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§1. Introduction. What is a stochastic differential equation?

This paper gives a brief, non-technical introduction to some of the theory and methods
of stochastic partial differential equations. No attempt has been made to be complete in
any sense. The exposition is mainly based on recent joint works with a group of people,
including H. Gjessing, H. Holden, T. Lindstrgm, N.H. Risebro, J. Ubge and T.S. Zhang.
These people are, however, not responsible for any errors produced in this article. Nor
should they be blamed for the partly philosophical comments and interpretations I have
added in this survey.

The purpose here is just to give a flavour of the theory and convince the reader of its
usefulness and of the mathematical challenge that it represents. The reader is referred to
the relevant publications listed in the back for proofs and further details.

The theory of stochastic differential equations (SDE) stems from, and is motivated by,
the attempts to describe mathematically the stochastic dynamic phenomena that occur in
physics, biology, economics etc. The term “stochastic phenomena” includes phenomena
which may not really be stochastic in nature, but appear stochastic or random to us because
of our lack of information. (What’s the difference anyway? Is the outcome of a throw of a
die really random or just appearing to be random because of our lack of information about

the movement of the hand throwing it?)

When we describe a situation in physics or economics by means of a differential equation
we are always making simplifying assumptions, for example about the coefficients of the
equation. Coefficients which are assumed to be constant, may not really be so. They
may be subject to fluctuations which to us appear random, or they may be constant
but impossible to measure exactly. How will this randomness affect the solution of the
differential equation? Questions like these lead to delicate questions about how to model
various types of “noise” mathematically in such a way that it can be adopted as a proper
(and rigorous) part of a differential equation.

Roughly speaking, a stochastic differential equation is a differential equation where some
of the coefficients are subject to some properly defined versions of “noise”.

In order to illustrate this, let us consider an example from population growth:

EXAMPLE 1.1

Let X; denote the size of a population at time 2. Suppose K is the carrying capacity of
the environment for this population. Then a simple classical model for the growth of X

is the differential equation

(1.1) %ﬁ =r(K — X;), wherer is a constant.

The solution of this equation is

(1.2) X, =K+ (Xo— K)e™.
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Now suppose that r is not a constant but subject to random fluctuations due to unpre-
dictable changes in the environment. Then we could try to put

(1.3) r=r,=a+b-W;, (a,bconstants)

where {W;(w); t > 0; w € Q}, is some stochastic process modelling “noise”. (The prob-
ability law P of this process is defined on a c-algebra F of subsets of the given “set of
outcomes” §2). This gives - formally - the stochastic differential equation

dX
(1.4) d—t‘ =a(K - X;) +b(K — X;) - W,

In some cases it may be justified to assume that the noise W; is white, in the sense that
W; has the following properties:

(i) If t; # t2 then the random variables W;, (-) and W4, (-) are independent.

(ii) {W:}iso is a stationary process, i.e. the law of

{I/Vt1+h’ SRR I/th-l-h}

is independent of h > 0 for all ¢;,...,t, and all n.

(iii) E[W;] = 0 and E[W?] = 1 for all t, where E denotes expectation (i.e. integration)
with respect to the probability measure P.

It turns out that no (measurable) process W; satisfying (i), (ii) and (iii) exists! To overcome
this difficulty, the following approaches are natural:

Alternative 1. Weaken the requirement (i) to allow dependence between Wy, and Wy, if
t, and t, are close.

Alternative 2. Interpret equation (1.4) in a weak sense, i.e. as an integral equation
instead of a differential equation:

t t
(1.5) X, = Xo+ / a(K — X;)ds +" / b(K — X)Wsds"; t>0
0 0

where the integral in quotation marks needs to be explained.

It turns out that there is not a big difference between these two approaches. We will return
to Alternative 1 in §5-6. Let us first look at Alternative 2:

We now recall that Brownian motion {B;(w)}:>0 is a stochastic process with independent,
stationary increments of mean zero (in fact, it is the only ¢-continuous process with these
properties). This indicates that the t-derivative of B, 9’%, could have been a good model
for W; - if it existed! Unfortunately, the paths ¢t — B;(w) of Brownian motion has infinite
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variation for almost all w. Nevertheless, we could try to replace “W,ds” by “dB,” in (1.5)
and then try to make sense out of integrals of the form

(16) [ £(5,)dBi(w)
0

for a reasonably large class of integrands f(s,w). For deterministic functions f(s,w) = f(s)
such integrals were defined by N. Wiener [Wie] in 1923 and the general construction for a
class of random integrands f(s,w) was carried out by K. Ito [I1] in 1944. Such integrals
are now called Ito integrals. The most notable necessary requirement that such integrands
must satisfy is that f(t, ) is measurable w.r.t. the o-algebra F; generated by {B,(); s < t}.
Such processes f(t,w) are called F;-adapted. See e.g. [@] for more details.

In terms of Ito integrals (1.5) gets the form

t t
(L.7) Xt=Xo+a/(K—X,)ds+b/(K—X,)dB,; £>0
0 0

This gives a precise mathematical interpretation of the equation (1.4), but what is its
solution? Using the Ito formula (see e.g. [@]) one can prove that if X, is independent of
the o-algebra F., generated by {B:(-);t > 0} then

(1.8) X, = Xu(w) = K — (K — Xo) exp(—(a + %b’)t _bBi(w)); t>0

Note that this solution coincides with the solution (1.2) if b = 0 i.e. if the noise is zero.

Since we know a lot about the probabilistic behaviour of B;(-), we can from (1.8) easily
deduce interesting properties about X;. For example, X; — K ast — oo, a.s. (as.=
“almost surely”, i.e. with probability one) and if X is a constant (deterministic) then

(1.9) E[X)] = K — (K — Xo)e™®,
i.e. the expected value of X; coincides with the solution (1.2) of the no-noise equation.

We will return to the solution of this equation in §6.
§2. Stochastic partial differential equations: The need for a more
general framework.

Encouraged by the success in SDE let us now consider a stochastic partial differential
equation (SPDE):




EXAMPLE 2.1 (Membrane in a sand storm)

If a membrane is exposed to a (vertical) force F(¢,z,y) at time ¢ and at the point with
horizontal coordinates (z,y), then the vertical coordinate z = u(t, z,y) of the membrane
will satisfy the wave equation

Pu u S
oz gz T oy

Now suppose the force is coming from the bombardement of infinitesimal sand particles.
Then a natural mathematical model for F(t,z,y) would be a 3-parameter white noise
process Wi zy(w). Analogous to the 1-parameter case discussed in §1 we can relate this
noise to 3-parameter Brownian motion (or Brownian sheet) B zy(w) as follows:

(21) ) = F(t)x)y)

(22) \VVt,:,y(w) = 'a‘ta;a.:égBt,z,y(w) (See §3)

With this force (2.1) becomes
o 0 Ou i
o7~ Gz T o) ~ Bidsoy

Again this does not make sense as it stands, but it is natural to try the weak, integral
interpretation:

(2.3)

t g2 p t t
(2.4) / / ua;;dsdzdy— / / uA¢dsdzdy = / / ¢dB; 1y,
0 R2 0 R2

0 R?

for all test functions ¢(¢, z,y) € CP(R®) (the smooth functions with compact support in
R3). Here the right hand side is a 3-parameter Ito integral, which can be defined in a

similar way as in the 1-parameter case. We have put 53;2; + % = A, the Laplace operator.

So far, so good. But now the surprise is that (2.4) has no 3-parameter stochastic process
solution u;zy(w)! This was proved by J. Walsh [Wa]. However, Walsh also showed that
(2.4) has a solution u in a more general setting, namely as a distribution valued stochastic

process ug(w).

The reader’s first reaction to such a result might be disappointment or disbelief: The physi-
call membrane must have a position at time t over (z,y), no matter what the mathematics
says! But is that really the case? When we measure the position of the membrane we
are really taking averages of microscopic quantities over small periods of time and space
and the actual macroscopic measurement really depends on what “scale” or microscope
we use. Mathematically, the process of taking averages corresponds to applying a test
function ¢(t,z,y) to the distribution u(w). This is exactly how we interpret the Walsh
solution.




The singular white noise force W; s, is really itself a distribution valued process (see §3),
so from this point of view it is not so surprising that the solution u is also. We could also
say that solving equation (2.3) really corresponds to trying to find what the macroscopic
value u is if the membrane is exposed to the singular force W working on the microscopic
level. :

This mathematical connection between micro- and macro-cosmos will be illustrated again
in connection with fluid flow in porous media (§4). But first we need to develop some
mathematical machinery. Two basic questions need to be clarified:

Question 1. What is the right mathematical formulation of a “noisy” partial differential
equation?

By “right” we mean both that it is mathematically rigorous and that it (or
rather its solution) actually gives a realistic model of the situation we are

studying.

Question 2. Having found the right mathematical formulation, how do we proceed to
solve the corresponding stochastic partial differential equation? By “solve”
we here mean proving the existence and uniqueness of the solution, finding
some of its probabilistic properties and - if possible - obtaining an explicit
solution formula like (1.8) in Example 1.1.

§3. White noise, chaos expansion, Wick products and Skorohod in-
tegrals

The previous examples illustrate the need for a rigorous mathematical framework for con-
cepts like white noise and distribution valued processes. In this section we give a brief
summary of such a framework. More details can be found, for example, in [HP] or [HKPS].

It was Hida’s original idea [H] that the basic object to consider is not the classical Brownian
motion, but rather the more troublesome concept of white noise. In §2 white noise was
introduced as the (non-existing) derivative of Brownian motion. It is however, surprisingly
simple to construct white noise directly - and rigorosly - as a distribution valued process:

The white noise probability space.

Fix a natural number d (the parameter dimension) and let S = S(R¢) denote the Schwartz
space of rapidly decreasing smooth functions on R%. The dual of S is the space S’ = S'(R?)
of tempered distributions. According to the Bochner-Minlos theorem [GV] there exists a
probability measure u on &' with the property that

(3.1) / < duw) =t ges

sl

where < w, ¢ >= quS) is the result of applying ¢ € S to the distribution w € &’ and
loll = (S |¢(z)|>dz)'/? is the classical L?(R%)-norm of ¢.
R4

It is not hard to show that (3.1) implies that
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(32) [ F< 0,6 >)dutw) = @rlgI)* [ f@)e Hrdz; e s
s Ré

for all f such that the integral on the right hand side converges. (It suffices to show (3.2)

for functions f which are the inverse Fourier transform of their Fourier transforms f and
for such functions (3.2) follows from (3.1) and the Fubini theorem).

In particular, if we apply this to f(z) = z? we get

(3.3) [1<w,6> Pduw) = I8I*; ¢es
sl

Using this we can extend the definition of < w,¢ > from ¢ € S to ¥ € L*(RY) as follows:

(3.4) <w, ¥ >=lim <w,¢s > (limit in L*(u))

where ¢, € S and ¢, — ¥ in L*(R?). (It follows from (3.3) that the limit exists in L?(u)
and that it is independent of the actual choice of approximating sequence {¢,} C S.)

In particular, for all ¢;,...,ts > 0 we can choose

(3.5) P(Z) = Xjo1]x--x[04d (T)
(i.e. Y(z)=1ifz € [0,t1] X --- x [0,t4] and O otherwise) and define

(3.6) By,.tw) =< W, Xp]x-xlotd >

Then B is a d-parameter Gaussian process with stationary, independent increments of
mean zero. Moreover by (3.3) the covariance is (from now on E = E, means expectation
with respect to the measure p):

E[Btl:---;td : le,..-,u] = / < Wy X[,ta]x-x[0ta] > * < Wy X[0,01]x--x[0,80] > Ai(w)
sl

(3.7.) d
= / X[0a]x--x[0ta] * X[0,81]x-x[0,5d = T (56 At).
R4 k=1

One can prove that there exists a t-continuous stochastic process By,,..t, which is a version
of By, 4, in the sense that

(3.8) p{w; Biw) = Biw)}) =1 for allt = (ty,..., ta).
7




In view of the properties of B; stated above, it is natural to call B; the d-parameter
Brownian motion (or Brownian sheet).

DEFINITION 3.1. The white noise process is the map W : S x &’ — R defined by

(3.9) Wiw) =<w,p> forpeS, weds

By (3.4), (3.6) and the isometry (3.3) we see that if ¢ € S with supp ¢ C (R*)% and {¢n}
are step functions converging to ¢ in L%(R?) then

(3.10) Wy(w) = lim < w, §, >= lim / bn(2)dBy = / é()dB,
R4 R¢

where the limit is in L?(u) and the last term is the d-parameter Ito integral of ¢. For
general ¢ € L*(R%) formula (3.10) is used to define the Ito integral of ¢ over R% The
identity (3.10) may be regarded as a precise way of saying that W.(w) is the distributional
derivative of B.(w):

3.11 W=——7-—B; =
(3.11) 0zy...0xy e

as claimed earlier.

The Wiener-Ito chaos expansion.

Let h, be the n’th order Hermite polynomial defined by

(3.12) ha(z) = (-1)%*53%(54); n=0,1,2...

Thus

ho(ﬂ?) = 1: hl(x) =TI, hg(l') = m2 - 1, hg(SC) = 173 - 33:7
hs(z) = z* — 62% + 3, hs(z) = 2° — 102> + 15z, . ..
For n=1,2,... let &, be the Hermite function of order n defined by

(3.13) tn(z) = i (n = D) te Tha(V32); € R
Then {&,}%, forms an orthonormal basis for L?(R). Therefore the family of tensor prod-

ucts

(3.14) €a ‘= €qy,..,04 ‘= 6011 Q- gada
8




where o denotes the multi-index (i, . . . , aq), forms an orthonormal basis for L(R?). With
a slight abuse of notation let e;,e;,... denote a fixed ordering of the family {ea}, from
now on. Put

(3.15) 0= 6;) = [ s(@)dB.(w)
R4

and define, for each multi-index a = (e, ..., om),

(3.16) mw=ﬁ%m
1

The Wiener-Ito chaos theorem states that the family {H,}, forms an orthogonal basis for
L*(p). This gives that any X € L?(u) has the (unique) expansion

(3.17) ; X(w) =) caHa(w),

the sum being taken over all multi-indices of non-negative integers. Moreover, we have the
isometry

(3.18) IX 2 = D elel,
a

where a! = a;!, a9l ... 0! if @ = (ay,...,0m).

EXAMPLE 3.2. For each ¢ € L*(R?) we have X := W, € L*(i). The expansion of Wy
is

(319) W¢ = /¢dB = }:/(qg, ej)ede = Z(¢1 ej)hl(aj) = Z(¢7 ej)H(j)7
J J J

where () = (0,0,...,0,1) with 1 on the j’th place and (-,-) denotes inner product in
L*(RY). ’

The Wick product

DEFINITION 3.3. It X = Y a,H, and Y = Y bgHs and two functions in L*(u) we
a B
define their Wick product X oY as follows

(3.20) XoY =) aabgHars=)_( Y aabs)H, (when convergent)
a8 T at+f=y

For general X,Y € L%(u) this sum may or may not converge in L for some p > 1.
9




REMARKS
1) Note that if one of the two factors is constant (does not depend on w) the the Wick
product coincides with the ordinary product.
2) The Wick product is not local: It is not enough to know the value of X (wo) and
Y (wo) in order to know the value of (X ¢Y)(wp). In fact, not even the knowledge of
X(w), Y(w) for w in some neighborhood of wy is sufﬁcient in general. ([GHL@UZ)).

EXAMPLE 3.4.
If X(w) = Wy(w) = [ ¢(z)dB:(w) and Y(w) = Wy(w) = [ ¥(z)dB:(w) with ¢,9 €
Rd Rd

L%*(R%) then it can be proved that

(3.21) (XoY)w) = [ (#8¥)(z,v)dBE,

RexR4

where ® denotes symmetrized tensor product (i.e. (¢®¥)(z,y) = 1[d(z)¥(y) + ()Y (z)])
and the right hand side of (3.20) is the double Ito integral (see e.g. [GHL@UZ)] for details).

EXAMPLE 3.5. If X(w) = B(w) for a fixed ¢, then (for example by (3.21))
BtOBt :=B§2 =Bt2—t
and
B3 := B, o (B{*) = B} - 3tB;
(see e.g. [GHLOUZ] for extensions).

EXAMPLE 3.6. It is easy to see that ¢ is an associative binary operation (when defined)
so we can define, for X € L?(u) and n a natural number, the Wick power
(3.22) X"=Xo0Xo---0X (ntimes)

without specifying parenthesis on the right hand side (assuming the Wick products exist).
In particular, for X = Wy we can define the Wick exponential of Wy, Exp Wy, by

(3.23) Exp Wy = Z W°", ¢ € L*(RY).

n—O

One can in fact show that (see e.g. [GHLOUZ))

(3.24 Bxp W, = exp(Wy — 5141

In particular, this shows that Exp Wy is positive, in the sense that
10




ExpWy(w) >0 forall¢ € L*(R?%), we S

This property makes it a natural model for certain “positive noises” occurring for example
in fluid flow in porous media. See §6.

The Wick product (or slightly different version of it) was originally introduced by G.C.
Wick [W1i] in 1950 in connection with quantum field theory, where it corresponds to a kind
of renormalization. In a stochastic analysis context the Wick product was first used in
1965 by T. Hida and N. Ikeda [HI]. It is remarkable that the Wick product concept should
prove natural in two so different contexts. The full reason for - and all implications of -
this connection is not yet fully understood (at least not by me).

In order to explain why the Wick product is natural in stochastic analysis we need to
define the following concept:

The Skorohod integral

Let us for a moment assume that d = 1 and consider a stochastic process {X:}i>0 C L*(p).
Such a process can be represented by the expansion

(3.25) Xi(w) = ca(t)Ha(w).

Define the Skorohod integral of X;, [ X;6B;, by
R

(320 [ Xuw)SBw) = X[ caltle;0)dt) Har)(w) = Y(ear &3) Har (@)

o] R Q,]

(when convergent), where as before (j) = (0,0,...,0,1) with a 1 on the j'th place and
(-,-) denotes the usual L?(R) inner product.

Note that if X; is deterministic, i.e. X; = ¢o(t), then

(] Xu(@)8Biw) = S (oo, e Hip@) = Ylcorey) [ e;dB
(3.27) R y ’ R
- / co(t)dB; = / X,(w)dB:.

R R

Thus the Skorohod integral coincides with the Ito integral in this case. In fact, the Skorohod
integral can be shown to coincide with the Ito integral if the integrand is adapted [NZ].

For a general ¢ € L?(R), t € R let ¢;(-) denote the t-shift of ¢, i.e.

(3.28) ¢i(s) = ¢(s — 1)
11




The connection between Wick products, white noise and Skorohod integrals can now be
formulated as follows:

(3.29) ' / (6% X):8B, = / X, 0 Wydt; ¢ € S(R)
R R

where * denotes convolution with respect to Lebesgue measure on R, i.e.

(3.30) (¢ X)(w) = / (s + £) X, (w)ds
R

(See [LAU 2], [AP], [2Z)).

If we let § — 6 (the Dirac measure at 0) as measures on R one can prove that W,
converges in a weak sense (in the space (S)* of Hida distributions) to an object which we
- by an abuse of notation - denote by W; (the “pointwise” version of white noise). The
Wick product can be extended to (S)*, so taking the limit in (3.39) we get

(3.31) / X.6B, = / X,oWdt
R R

In particular, if X; is adapted this says that Ito integration is equivalent to Wick multipli-
cation by white noise followed by Lebesque integration. Here is the key to the fundamental
importance of the Wick product in Ito stochastic calculus.

§4. The Hermite transform and its inverse

The Wiener - Ito expansion allows us to associate to any given X € L?(u) a complex valued
function H(X) of infinitely many complex variables z1, 23, .. .:

DEFINITION 4.1. Let X € L?(u) have the expansion

(4.1) X(w) =) caHa(w)
a
Then the Hermite transform of X, denoted by H(X) or X, is the function defined on the
space C) of all finite sequences of complex numbers z,.. ., 2z, by
(4.2) H(X) (21,22, ) = X(21,22,-..) = D CaZ®
where we again use the multi-index notation: If @ = (ai,...,am), z = (21, 22,...) then

2% =202 ... 25m

12




EXAMPLE 4.2. The Hermite transform of white noise is, by (3.19),

(4.3) HW)(2) = W¢(z) = Z((b, €)% ; (z=21,2,...)

A crucial feature of the Hermite transform is that it changes Wick products into ordinary
complex products: '

LEMMA 4.3 If X, Y, X oY € L*() then

H(X oY) (2) = H(X)(2) - H(Y)(2)

Moreover, it is possible to recover X from X by performing an integration with respect to
an infinite product of Gaussian measures:

Let dA(y) = dA(31,92. . .) be the probability measure on RY = R x R x - - - defined by

(44) [ 1@ 1) = @0 [ f)e by
. RN R"

if f is a bounded function depending only on the first n coordinates (y1,---,Yn) of y. Then
we have _

LEMMA 4.5. Let X € L*(u). Then
(45) X@) = [ XO+inb+iv, )G G=v7D)
RN ‘

where 6; = [e;dB as before and the integral is interpreted as a limit of the integrals of
the truncations of X. See [HL@QUZ 1] for details. ’

EXAMPLE 4.6. Suppose X (2) = 21 = z; + iy1. Then
1 R _
X(w) = —\/—2_-;R/(01 + 1y1)6 gy, =6, = /61dB,

so z = We,.

§5. A scheme for solving stochastic partial differential equations.

Example 2.1 illustrates that for a SPDE we cannot in general expect to find a solution
which is an ordinary stochastic process. The reason is that white noise, albeit it has
the ideal probabilistic properties, is too singular to produce solutions of this kind, even
when the equation is interpreted in a weak, integrated sense. In view of this, and in
view of equations (3.29) and (3.31), it is natural to adopt Alternative 1 in §1 rather than
Alternative 2 in the general setting. .

13




Thus we replace the singular, pointwise white noise W; by the “smeared out” version Wy,
where ¢ € S is fixed (at least for a while). We may regard ¢ as the “window” or the
microcope we use to measure the noise. Then we consider translates of this window, ¢:(-)
and use Wy_(-) as our approximate white noise in the equation. By integration by parts we
see that distributional derivative with respect to ¢ is the same as ordinary derivative with
respect to the shift z. Thus, with W replaced by Wy, we may regard the corresponding
SPDE as a PDE in z for each w, except that we use Wick products instead of w-pointwise
products (see below). In special cases the solution X = X(z, ¢,w) of the SPDE may have
limit as ¢ — &, but in general not. So in general we regard the equation as solved if we
have found X (¢, z,w) for each ¢ € S.

As we will illustrate in the next section this works well and gives us the same result as
classical methods in the linear case. In the non-linear case, however, the question arises
what kind of products one should use: Wick products or ordinary (pointwise) products.
See [L@U2] for a more detailed discussion about this. As we have pointed out already, the
Wick product is natural in the context of Ito integration. If we start with such a Wick
SPDE, then in view of §4 the canonical solution procedure in the following:
1) Apply the Hermite transform to convert the original equation into a deterministic
PDE with complex parameters 2, 23, .. .
2) Solve this equation (if possible).
3) Apply the inverse Hermite transform to the solution in 2) to obtain a solution of the
original equation.

§6. Applications

To illustrate the method outlined above let us use it to solve the SDE (1.7) of Example
1.1:

i t
(6.1) X =Xo+a / (K — X,)ds +b / (K — X,)dB,
0 0

Adopting the point of view of §5 we choose ¢ € S(R) and consider the approximate
equation in X; = X(¢,t,w):

i
X, = Xo+ / (K — X,) o (a+ bW,,)ds
0

Taking Hermite transforms we get

t
X=X+ / (K — X,)(a+bW,,)ds
0

or

6.2) %ﬁ = (K — %)(a+bW,).

14




Recall that Wy, = Wy,(21,2,...) = %(q&t, ex)zr where z € C so (6.2) is a differential

equation with respect to t with complex parameters 2y, 29, .... It is easily verified that the
solution of (6.2) is

t
(6.3) X =K - (K - Xo) - exp(— j (a + bW,,)ds)
0

To find X; we can apply the inverse Hermite transform. However, it is easier to note that
by (4.4) we have

(6.3) H exp(~b [ Wy,ds)) = Exp(—b [ Wi,ds)
0 0

which gives, using (4.4) again,

(6.4) X, = K — (K — Xo) o Exp(—at — b / ( / 65 (w)dB,)ds)
0 R
Now

j ([ ¢s(wdB.)ds = [( j #(u — 5)ds)dB, — [ Xio(u)dB, = By
0 R R O R

as ¢ — 8. Therefore (6.4) gives us

(6.5) Lim X (¢:t,w) = K — (K — Xo) o Exp(~—at — bB:(w))

This is the same as the solution (1.8) we gave earlier, because of the identity (3.24).

Note that not only did we get the solution quickly by this method, but we also got a more
general result than in (1.8): Our method here did not assume that X, is independent of
the o-algebra F generated by {B;(-);t > 0} and for general X, the solution is expressed
by the Wick product in (6.4). This Wick product reduces to the ordinary product if X is
F-independent.

The ability to handle such non-adaptive stochastic differential equations is an additional
useful feature of this method. Non-adaptive SDE’s occur for example in problems regarding
economic investments under uncertainty. See [@Z], where (adapted and non-adapted)
stochastic Volterra equations are studied.

We proceed by giving some examples of SPDE’s which can be handled by the method
outlined above.

15




EXAMPLE 6.1. (Fluid flow in porous media).

In a porous rock the permeability k& will often vary rapidly from point to point and it can
be hard to measure. Accordingly, in the equation for the fluid pressure p(z) at the point
z for one phase flow,

(6.6)

div(k(z)Vp(z)) = - f(z) ; zeDcR?
{ p(x) =0; z €dD

(where f is the given source rate) it is natural to represent the quantity k(z) by some
positive noise K(z,w);w € §'. This makes the pressure stochastic, too: p(z) = p(z,w).
Representing K (z,w) by Exp(W,,(-)) (see (3.23)) we arrive at the SPDE

6.7) {diV(ExP(W¢=(')) oVp(z,))=—f(z); =ze€D

p(z,’)=0; zeD
The question is now: How will the microscopic feature k(z) of the medium affect the

macroscopic properties of the flow? This equation is studied in [LOU 3].

EXAMPLE 6.2. (The stochastic Schrodinger equation)
A model for the Schrédinger equation with a random, positive potential is

(6.8) {AU(:B’ )+ V(z,)ou(z,)=-f(z); zeDCR?

u(z,-) =0; z €D,

. ,

where A = ) -58% is the Laplacian and V(z,-) = eExp(Wy_(-)) is the positive potential,
k=1

e>0.

In [HLOUZ 1] it is proved that for € small enough the unique solution u of (6.6) is given
by ‘

(6.9) u(z,”) = B[ [ Exple [ Exp(We,)ds]f (b,
0 0

where (b, 13’) is a classical, 1-parameter Brownian motion in R4, E* denotes expectation
with respect to P* and

Tp = inf{t > 0;b; & D}
is the first exit time from D of b;.

EXAMPLE 6.3. (The transport equation in a turbulent medium)
If we model the turbulent motion of the medium by some d-dimensional noise v(t, ,w)
an equation modelling the transport of a substance in this medium is
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(6.10) %u(t, z,)+ v(t,z,) o Vu(t,z, ) = —;—Au(t, z,")

where the gradient V and the Laplacian A work on the z-variable, z = (z1,...,Z4).

Here v could be modelled as d-dimensional, (d + 1)-parameter white noise

(611) V= (Wl(t’x,')"'de(t:xa ))
where the W;’s are independent ([G]). This equation has been studied in [CP].

EXAMPLE 6.4. (SPDE’s arising in non-linear filtering).
The Wong-Zakai equation for the unnormalized conditional density p; of the filtered esti-
mate has the form

(6.12) dpi(z;w) = A*pi(z,w)dt + p;(z,w)hT (z)dB;

where A* is a semi-elliptic second order partial differential operator acting on the space
variable z € R4 (A* is the adjoint of the generator of an Ito diffusion) and h : R — R™
is given.

A general existence and uniqueness theorem for SPDEs of this type has been given by
Pardoux [P4]. Using Wick calculus one can in fact obtain an explicit solution [B].

EXAMPLE 6.5. (The Burgers equation with a noisy force)
The Burgers equation (in dimension 1) is the non-linear partial differential equation

@.’.Au.@—y@
ot oz~ Ozx?

where A, v are constants. (R = % is the Reynolds number.) It was orginally introduced as
a model for turbulence but has later found many other applications as well.

(6.13)

With a noisy force the Burgers equation gets the form

du ou 0%u
(613) '&'(t)ma ) + /\U(t, z, ) ° gg(t,ma ) - V@(tx, ) + M(ta z, '),

where M is a (t,z)-parameter noise. By a certain Wick-substitution this equation can be
transformed into a linear stochastic heat equation of the form

oY A

where N is another noise. This equation can be solved by Hermite transforms as outlined
in §5. See [HL@OUZ 2).
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The Burgers equation is a special case of the conservation law

©1) & L=

where f and F are given functions.

This equation appears for example in fluid flow in porous media, where u(t,z) is the
saturation of the fluid, f is the flux function and F' is the source. Various stochastic versions
of this equation appear naturally in applications. See [HR], [HLR] and the references there.

§7. Concluding remarks. Towards a random fractal calculus?

SPDE is a mathematical machinery developed to handle PDEs where some of the coeffi-
cients are subject to random fluctuations or noise (or modelled as noise because of lack of
information). The point is that even though there is noise in the coefficients one can still
say something about the probabilistic properties of the solution. Moreover, it is of interest
to see explicitly how the noise in the coefficients affects the solution. Often the noise comes
from (the basically unknown) microscopic properties of the medium (e.g. permeability) or
the surroundings and one seeks the corresponding macroscopic properties of the solution
(e.g. the fluid flow). The stochastic analysis that is used to handle these questions turns
out to involve in a natural way the Wick product, a concept which has been developed
earlier in connection with renormalization in quantum physics [S]. This confirms that there
is a deep relation between stochastic analysis and quantum physics.

Another interesting aspect of this theory is that it seems to be able to handle analytically
some classes of random fractals. This means that random fractals can be more than
just a tool to describe certain phenomena; they can be adopted as rigorous parts of a
stochastic differential equation: We can do calculus with it. More precisely, as soon as
the random fractal can be represented as some kind of noise or white noise functional as
explained in §3, the whole stochastic calculus machinery applies. For example, the Wick
exponential of white noise appears to be a good model not just for permeability, but also
for the multifractals appearing in connection with turbulence or in connection with oil
distribution [M].
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