemma. Let (p,p) be a real almost primitive pair such that p is simple and p is
reductive in p. If the Lie algebra p® is not simple , then the pair (p,p) has one of
the following forms:

(i) p = ag, where @ is a complex simple Lie algebra; p is a real form of @,

(ii) p = ag, where @ is a complex simple Lie algebra; p = ay, where a is an almost
primitive reductive subalgebra of a.

The pairs (i) are primitive. The pairs (ii) are primitive if and only if a is primitive
in a.

Thus in order to classify real almost primitive pairs, we must classify real forms
of complex almost primitive pairs (g, g), where g is simple and g is reductive in g,
and select almost primitive, primitive , and maximal pairs from the obtained real
forms.

By virtue of the mentioned correspondence between real forms of a pair (g, g)
and symmetric pairs ((g, 8), (g,6)), in this paper we first find all symmetric pairs.

Furthermore the concepts of primitivity and almost primitivity can be general-
ized to symmetric pairs. Suppose G is a set of subalgebras gy,..., gk, involutions
01,...,0;, and anti-involutions o1,...,0m of a Lie algebra g. By Aut(g,G) de-
note the set of all automorphisms of g preserving all subalgebras and commuting
with all involutions and anti-involutions from G. By Int(g,G) denote the connected
component, of the identity in the group Aut(g, G).

Definition. Let (g, ) be a proper subalgebra of a symmetric Lie algebra (g, ).
The subalgebra (g, 0) is said to be primitive (almost primitive), if

(a) (g,0) contains no proper ideals of (g, 8),

(b) (g,0) is the maximal of all subalgebras of (g,f) invariant under Int(g, g, 4)

(Aut(g, g,0)).
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Theorem. Let g be a reductive subalgebra of a complex semisimple Lie algebra g
such that g coincides with its own normalizer. Let & be an involution of g and 7 a
Cartan anti-involution of § such that 5o =705 and 3(g) =7(g) =g. =707
is an involution of §. Put =0 |y and 0 =& |;.

(i) If the symmetric pair ((g, 0), (g, §)) is almost primitive, then the corresponding
real pair (§°,g°) is almost primitive.

(ii) If the subalgebra g is semisimple, then the real pair (§%,¢°) is primitive
(almost primitive ) if and only if the corresponding symmetric pair ((g,0), (g, ) is
primitive (almost primitive).

The real almost primitive pairs obtained as the real forms of the complex almost
primitive pairs (determined before) are listed in Tables 3-62. In the classical case,
the results are written in classical notation. In the exceptional case, the symmetric
pairs corresponding to the obtained real pairs are listed.

4. EXAMPLES IN SMALL DIMENSIONS

4.1. Two-dimensional homogeneous spaces.

Consider the concepts of maximality and primitivity for two-dimensional homo-
gencous spaces in both complex and real cases.

The problem in the local formulation is equivalent to the classification of all
maximal effective subalgebras of codimension 2. In the complex case it was done
by Sophus Lie. He obtained the following result.

Any complex mazimal effective pair (g,g), where codimzg = 2, is equivalent to
one of the following pairs:

—r—Yy v w
0 x z |,y z,uv,welC,;
0

u oy
2°. 5 =gl(2,C) £KC?, g=gl(2,C);

3°. g =s0(2,C) KC2%, g=sl(2,0).

In case 1°, the Lie algebra g is simple and the subalgebra g is maximal and
parabolic in g. In cases 2° and 3°, the Lie algebra g is not semisimple and is
the semidirect product of the subalgebra g and the commutative ideal a = C2.
Moreover, g acts faithfully and irreducibly on a.

The corresponding primitive homogeneous spaces are as follows.

1°. The group SL(3,C) acts naturally on CP2.

2°, The affine group Aff(2,C) acts on C2.

3°. The unimodular group acts on C2.

Considering the problem in the global formulation (i.e., passing form maximal
to primitive subalgebras), we obtain one more pair:

4°. § =s1(2,0), g:{<"8 _0%> a;e]R}.

In spite of the fact that g is not maximal in g, the homogeneous space corre-
sponding to the pair (g, g) is primitive. It can be described as follows.
The manifold M can be embedded into CP! x CP:

1°. g =s((3,C), g=

M = {((zo:z1),(yo:y1)) € CP! x (CP1| xoyo + T1y1 £ 0}/ ~,
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where ((z0 : 1), (0,91)) ~ (20 : 21), (4o, ¥1)) whenever xo = y1, T1 = —Yp, Yo =
_:E/lv Yy = %6
The action of the group SL(2,C) on M is given by

A.((zo: @1), (o : y1)) = (@0 : 21), (o : w1)),

o - /
(5) () = () ()
1 1 1 n

Let us describe maximal and primitive pairs (g, g) of codimension 2 over the field R.
First we classify all maximal effective pairs. The classification has the form:
—r—y v w
0 x z ||lx,y,z,uv,weRP;
0 Uy
0

2°. g = su(2), 9={<1’g _m,> meﬂk};

3°. g =sl(2,R), g:{<_()q: 8) QJG]R};

where

o]

1 sI(3,R), g=

-8

4°. § =512, O, g={<‘g _y@) a:,ye]R};
5°. § = gl(2,R) AR?, g=gl(2,R);

6°. g = sl(2,R) K R?, g=sl(2,R);

o = __ 2 _ r -y . .
7°. g =g AR?, g-{(y %> m,yE]R},

o = ar T

8°. g =g AR?, g:{<—a) a:c) weﬂ&},aeﬂh.

Note that the only pairs that are real forms of maximal complex pairs are the
pairs 1°,4°, and 5°. In the other cases the subalgebra g€ is not maximal in g°.

The corresponding homogeneous spaces have the form:

1°. The group SL(2,R) acts on RP2,

2°. The group SU(2) acts naturally on CP! ~ S2.

3°. The group SL(2,R) acts on the Lobachevsky plane (= R?).

4°. The group SL(2,C)g acts on CP! ~ 52,

5°. The affine group Aff(2,R) acts on R

6°. The unimodular group acts on R2.

In cases 7° and 8°, the group G such that § is its Lie algebra can be embedded
into Aff(2,R) and acts on R?. In particular, in case 8°(a = 0), we obtain the group
of Euclidean transformations of R2.

Passing from maximal to primitive subalgebras, we obtain one more pair:

9°. § = s((2,R), g:{<"8 i) xeR}.

The description of the corresponding homogeneous space is similar to that of
the complex homogeneous space corresponding to the pair 4° in the complex case.
Moreover, the real manifold M is diffeomorphic to the Md6bius strip.
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4.2. Primitive reductive pairs.

Let us describe real primitive pairs (g, g), where § is a simple Lie algebra and
g is a reductive subalgebra of § such that codimgzg < 4, and the corresponding
homogeneous spaces.

The complexifications of these pairs are primitive and have the form:

1°. 5% =sl(n+1,C), g¢=s(n,C)oC,n=1,2

2°. g(C :Sp(4,C), gGZSp(Q,C)@Sp(Q,C)

First we describe the corresponding complex homogeneous spaces (in 1° this
homogeneous space is not primitive for n = 2).

1°. Let V be a (n + 1)-dimensional complex vector space. The action of the
group GL(V) on V* can be defined starting from the equality

(v, z0") = (v,0%)

for all v € V,v* € V*, where z € GL(V). If the matrix of « € GL(V) in a certain
basis of V is equal to A, than the matrix of the action of z on V* in the dual basis
is equal to *A~1. Moreover, it is easily proved that GL(V) acts transitively on pairs
(v,v*), where v € V,v* € V*, and < v,v* >= 1. Fix a basis in V. We identify
GL(V) with GL(n+ 1,C).

Projectivizing the spaces V and V*, we obtain the action of the group SL(n +
1,C) on the manifold

M={((mo:x1: :@n),(yo:y1: - :yn)) € CP"CP"|zoyo +x1y1+ -+ + Tpyn#0}.

An element A € SL(n+ 1, C) takes the point ((zg:@1: - @n), Yo 1 y1: 1 Yn))
to the point ((xd:ad: :al), (9l - 1 yl)), where

((Ll) = A((Lz)’ (yz1> = tA—l(yi)a 0grgn.

Primitive real forms of (g, g) have the following expressions:
(H)n=1:

(L) g= u(2)>g =T;

b) g= 5[(27R)a g=NR;

c) g =s5(2,R),g=T.

The corresponding homogeneous spaces are two-dimensional. They are described
in section 1.
(i) n=2:

0) § = su(3),5 = T ® su(2);

b) g= l~7*‘(27 1)’9 =T 69511(2);

c) g =su(l,2),g =Tesu(l,1).

In all these cases the homogeneous space is as follows: the group SU(p, q),p+q =
3, acts naturally on CP?, and the manifold M is the orbit of the point (1: 0 : 0)
under this action.

In particular, in case a) the group SU(3) acts transitively on CP?. In case b)
SU(2,1) acts transitively on the following subset of CP? :

M={((z:y:2)¢e (CP2| Iz + |y|? > lz|2}
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In the case ¢) the group SU(1,2) acts transitively on the following subset of CP? :
M = {((1 cy i z) € (CP2| lz)? > ly|? + ]z[g}

The condition |2|? > |y|?+|2|? implies that @ # 0. This allows to embed M into the
affine chart {(1 : y/z : z/z) € CP?}. Then we see that SU(1,2) acts transitively
on the following subset of C? :

M = {((v,y) € C| o + [y < 1}

M as a real manifold is homeomorphic to R4.

2°. Now describe the complex homogeneous space corresponding to the pair
g = 5p(4,0),g = 5p(2,C) @ sp(2,C). Let 2 be a nondegenerate skew-symmetric
form on a 4-dimensional complex vector space V. There exists a basis of V' such
that the Gram matrix of the form 2 has the form:

0 1 0 0
-1 0 0 0
0 0 0 1
0 0 -1 0

The set of all nondegenerate linear transformations of V' preserving the form V is
the Lie group SP(4,C). Its Lie algebra coincides with §. The group SP(4,C) acts
transitively on the set of two-dimensional subspaces of V' such that the restrictions
of © to them are nondegenerate.

This set can be turned into a smooth manifold. Let us describe the coordinates

on this manifold. The set of all two-dimensional subspaces of V is the Grass-
man manifold G(4,2), which can be embedded into CP?® in the following way: if
e1 = (v1,%2,73,%4), €2 = (Y1,Y2,Vs,y4) is a basis of a subspace W in V', than its
homogeneous coordinates (£19 : €13 @ €14 @ €23 @ €o4 : &34) can be determined from
the equality:
T; {Bj
Yi Yj
These coordinates are called Pliicker coordinates. They are independent of the
choice of the basis in W and satisfy the condition £19€34 — &13€24 + E14623 = 0.
Moreover, it is possible to show that any homogeneous coordinates on CP® satis-
fying this condition define a certain two-dimensional subspace in V. Thus

&ij =

G(4,2) = { (€12 : €13 €14+ a3+ o4 1 E34) € CP°| Eabas — E1abon + E14603 = 0 .

The restriction of Q to W is nondegenerate if and only if the following condition
holds:
Q(e1,e2) = 12 + &34 # 0.

Put
€1 = &2 + &4, & = &19 — &3,

&3 = &13 + &ou, & = €13 — &oa,
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& = &14 + o3, €6 = E14 — Eo3.
Then

G4, ={(¢1:6: & & & &) eCPPd -G -G+ 8+ - =0}

and the condition of nondegeneracy of Q| is equivalent to &; # 0.
This allows to embed the considered manifold M into C5:

]V[:{(’L1,’L2,’U3,’b4,’bs)€C5]11+’L2 7,4+7,5—1}

Real forms of the pair (§,g) have the form:

a) §=5p(2), @=-su(2)®su(2);

b) ==sp(1,1), g =su(2)®su(2);

c) g=4p(4,R), g=2(2,R)®sp(2,R);

d) g=sp(1,1), g=25p(2,C)x;

€) §=sp(LR), g=sp(2 O

In this case the corresponding real homogeneous spaces can be constructed in
the following way. The group SP(4,C) can be regarded as a real Lie group. There
exists a Lie subgroup G of SP(4,C) such that § is the Lie algebra of G. The action
of G on M€ is the restriction of the action of SP(4,C). Then M is the orbit of the
point (1,0,0,0,0) € C° under the action of G.

For example, in case a), the group G has the form:

G={XeSP4,C)| XX =E}.
The orbit of (1,0,0,0,0) under the action of G on M€ is
M = {($1,$2,x3,$4,$5) € ]\/[(C|:c1 = T1,T9 = Tg,—T3 = T3, —T4 = T4,T5 = 7“,5}
Putting y1 = 1, y2 = T2, ys = ix3, Y4 = i4, Y5 = T5, We obtain
M = {(y1,y2,y3, ¥4, ¥5) € R®| g3 + 3 + 3 +yi + vz =1}.

Thus the group G acts transitively on S%.
Similarly in cases b)-e), the corresponding manifold has the form:
b) R%, ¢) 52 x R?, d) S® x R, e) S x R3.

4.3. Homogeneous spaces and differential equations.

Let (G, M) be a real homogeneous space, where the Lie group G acts effectively
on the manifold M. Let § be the Lie algebra of G and D(M) the Lie algebra of all
vector fields on M. Consider the homomorphism of Lie algebras

p:8— D(M)

corresponding to the action of G on M. Since p is an injection, it is possible to
identify g with a certain subalgebra of D(M).

An ordinary differential equation of the first order on the manifold A can be
regarded as a smooth mapping A : R — D(M). A solution of this equation is a
smooth mapping ¢ : R — M such that the tangent vector to the curve ¢ at any
point ¢ € R is equal to A(t)|,e)-

20




Definition. An ordinary differential equation of the first order A : R — D(M) is
called automorphic, if A\(t) € g for all t € R.

Fix a basis X1,...,X, of g (n = dimg). Then any automorphic equation is
defined by smooth functions a; : R — R, 1 < ¢ € n, such that

At) = a1 X1+ -+ an(t) Xn.

The following fact is proved in the theory of differential equations.

Theorem. For any automorphic equation A : R — D(M) there exists a smooth
mapping g : R — G such that all solutions of the equation have the form:

o(t) = g(t).(0).

Let us explain how to find this mapping g. We shall construct the function of
superposition F, which allows to construct the mapping ¢ for an equation A : R —
D(M) starting from the number k (known beforehand) of particular solutions of
the equation.

Now we introduce the following concept.

Definition. The stiffness of the homogencous space (G, M) is the least natural
number k for which there exist points x1,. ..,z of M such that the group ﬂle G,
is discrete.

Let us find the stiffness of some homogeneous spaces described in section 1 and 2.

a) Let G = SL(3,R) and M = RP?. The group G acts naturally on M. It is
known that the action of SL(3,R) on quadruples of projectively independent points
of RP? is simply transitive. Thus k = 4. For example, for

21=(1:0:0),29 =(0:1:0),23=(0:0:1),z4=(1:1:1)

the group ﬂle G, is trivial.

b) The affine group Aff(2,R) acts on the plane. The action of Aff(2,R) on
triples of affinely independent points of R? is simply transitive. Therefore k = 3.
For example, for x1 = (0,0), 22 = (1,0),23 = (0,1) the group ﬂ?zl G, is trivial.

Assume that the stiffness of (G, M) is equal to k and there exist points z1,...,Tg

of M such that the group ﬂle G, is trivial. Consider the action of G on the
manifold M x M x .-+ x M(k times) defined by

g‘(m’l)' - 7m’k) = (g'ml’ s >g'm1€))

where g € G, m; € M,1 < i < k. Then the action of G on the orbit O(z1,..., %)
of the point (1, ..., k) is simply transitive. Consider the function of superposition

F:0(z1,...,21) — G,
where F(y1,...,ys) is the element of G such that
Flys, ... ye)-(21, - 2k) = (W1, Yk)
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In the general case (when the group ﬂle G, is discrete), it is also possible to
define a function of superposition but, generally speaking, it will be many-valued.

Now suppose A : R — D(M) is an arbitrary automorphic differential equation.
Assume that @1, ..., @ are its particular solutions with initial conditions ¢;(0) =
%, 1 €1 < k. Then it is clear that (p1(t),...,9x(t)) € O(z1,...,2) for t € R.

The mapping g : R — G is defined by g(t) = F(p1(t),...,0r(t)). Thus the
knowledge of k particular solutions of the equation A with definite initial conditions
allows to write down the general solution:

p(t) = Fp1(t), ..., ox(t)).2(0).

Let us find the stiffness k and a function of superposition F' for the real homo-
geneous spaces 1° — 9° obtained in section 1.

1°. The group G = SL(3,R), M = RP?. It was mentioned before that the
stiffness of this homogeneous space is equal to 4. For example, for 1 = (1 : 0 :
0),20=(0:1:0),23=(0:0:1),z4=(1:1:1) we have

éwi = {6}

4
=1

2

Suppose y; = (a1; : ag; : as;),1 < i < 4, is a quadruple of points of RP? such that
(y1,y2,ys,ya) € O(x1, 22,3, 24). Direct computation shows that

p 0 0
F(y,,y2,y3,94) =AA | 0 ¢ 0,
0 0 r
p Q14
where A = (aij)1<ii¢3, | ¢ | = A7' | aga |, and X = (pgr det A)—1/3-
r a34
In the sequel for all homogeneous spaces we write out the stiffness k, points
x1,. ..,k such that the group ﬂle G, is discrete, and the function of superposi-

tion F.

9°. G = SU(2) = { (_"Ug f)

The stiffness is k = 2.

o + 1y = 1} M = CPY 57 = {(ao s 1),

1 =(1:0), 23=(1:1)
For y; = (a: b), y2 = (c: d), we have
F(y17y2)=<f\z _A—’\;b>
where A = \/(ac + bd)/((|a]% + b]%) (ad — bc))
3°. G = SL(2,R) = { (’; f)l )2 — |y|? = 1}. M ={zeC|z| <1}.
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The action of G on M is:

<’§ g) (2) = (@2 +9) /(= +y2)).

In this case the manifold M can be identified with the Lobachevsky plane. Then
G is its group of transformations. The stiffness is £ = 2.

v1 = (0), v =(1/2)

For y1 = (a), y2 = (b), we have

Y
F(ylay2)2</\w 5\)7

where /} = \/(ab - 1)/(2(1 - |a|?)(a — b))
4°. G = SL(2,C)y. M = CP! = S%,
The stiffness is k = 3.

21=(1:0), 22=(0:1), z3=(1:1)

For y; = (a1; : a2;),1 < i < 3, we have

_ p 0
F(ylayQay3)_)‘A<0 q>>

where A = (aij)1<i,j<3 (Z(;) =A"! <Z13> , and A = (pgdet A)71/2,
23

5°. G = Aff(2,R) = GL(2,R) K R? M = R%
The stiffness is k£ = 3.
z1 = (0,0), x5 = (1,0), x5 =(0,1)
For y; = (a1i,a2i),1 <@ < 3, we have
a1z —aiy 413 — a4 ai
F =
(1,92, 9) Kam —ag1 Q23 — a21> ’ <a21 )}
6°. G = {(A,v) € Af(2,R)|det A =1}, M = R%
The stiffness is k = 3.
z1 = (0,0), 29 = (1,0), @3 = (0,1)
For y; = (a1i,a2:), 1 <1 < 3, we have
a1z —aix; a1z — a1 ari
F » Y2, = )
(1,92,95) [(6122 — Qg1 423 — a21> <a21 )]
Remark. The examples 5 and 6 are different. In the first case a condition for the
point (y1,¥2,¥s) to belong to the orbit O(x1, 22, x3) has the form:

d:det<a12_a“ a13—a11>%0_

gy — a21 (23 — (21
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In the second case this condition is d = 1.

r. G = {uneatem|a-o (P8 ) yeroepm ),
M =TR?

The stiffness is k = 2.
21 = (0,0), z2 = (1,0)

For y1 = (a,b), yo = (¢, d), we have

_ |y [ cosz —sina a
F(y1,y2) [@ <sin$ cos$)’<b>],

where y = Iny/(c—a)?2+ (d—b)? and x can be uniquely determined from the
relations:

sine =e Y(d—0b), cosz=¢e"Y(c—a).

cosz —sinz) TER, ifA>0
sine  cosz )z e[0;2n),ifA=0]’

8. & = {(A,@eAff@,R)‘A:@m(

M = R2.
The stiffness is &k = 2.
xz1 = (0,0), o = (1,0)

For y1 = (a,b), y2 = (¢, d), we have

| az [cosz —sinz a
F(y1,y2)~[8 <Sjngj cos )’(bﬂ’

where x = 1/(2)\)In((c—a)?+(d—b)?) whenever ) # 0; = can be uniquely determined
from the relations:
sine =d—b, coszx=c—a

Whenev_er A=0.

9°. G = SL(2,R), M = {((zo : 1), (W0 : y1)) € RP! x RPYzoyo + z1y1 # 0}/ ~
(see item 4.1).

The stiffness is k = 2.

T1 = ((1 : 0)7(1 : 0))7 L2 = ((1 : 1)?(1 : 0))
For y1 = ((a1 : b1),(c1 : d1)) and y2 = ((az : b2), (c2 : d2)), we have

A —pud
F(y1>y2) = ()\211 ,U,uC11> ’

where

A = £+/(crag + dibs)/((a1by — brag)(arcr 4 bidy)),

U= :I:\/(Cllbg — blag)/((clag + dlbg)(alcl + bldl)).
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APPENDIX. CLASSICAL LLIE ALGEBRAS

Here we describe classical Lie algebras, their notation, their matrix expression,
and also a unique realization.

A classical complex Lie algebra is one of the following algebras:

1. sl(n, C), the set of square matrices of order n with zero trace. The Lie algebra
sl(n,C) is simple whenever n > 2 and its dimension is equal to n® — 1.

2. s0(n,C), the set of skew-symmetric matrices of order n. Since the trace of
any skew-symmetric matrix is equal to zero, we see that so(n, C) is a subalgebra of
the Lie algebra sl(n, C). The dimension of so(n,C) is equal to n(n—1)/2. so(n,C)
is simple whenever n = 3 or n > 5. For n = 4, the following isomorphism exists:

s0(4,C) 2 50(3,C) x 50(3,C).

For n = 2, the Lie algebra so(2,C) is one-dimensional and commutative.
3. sp(2n,C), the set of square matrices X of order 2n such that the following
condition holds:
X Jp + JuX =0,

0 E,

where J,, = _E, 0

) . Direct calculations show that the Lie algebra sp(2n, C)

has the form:

{<g ﬁA)IA’B’CEg[(m@);B: ‘B,C = tC}.

Note that for any X € sp(2n,C), we have tr X = 0. Therefore sp(2n,C) is
a subalgebra of the Lie algebra sl(2n,C). The dimension of sp(2n,C) is equal
to n(2n + 1). sp(2n,C) is simple for any n > 1. The Lie algebras sp(2,C) and
51(2,C) coincide.

It should be pointed out that we have the following isomorphism:

30(3,C) =2 s1(2,C) = ap(2,C).

Classical real Lie algebras are real forms of classical complex Lie algebras.

Let us recall that there is a one-to-one correspondence between the set of real
forms of a complex Lie algebra and the set of anti-involutions of this algebra. Let
us classify (up to conjugation) all anti-involutions of classical complex Lie algebras
and the corresponding real forms.

1. Any anti-involution of the Lie algebra sl(n,C) is conjugate to one and only
one of the following anti-involutions:

(1a) X + I, (7t X)I, 4, where

E
L= ( Op _%q) and p+ q = n;

(1b) X — X;
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(lc) n =2k, X > J,XJ', where

(0 B
e (8B

The set of fixed points of the anti-involution (1a) is denoted by su(p,q) or by
su(n), if ¢ = 0. It has the form:

aea)={ (X% 1)

Y e Matpxq((C),Xl + tX1 =Xo+ tXQ =0, tr(X1 + Xg) = 0} .

Xl € g[(pv C)v X? € 9[(q, (C)a

By sl(n,R) denote the set of fixed points of the anti-involution (1b). It is the
set of all real square matrices of order n with zero trace.

By s((k,H) denote the set of fixed points of the anti-involution (Ic). It has the
form:

X Y
sl /) =9 ( 5 5 )| XY €nl(kCxRr X =0

The notation is due to the fact that this Lie algebra can be realized as the set of
square matrices of order k over H with zero trace.
2. Any anti-involution of the Lie algebra so(n,C) is conjugate to one and only
one of the following anti-involutions:
(2a) X v I, ,XI,,, where p+ q=n;
(2b) n =2k, X — JXJ1.
The set of fixed points of the anti-involution (2a) is denoted by so(p,q) or by
so(n), if ¢ =0. It has the form:

Xy Y
o) ={ (X, )| X €aem), X calaR), ¥ € Matpe,(B)

X1+ %X = Xo+ Xy =0, tr(X1 + Xs) =0}.

The set of fixed points of the anti-involution (2a) is denoted by u*(k,H) and has
the form:

wn-{(5 )

The notation is due to the fact that this Lie algebra can be realized as the set
of skew-Hermitian matrices of order k over HL
3. Any anti-involution of the Lie algebra sp(2n,C) is conjugate to one and only
one of the following anti-involutions:
(32) X = X;
(3b) X K, ,(—*X)K, 4, where

X,Y € gl(k,C); X + X =0, t?zy}.

p+¢=nand Kp,q:<17(’)’q IO )
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The set of fixed points of the anti-involution (3a) is denoted by sp(p, ¢) (note
that p+ ¢ is equal to n, not 2n) and has the form:

X1 X2 Xz Xu
KXo Xoo Xia X
—X13 Xia X —Xupo
Kiu —Xoa —Xip Xoo

X12, X14 € Mat,xo(C); X1 + X11 =" Koo + Xog = 0; X3 = X13,"Xo4 = Xo4} .

X11, X1z €gl(p, C); Xo2, Xas egl(g, C);

sp=

It is known that there exists a unique (up to isomorphism) compact real form
of a semisimple complex Lie algebra. Compact real forms of classical complex Lie
algebras are defined by the Cartan anti-involution: X + —X. They are:

sy(n) for sl(n,C); so(n) for so(n,C); sp(n) for sp(2n,C).

Let us describe the general realization of all classical (both complex and real) Lie
algebras. Suppose V is a finite-dimensional (right) vector space over the field P,
where P = R, C, or H. Fix on arbitrary basis {e1,...,e,} of V (n =dimV). We
identify endomorphisms of V' with their matrices. Then the set of all endomor-
phisms of V' can be denoted by gl(n, P). The set gl(n, P) is supplied with the
bracket operation [A, B] = AB — BA, which turns gl(n, R) (gl(n,C)) into a real
(complex) Lie algebra of dimension n?. Since the field H is not commutative, the
set gl(n,H) can be regarded only as a real Lie algebra of dimension 4n2.

We have the natural inclusion map of Lie algebras

g[(n7 R) - g[(nv C)I&

which allows to identify the set gl(n, R) with a subspace of gl(n, C). Let us construct

the inclusion map
7@ gl(n, H) — gl(2n,C).

We identify the subset {a + bi|a,b € R} of H with the field of complex numbers.
Any matrix A € gl(n,H) can be uniquely decomposed: A = X 4+ Yj, where X and

Y are complex matrices. Put
X Y

Then the map 7 is R-linear and injective. Moreover for any A, B € gl(n,H), the
following conditions hold:

1(AB) = 1m(A)7(B) and n('4) = ‘7(A).
This allows to identify the set gl(n,H) with the subset

(% 1)

X,Y € gl(n, @)}

of gl(2n,C).
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In the sequel, gl(n,R) and gl(n,H) will mean the corresponding subsets of
gl(n,C) and gl(2n, C) respectively.

Suppose P = R or C and f is a bilinear form on V. We say that a matrix
A € gl(n, P) preserves the form f, if

(1) f(Az,y) + f(z,Ay) =0 for all x,y € V.

Let G = (gij)1gi,jgn be the Gram matrix of f in the fixed basis (gi; = f(ei,e;5),
1 € 4,7 < n). Then condition (1) is equivalent to the matrix equality

tAG + GA = 0.

By Der(f) denote the set of all matrices preserving the form f. It is easily proved
that Der(f) is a Lie algebra over the field P.

The fields C and H are supplied with the operation of conjugation @ — ¥ which is
an automorphism of second order for C and an anti-automorphism of second order
for H (i.e., ab = ba for all a,b € H). This allows to consider sesquilinear forms over
C and M, i.e., additive mappings of V' x V into P such that the following condition

is satisfied:
f(za,yb) = af(x,y)b foral a,be P, z,yeV.

We say that a matrix A € gl(n, P) preserves a sesquilinear form f, if

(2) flAz,y) + f(z, Ay) =0 for all z,y € V.

It is possible to define the Gram matrix G = (gi;)1<i,j¢n for a sesquilinear form f
by means of the formula

gi; = fleiej), 1<4,5<n
Then condition (2) is equivalent to the matrix equality
*AG + GA =0.
By Der(f) denote the set of all matrices preserving the sesquilinear form f. The

set Der(f) is a Lie algebra over the field R.
Let us recall that a bilinear form f is called symmetric (skew-symmetric), if

flz,y) = fly,2) (f(z,y) = —f(y,x)) forallz,yeV.

Similarly, a sesquilinear form f is called Hermitian (skew-Hermitian), if

f,9) = F,2) (F@p) = —f3,0)) foralla,yeV.

Now show that any classical Lie algebra is either a set of matrices of trace 0 over
R, C, or H or a Lie algebra Der(f), for some nondegenerate

symmetric or skew-symmetric form f whenever P =R, C;

Hermitian or skew-Hermitian form f whenever P = C, H.
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1. P=R.

The set of real matrices of trace 0 is the classical Lie algebra s((n, R). It is a real
form of the classical complex Lie algebra sl(n,C).

Suppose f is a nondegenerate symmetric bilinear form. The Gram matrix of f
(viewed up to conjugation) has the form:

E, O _
G-( 0 —Eq>’ where p + ¢ = n.

Then Der(f) = {A € gl(n,R)| 'AG + GA = 0} is the Lie algebra so(p,q). It is a
real form of the Lie algebra so(n,C).

Suppose f is a nondegenerate symmetric bilinear form. Then n = 2k and it can
be assumed that the Gram matrix of f has the form:

(0 Eg
e=( 8 ).
Der(f) is exactly the Lie algebra sp(2k,R). It is a real form of the Lie algebra
sp(2k,C).
2. Let P =C.
The set of complex matrices of trace 0 is the classical Lie algebra sl(n, C).

Suppose f is a nondegenerate symmetric bilinear form. We obtain (up to con-
jugation) G = E,,. Then

Der(f) = {A € gl(n,C)| A+ A =0}

is the set of all skew-symmetric matrices. It is the classical Lie algebra so(n,C). If
n = 2k, there exists another matrix representation of the Lie algebra so(n,C). In

0 Ek). Then

this case it can be assumed that G =
E, 0

Der(f) :—_{(é _@A)’B+ ‘B =0, C+ 'C=0; A,B,Cegl(n,@).}

is the Lie algebra isomorphic to so(n, C).
Suppose n = 2k and f is a nondegenerate skew-symmetric bilinear form. Then

it can be assumed that
_ 0 By
G = ( oo ) |

The Lie algebra Der(f) is the classical complex Lie algebra sp(2n, C).
Now suppose [ is a nondegenerate Hermitian form. Then its Gram matrix is
reduced to the form:

_(E O —
G= ( 0 —Eq>’ where p + ¢ = n.

In this case the real Lie algebra Der(f) coincides with the real form sy(p, ¢) of the
classical complex Lie algebra s((n, C).
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Suppose f is a nondegenerate skew-Hermitian form. Then the sesquilinear form g
defined by
9(z,y) =if(z,y) forala,yeV

is Hermitian. It is easily proved that Der(f) = Der(g). Thus Lie algebras preserving
skew-Hermitian forms and Lie algebras preserving Hermitian forms coincide (over
the field C.)

3. Now let P =M.
The set of all quaternion matrices of trace 0 is a real Lie algebra sl(n, H) which is
a real form of the classical complex Lie algebra s((2n, C).

Suppose f is the Hermitian form with the Gram matrix

_(E, 0
(% &)

Der(f) = { A € gl(n,H)| AG + GA = 0}.

Consider the real Lie algebra

Direct calculations show that Der(f) is the Lie algebra sp(p, ¢), that is a real form
of the complex Lie algebra sp(2n, C).

Finally, suppose f is the skew-Hermitian form with the Gram matrix G = jE,.
Then Der(f) is the real Lie algebra u*(n,H) which is a real form of the classical
complex Lie algebra so(2n,C).

TABLES

In tables below we list complex and real almost primitive pairs (g, g), where g is
simple and g is a reductive subalgebra of g. When g is a classical Lie algebra the
results are written in classical notation. (See Appendix).

In the column ”1” we put the algebra g and the subalgebra g of g.

In the column "2” we put ”++", ”+”, or "7, if the pair (g, g) is maximal,
primitive but not maximal, or almost primitive but not primitive respectively.

We say that two subalgebras g1 and go of a Lie algebra g are equivalent (con-
jugate), if there exists an automorphism (inner automorphism) f of g, such that
f(g1) = g2. The algebras listed in the tables are classified up to equivalence.

Every class of equivalent subalgebras can be divided into a number of classes of
conjugate subalgebras. In the column ”3” we put the number of these classes.
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Table 1. Complex almost primitive classical pairs
1 2

(1a)! slin+m,C) sl(n,C)@sl(m,C)a C Z#ZLL T

(2a)|  si(nr,C) _élgr(n, C)eC! +

(3a)|  s0(2n,C) gl(n, C) K nise

(3a)]  sp(2n,C) gl(n, C) +

(4a)} so(n+2,C) so(n,C)s C +

(52){  s0(2n,C) cn +

(1b)| so(n+m,C) s50(n,C) & s0(m,C) ++

(1b)|sp(2(n +m),C) sp(2n,C) @ sp(2m, C) ++

@) so(nr,C) éso(n, C) +

(2b)|  sp(2rn, C) él sp(2n,C) +

(1e)| sl(nm,C) sl(n,C) @ sl(m,C) ++

(2¢)|  si(n7,C) él sl(n, C) +
n#m

(3¢)| so(nm,C) s0(n,C) @ s0(m,C) +Hn=m
n#m

(3c)| so(4nm,C) sp(2n, C) & sp(2m,C) ++| P Z

(3¢)| sp(2nm,C) 5p(2n,C) & sp(m, C) ++

(4c)|  so(4n,C) 5p(2,C) @ sp(2,C) & s0(n,C) nisodd: -

(4c)|  sp(8m,C) sp(2n, C)dsp(2,C) dsp(2,C) +

(5¢)|  so(n7,C) é s0(n,C) +

5 o2n)2rtl C QTH« om. C r=np=1++
(5¢)|sp((2n)>+,C) z~1 sp(2n, C) r>lorn>1:+
2r
(5¢)| so((2n)*",C) & sp(2n,C) +
g is a classical is an 111educlble
(d1) iie algebra gubalgebla of g
(d2)| s0(495,C) s0{12,C)
Remarks.

(1) In irreducible case (d1) we assume that the pair (§, g) is not one of the 19

(2) Conditions on the parameters n, m, r are the same as in Lemmas 1-4

exeptions determined by Dynkin [6].

(section 2.1).
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Table 2. Complex almost primitive exceptional pairs
1 2 3
A+ Ay ++ 1
G Ag ++ 1
A} ++ 1
By ++ 1
A1+ Cs ++ 1
As+ Ay ++ 1
F Dy -+ 1
AfE ++ 1
Gl + A% 4 1
Dy + C? + 1
Ds+C - 1
(o + 1
A+ A5 ++ 1
Ay +As + As ++ 1
Eg & ++ 2
C} ++ 1
Gl + A3 ot 1
F} ++ 1
A3 ++ 2
E¢+C + 1
c’ + 1
Ar 4+ 1
A+ Ds ++ 1
Ay + As ++ 1
TA, + 1
Dy+ AL+ A+ Ay + 1
Ey A3 ++ 1
APt ++ 1
Gi+ Gy ++ 1
F} + AY ++ 1
G} + A ++ 1
A# ++ 1
AP+ AP ++ 1
D? + 1
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Table 2. (continued)

2 3

c® + 1

Dg ++ 1

Er+ Ay ++ 1
As+ Ay ++ 1
As ++ 1
Eg+ A ++ 1
Dy + Dy + 1
Ly 84 + 1
449 + 1
AP ++ 1
AT0 ++ 1
A§20 ++ 1

Gl + F} ++ 1
Af + A}° ++ 1
B}? ++ 1
Gi+ Gy + A% + 1
Af° + 1

Aq + C? — 1
A3+ C 0 3

ct + 1

Dy 44, ++ 1
B3 ++ 3

A? + B} ++ 3
A3 ++ 1

G - 1
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Table 3. Real almost primitive classical pairs

1 2 3

ny +my ;nz +ma,

. , . . , ny,my) # (na, ma),
au(nl + my, 1y +m2) 4u(711,n2)@au(m1,ln2)@rm ++ Enl,mlg 7é §m2,n2; -9

otherwise: 1
su(n,n) sl(n,C)3 O R ngmio 1
sl(n+m, R) sl(n,R) @ sl(m,R)@R | PZMi~ 1
sl(n +m,H) sl(n,H) ® sl(m,H) & R ++ 1
s1(2n, R) sl(n,Clp® T ++ nis 8‘&%?
5l(n, H) si(n,Clg® T ++ 1
su(r(n —t),rt) _e’élsu(n —tt)@ T + 1
-
sl(rn, R) .élsl(n, R)@ R™! + 1
==
s((rn, H) 'Tls[(n, H) @ R n 1
i=
sp(t,n —1t) su(t,n—t)d T ++ 1
sp(2n, R) su(t,n—t) T ++ 1
sp(n,n) slin,H)o R + 1
5p(2n, R) al(n, R) + 1
nisodd, t=0:1
50(2¢,2(n — 1)) su(t,n—t)® T ++ ?;Z%d, t4a1'e even,
otherwise: 2

w*(n, H) sult,n—t) T 4 1
n is even: — n is even: 2
so(n,n) gl(n, R) nis odd : + nisodd:1
u*(2n, H) sliin,H)® R + 1
so(t +2,n —1t) so(t,n—1)®T ++ Z;ggi}%%
so(t+1,n—1+1) so(t,n—t}® R + 1
w*(n -+ 1,H) u*(n,H)e T ++ 1
s0(2n,R) ™ + 1
so(n,n) R™ + 1

1+ my = Ny + My,
sp(ny +mi,my +ma)|  8p(ng, ng) @ sp(my, ma) ++ éZi’ zig fé 8;122’ Tég’: 2

otherwise: 1
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Table 3. (continued)

n#.m,s:t:?)ﬂ
otherwise: 4

1 2 3
sp(2(n+m),R) sp(2n, R) @ sp(2m, R) |4+ 1
sp(n,n) sp(n, C)ln ++ 1
sp(2n, R) sp(n, C)n ++ 1
ny +my = ng +my,
s0(ny +m, ng + m2) s0(n1,ng) ® s0(m1, mse) |++ (n1,m1) # (ng,ma) : 2
otherwise: 1
u*(n + m, H) u*(n,H) @ u*(m,H) |[++ 1
solm ) o C |+t n B o
u*(n, H) so(n, C)g ++ 1
sp(rt, r(n —t)) él sp(t,n —t) + 1
sp(2nr, R) 'é1 s5p(2n, R) + 1
i=
so(rn,r(n —1)) él so(t,n —1) -+ 1
f==
u*(rn, H) él u*(n, H) + 1
=
su(tm + sn — 2st, mn — tm — sn -} 2st) su(t,n —t) ® su(s,m — s)|++ 1
sl(nm, H) sl(n,R) & sl(m,H) ++ 1
n oor mis odd: 1
sli(nm, R) sl(n, R) & sl(m,R) ++ n=m=4k+2:1
otherwise: 2
sl{dnm, R) sl(n,H) @ sl(m,H)  [++ gt}?emrize?g +1:1
su(n(n+1)/2,n(n —1)/2) I(n,C) ++ 1
sl(n?,R) sl(n, C) N ig even: %
su "r+(’§“2t)r, ”"(’;”2”) él su(t,n —t) + 1
f=
2r+1
(22 n2+1 H) @ sl(n, H) + 1
i=1
s((2n?", R) EB sl(n, H) + 2
1,:
sl(n”, R) iials[(n, IR) T ig even: %
u*(2nm, H) sp(2n,R) & sp(s,m —s) |++ 1
n=m=2k+1:1
su(dnm) s5p(2n, R) ® sp(2m,R) |+ n # m, n,m are odd: 2
otherwise: 4
n=m=2k+1,s=t=0:1
n=m=2k+1,s=t#0;
su(dns + 4mt — 8st, dnm — dns — dmt + 8st)| sp(t,n —1) ® sp(s,m — s)|++|n=m = 2k, s =1 = 0;
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Table 3. (continued)

1

su(2n? —n, 2n? + n)

5p(2n, Cc )K\

++

sp(nstmi-2st, nm—ns—mi42st)

sp(t,n —1) ® so(s,m — s)

++

sp(4nm,R)

sp(t,n —1) @ sl(m,H)

++

5p(2nm, R)

sp(2n,R) @ so(s,m — s)

++

sp(4nm)

5p(2n, R) & sl(m, H)

++

Pt ] et | et b [ BOH

so(ns+mit—2st, nm—ns—mi+2st)

so0(t,n —t) @ so(s, m — s)

++

n and m are odd: 1
nm is even,
n+ m is odd,
t=s=0o0rts#0:1
n=m= 4k+2
s=1t=0;

n=m= 4k+2
s=1=2[+1:1

nm is even,

n + m is odd,

s=1= 2l + 1:2
otherwise: 4

w*(nm, H) u*(n, H) @ so(s, m — s) ++ 1
n=m=2k+1:1
so(4nm) u*(n, H)) @ u*(m, H) ++ Z fz”;;e odd: 2
otherwise: 4
_n(nl) n(n—1) - n—4k+2:1
so(=5=, =5 ) so(n, C)x ++ otherwise: 2
) . nisodd, t=0:1
so0(4t,4(n — 1)) su(2) @ su(2) ® so(t,n —1) gtﬁggvtiszle even.: t n and t are even: 4

otherwise

s0(4n)

sl(2,R) & sl(2,R) ® so(t,n —t)

n and ¢ are even: +
otherwise: —

nis odd: 1
n and ¢ are even: 4
otherwise: 2

so(n -+ 2t, 3n — 2t) 5p(2,C)g ® s0(t,n —t) ++ nisodd : ]
u*(4n, H) 5p(2,C g @ u*(n,H) ++ 1
u*(4dn, H) su(2) @ su(2) ® u*(n,H) + 1
u*(4n, H) sl(2,R) @ s1(2,R) ® u*(n, H) + 1
sp(4t,4(n —t)) su(2) @ su(2) @ sp(t,n—1t) + 1
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Table 3. (continued)

1 2 3
5p(8n, R) su(2) @ su(2) ® sp(2n,R) + 1
sp(4n) sI(2,R) @ sl(2,R) @ sp(t,n—1) | + 1
sp(8n, R) s1(2,R) @ sl(2, R) @ sp(2n, R) + 1
sp(n+ 2, 3n — 2t) 5p(2,C ) @ sp(t,n —1t) ++ 1
5p(8n, R) 5p(2,C)p @ sp(2n,R) ++ 1
sp(4) su(2) @ su(2) @ su(2) ++ 1
s5p(8,R) s1(2,R) @ su(2) ® su(2) ++ 1
sp(2,2) sI(2,R) @ sl(2,R) & su(2) ++ 1
sp(8,R) sl(2,R) @ sl(2,R) ®sl(2,R)  |++ 1
5p(3,1) su(2) @ sp(2,C)p ++ 1
sp(8,R) sI(2,R) ®5p(2,C)m ++ 1
50(16) 45u(2) + 2
50(8,8) su(2) @ su(2) & sl(2,R) @ sl(2,R)| + 4
50(8, 8) 4512, R) T 4
s0(12,4) su(2) ®su(2) dsp(2,C)x - 2
50(8, 8) S(ZR) @sl(2R)®sp(2,Cln | — 2
50(10,6) 5p(2,C)p ®9p(2,C)n ++ 2
50(2°27) j1 su(2) + 2
2r
s0(2%7—1 22r—1) ‘@15[(2, R) + 4
s0(22r—1 4. gr—1 92r—1 _ gr—1) élsp(Z, C)n “+ 1
2r+1
sp(2°7) @ su(2) + 1
2r+1
sp(22 1, R) 'Egl sI(2,R) n 1
§p(22r(n2r+1+(n__2t)2r+1), 92r (712r+1——(n——2t)2r+1)) leﬁp(t, n— t) + 1
=1
2r4+1
sp((2n)? 1 R) & sp(2n, R) + 1
D10 27 (1 O4\2TY O2r—1( 27 (0 04\2r r _ t=0:2
50(27 1 (2 (n—2t)%7), 271 (n*"—(n—2t)°")) @ sp(t,n —t) Tt £0:14
2r
s0(22r~1n2r 22r—1p2r) @ 5p(2n, ) + 4
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Table 3. (continued)

1 2 3
n is odd: lt 0:92
) I . niseven,t=0:
go(REO2)" w0y | g so(t,n—t) | + | n=dk+2, =3,
i=1 tisodd: 2
otherwise: 4
2
50(221'—1”27“, 22r~1n2r) é u* (n, H) + 4
i=1
2r41
W (22rn2rH H) 251 w(n,H) | + 1
2r+1
u*(227‘n2r+1,H) o) *(n,]HI) + 1
i=1

Conditions on parameters in the real case are consistent with those in the com-
plex case.
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Table 3'. Irreducible case
Here we list all symmetric pairs corresponding to all almost primitive real forms
of the complex primitive pair Dg C Bayy (see Lemma 4, section 2.2).

1 2 3

Baar(Baar) De(Ds) + 1
Bysr (D130 + Biar) De(Ds +C) + 2
Bos7(D198 + Biig) De(Ds + A1 + Ay) + 2
Boyr(D1go + Biar) Dg(As + As) + 2
Bayr(D1es + Bsa) Dg(Bs) ++ 2
Bosr(D117 + Biso) De(Bys + Ar) ++ 2
Basr(D1gs + Biaa) Dg(Bs + Bs) ++ 2
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In tables 4-62 we list all real almost primitive pairs (g, g), where g is a simple
exceptional Lie algebra and g is a reductive subalgebra of g. Such pair (g, g) is
uniquely defined by an involution @ of the complex Lie algebra p = ¢ such that
6(p) = p, where p = g€. Further for any complex almost primitive pair (p,p) all its
real forms are indicated in the following way:

first we indicate the involution 8 of p;

then in parentheses for the algebras p and p we indicate the subalgebras of fixed
points for § and 8], respectively;

and finally we indicate the type of the obtained real pair.

Before a table we describe the indexing of the base roots for p and p. If p is
regular, then it is shown how the Dynkin diagram of p is embedded into that of p.

We assume that a certain Chevalley system (Xo),cp is fixed for p. Here R is
the set of all roots of p. In addition, for any a € R, slo-triple (X_q, Ha, Xo) is
defined.

If p is a subalgebra of maximal rank, we assume that its Chevalley system is
imbedded into that of p. Otherwise by & and o we denote roots of p and p re-
spectively. In addition, by &; or «; we denote the base roots of the root system of
p or p according to the indexing of the Dynkin diagram vertices. For the sake of
simplicity we put

Hz' = H&i, H; = Ham

Xiiigip = [X:l:aily ['~~,Xd:aik] }

for all 4,41,...,% € N such that the corresponding vertices of the Dynkin diagram
exist.
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Table 4. A1 + A; C Gy

O+0 <«
oy, O o 0, 04
1 2 2
GQ(GQ) D A1(A1) + AI(AI)
0=1Id o :
GQ(Al +A1) DAl(A1)+A1(A1) T+ 1
f = expadnv/—1Hy
Ga(Ar + A1) D Ai(Ar) + A1(Ar) 4+ 1
6 = expad m/—1(H; + Hyp)

Table 5. A9 C Gy

O+0 <
o, 0O o, O, O,

Let ¢ be an automorphism of the Lie algebra p such that p(X3) = Xo, p(Xo) =
X

1 2 3
GQ(GQ) D Az(A?)
0 =1d
Go(Ar + A1) D Az(A1 +C)

++ 1

0 = expad mv/—1(Hy + Hy) A '
gi(EQ -+ GQ) D AQ(AI) 4t 1
=
Table 6. A2 C Gy
0 = XD
o, o, O,
1 2 3
G9(G2) D Ai(4Ay)
g 1d i '
Go(Ar + A1) D A4(C) e 1
6 =expadmy/—1H;
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Table 7. B4 C Fy

[t

O, o, 0, 0y 0O, 0O, O, O0; O,

1 2

F4(F4) D) B4(B4) +

0= Id +
Fy(By) D B4(B4) 4
0 = expadmv/—1(2Hy + 2H1 + 2H, + H3)
Fy(Cs+ A1) D Ba(By + Ay + Ay) T
0 = expadm/—1(Hy -+ 2Hy + 2H, + H3)
Fy(Bs) D B4(D4) o
0

= expadmy/— H0+2H1 -|—3H2+2H3)

Table 8. Ca+ A1 C Fy

O +050—0 <

o O, Oy Oy O, O, 0, Oy 0O

2
Fy(Fy) D A1(A1) + C3(Cs) 4t
0=1Id
Fi(Ay + C3) D C3(C3) + A1(Ar) o
6 = expadmy/—1Hp
F4(B4) D CB(CQ +A1) + Al( 1) ++
0 = expad mv/—1(2H + 2H3 + Hy)
F4(C'3+A1) D C3(Cy + A1) + A1(41) RS
f = exp ad v/ — (Ho +2Hq +2H3 + H4)
F4(C:3+A1) 303(142 +C)+A1( ) 4t

0 = expadny/—1(3Ho+ §Hy + Hz + 3 +Hy)
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Table 9. Ay + Ay C Fy

O—0+0—10
o, O O3 O, 0Oy O, O, Oy 0Oy

For any root a of the Lie algebra p we can construct the automorphism

0,(t) = expadtX,expadt ' X_,expadtXg,

where t € C*. Put @ = a + a9 + 203 and 8 = ay + as + a3 + a4. Consider the
automorphism ¢ defined by

@ = expadmyv/—1( H1—i— H2+ Hg) o (1)05(—1).

1 2 3
Fy(Fy) D Az(Az) + As(A9) it 1
6 =1d
Fy(Cs + Ay) D Ag(Ag) + As(A1+C) i 1
6 = expadn/—1(Ho + H1)
Fy(Ba) D Ag(Ag) + A2(A; +C) T+ 1
8 = expad my/—1(Hs + Hy)
Fy(Cs+ A1) D Ag(Ar +C) + Ay(A1 + C) y 1
6 =expadny/—1(Ho + Hy + Hs -+ Hy)
Fy(Cs + A1) D Az(A1) + Az(4Ay) et 1
0=y
Table 10. Dy C Fy
%< o—0—arD-—0
o, O, a, o, o, 0, 0,
o,
1 3
Fy(Fy) D Dy(Dy)
9= 1d * '
Fi(Cs+ A1) D Ag(Ar + A1+ AL+ Ay) n 1
0 = expadwy/—1(Hy +2Hy + Hs + Hy)
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Table 11. A% + G4 C Fy

0+ E&ED « 0—0—C 00

o, o, o, @& 0, 8, 0, 0,
1 2
Fy(Fy) D A1(A1) + Ga(Ga) e

0=1d

Fy(B4) D A1(C) + G2(Ga)

# = expadny/—1Hp o
Fy(Cs+ A1) D Ga(Ar + A1) + A1 (4s) 44
0 = expad my/—1(2H; + 3H>)

Fy(Cs + A1) D A1(C) + Ga(Ar + Av) 4
0 = exp adm/—l(%Ho + 2H, + 3Hy)

Table 12. Al®® C Fy

A1(Ar) D Fy(Fy)
g =1d

A1(C) D Fy(A1 + Cs) 4t
6 = expad %m/—lHl
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Let § be the automorphism of the Lie algebra D4 which acts on the Dynkin

diagram in the following way:
Oy
=)

o,

There exists an automorphism ¢ of the Lie algebra D4 which acts on the extended
Dynkin diagram in the following way:

Table 13. A3+ C C Dy

C + 0—0—0 e O (653
o O O, o,
o, O,
1 2 3
gi(lj);) D A3(A3)+C(C) St 3
Dy(As+C) D As(As) +C(C) i 1
= expadmy/—1(3H; — $Ho)
D4(A3+<C)3A3(A2+(C)+(C((C) Tt 1
0 = expadny/—1(3Hs — $Ho)
D4(4A1) D As(4; + 41 +C) +C(C) Tt 6
# =expadny/—1Hg
D4(A3+C)DAs(A1+A1+(C)+<C((C) + 1
0 = expadny/—1(3Ho + $ H1)
0@4(?3) D A3(B2)+C((C) 4+ 1
Dy(Ba+ A1) D AS(BQ) + c(C) e+ 1
0 =6oexpadmy/— Ho+ lHl)
D4(By + Ay) 3A3(A1+A1)+(C((C) 44 1
@ =6oexpadny/—1H
Dy4(As+C) D As(B2) +C(0) + 1
§=
D4(4A1) DAg(A1+A1)+C( ) + 3
8 = poexpadmy/—1Hy
124(33) D) A3(A3) +C (0) + 1
0=pod
Dy(By + A1) D A3(Ay + A1 +C) +C(0) n 1
0 =ypoboexpadmy/~1Hy
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Table 14. Ay +C?2 C Dy

2
C+ro—o0 =™ O
al (xz U,z

Ol o,

Let ¢ be an automorphism of the Lie algebra p such that ¥ (X,)
roots c.

= X_, for all

1 2

3

D4(Ds) D As(A2) +C*(C?)
0= 1d

1

D4(4A1) D Ay(A; +C) +C*(C?)
0 =expadn/—1(Hy + Hy)

D4(441) D As(A1) + C2(0)
0=

Table 15. C* ¢ Dy

C“ = O O

oA
O, o,

1

Dy(Dyg) D CHCH) n
g =1Id

Dy(441) D CH(CY)
0 = expad 2ry/=1($Hy + Hy + $Hs + $ Hy)
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Table 16. 44, C Dy

o, O
0+0+0+0 <=
O, O, 0 0, 0,
Ol o,
1 2
D4(D4) D 4A1(A1)
0= Id A
_D4(4A1) D] 4A1(A1) ot
8 =expadny/—1Hy
Da(As +C) D 24;(A1) 4 244(C) .
0 = expadmy/—1($Hs + $ Hy)
p4(4A1) > 4A1(C) ++
= expadmy/—1(3Ho+ $Hy + S Hs + 3 Hy)
D4(B3) D 241 (A1) + (A1 + A1) (A1) ot
0 =26
Dy(By + Ay) D 24A1(A1) + (A1 + A1) (Ay) Tt
6 =6 oexpadmy/—1Hy
Dy(By + A1) D A(C) + A1(C) + (A1 + A1) (441) ot
0 =6oexpadny/=1($Ho + 1+ Hy)
Dy(A3+C) D (A1 + A1)(A1) + (A1 + A)(Ar) o
8=
Dy(441) D (A1 + A1) (A1) + (A1 + A1) (Ar) r

0 = poexpadmy/—1Hp
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Table 17. Bi + A% C Dy

o:qﬁo+o<:°‘1 o

o, Oy O,

I

D4(D4) D By(Bs) + A1(41)

g 1d i
D4(BQ+A1) D BQ(BQ)‘|'A1(A1) 4t
0 = poexpadmy/—1(Hy + Hy)
Dy(A3+C) DBQ(A1+(C)+A1(A1) T
0 = expadmy/—1 1H0+H1)
D4(Bs + A1) D Ba(A1 +C) + A1 (Ay) i
0 = ¢poexpadmy/—1(3Ho+ 2H))
D4(441) D Ba(A4 +C) + Al((c) i
0 =expadmy/— ( Ho+Hi + = Hg)
D4(Bz+A)DBz(A1+(C)+A1(C) T
0 =ypoexpadmy/— Ho+2H1+ L Hs)
D4(441) D B2(A1 + A1) + A1(Ar) o
0 = expad wy/—1(Ho + Hy)
Dy(Bs) D Ba(A, +A1) + Ay (Ay) T
8 = poexpadmy/—1(2Hy + 2H1)
D4(A3+C)DBz(A1+A1)+A1( ) ++
0 = expadmy/~1(Hy + Hy + Hg)
D4(Bg + A1) D Bz(Ar + A1) + A1(C) 4t
0 = poexpadny/—1(2Hy + 2H; + 1Hg)
D4(A3+C) D By(Bg) + Ay1(C) S
0 = expad $m/~1H3
B A
D4(B3) ) B?( 2) + (C) 4+

§ = poexpadny/—1(Ho + Hi -+ 3 Hs)
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Table 18. Bi C Dy

A 0,
o, 0, O 0,
g, 0,
1 2
D4(D4) D B3(Bg)
G- Id +H
54(1;3) D Bs(Bs) 4
D4(As+C) D Bs(By + C) .
0 = expadmy/—1(H; + Hy + £ Hs)
Dy(Bs +41) D Bs(Bz +C) ot
0 =6oexpadny/—1(Hy + Hy + H3)
D4(441) D Ba(Ar + Ay + A1) ot
6 = expad m/—1(H; + 2H, + Hs)
D4(By + A1) D Ba(A1 + A1 + Ay) o
0 = 6oexpadmy/—1(H; +2Hy + Hs)
D4(C + A3) D Ba(A3) 4t
0 = expadmy/—1(H; +2Hy + H3)
Dy(B Bs(A
4(B3) D Bz(As) et

6 =6oexpadmy/—1(Hy+ 2Hy + 3H3)

Table 19. A3 C Dy

O—0 < !
Oy Oy A

Put ¢ = exp —2—1-‘3/—:——1 Let 9 be an automorphism of the Lie algebra p such that

P(X1) = [Xo, Xu), ¥(X2) = —X o,
P(X3) = €[ Xa, Xa], $(X4) = €[Xa, X3].

It is easy to see that % is an automorphism of second order.

6=y

1 2

D4(D4) D As(Ag)

G- 1d i
D4(4A1) o AQ(AI + (C) ++
0 = expad my/—1(Hp)
94(B2 -+ Al) ) Az(Al) ++




Table 20. G3 C Dy

o < 0, U
al (X’Z (_iZ
0, 0,
1 2 3
D4(D4) O Go(Go) _ 1

0=1d
94(4/11) D] GQ(A1 + Al)
6 =expadmy/—1(Hy + 2Hs)
Let ¢ be an automorphism of the Lie algebra Eg which acts on the Dynkin diagram
in the following way:

— 1

o, o, |0, 0 O
o,

Table 21. Dy + C2% C Eg

c + Os =
oy Oy o, 0, [0,0; O

o, 0.,
(x()

Let 1 be an automorphism of the Lie algebra p such that ¥(X,) = X_,, for all
roots a and f = 9| .. It is clear that f = expadh for some h € [p,p] such that
f(h) = h and (expad h)? = Id;. Put £ = ¢ oexpadh.

1 2 3

Eg(Fs) D C*(C?) + D4(Da) + 1
0=1Id

Ee(Es + A1) D C*(C?) + D4(441)

0 =expadwy/—1(Hy + 2H, + Hs + Hy) + L
Es(C4) D C*(0) + Da(44y) + 1
Eg(Fs) D C*(0)+ D4(Dy) . 1

0=¢
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Table 22. D5+ C C Eg

C+ Os [
Oy O, Oy o, o, [0,0, o

Ol

O,

Ol
1 2
Es(FEg) D C(C)+ Ds(Ds)
f=1Id ++
EG(DS +(C) DC(C)+D5(D5) T
0= expadﬂ'\/—l(2H1 + Hz — Hg — 2H5)
E¢(Ds +C) D C(C)+ Ds(Ds+C) it
6 = expadmy/—1(Hq+ Hs + 2H, + 2Hg + 2Hjg)
EG(A5 + A1) DC(C) + Ds(As + A1 + Ay) T
0 =expadny/—1(H;y + Hs + Hy + Hs + Hg)
Eg(As + A1) DC(C) + Ds(As +C) i
6 = expad wy/—1(Hg)
Eg(D5+(C)DC(C)+D5(A4+C) St

0 = expadn/—1(2H; + Hs — Hs — Hs)

Eg(Fy) D C(0) + Ds(Ba)
0=

EG(C‘O ) (C(O) -+ D5(B2 -+ Bg)
6 = (poexpadvr\/——l(Hl + Hs -+ Hy + Hs +H5)

Table 23. C® c Fg

o—O0—0—0—0
o, 0, | 0,0, O
o,

Oy

c'=

1 2

Eg(Eg) D C(C®) n
§=1Id

Eg(Fy) > C®(0)
0=¢
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Table 24. A5 + A1 C Eg

O+O—O—O—O—Oc
O, O, O, O, O O O O] 0,05 O

O,
O
1 2
Eg(Eg) D A1(A1) + As(A4s) St
8=1d
Ee(A1 + As) D A1(Ar) + As(As) iy
8 =expadnyv—1Hp
gez(lj’}) D Ai(Ay) + As(Cs) Tt
Eg(Ca) D A1(A1) + As(C3) Tt
0 =¢oexpadny/~1Hg
Ees(As + A1) D A1(Ar) + As(Ar + A3+ C) iy
0 =expadn/—1(Hy + Hs + Hy + Hs + Hg)
Eg(Ds +C) D A1(A1) + As(A1 + A3 + C) iy
0= expa,dm/ —1(H0 +Hy+ Hy+Hs+ Hy+ Hs + HG)
E@(D5+C)DA1(C)+A5(A4+C) =+
= exp adﬂ”\/—l(-é—Ho + %Hl -+ %Hg + %—H4 + -31-H5 + %Hs)
Eg(As + A1) D A1(C) + As(A2 + 42+ C) i
0 =expadmy/—1(3Ho + +Hy + Hs + 3Hy + Hs + $He)
Eg(Cy) D A1(C) + As(As) 4t

0 =gpoexpadmy/—1(3Ho + 4 Hy + Hs + 3 Hy + Hs + 3 H)
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Table 25. Ay + As + Ay C Eg

O0—0 + 0—0 + 00 = O—0—0—0°0
o, 0 O

o, 0, O, O, O, O, 0, aai

There exists an automorphism & such that 62 = I'd and

a,
Ol

8(X1) = Xs, 8(Xa) = Xo, 6(Xs) = Xe, 6(X4) = Xu,

6(Xs) = X1, 6(Xe) = X3, 6(Xo) = Xa.

1 2
Eﬁ(EG) D) 3A2(A2)
G- 1d H
Eg(As + A1) D 242(Ag) + Az(A1 +C) ot
0 = expadmwy/—1(Ho + Ha)
Eg(Ds + C) D 242(A1 + C) + Az(Ay) St
0 =expad mv/~1(Hy + Hs + Hg + Hs)
Ee(As*l-Al) D 349(A1 4+ C) et
0= expadw\/—l(Hl + Hs + Hg + Hy +HO+H2)
E6(Fy) D (Az + A2)(Ag) + Az(Az) ot
=9y
Eg(Cq) D (Ag + Ag)(A2) + Aa(A1 +C) it
f = poexpadnv/—1(Hp)
Eg(As + A1) D (Az + A2)(A2) + Aa(Ar) Tt
0=2¢6
Eg(Cy) D Az(A1) + Ag(Ar) + Ag(Ar) T
f=pobd
Table 26. G5 C Eg
[emng
o, o, 0O, 0, |00 0,
[
1 2 3
EG(EG) D GQ(GQ) )
6—Id A
Ee(A1+ As) D Ga(Ar + A1) o 9

0 = expadmv/—1(2Hy + 3H,)
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Table 27. C} C Eg

0—0—aLD < -
o, 0, O, o, O Oy |0, 0T O

4 O O
O,
1 2 3
EG(EG) D] C4(C4)
§ = Id e !
E6(04) ) 04(04) .t 1
6 = poexpadmy/—1(Hp + Hy + Hs + Hy)
EG(AE, +A1) ) C4(A3+C) Tt 1
9—expad7rv H0+H1+ H3+2H4)
Es(Cy) D Ca(As -HC) i ;
0 =poexpadny/—1 H0—|—2H1+5H3+3H4)
FEe(As + A1) D C4(C'3+A1) 4t 1
0 = expadmy/—1(Hy + Hy + Hy + Hy)
E5(F4) D Cy(Cs + Al) 4t 1
6 = poexpadmy/~1(2Hy + 2H; + 2Hs + 2Hy)
Es(Ds-f-C) D C'4(02 +C2) 4t 1
6 = expadmv/—1(Ho +2H, + 2Hs + 2H,)
EG(C4) D) 04(02 -+ CQ) et 1
§ = <poexpad7r\/ (2H0+3H1 +3H3+3H4)
Table 28. G1 + A" C Es
L0 + 00 =
o, 0, O, O, 0O, O, |00 0,
0,
Let 6 be an automorphism of the Lie algebra p such that §(X;) = X_;, 1 <1 <
1 2 3
Es(Eg) D G2(Ga) + As(4s)
0 Id ++ 1
Eg(A1+ As) D Ga(Ar + Ar) + Az(A) tr 1
§ = expad mv/—1(2H, + 3H,)
Eg(Ds + C) D Go(Ga) + Ag(A1 +C) S 1
0 = expad wy/—1(Hs + Hy)
Eg (A1+A5)DGQ(A1+A1)+A2(A1+(C) i ]
O—expad ST — 2H1+3H2+H3+H4)
EG(Fti) o G?(GQ) + A (A4y) 44+ 1
8=
Eg(Cq) D Go( A1 + A1) + Ag(4A1) St 1

=26
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Table 29. F} C Es

[ang
o, 0, o, 0, O, 0, |00, O,
o,
1 2
Eg(Eg) D Fy(Fy)
§—1d H
EG(F‘i) D) F4(F4) Tt
0=
E6(D5 + (C) D) F4(B4) Tt
0 =expadw/—1(2H; + 3Hs + 4H; + 2Hy)
EG(F4) D) F4(B4) r
0 =ypoexpadny/—1(2H| + 3Hs +4H, + 2H>)
Es(As -+ Al) D) F4(Cg + Al) r
6 = expadwyv/ —1(H; + 2H3 + 3Hs + 2H>)
Eg(Cy) D Fy(C3 + Av) T
6 =qpoexpadny/—1(H; + 2Hs +3H4 + 2H>)

Table 30. A5 C Fs

O—0 < —
o, o, O, O, |0, 0 0O
o,

Let 6 be an automorphism of the Lie algebra p such that 62 = Id and
(X)) =X ¢, 6(Xo)=X_9, §(X3)=X_s,

§(X4) = X_4, 6(Xs) = X_s, 6(Xg) = X_1.

1 2 3

Eg(Es) D Az(As) 2
§— Id +F

Eg(A1 + As) D Aa(A1 +C)

6 = expadwy/—1(H; + Ha) o 2

Eg(A1 + As) D As(4y) 4 2
=56

55




There exists an automorphism ¢ of the Lie algebra FE; which acts on the extended
Dynkin diagram in the following way:

Table 31. C7 C E,

C'=
o, o, O, [O,0; 0 O,

O,
1 2 3
C'(C") C Er(EBr) I
0=1d
(? (0 )+E6(E6)CE7(E6+(C) I
0 =expadny/— (2H1+ H2+4H3+6H4+9H5+3IJ6+3H7)

Table 32. C + E¢ C Ex

C + [
o, o, |00, 0 O, o, 0 [0, 0 0, O,
(XZ aZ

1 2 3
C(C) + Bs(Fe) C Br(Br) ;
d=1d =
C(C)+E6(E6)CE7(E6+C) ]t
G—expadm/ (H1—|— H2+2H3+3H4+5H5+2H6+ H7)
((_I(C)+E6(D5+(C)CE7(D6+A1) I
6 = expadw/—1(2H; + 2H -+ 3H3 + 4H; + 3Hs + 2Hg)
C(C)+E6(D5+C)CE7(E6—I—(C) .
O—expadwv (3H1+ +Ho+5Hs+7H, + 11H5 +4Hg + H7)
C(C) + Be(As + A1) C Er(Ds+ Ay) I
0 = expadwy/—1(Hy + 2Hy + 2H3 + 3Hs + 2Hs + Hs)
C(C)+ Ee(As + A1) C Er(Ar) wr |
0 = expadmy/—1(2H; + Hy +4Hs + 6 Hy + 3Hs + 3Hg + 3 Hy)
Q;(O)*‘“EG(F,;) C E7(E6+C) + 11
0=
C(0) + Es(Cs) C E?(A-r) I
0 = poexpadmy/ — (H1+2HQ+2H3+3H4+2H5+H6)
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Table 33. A7 C Er

Oy O O, O, O OO, Oy O O, |00 O 0,

o,

1 2
A7(A7) C E7(E7)
0= Id o
A7(A7) C E7(A7) ++
0 = expadnv/—~1(LHo + 3H; + $Hs + Hy + 3Hs + 3 He + 1 Hy)
A:(Cy) C Br(Bs 1 C) T
0=
A7(C4) C E7(A7) ++
0 =ypoexpadny—1(5Ho+ 3Hy + 5Hs + Hy + 3Hs +  Hg + 3 Hr)
Ar(As + A1+ C) C Br(Ds + A1) T+
6 = expadm/ —1(H0 + 2H; +3H3 +3Hs + 3Hs + 2Hg + H7)
47(A5+A1+(C)CE7(E6+(C) T+t
= expadmy/—1(3 Ho+ Hy + L Hs +4Hy + L Hs + $He + $Hy)
1_47(143—{—143-}‘«:) CE7(D6+A1) ++
0 = expadny/—1(3Ho + Hy + $Hs + 2Hy + 3Hs + Hg + 3 Hy)
Ar(As + A3+ C) C Er(Ay) T+t
§=expadny/=1(3Ho + SHy + L Hy + 3Hy + $Hs + 3He + £ Hr)
Ar(Dy) C Er(Ar) Gt

6 =gpoexpadmy/—1 H0+H1+3H3+2H4+ 3Hs + He + 1 Hy)
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Table 34. Ay + Dg C Ex

O,

o
o + —0—0 <
aO a4 (15 (16 (x,7 (’vo (Xl (x:, a4 a5 (16 (Xq
0,

1 2
A1(A1) + Ds(Ds) C Er(Ex)
§—Id r
A1(A1) + De(Ds) C Er(Ds + A1) T
6 = expadmv/—1Hy
Al(A1)+D6(A5+(C)CE7(E6+(C) it
O—expadm/ HQ+H3+H4+ H5+H6—I— H7)
Al(A1)+D6(A5+(C) CE7(A7) T+
0 = expadmy/=1(Ho + 3 Hy + Hs + Hy + $Hs + Hg + $Hy)
Ar(Aq) + DG(D4 + Ai + A1) C Er(Ds + Ar) St
9—expad7w H2+H3-|-2H4+2H5+2H6+H7)
A1((C)+D6(D5+(C)CE7(E6+C) it
0 =expadny/~1(1Ho+ $Hy + $Hs + Hy + Hs + Hg + Hy)
Ay(C )+D6(A5+C)CE7(D6+A1) 4t
0 =expadmy/=1(3Ho + Hy + 3Hs + 2Hy + $Hs + He + 4 Hy)
Ay(C )+D6(A3+A3)CE7(A7) i

0 = expadmy/=1(3 Ho + 3Hy + $Hs + 3Hy + 3Hs + 2He + Hy)
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Table 35. Ay + As C By

o—0 + O—0—0—0—0 <«
o, o, 0o, o, 0; O 0, o, o, 0, [040; 0; 0,

0,

There exists an automorphism 6 such that

5(X1) = Xo, 6(Xa) = Xr, 8(X3) = X3, 6(X4) = Xe,

5(Xs) = Xs, 6(Xs) = X4, 6(Xz) = Xa, 6(Xo) = X1.

1 2
1_42(Az) + As(As) C By (Er) S
= Id
Az (Ag) +A5(A4 +C) C E7(A7) Ty
9—expad7w H2+2H4—|— H5+H6+ H7)
Az(Ag) +A5(A3+A1 +C) C Er(Dg + A1) i
G_expadm/ 2H2+4H4+3H5+2H5+H7)
Az(A2)+A5(A2+A2+C)CE7(E6+(C) iy
0:expad7r\/ ( H2+H4+ H5+H6+ H7)
Ag(A1 4 C) + As(As) C Ev(Ds + Ay) it
6 = expadwy/—1(Ho + Hi)
A2(A1+<C)+A5(A4+(C)CE7(E6+C) it
0—expad7r\/ (H0+H1+ HQ+2H4+2H5-|—H6+ H7)
Ag(A1 +C)+ As(As+ A1 +C) C Er(Ds + Ay) T+
0 = expadwy/—1(Ho + H1+ 2Hy + 4Hy + 3Hs + 2Hg -+ Hy)
Az(A1+(C)+A5(A2+A2+C)CE7(A7) 1
0—expad7r\/ (H0+H1+ H2+H4+ H5+H6+ H7)
Ag(A1) + As(C3) C Br(De + A1) St
0=20
Ag(Ar) + As(As) C Eq(Ar) ot

0 =b5oexpadmy/=1(}Hy + Hy + 5 Hs + He + 3 Hr)

Table 36. 7TA; C FEy

0+0+..+0 = 0O —O-
o, 0, o, o Oy |0, 05 O

1 2

ZAl(/h) C E7(E7)
0 =1d

744(C) C Er(Ar)
6 = expadnwv/—1(Hy + - -+ Hy)
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Table 37. Dy + Ay + A1+ Ay C By

o

'+0+0+0 = 0—O0—0—-0—0—0
o O, Os 0O 0O, 0 O |0 05 04 Oy

o, o,

1 2

Dy(Dy) +3A1(A1) C Er(Er) +
0 =Id

D4(4A1) + 3A1(A1) C Er(De + Ai)

0 = expadwy/—1(Hy + 2Hy + Hs + Hy) +
Dy(Dyg) 4+ 34A4(C) C Ey(Fe +C) N
8 =exp adm/-l(%Hg) + %HG + %H7)
Dy(441) +341(C) C Er(Ar) B

8 = expadny/=1(Hy + 2H + Hs + Hy + $Hs + 5 He + 3 Hr)

Table 38. A3%° C E;

0O <« —
Oy o, 0, |00, 0 0,
0,
1 2 3
A1(Ar) C Er(Er) 4 )

0=1d

Ai(C) C Er(Ar)
# = expad %m/—lHl

Table 39. A23! C E,

0o < —
o, 0, 0, |00 0,0,
0,
1 3
A1(Ay) C Br(Er) T 1
8 =1d
Ay(C) C Er(Ar) + 1
0 = expad %m/—lHl
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Table 40. Gi +C1" c By

XD + 0—OLD = O—O0—0—0—0—0
o, o, O, 0, o5 O, O |00 O 0,
O,
1 2
Go(Ga) + Ca(Cs) C Br(Br) Tt
0=1d
Ga(Ay + A1) + C3(Cs) C Er(Ds + A1) i
0 = expad mv/—1(2H; + 3Hs)
GQ(G2)+C3(A2+C) CE7(E6+C) T
0 = expadmy/— ( Hy+Hy+ 5 H5)
Ga(G2) + C5(Cy + Ar) C Er(Dg + A1) 4t
0 = expad v/ —1(Hs + Hy + Hs)
Go(A1 + A1) + C3(As + C) C Er(4Ar) 4t
BWeXpadm/ (2H1+3HQ+1H3+H4+ H5)
Ga(Ay +A1)+C'3(02+A1) C Ev(Ds + Ay) 4t
H—expadw\/ 2H1+3H2+H3+H4+H5)

Table 41. F} + 43" c By

o0—as0—0+0 <

o, o, O, 0, o5 O, 0, |00, 0,

1 2
Ey(Er) D Fy(Fy) + Ar(Aq) ++
0= 1d
E.(Fg + (C) D Fy(Fy) + Ay(C) T+
G—expad s/ —1Hg

Br(De+ A1) D Fiy(Cs + Ar) + A1 (A1)

§ = expad my/—T(2H, + 3H, + 2Hs + Hy) o
E.(A7) D F4(Cs + Ay) + A(C) —t
0~expad7r\/ 2H1+3HQ+2H3+H4+ Hs)

Er(Ds + A1) D Fy(Ba) A A1(41) St

O—expadm/ (2H1+4H2+3H3+2H4)

Er(Fs+C) 3F4(B4)+A1((C) i

9—expad7w 2H1+4H2—|—3H3+2H4+ H5)
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Table 42. G% + A} C Ey

L0 4+ 0 = 0—0—0—

o, o, 0O, o, 0, |0 0qys 0, 0O,
o

0 =expadmy/—1(2H, +3Hs + %H;g)

T 2
Ey7(Er) D Go(Gs) + A1(Ay)
0=1d i
E7(A7) D GQ(GQ) + A1((C) ++
¢ = expad $m\/—1Hs
Er(Ds + A1) D Go(Ay + Ar) + Ai(Ay) o
0 = expadny/—1(2H; + 3H>)
1_74‘7(147) D Go(Ay + Aq)+ Ai(C) 4+

Table 43. A2 C B,

oO—0 <«
oy O,

There exists an automorphism § such that

§(Xi) =X (1<)

Ql
<l
Qi Rl
=
<!
Pl

=46

1 2

E7(E7) ) AQ(A2)

5 1d i
E7(D6+A1)DA2(A1+C) ++
6 = expad wv/—1(H;y + Ha)

Er(A7) 5 Ay(Ay) 4
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Table 44. A3 + AP C B,

0+0 < —
(l, (Xz (Yl (_ig a4 as a6 a7
a,
1 2 3
E7(Er) D A1(Ar) + A(Ay) 4+ 1
8=1Id
1_7}7(D6+A1) DAl(C)+A1(A1) 4+ 1
0 = expad §mv/—1H,
Er(Ar) D Ai(Ar) + A1(C) Tt 1
g = expad ymv/~1H>
E';(A'() DAl((C)+A1(C) ++ 1
0 = expad 7wy —1(H; + Ha)

Table 45. D? C B,

04
fad
o, O, o, 0, 0,0, O, O,
o, o

2

1 2 3

E7(Er) D Dy(Dy)
0 =1Id

Er(De + A1) D Da(Ar + Ay + Ar + Ay)
0= expadw\/—l(Hl +2Hy+ Hy + H4)

Table 46. C® C Fj

C'e
o, 0; 0,0 0 o, O O

0.,

1

Eg(Eg) > C%(C®)
6=1Id

Eg(Dg) > C*(0)
0 = expad 2w/ —1(2H1 + -;—HQ + %Hg +5Hs +5Hs + 3Hg + 2H7 + Hg)
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Table 47. Dg C Eg

0, -
O Oy O O, O O O Oy | O, 0 Of O Of O

O, (023
1 2
Eg(Eg) D Dg(Dsg)
d—Id A
Eg(Ds) D Ds(Ds) i
6 = expad wy/—1(Hy + Hs + 2H4 + 2Hs + 2Hg + 2H7 + 2Hg + 2Hy)
]_*3 (Er + A1) D Dg(A7 +C) .
0 =expadnv/— (2H2+3H3+5H4+9H5+4H6+7H7+3H3+ £ Hp)
Es(Ds) D Ds(Ar + C) ot
0 = expadmy/—1(3Hy + 3Hs + 5H, + $Hs + 4Hg + 5 Hy + 3Hg + 5 Ho)
Eg(Er + A1) D DS(DG + A+ Ar) ++
B—expadm/ H2+H3+2H4+2H5+2H6+2H7+2H8+H0)
Fg(Dg) D DS(D4 + Dy) 4

O—expadm/ 2H2+2H3+4H4+4H5+4H6+3H7+2H8+H0)

Table 48. E, + A1 C Eg

+ 0 «
o, O, Oy Og O, Oy O, O Oy |04 0 O O, Oy O

o, o,
1 2
Eg(Fg) D Er(Br) + A1 (A1) 4
8 =1d
Es(Er + A1) D Er(Er) + A1(4r) i
0 = expad m/—1Hp
Es(Er + A1) D Er(Ds + Ar) + A1(A1) It
G_expadm/ (2H1+2H2+3H3+4H4+3H5+2H6+H7)
Fg(Dsg) D E7(Ds + A1) + A1(A1) et
0~expad7r\/ (H0+2H1 +2H2—|—3H3+4H4+3H5—|-2H6+H7)
Eg(E7 +A1) DE7(E5+(C)+A1(C) s
§ = expadmy/—1 H0+H1+ sHy +2Hs +3Hy 4 2 H5 +2He + 5 H7)
Eg(Ds) D Er(Ar) +A1( ) T

G—expadw\/ ( Ho+2H1+7HQ—I-4H3+6H4+9H5+3H6+ H7)
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Table 49. Ay + Ay C Ey

o—0—0—0 + O—0O0—0—10 <«

oy Oy O 0, Og O O O O Oy ]O405 O &y Of O

0,

There exists an automorphism & such that §2 = I'd and
8(X1) = Xo, 8(Xa) = X1, 6(X3) =Xy, 6(X4) = Xs,

8(Xe) = Xo, 6(Xy) = X3, 6(Xs) = Xr, 6(Xo0) = Xe.

1 2
Eg(Fg) D Ag(As) + Ag(Aq) T+
6 =1d
Eg(Dg) D A4(A4) + As(As +C) 4
0 = expadmv/—1(4Hs + 3H7 + 2Hg + Hy)
Eg(Er + A1) D As(Ad) + As(As + A1 + C) —t
8 = exp adm/—l(3H6 +6Hy +4Hg + 2H0)
Eg(Ds) D Ay(A3 +C) + As(A3+C) t
8 = expadmy/ —1(4H1 + 3Hy 4 2Hy + Hy +4Hg + 3H7 + 2Hg + Ho)
Eg(Er + A1) D Ay(As +C) + Ag(As + A1 +C) —+
# = expad 7y —1(4H1 +3H3 +2H4 + Hq + 3Hg + 6Hy; + 4Hg + 2H0)
Eg(Dg) D Ag(Ag + A1 +C) + Ag(A2 + A1+ C) .
8 = exp ad7r\/——1(3H1 +6Hs +4H, +2Hy + 3Hg +6H; +4Hg + 2H0)
Es(Ds) D A4(Bs) + A4(B2) Tt
&
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Table 50. Ag C Eg

(xl u‘3 ad aS aG a7 (XB ao al 0’3 a'# (XS (X’G a? (X‘E u'0

0.,

There exists an automorphism § such that 62 = Id and
§(X1) = Xo, 8(X3) = Xs, 6(X4) = Xr,

6(Xs) = Xe, 6(X6) = X5, 6(Xy) = Xy,
§(Xs) = Xa, 6(Xo) = X1.

1 2
Eg(Eg) D) Ag(Ag)
g=1d o
Eg(Dg) :)AB(A7+(C) 4+
0 = expadm/——l(SHl +7Hs + 6H, +5Hs + 4Hg + 3H; +2Hg + Hyp)
Eg(Eqr+ Ay) D Ag(As + A1 +C) T+
0 = expad ny/ —1(7H1+14H3+12H4+10H5+ 8Hg+ 6H,+ 4Hg+ 2Hp)
Eg(Er + A1) D As(As + A2+ C) o
# = expadwy/ ——1(6H1+12H3+18H4+15H5+12H6+ 9H,+ 6Hg+ 3H0)
Eg(Dg) D Ag{Ag+ As +C) T
f = expadmy/ -—1(5H1+10H3+15H4-|— 20H54-16 Hg+12H7+ 8Hg+ 4H0)
Eg(Dsg) D As(Ba) o
=106
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Table 51. Eg + Ag C Ex

+ O—0 <«
o, O, O, O O o, o, 0, 0O, o, 0 0 0, 0y O,

O, 0,

There exists an automorphism 6 such that 62 = I'd and
6(X1) = Xe, 6(X2) = Xo, 6(X3) = X5, 6(X4) = Xy,

6(X5) = X3, 6(Xs) = X1, 6(Xg) = Xo, 6(Xo) = Xs.

1 2
Es(Es) D Ee(Fs) + A2(As) ++
0 =1d
Eg(Dg) D Ee(Ds + C) + Az(As) 4
f = expadmy/ —1(2H1 + 2Hy +3Hy +4H4 + 3Hs + 2H6)
Ey(Er + A1) D Bg(As + A1) + A2(As) i
6 = expadwy/ —1(H1 + 2H9 +2Hs + 3H4 + 2Hs + Hﬁ)
Eg(Er + A1) D Eg(Eg) + A2(A1 +C) 4
0 = expad n/—1(Hg + Hp)
Es(Er + A1) D Eg(Ds +C) + Ax(Ar1 +C) ot
0 = expad v/ -—-1(2H1+ 2Hy+ 3Hs +4H, + 3Hs +2Hg + Hg -+ Ho)
Eg(Ds) D Eg(As + A1) + A2(A1 + C) ++
0 = expadm/ —1(H1+ 2Ho+ 2H3 +3Hy + 2Hs + Hg + Hg + Ho)
Eg(Dg) D Eg(As + A1) + Aa(A1 +C) o
8 = boexpadmy/ —l(H1+ 2H5+ 2Hs + 3H4 + 2Hs + Hs)
Eg(Er + A1) D Ee(Fy) + Az(Ar) T+

=25
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Table 52. D4y + Dy C Eg

Oy o, _
o, O, O O 0, 0, |00 0 O, O,
o, 0L o,

Consider the automorphism o of the Lie algebra p which acts on the Dynkin
diagram in the following way:

) &)

And let ¢ be one of extensions of o. Without loss of generality we can assume
that €3 = Id. There exists an automorphism & of the Lie algebra p such that

(1) 6(p) =p;
(2) the restriction of § to p has the following diagram:

(3) €6 = b¢;

(4) & acts identically on all weight vectors of p-module p corresponding to the
weights invariant under the restriction 6},.

1 2 3
Eg(Es) D Dy(Dy) + Dy(Dy) + |1
0 =1d
Eg(Er + A1) D Dg(Ar + Ay + Ay + A1) + Da(Dy) vl
6 =expadwy/—1(Hy +2Hy + Hs + Hy)
Eg(Dg) D Dy(A; + A1+ A1+ Ap) + Dy(Ar + Ar + A + Ay) 1
0 = expadwv/—1(Hy + 2Hy + Hs + Hy + Hs + 2Hg + H7 + Hg)
Eg(E’f + Al) O (Dy+ D4)D4 + 1
0=2§
Table 53. 84; C Eg
0+0+..+0 = O—0—0—0—Q—0—0
o, 0, O o, 0, iaa Os O Oy O
0,
1 2 3
Eg(Eg) D 8A1(A1) + 1
9=1d
Es(Dg) D 84;(C) N :
§ = expadwy/=13(Hy + - + Hs)

68




Table 54. 445 C Fg

0—0+00+00+00 < O—0—0—0—0—0-7
o, O, O3 Oy O O 0, O 0 O, |8 05 Of O, O
o,

1 2 3

Es(Es) D 4A2( A7)
d— Id + !

Eg(Dg) D ZAQ(AQ) -+ 2A2(A1 + C)

6 = expadmy/=1(Hs + He + Hy + Hs) + :
Es(Dg) D 4A5(A1 +C) N ]
6 =expadny/—1(Hy + -+ Hg)

Table 55. A}*° C Eg
0 = 00 —O0—0—=C
o, o, O, [0 0, 0, O, O,
0,
1 2 3

Eg(Eg) ) Al(Al)

- Id ++ 1
Eg(Ds) D A1(C)

0 = expad 37/~ 1H; i !
Table 56. A7%° C Ejg
O <
o, o, 0O, i@ O O O, O
a,
1 2 3

Eg(Eg) D Al(A1)

B - Id ++ 1
Eg(Dg) D 441(C) o 1
8 = expad %w\/—lHl

Table 57. A3?° C Ejg
0 = 0—0 —O0—0—0
o, o, 0, |[0,0, 0, O, 0,
o,
1 2 3

Eg(Es) 5 A1(As) 1

6=1d H
Eg(Dg) D A1(C)

0 = expad sry/—1H; i 1
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Table 58. G3 + F} C Fy

0 + 0—C30—0 <« O—0—0—0—0—0-C
O Oy Oy O O O Oy O, (_’_'4 Os O Oy O
O,
1 2 3
ES(E8) D GQ(G2)+F4(F4) ++ 1
0 =1Id
Eg(Er + A1) D Go(G2) + Fy(C3 + Ayp) T 1
6 =expad wv/—1(2H3 + 3H4 + 2Hs + Hg)
Eg(Ds) D Go(G2) + Fy(By) i 1
0 = expad v/ ——1(2H3 +4H; + 3Hs + 2H6)
Eg(Er + A1) D Go(Ar + A1) + Fy(Fy) TP
6 = expadmv/~1(2H; + 3Hs)
Eg(Dg) D Ga(Ar + Ay) + Fu(Cs + Ay) I
0 = exp adm/ —-1(2H1 +3H9 +2Hs + 3H4 + 2Hs + Hg)
Eg(Eqr+ A1) D Go(Ay + A1) + Fiy(By) I
0 = expadmy/ —1(2H1 +3Hy + 2Hs +4H4 + 3Hg + 2H¢3)

Table 59. AS' + Al® c Fjg

O 4+ 0—0 <
Oy O O o, 0, j0,0; O O, O

There exists an automorphism 6 of the Lie algebra p such that §2 = Id and
5()_(1) = X_i. Let

o =expadmy/—1X,oexpadny/—1X_joexpadmy/—1X;.

1 2 3
FEg(FEs) D A1(A1) + Aa(As)
6 =1Id i '
Eg(Dg) ) A1((C) +A2(A2) ++ 1
Q:expadm/—léHl

Eg(Dg) D Ai(A1) + A(A1 +C) T+ 1

0 = expad my/=1%(H, + Hs)

Es(Dg) D A1(C) + A2(A1 +C) o 1

0= expadm/—l—%—Hl
Eg(Dg) D Ai(C) + Ag(41) ++ 1
0=2¢

Es(Br + A1) D A1(A1) + As(Ay) bt 1

9 —= go 6
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Table 60. Bi? C Fjg

o0 < -
o, o, o, O, (1‘4 Oy O O, O
o,
1 2 3
Eg(Es) D B2(Bs)
o= 1d i :
Fs(Ds) D Ba(A, + C) iy )
0 = expadmy/—1(H; + £ Ho)
J?B(DB) D By(Ar + Ay) - 1
0 = expad my/—1(H; + Hy)

Table 61. G} + G5 + A} C Es

There exist an automorphism ¢ of the Lie algebra p such that ¢ = Id and

o(X1) = X1, 0(Xy) = —Xuos6, 0(X3) = —Xusse,
0(Xs) = X, 0(Xs) = Xs, 0(Xs) = —X_as6rs,
O‘(X'y) = X4, U(Xs) = X5,
and an automorphism ¢ of the Lie algebra p such that ¢? = Id and

o(X1) = -X1, #(Xi)=o0(Xi), 2<i<8

1 2 3
Eg(Eg) D G2(G2) + Ga(Ga) + A1 (A1) 1 1
0=1Id
Es(Dg) D Go(G2) + Ga(Ga) + A1 (C) n 1
6 = expadm/—l%Hg,
Eg(Ds) D Go(Ay + Ar) + Ga(Ar + Ar) + A1 (A1) n 1
6 = expadm/—1(2H, + 3Hy + 2H3 + 3Hy)
Es(Ds) D Go(A1 + A1) + Ga(Ar + A1) + A1(C) n 1
0 = expadny/=1(2H; + 3H, + 2H3 + 3H, + 1 Hs)
Eg(Er + A1) D (G2 + G2)(Ga) + Ai(Ay) e 1
=0
Eg(Dg) D Go(A1 + A1) + Ga(Ar + Ar) + A1(C) T 1
0=
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12.

13.
14.
15.

16.
17.
18.
19.
20.
21.
22.

23.

24.
25.

26.

Table 62. A‘l10 C Eg

0O <
o, O, &, |d,d, d, 0, a,
0,
1 2 3
E3(Eg) D A1(4y)
g—Id + 1
Eg(Dg) D Al((C)
0 = expad 27!'\/ 1H, o+ 1
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