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“It is better to have an approximate answer to the right question than an exact
answer to the wrong one.”

John Wilder Tukey



Abstract

Publish/subscribe (pub/sub) is a popular communication paradigm in the design
of large-scale distributed systems. We are witnessing an increasingly widespread
use of pub/sub for a wide array of applications both in industry and academia.
For instance, the pub/sub paradigm is used for RSS feed notifications, financial
data dissemination and business process management. Pub/sub has also been
used in social interaction message notifications such as in Spotify. Social network
interactions have grown exponentially in recent years to the order of billions of
notifications generated by millions of users every day. However, there are a number
of critical challenges yet to be addressed to design a pub/sub system that can scale
massively.

Pub/sub systems are generally deployed in centralized datacenters or using
federated organizations of cooperatively managed servers. However, an
increasingly higher number of pub/sub applications are being deployed in P2P
environments due to their ability to provide scalable and robust decentralized
solutions. The design of a system with a goal to support notifications at massive
scale from social interactions has several challenges. For one, such a large-scale
system has to possess a distinctively high number of desirable characteristics all
at once in order to be a viable practical solution. However, we show that the
existing state-of-the-art solutions provide only a subset of these characteristics.
In this thesis, we propose PolderCast, a P2P topic-based pub/sub system that is
fault-tolerant, robust, scalable and fast in terms of dissemination latency while
attaining a low communication overhead. We do an extensive experimental
analysis of PolderCast using Twitter and Facebook traces and show that
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PolderCast performs well under realistic churn compared to the widely used
pub/sub system Scribe.

Understanding the challenges faced by a real pub/sub system and getting
insights from the workload it drives are critical to design a pub/sub system. Yet
there is a serious lack of detailed study of a large-scale pub/sub system and its
workload. In this thesis, we present an overview of a pub/sub system used to
drive social interaction at Spotify. We then present a detailed analysis of traces
from a real deployment of Spotify pub/sub. We further analyze the Twitter
traces we collected via public APIs provided by Twitter. The analysis of these
traces provides several interesting observations and conclusions which can benefit
pub/sub designers.

Inspired by the peer-assisted solution used by Spotify to stream music, we
explore a similar solution to provide a scalable dissemination of notification
events to the users. The task of distributing the workload among user peers and
datacenter servers prompts a fundamental problem: How to select a subset of the
pub/sub workload to be served by datacenter servers in a manner to maximize
satisfaction requirements of users under resource constraints? In this thesis we
provide, to the best of our knowledge, the first formal treatment of the above
problem by introducing two metrics that capture subscriber satisfaction in the
presence of limited resources. This allows us to formulate the problem as two
new flavors of maximum coverage optimization problems. Unfortunately, both
variants of the problem prove to be NP-hard. By subsequently providing formal
approximation bounds and heuristics, we show however, that efficient
approximations can be attained. We validate our approach using real-world
traces from Spotify and show that our solutions can be executed periodically in
real-time in order to adapt to workload variations.

One of the fundamental challenges which remains to be addressed in
deploying pub/sub systems on a datacenter or a cloud infrastructure is efficient
and cost-effective resource allocation that would allow delivery of notifications to
all subscribers. Specifically, the challenge is to answer the following three
fundamental questions: Given a pub/sub workload, (1) what is the minimum
amount of resources needed to meet satisfaction requirements of all the



subscribers, (2) what is a cost-effective way to allocate resources for the given
workload, and (3) what is the cost of hosting it on a public
Infrastructure-as-a-Service (IaaS) provider like Amazon EC2. We formulate the
problem to address these questions and provide an efficient solution. We do an
extensive evaluation of the solution using real traces from Twitter and Spotify.
With evidence from the empirical results we show that our solution can be used
as a tool to allocate resources on datacenters and cloud so as to minimize
infrastructure costs.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Publish/Subscribe Systems

Publish/Subscribe (Pub/Sub) is a communication paradigm in which subscribers
express their interest as a pattern of events to be notified. On the other hand,
publishers generate events that are delivered to subscribers with matching
interests. Pub/sub is regarded as a technology enabler for a loosely coupled form
of interaction among many publishing data sources and many subscribing data
sinks. Pub/sub systems provide space decoupling, in which subscribers and
publishers need not know each other. Pub/sub systems are non-blocking, in other
words while subscribers are consuming the produced events, producers can
continue to produce more events independently. Optionally, in pub/sub systems
time decoupling is provided, in that it is not necessary for the publisher of an
event E to be present when E is delivered.

Pub/sub has a wide array of applications both in industry and academia.
Examples from industry include: Google internal pub/sub system [Reumann,
2009], Tibco financial dissemination system [TIBCO] and Spotify pub/sub for
social interaction [Setty et al., 2013]. Many pub/sub systems proposed in
academia are listed in [Eugster et al., 2003; Kermarrec and Triantafillou, 2013].
Many applications report benefits from using this form of interaction, such as

1
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online delivery of notifications due to social interaction, application integration
[Reumann, 2009], financial data dissemination [TIBCO], RSS feed distribution
and filtering [Liu et al., 2005] and [Petrovic et al., 2005], and business process
management [Li et al., 2010]. As a result, many industry standards have adopted
pub/sub as part of their interfaces. Examples of such standards include
WS Notifications, WS Eventing, and the Active Message Queuing Protocol.

In pub/sub systems, the subscribers are usually interested in specific
information instead of the whole data produced by the publishers. Whenever a
publisher generates some data, it is delivered to the relevant subscribers through
an event notification. The different ways of specifying the events of interest have
led to several subscription schemes [Eugster et al., 2003]. The two most widely
used pub/sub schemes are described below.

Topic-Based Publish/Subscribe (TBPS): In a TBPS system, subscriptions
are formed using a set of predefined “topics”. In such a system, subscribers
will receive all messages published for the topics to which they subscribe, and
all subscribers subscribing to the same topic at the same time will receive
the same messages. The publisher is responsible for generating the messages
relevant for the predefined set of topics. In social interaction systems, users
subscribe to the events generated by their friends and celebrities who can
be represented as topics. Hence, TBPS systems are a good match for the
communication patterns in social interaction systems. Hence, in this thesis,
we focus on various research problems in designing scalable TBPS systems
specifically in the context of social interaction systems.

Content-Based Publish/Subscribe (CBPS): In a CBPS system, the
subscriptions are expressed as boolean predicates operating on attributes
and values (for example: “Stock = ‘AAPL’ and value > 95 and value < 98
and daily-change > 2”). In a CBPS the actual content of the generated
event is matched against the subscriptions to deliver the publication event
to the interested subscribers. While in CBPS the subscriptions can express
queries with diverse selectivity, matching the publications against the
subscriptions is considered to be more expensive than TBPS. In social
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interaction systems, the users are generally interested in every message
generated for the topics of their interest. Hence, the rich expressiveness
provided by the CBPS is expensive with very little benefit. Therefore,
using CBPS for matching and delivering publications events in a social
interaction system may be wasteful. There are several CBPS systems
proposed in the literature [Banavar et al., 1999; Carzaniga et al., 2001;
Cugola et al., 2001; Segall and Arnold, 1997]. Though there are several
research problems yet to be addressed in CBPS, they are beyond the scope
of this thesis.

1.1.2 Social Interaction Systems

Recently, online social networks have gained a lot of popularity. There are billions
of users actively using popular social networking services regularly. One of the
fundamental features of social networks is the online social interaction among its
users which includes user activities such as status and multimedia sharing with
friends and followers. In the recent years there is a significant increase in social
interaction among social networking users. For example, Twitter users generate
400 million tweets every day which amounts to more than 6TB of tweet data
[Krikorian, 2010]. Social interaction is not limited to popular social networking
services such as Facebook and Twitter. It has been introduced in music streaming
services such as Spotify as well [Setty et al., 2013]. The number of notifications
due to social interactions among Spotify users is in the order of 2 billion per day.
Such large-scale notifications require a scalable notification system.

Social Interaction Among Twitter Users: Twitter is a popular online social
networking service. It is also referred to as a microblogging service, because it
limits the messages to a 140 character text called “Tweet”. As of 2013 Twitter has
more than 500 million registered users with more than 200 million of them active
daily. More than 400 million tweets per day are generated with an average tweet
rate of 4000 tweets per second and a daily peak around 7000 tweets per second.
Tweet rate increases to 12000 tweets per second during special large events such
as a celebrity death or football world cup. The generated tweets when delivered
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to the interested Twitter users across the world amounts to more than 30 billion
notification deliveries per day [Krikorian, 2013]. Considering that the average
tweet size is about 200 bytes [Krikorian, 2010], this amounts to more than 6TB of
just plain Twitter text being delivered to the users every day. The notifications due
to social interaction among Twitter users is truly large-scale. There are several
instances of Twitter service outages reported. There are examples of Twitter
outages caused by a surge in traffic generated by a celebrity’s tweet1.

Twitter allows users to follow any other Twitter user (with a publicly available
profile) without requiring the other user to follow them back. In other words
Twitter allows “unidirectional” social relationships. All the followers of a Twitter
user receive the tweet from the followee. An example of a Twitter graph with
user-follow relationships is shown in Figure 1.1. For example, user A follows other
Twitter users B, C, D, E, G. Conversely, user A is followed by users C and E. This
follow relationship can be easily turned into pub/sub subscriptions, in which user
A is a subscriber subscribing to topics {B, C, D, E, G} and user A can also be
a topic/publisher being subscribed by users {C, E}. There are several research
works in recent years providing detailed studies of social graphs and interaction
patterns of Twitter users [Kwak et al., 2010; Mislove et al., 2007]. In addition to
public tweets, Twitter has recently allowed users to share private tweets which can
be seen only by the intended recipients. However, social interaction in Twitter
is still dominated by public Tweets. Recently, Twitter allowed tweets to include
multimedia content as well, making the large-scale tweets more data intensive.

Social Interaction Among Facebook Users: Facebook is yet another
popular online social networking service. As of December 2013, Facebook has
1.28 billion registered users. 1.23 billion users are active at least once a month
and on average 757 million users are active every day2. As of May 2013, 4.75
billion pieces of content are being shared on Facebook every day. This makes
Facebook the largest online social network to date.

Facebook social relations are normally bidirectional, i.e. two users are friends

1
See e.g. http://www.bbc.co.uk/news/blogs-trending-26410106

2
http://investor.fb.com/releasedetail.cfm?ReleaseID=821954

http://www.bbc.co.uk/news/blogs-trending-26410106
http://investor.fb.com/releasedetail.cfm?ReleaseID=821954
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only if they mutually accept each other as friends. In addition to friend
relationships Facebook also allows unidirectional following similar to Twitter. An
example of a social relationship in Facebook is shown in Figure 1.2. User A has a
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friend relationship with users C and E. In addition, user A follows user D, even
though user D is not a friend of user A. Regardless of the relationship type, we
can break this social graph into the pub/sub subscriptions. For example, in
Figure 1.2, user A is a subscriber following topics {C, D, E} and user A is also a
topic with subscribers {B, C, E}. Social interaction in Facebook involves status
sharing, multimedia content sharing, private messaging etc. which are notified to
intended friends and followers.

Social Interaction Among Spotify Users: Spotify is a successful on-demand
music streaming service that provides access to over 25 million tracks to its users
residing in more than 55 countries and it has 40 million registered users as of May
2014. Even though Spotify is mostly known for its music streaming service, it also
provides one of the most engaging features: its ability to facilitate sharing and
following of various music activities among its users in real-time. Notifications
through Spotify social interaction are also large-scale. The daily notifications is in
the order of over one billion, which amounts to 2TB of data delivered to the users.

Spotify users can discover and follow other Spotify users, alternatively, they
can import users from their associated Facebook account and follow them. Users
can follow music artists registered with Spotify. The social interaction among
Spotify users involves sharing music activities with their followers. For example, a
user continuously streaming music can share this activity with the followers of that
user in real-time. Other social interactions include sharing, creating and updating
the lists of music tracks called playlists, sharing and recommending individual
music albums or tracks. Thanks to artist verification, followers can also receive
notifications about music activities of real artists. A brief overview of Spotify
social interaction is shown in Figure 1.3. A more detailed study of Spotify social
interaction is conducted in Chapter 4.

1.1.3 Pub/Sub for Social interaction

Our goal in this thesis is to apply the pub/sub communication model to drive
massive scale social interactions. We can map the communication model used in
social interaction systems with the TBPS model in the following way: A user is a
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Figure 1.3: Spotify Pub/Sub for Social Interaction

“subscriber” of his friends and the other users he follows, who are represented as
“topics”. The notifications due to social interactions can be viewed as publications
generated for user topics via “publishers”.

The users can generate social interaction messages without knowing any details
of how to disseminate the messages to their friends and followers. It is the job of the
middleware driving the social interaction to route and deliver the notifications to
the intended recipients. Such a communication pattern is widely used in pub/sub
systems and they have proven to be scalable and robust. Hence, the use of pub/sub
for social interaction is justified.

1.2 Motivational Scenarios and Challenges

Consider a social interaction application, such as in Spotify as shown in Figure 1.3.
Millions of users in Spotify stream music at any given point in time. The users are
located in different parts of the world. The social-interaction system of Spotify
enables the delivery of music activity of users and artists to their friends and
followers in real-time. In Spotify, some artists have millions of followers. For
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Real-time feed from friends and artists!
(fixed number of events)

Figure 1.4: Spotify social interaction real-time notifications

example, popular artist Rihanna has around 4.3 million followers. When Rihanna
listens to music tracks or creates and updates playlists on Spotify, it triggers around
4.3 million notifications. This triggers a sudden surge in pub/sub traffic. Another
example from Twitter shows that when special events such as the Academy Awards
(The Oscars) happen, it may result in a Twitter outage lasting up to 30 minutes.
Hence, it is critical to design scalable architectures to deal with unexpected surges
in pub/sub traffic.

Now consider the same scenario from a subscriber’s perspective. A subscriber
of Rihanna may also be subscribed to many other celebrities and receive an
overwhelming number of events. Given the limited capacity of human recipients
to process such events, that subscriber may simply ignore an event from
Rihanna. Even if the subscriber is able to process all the events, the applications
such as the Spotify client GUI (see Figure 1.4), limit the number of notifications
a user can see at any given point in time. Based on these observations it may be
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useful to introduce a configurable threshold delivery rate (⌧) for each subscriber.
It is wasteful to deliver the notifications generated by Rihanna to the users who
will ignore them or may not be able to see them because they are not included in
the ⌧ events. The challenge here is to utilize the available limited resources of
the pub/sub infrastructure for delivering a subset of events to the users who are
most likely to benefit from them.

From the pub/sub service provider’s perspective, the limited capacity of the
dedicated pub/sub infrastructure for the notification delivery could potentially
result in many issues. Service outages when there is a sudden surge in traffic is
one such issue that is critical to avoid. In such scenarios, a pub/sub service with
relaxed QoS guarantees is preferred over a service outage that could potentially
last for hours. In this regard, the utilization of the limited capacity infrastructure
can be maximized in the following ways: (1) maximize the number of subscribers
receiving a minimum event delivery rate of ⌧ , (2) maximize the cumulative event
delivery rate for all the subscribers, while striving to maintain an event delivery
rate up to ⌧ for individual subscribers. In both cases, complementary mechanisms
such as notification delivery through P2P (peer-to-peer) communication can be
utilized to ensure that every subscriber receives a minimum of ⌧ events. To this
end, peer-assisted pub/sub systems can provide a scalable pub/sub service that
continues to function even when the resources of a dedicated infrastructure are
saturated.

P2P delivery can also be useful for delivering the events beyond the required ⌧

events at any given point in time for the subscribers needing them. For example,
Facebook users see a fixed number of events in real-time on their ticker window3

by default. However, users can also optionally retrieve more events beyond the
default set of events by scrolling down. Utilizing resources from the peers to deliver
the events in such scenarios can be cost-effective.

An alternative way to address a sudden surge in traffic is to over-provision
the resources as currently done by most existing systems. However, the cost of
resources can be minimized by estimating and deploying the optimal amount of

3
Can be seen at top-right corner of the Facebook page, for more information see: https:

//www.facebook.com/help/255898821192992/

https://www.facebook.com/help/255898821192992/
https://www.facebook.com/help/255898821192992/
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resources required to handle the surge. In order to realize this, it is critical to
understand the amount of resources needed in terms of number of servers and
amount of bandwidth required so as to ensure a minimum event delivery rate of ⌧
for all the subscribers. However, there are no such tools to estimate and allocate
resources for such pub/sub systems. The challenge here is estimating the minimum
amount of resources required given a dynamic and large-scale workload such as
social interaction notifications.

From these scenarios first of all we learn that it is critical to analyze pub/sub
workloads. Without them, it is difficult to prepare a system to handle
unexpected surges in traffic. In addition, designing systems which can naturally
scale despite sudden surges in traffic and yet remain robust is essential. We also
note here that delivering only those notifications that are likely to benefit
subscribers using dedicated infrastructure is a key to maximize the utilization of
pub/sub infrastructure resources. Finally, designing tools to estimate and
allocate the minimum amount of required resources to handle unpredictable
pub/sub workload in datacenters and cloud are needed.

1.3 Research Problems Addressed

In this section we elaborate the research problems considered in this thesis inspired
by the motivational scenarios identified in the Section 1.2.

1.3.1 Research problem 1: Designing a Scalable and Robust P2P
Architecture for TBPS

Consider the scenario again where a celebrity like Rihanna generates a notification
which is to be delivered to millions of her followers which could result in a sudden
surge of pub/sub traffic. Given that there are millions of users interested in the
same notification, it is feasible and useful to distribute such a notification using a
P2P network. This technique saves precious resources such as CPU, memory and
bandwidth used by the pub/sub infrastructure.

A number of P2P TBPS systems have been proposed over the last decade
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[Baehni et al., 2004; Castro et al., 2002; Chockler et al., 2007b; Girdzijauskas
et al., 2010; Matos et al., 2010; Rahimian et al., 2011; Wong and Guha, 2008;
Zhuang et al., 2001]. These systems build a decentralized infrastructure in which
the nodes are first dynamically organized into an application-level overlay network.
Overlays are logical links connecting the nodes built on top of physical networks.
The resulting network is subsequently used for event routing. In a P2P system,
nodes may constantly join and leave the overlay network. If the pub/sub overlay
is disrupted while a publication is being routed to the subscribers it may not reach
many subscriber nodes. Hence, there should be overlay maintenance techniques
at each node to rebuild the overlay when failures occur. To be able to support
large-scale applications, such as social interaction, the overlay maintenance should
be lightweight. The following characteristics are desirable for pub/sub overlays:

Reliable publication delivery: Correct delivery of all publications, i.e. absence
of false negatives or deterministic 100% hit-ratio guarantees in a failure-free
run,

Churn handling: Maximizing the number of nodes that receive the generated
publication events (i.e. hit-ratio), even when the nodes are constantly leaving
and joining,

Convergence Speed: Fast recovery at the end of a churn period and mending of
the overlay so as to achieve 100% hit-ratio,

Low node degree: Low indegree and outdegree of overlay nodes,

Topic-Connectivity: Relay-free routing, which means that only subscribers
interested in a topic are involved in routing events for that topic. Such
routing avoids the need for relay nodes that forward publication messages
without being interested in their content,

Scalability: Scalable with the number of nodes, topics, number of nodes interested
in a topic, and number of topics a node is interested in,

Effective dissemination: Fast with as little duplicate delivery as possible, and fair
distribution of load due to routing and processing, and
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Low overhead: Lightweight overlay maintenance.

The design challenge is amplified due to a number of trade-offs:

1. Aiming to achieve low or fixed node degree has a trade-off with relay-free
routing

2. Ensuring robustness under churn with minimal duplicate messages. For
example, using techniques such as flooding of publications in the network
may increase robustness but may also introduce significant amount of
duplicate messages

3. Scalability and precise delivery with few false negatives and false positives
are fundamentally at odds with each other

It is difficult to balance the above mentioned trade-offs. The P2P systems
proposed in the literature provide only a subset of the above listed characteristics.
It is also not clear if any of those systems try to balance the above mentioned
trade-offs. In this regard, there is a need to analyze existing approaches both
analytically and empirically with respect to the above characteristics. In addition,
there is a need for a P2P architecture for TBPS that takes all the above factors
into account and harmonizes them.

1.3.2 Research Problem 2: Understanding and Characterizing
Large-Scale Publish/Subscribe for Social Interaction

Use of pub/sub in real-world social interaction systems In order for
researchers to address the relevant problems faced by real-world pub/sub
systems, understanding the working of real-world pub/sub systems and
identifying their bottlenecks is crucial. Unfortunately, there is limited knowledge
about pub/sub deployed in real industrial large-scale settings.

Workload characterization of pub/sub for social interaction In
addition to understanding the architecture of the real-world pub/sub systems, it
is also important to understand real-world pub/sub workloads. Often design
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decisions are affected by workload characteristics. Moreover, there exist only a
few characterizations of subscriptions and synthetic workload generators such as
[Yu et al., 2009] for pub/sub systems.

There are several characteristics of a pub/sub workload which are typically
used in pub/sub system evaluation. Studying these characteristics for real-world
pub/sub workloads is an unexplored topic. Any pub/sub workload
characterization must describe the following metrics:

Subscription size distribution: Distribution of number of topics each subscriber
subscribes to

Topic popularity distribution: Distribution of number of subscribers to each topic

Publication rate distribution: Distribution of number of publication events
generated for each topic in a given unit of time

Normalized notification rate distribution: Distribution of percentage of total
notifications generated received by each subscriber in a given unit of time

Temporal variation of subscriptions: Temporal patterns in new subscriptions
requests

Temporal variation of unsubscriptions: Temporal patterns in unsubscription
requests

Temporal variation of publications: Temporal patterns in publication event
generation

Gaining insights from real pub/sub systems driving large-scale social
interaction and real traces from such systems is crucial for the research
community to understand real problems and propose practical solutions.
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1.3.3 Research problem 3: Defining and Meeting Subscriber
Satisfaction Metrics in Publish/Subscribe

Subscriber satisfaction in pub/sub for social interaction: It is a known
fact that notifications due to social interaction have mostly human recipients4.
Notifications due to social interaction are also known to be overwhelming for the
users. There are studies quantifying information overload in social networks
[Gomez-Rodriguez et al., 2014]. Gomez-Rodriguez et al. also show that each user
has a limited capacity to process events. When the user is delivered notifications
at a rate beyond this threshold, the user starts to ignore them. This implies that
not all notifications are critical to be delivered in order to guarantee user
satisfaction. Motivated by such scenarios, it is worth introducing the concept of
subscriber satisfaction requirements to deliver events at a configurable threshold
delivery rate (⌧) for each subscriber. This observation can be exploited to
distinguish between a subset of the workload which is sufficient to meet
subscriber satisfaction, and the rest of the workload.

The concept of subscriber satisfaction requirements helps in selecting the part
of the pub/sub workload that maximizes the utilization of limited resources of
pub/sub infrastructure. In addition, such techniques can also be used to offload
the workload that cannot be handled by the dedicated pub/sub infrastructure
to relatively cheaper resources such as P2P networks. The task of distributing
the workload among user peers and datacenter servers prompts a fundamental
problem: How to select a subset of a pub/sub workload to be served by datacenter
servers in a manner that meets satisfaction requirements of users under resource
constraints?

Selecting pub/sub workload to maximize satisfaction metrics: As
shown in Figure 1.5, in a typical pub/sub system, generally there are publishers
generating publications and there is a middleware hosted in a datacenter or
cloud which is responsible for matching and delivering the notifications to the
interested subscribers. The goal of a pub/sub infrastructure is to maintain

4
Even though social notifications can be potentially fed into applications and services as well

for example via Twitter public APIs, in this thesis our focus is on human end users.
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Figure 1.6: Offloading workload to an external system like P2P network in pub/sub
systems

Typically pub/sub infrastructures have limited resources in terms of memory,
CPU power and network bandwidth capacities etc. In such a scenario, it is useful
to devise techniques to select a cost-effective subset of the pub/sub workload
that meets the satisfaction requirements of users and allocate it to the dedicated
pub/sub infrastructure hosted in datacenters or the cloud. If not all subscribers
can be satisfied, the notifications that are required to meet satisfaction
requirements of all the users can be delivered using cheaper dissemination
solutions such as a P2P network. To achieve this, a component called Offloading
Decision Service (ODS) shown in Figure 1.6, can be used to distribute the
workload between the dedicated infrastructure and the P2P network. Pub/sub
designers can also use ODS to estimate the number of subscribers who can be
satisfied using a dedicated pub/sub infrastructure with limited capacity.

To the best of our knowledge there are no techniques available in the literature
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to realize the ODS tasks described above.

1.3.4 Research problem 4: Resource Provisioning for Scalable
Publish/Subscribe

Enterprises wanting to deploy pub/sub either on their in-house datacenters or
public cloud infrastructures such as Amazon EC2 or Microsoft Azure face a
fundamental question: what is the minimum amount of resources in terms of
number of servers and total network bandwidth needed to deliver events to all
the subscribers. While answering such a question is critical, it is not a trivial
task.

Many cloud providers charge their customers separately for the number of
servers with a certain capacity limit (such as CPU and memory) and total
bandwidth consumption. Hence, a cost-effective deployment of pub/sub systems
would require us to minimize both. Trying to minimize both at the same time
may not be feasible, since they are at odds with each other as explained in
Section 7.1.1.

The problem of minimizing cost of resources by balancing the trade-off
mentioned above is computationally hard. If the solution is also required to meet
satisfaction requirements of all subscribers it makes the problem even more
difficult. Moreover, such a problem has never been solved before.

1.4 Contributions

This thesis advances the pub/sub research in the following ways:

• We analyze the existing P2P TBPS systems and propose PolderCast–a fast,
robust and scalable P2P TBPS system. PolderCast harmonizes a number of
desirable characteristics that a pub/sub overlay needs to possess by balancing
trade-offs between them.

• We provide a case study of Spotify pub/sub system deployed for driving
large-scale social interaction among its users and analyze a production
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workload obtained from it. In addition, we also characterize a large-scale
Twitter interaction trace collected by us.

• We introduce a novel concept of subscriber satisfaction requirements. Then
we formulate a novel set of problems to meet satisfaction requirements of
subscribers under resource constraints. By solving these problems using
efficient heuristics, we provide a way to offload a subset of pub/sub workload
to cheaper infrastructures such as P2P networks.

• We provide an efficient technique for cost-effective resource allocation to
deploy a TBPS system on datacenter or cloud infrastructures. We do this
while meeting satisfaction requirements of all subscribers.

1.5 Research Methodology

The research ideas proposed in this dissertation were validated by a combination
of experimental and formal methods. In this section, we list the most important
decisions taken with respect to research methodologies used in this thesis. A
detailed rationale behind the choice of methodologies listed below is provided in
Section 8.2.

Even though the ideas were validated through simulations, they were
conducted under realistic settings using traces collected from real systems. For
example, the performance of the PolderCast system was analyzed using extensive
simulations driven by subscription workloads from Twitter and Facebook. The
simulation settings were made more realistic by modeling churn using Skype
traces [Guha and Daswani, 2005] and latency in P2P communication using the
King dataset [Gummadi et al., 2002]. We also evaluated the algorithms proposed
for the subscriber satisfaction and resource allocation problems using Spotify and
Twitter social interaction traces.

The formal analyses performed in this thesis were instrumental in many
design decisions taken. For example, NP-Hardness analysis of the problems
proposed in this thesis (Sections 6.2.1, 6.2.2 and 7.1.4) proved that they are
computationally hard to solve and hence developing efficient heuristics were
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necessary. In another example, theoretically proving that the objective function
is submodular in Section 6.4, resulted in the performance optimization of the
solution. Deriving bounds on the solutions also helped us to perform relative
comparison of the results we obtained.

Finally, many problems in this thesis were inspired by the interesting
observations obtained by analyzing the real pub/sub systems and their
workloads. For example, analysis of the pub/sub workload from Spotify and
Twitter provided motivation for many problems in this thesis.

1.6 Roadmap

The contributions described in Section 1.4 are organized into chapters in the rest
of this thesis as follows: In Chapter 2, we study the state-of-the-art techniques
that are relevant for design, analysis and resource provisioning in pub/sub systems
for social interaction. In Chapter 3, we analyze existing P2P topic-based pub/sub
systems with a mini survey considering various characteristics of the P2P TBPS
overlays. Further, we propose a design and experimental evaluation of a gossip-
based P2P TBPS system called PolderCast which tries to balance between several
conflicting overlay characteristics. A case study of a real-world pub/sub system
used for driving social interaction at Spotify is given in Chapter 4. In Chapter 5,
we provide a detailed analysis of pub/sub workload traces from Spotify pub/sub
and Twitter. Chapter 6 is dedicated to defining novel satisfaction metrics for
the subscribers and formulating and solving a number of problems of efficiently
allocating workload to meet satisfaction metrics of the users. In Chapter 7, we
define, analyze and solve the problems of efficiently and cost-effectively allocating
resources for pub/sub. Finally, in Chapter 8, we summarize our most significant
observations and conclusions. In the same chapter, we also provide an overview of
promising future directions for the various research ideas presented in this thesis.
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Related Work

In this chapter, we explore various flavors and different architectures for pub/sub
proposed in the literature and analyze their strengths and limitations in the context
of this thesis. As mentioned in Section 1.3.2, analyses of real-world pub/sub
systems and workloads are useful for designing scalable pub/sub systems and yet
there are no such studies. In this chapter, we identify this gap in the literature.
We also provide a brief survey of content-filtering and ranking techniques that are
applicable for filtering events in pub/sub systems. In Section 2.6, we present an
overview of state-of-the-art resource provisioning techniques. Finally, we explore
the theoretical problems in the literature relevant to the subscriber satisfaction
and the resource provisioning problems.

2.1 Subscription and Publication Schemes in Pub/Sub

Systems

One of the main distinguishing properties of pub/sub systems is the degree of
expressiveness of subscriptions they provide. The two widely used variations of
subscription and publication schemes are topic-based and content-based. In this
section, we list and classify the pub/sub systems following these two schemes. We
also study their strengths and weaknesses in the context of pub/sub for large-scale
social interaction.

19
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2.1.1 Topic-Based Pub/Sub (TBPS) Systems

Multicast overlay per topic: In topic-based pub/sub (TBPS) systems the
subscriptions are expressed as discrete topics. The subscribers are the recipients
of all the events published for the topics they subscribe to. In addition, every
publication generated for a topic needs to be notified to every subscriber of that
topic. This property is very similar to the concept of application-level multicast,
where the messages are efficiently delivered from the source to a group of nodes
interested in the same messages. One way to implement TBPS systems is to
build an application-level multicast network for each topic in the system. Such
a technique optimizes the notification delivery to the individual topics. Two of
the well-known works which build a P2P pub/sub system using the concept of
application-level multicast are Scribe [Castro et al., 2002] and Bayeux [Zhuang
et al., 2001]. Tibco Rendezvous [TIBCO] is known to use a similar technique
but it relies on multicast protocols provided by the underlying network to deliver
events for each topic independently.

Although Scribe and Bayeux optimize the delivery of events for individual
topics, they are not optimized for scenarios with multiple topics, where each node
subscribes to many topics. Hence, such systems do not scale for social interaction
workloads typically consisting of millions of topics and subscribers. These systems
are also not desirable for the pub/sub workloads with skewed popularity in topics.
For example, in most social interaction systems the popularity of the topics follows
a power law distribution. Hence, there are always a few topics that are extremely
popular and the multicast trees for these topics would be overloaded. In addition
to that, both these systems have a single point of contact known as rendezvous
node for each topic to route the subscriptions and publications. Rendezvous nodes
can become bottlenecks for popular topics and are prone to failures making these
systems less robust as well. In Section 3.5, we show that Scribe is less robust
under practical scenarios with heavy churn. Although using a multicast tree per
topic has the limitations described above, there are some advantages as well: (1)
duplication of publication events can be avoided, (2) node degree can be fixed.
However, they still fail to meet all the requirements mentioned in Section 1.3.1.
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Overlays with shared links: Topic-based pub/sub systems can scale well
when they exploit the correlation between the subscriptions. For example, in
pub/sub systems built using unstructured overlays the subscribers sharing the
same topics in their subscriptions can establish a connection between them. Such
connections could be shared to exchange the publication notifications that are of
mutual interest between them. Building an overlay to optimally share and
minimize the number of connections is known to be a computationally hard
problem and a number of efficient algorithms are proposed with theoretical
guarantees [Chen et al., 2010, 2011, 2012; Chockler et al., 2007a; Onus and
Richa, 2010, 2011]. There are a number of other TBPS systems that exploit
correlation in subscriptions to build scalable P2P overlays. SpiderCast [Chockler
et al., 2007b], StAN [Matos et al., 2010], Vitis [Rahimian et al., 2011] are
well-known systems in this regard. While SpiderCast and StAN strive to build
and maintain scalable overlays for TBPS, it is not clear how to disseminate
publication events on top of the overlay. SpiderCast and StAN are also not
designed to deal with node failures and churn. While Vitis provides a
dissemination protocol for the publication events and a mechanism to deal with
node churn, it contains potential bottlenecks in the form of rendezvous nodes
and gateways used for disseminating events.

There are more TBPS systems proposed in the literature. For example, TERA
[Baldoni et al., 2007a] builds clusters of subscribers and publishers related to the
same topic using a P2P clustering protocol. The notifications are routed via inter-
cluster routing and disseminated in an epidemic manner within each cluster. This
approach is shown to scale well for disseminating events. However, it still relies on
per topic access points similar to rendezvous nodes in Scribe and Vitis to locate the
clusters. We return to a more detailed analysis and comparison of these systems
see Chapter 3.

TBPS in the industry The concept of topic-based subscriptions is not new
to the industry. Well-known notification systems have been categorizing the
events into predefined topics [ActiveMQ; JMS]. There are also several systems
explicitly marketed as TBPS systems that are popular in the industry. For
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example, Tibco Rendezvous [TIBCO] is used for financial data dissemination.
Kafka [Kreps et al., 2011] is used in the industry to stream data in the form of
topics, across datacenter servers. Kafka is designed for real-time processing of
stream data typically consisting of streams of user logs and social media. As
mentioned in Section 1.1.2, the Spotify pub/sub system follows the TBPS model
as well for social notification delivery. A detailed architecture of Spotify pub/sub
is provided in Section 4.2.1.

2.1.2 Content-Based Pub/Sub (CBPS) Systems

CBPS systems are considered to be more expressive than TBPS systems with
respect to defining subscriptions and publications. Increased expressiveness comes
with a higher cost in matching and requires building complex structures. For
example, matching a publication with complicated subscriptions such as “Stock =
‘AAPL’ and value > 95 and value < 98 and daily-change > 2”, would require an
indexing structure to efficiently determine if the incoming publications fall within
the subscription range. Without an indexing structure, checking attribute and
value predicates of individual subscriptions against all incoming publications could
be very expensive. The scalability of CBPS systems with millions of subscribers
is unclear. Hence, CBPS systems are not desirable for social interaction systems.
In this section, we explore the CBPS systems in the literature and elaborate the
reasons why they are not suitable for large-scale social interaction.

In CBPS systems, since subscriptions consist of several attributes, matching
them with generated publications is expensive. One of the challenges in CBPS
systems is to minimize the overhead of matching subscriptions and events. A
number of research works are dedicated towards speeding up the matching
process. In Gryphon, the subscriptions are stored in the form of a tree. Each
level in the tree represents an attribute in the subscription. Each branch in the
tree represents a different value of that attribute, and the leaf nodes represent
the complete subscriptions. The subscriptions sharing the same attribute and
values fall under the same sub-tree. This technique speeds up the subscription
matching. Other works that improve the efficiency of event matching include
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[Aguilera et al., 1999; Fabret et al., 2001]. [Sadoghi and Jacobsen, 2011] builds
an indexing structure called BE-Tree to speed up the event matching especially
in a higher dimensional space.

The matching in TBPS systems is straightforward and faster than matching
in CBPS systems because of the predefined topics. Hence, social interaction
systems implemented using TBPS systems do not benefit from these expensive
but sophisticated matching and indexing techniques. There are also efforts to
speed up the subscription matching by using dedicated hardware such as FPGA
[Sadoghi et al., 2010, 2012]. However, there are no studies to demonstrate their
benefits in the TBPS systems. Using dedicated hardware to improve
performance is orthogonal to the problems considered in this thesis.

Some CBPS systems avoid explicit matching of subscriptions and
publications. They direct subscriptions and the corresponding matching
publications to a rendezvous node. The rendezvous nodes are determined using a
hash function. Hermes [Pietzuch and Bacon, 2002] is an example of CBPS
system proposed in the literature which uses such a technique. One of the
distinctive characteristics of Hermes is that it is a type-based pub/sub system.
In a type-based system, both events and subscriptions have types that define
which attributes they involve. Each subscription and publication event is hashed
to obtain a type and routed to a rendezvous node using an underlying DHT
(Distributed Hash Table) structure responsible for that type. Rebecca [Terpstra
et al., 2003], similar to Hermes builds the overlay using a Chord DHT [Stoica
et al., 2001]. However, the event dissemination is scoped flooding, i.e. the events
are forwarded to all the neighbors with matching subscriptions at each node.
Such a dissemination algorithm in the worst-case can have complexity O(N)

where N is the total number of nodes in the system.
In summary, even though CBPS systems provide better expressiveness

compared to TBPS systems, they are not known to scale to millions of
subscribers because of the expensive event matching techniques they use. On the
other hand in social interaction systems, the events need to be delivered for every
subscriber of a topic eliminating the need for complex event matching techniques.
Finally, to the best of our knowledge, none of the CBPS systems proposed in the
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literature are used as engines to drive large-scale social notification delivery.

2.2 Publish/Subscribe System Architectures

Traditional pub/sub implementations are either centralized or based on a federated
organization of cooperatively managed servers. However, a number of pub/sub
applications are being deployed in P2P environments as well. Hybrid peer-assisted
architectures have also been proposed. In this section we discuss the various
advantages and disadvantages of these architectures.

2.2.1 Broker-Based Architectures

In broker-based architectures for pub/sub generally there are a number of
dedicated servers called brokers responsible for managing subscriptions,
matching, routing and delivering publications to subscribers. Broker-based
architectures can be either centralized or decentralized. While decentralized
architectures improve scalability, they introduce unique challenges. The brokers
are generally hosted on dedicated infrastructures such as datacenters or clouds.
The construction and maintenance of broker topologies is often done manually in
many systems [Carzaniga et al., 2001; Cugola et al., 2001; Jacobsen et al., 2010].
Broker-based architectures can be robust, dynamic and adaptive to the pub/sub
workload if the broker overlays are self-organizing. In this section, we list and
classify the different broker architectures used for pub/sub systems and identify
their strengths and weaknesses.

Centralized broker-based architectures A centralized architecture is
driven by a single physical or a logical broker. A logical broker may be
partitioned into several physical subbrokers, each subbroker is responsible for
independently handling a part of the work assigned using a deterministic work
partitioner. Message queuing systems such as Oracle Advanced Queuing
[OracleAQ] rely on centralized architectures with a single physical broker to store
and forward the messages from publishers to subscribers. Several messaging
solutions supporting Java Message Service (JMS) APIs such as Apache
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ActiveMQ [ActiveMQ] are designed to operate on centralized broker
architectures as well.

Decentralized broker topologies In many broker-based CBPS systems such
as Siena [Carzaniga et al., 2001], JEDI [Cugola et al., 2001] and PADRES [Jacobsen
et al., 2010], the brokers are organized as a tree or a graph topology. In such
topologies, a naive way of delivering publication notifications to the subscribers
is to flood the publication events from the publishers to the subscribers as done
in [TIBCO]. The expensive flooding of publication events can be avoided, if a
routing path between the publishers and subscribers is established. In order to
achieve this each broker has to maintain a routing table which directs events to
the next-hop broker to efficiently route it to the subscribers. In this regard, there
are two main routing techniques proposed in the literature: advertisement-based
and subscription-based [Eugster et al., 2003].

Advertisement-Based Routing: In advertisement-based routing the publishers
advertise the attribute ranges in which they will generate future
publications. The advertisements are flooded in the network. When
subscribers join the network the subscriptions are routed back towards the
publishers following the reverse path of the matching advertisements. The
path obtained this way is used for routing publication notifications from
the publishers to the subscribers.

Subscription-Based Routing: In subscription-based routing every subscription
from every subscriber is flooded and the publishers follow the matching
subscription path to reach the subscribers. This routing path is used to
disseminate all the publication events.

These two routing mechanisms have a trade-off between flooding the
advertisements and flooding the subscriptions. If the publishers are known to be
static or not changing often, it is preferable to use advertisement-based routing.
On the other hand if the publishers are changing their publication ranges,
flooding the subscriptions is preferable. There are several examples of pub/sub
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systems in the literature [Banavar et al., 1999; Carzaniga et al., 2001; Jacobsen
et al., 2010] that support both advertisement-based and subscription-based
routing. Regardless of these routing techniques, flooding of millions of
subscriptions and topics is very expensive in a pub/sub system for large-scale
social interaction. Hence, these techniques are not desirable for the scenarios
considered in this thesis.

Siena [Carzaniga et al., 2001] was one of the first pub/sub systems to propose
a broker-based pub/sub system architecture with a tree or graph topology. In
Siena, several optimizations are introduced to minimize the traffic overhead for
forwarding the subscriptions and advertisements. One widely implemented
optimization in CBPS systems is subscription coverage: when a subscription or
advertisement is received at a broker, it stops forwarding it to its neighbors if it
finds that there is already a subscription or advertisement covering the incoming
subscription.

JEDI [Cugola et al., 2001] uses a tree topology similar to the hierarchical
topology proposed in Siena. The subscribers are connected to the leaf brokers and
the incoming subscriptions are forwarded from leaf to the root broker. Publication
events are also forwarded from the leaf to the root broker. However, if there is a
matching subscription at intermediate brokers the event is forwarded down that
sub-tree to the leaf brokers. Unlike Siena, JEDI does not support optimizations
such as subscription covering. JEDI also has the problem of load imbalance in the
brokers closer to the root and the root broker itself.

PADRES [Jacobsen et al., 2010] is yet another broker-based CBPS system,
which borrows several ideas and optimizations such as advertisements,
subscription covering etc. from Siena and JEDI. PADRES extends the CBPS
paradigm in many directions. One of the extensions proposed is composite
subscriptions. They introduce a way to express the subscriptions as event
patterns and hence, are far more expressive than the simple attribute-value
predicates. In addition to subscription coverage, PADRES also introduces the
concept of subscription merging. Two or more subscriptions at a broker are
merged before forwarding them if they have a significant overlap. More
extensions in PADRES include support for subscribing to past events; multi-path
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routing exploiting acyclic overlays to improve fault-tolerance; dynamic routing
algorithms to adapt the subscription and event forwarding under failures and
load imbalances.

The tree and graph topologies are generally not self-organizing and adaptable
to the variations in the workload. In addition, the position of the subscribers and
publishers in the topology impacts the load distribution among brokers. Hence,
they need special subscriber and publisher placement and migration techniques
such as in [Cheung and Jacobsen, 2010]. There are also pub/sub systems
inspired by the self-organization techniques used in P2P systems. In [Baldoni
et al., 2007b], the authors propose a technique to build a self-organizing overlay
of brokers for Siena. The self-organization is inspired by the P2P clustering
techniques to group brokers matching similar events together. However, they are
not designed to autonomously balance load among brokers.

2.2.2 P2P Pub/Sub Systems

P2P systems are generally built on top of overlay networks. P2P networks are
known for their self-organizing and self-healing properties. In P2P systems no
single node needs to be aware of the global knowledge of the system. P2P systems
provide a scalable, efficient and fault-tolerant implementation of pub/sub because
of self-organization techniques used by individual nodes. The self-organization and
maintenance of nodes is achieved by autonomous decentralized algorithms run at
each participating node. Typically, P2P overlays are classified as structured and
unstructured. The same classification can be seen in pub/sub implementations as
well. In this section, we discuss various features and limitations of both structured
and unstructured overlays for pub/sub systems proposed in the literature.

Structured Overlays for P2P Pub/Sub P2P pub/sub systems implemented
on structured overlay networks follow the concept of assigning a specific position
in the network to each joining node. They usually build structures such as a ring, a
tree, a torus or a multidimensional hypercube. For this purpose they leverage the
structured overlay implementations such as DHT. For example, Scribe and Bayeux
are built on top of a Pastry DHT [Rowstron and Druschel, 2001a] and Rebecca is
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built on top of a Chord DHT [Stoica et al., 2001]. Typically these systems build a
multicast tree per topic in the pub/sub system. The Hermes CBPS system is built
on top of a DHT as well. Pub/sub systems built on top of DHTs generally cannot
avoid having special nodes known as rendezvous nodes which act as a contact point
for newly joining subscribers and publishers generating events. There is generally
a cost of O(log(N)) to reach the rendezvous node each time a publication or a
subscription is generated where N is the number of nodes in the system. There is
an additional cost of disseminating the events to all the relevant subscribers of the
publication. The overlay maintenance to handle churn depends on the underlying
DHT implementation. For example, Scribe relies on churn handling provided by
Pastry. Waiting for the underlying DHT to recover in order to rebuild the pub/sub
overlay can cause loss of messages. In Chapter 3 we show that tree-based pub/sub
overlays built using DHTs have a number of limitations in practical settings with
respect to scalability and latency in delivery of publications events. In addition,
we also show that a pub/sub system PolderCast built using unstructured overlays
can outperform such systems.

Overlays built using multidimensional hypercube structures are yet another
flavor of structured overlays. Such structures can be implemented over DHTs to
facilitate CBPS in a P2P fashion. One such system is Meghdoot [Gupta et al.,
2004], it builds a multidimensional hypercube structure to arrange the subscriber
nodes. To achieve this Meghdoot relies on a CAN P2P network [Ratnasamy
et al., 2001]. Using CAN, Meghdoot builds a d-dimensional hypercube, where d
is the number of attributes. The id of a node is determined by the d-dimensional
point in the hypercube. The subscriptions are defined using d attributes. Hence,
Meghdoot can support CBPS. Whenever a publication event is generated, it is
routed to the node responsible for the group of subscribers interested in this
event. This is achieved using the proven the CAN routing technique. Meghdoot
heavily relies on CAN structure to provide pub/sub functionality and hence the
cost of routing messages in CAN is incurred when routing subscriptions and
publications. Other similar pub/sub systems building multidimensional DHT
structures include Mercury [Bharambe et al., 2004].



2.2. Publish/Subscribe System Architectures 29

Unstructured Overlays for P2P Pub/Sub Unstructured P2P overlays do
not have a specific structure like DHTs. Unstructured overlays are typically
random graphs. However, the graph structures of unstructured overlays designed
for pub/sub systems generally reflect the distribution of topic popularities and
subscription sizes in the pub/sub workload. For example, the number of topics
subscribed by a node is reflected by its outdegree (number of neighbors). Many
unstructured overlays usually rely on gossiping protocols which typically use a
random peer sampling service such as Cyclon [Voulgaris et al., 2005] to
constantly discover new nodes and to keep the overlay connected and preserve
random graph properties. However, in order to build pub/sub overlays without
any predefined structures there is a need for a technique to connect the peers
sharing the similar interests together. A widely used technique is to rely on
clustering of nodes with similar interests. While this technique aids in choosing
the neighbors to build a pub/sub overlay, it does not ensure the connectivity of
nodes subscribing to the same topic.

SpiderCast [Chockler et al., 2007b] is an example of a pub/sub system which
builds an overlay so as to connect the nodes subscribing to the same topic in a sub-
overlay using node clustering techniques. SpiderCast tries to minimize the degree
of each node by sharing connections with the nodes subscribing to the same topics.
This is achieved by running a heuristic at each node called Greedy Coverage which
greedily selects neighbors to cover each topic K

g

times. However, such a technique
may not ensure a connected graph for a per topic induced suboverlay. SpiderCast
addresses this problem by introducing another heuristic called Random Coverage
which is to select K

r

random peers subscribing to the same topic. The gossiping in
SpiderCast protocol is designed to apply both heuristics to build an overlay with
a balance between the number of links between the nodes and connectivity. It has
been shown that setting K

r

to 3 is practically sufficient to achieve a connected
suboverlay per topic. While SpiderCast ensures connectivity of the overlay, it
does not provide any protocol to disseminate publication events in the overlay.
Furthermore, it is not clear how to repair the overlay in the presence of failures
and churn.

Vitis [Rahimian et al., 2011] is yet another pub/sub system which employs
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gossip-based clustering of nodes with similar interests to build a pub/sub overlay.
Vitis tries to maintain a constant node degree for each node. As a result, the
problem of disconnected components becomes unavoidable. To address this
problem, Vitis introduces special nodes called gateway nodes for each
disconnected component. Each topic in the system has an associated rendezvous
node and acts as the contact point for routing subscriptions and publications of
that topic. Vitis connects all the disconnected gateway nodes by building and
maintaining a tree of gateway nodes with the rendezvous node as the root.

StAN [Matos et al., 2010] builds the unstructured overlay using a
combination of gossiping and random walk techniques. StAN avoids the problem
of disconnected clusters by assuming that the overlay construction starts with a
connected overlay for each topic. This approach limits the ability of the overlay
to adapt to churn.

Data-Aware Multicast (daMulticast) [Baehni et al., 2004] is yet another
example of an unstructured overlay for pub/sub. A unique contribution of
daMulticast is that it builds a hierarchical overlay for hierarchical topics1. One
of the limitations of daMulticast is that it relies on a separate gossiping process
for each topic. While this strategy facilitates building hierarchical overlays, it
becomes difficult to scale with millions of topics and hundreds and thousands of
topics per subscriber as seen in social interaction systems.

Sub-2-Sub [Voulgaris et al., 2006] builds an unstructured overlay for
providing a CBPS service. Unlike other P2P pub/sub systems built on
unstructured overlays Sub-2-Sub allows the queries to be specified using range
predicates in the subscriptions. Sub-2-Sub relies on gossiping to build
sub-overlays among subscriber peers having overlapping range of values of the
attributes in the subscriptions. The overlay adapts itself to the changing
subscriptions, peers joining and leaving (churn and failures). One of the
disadvantages of the Sub-2-Sub system is that the subscription attribute values
can potentially overlap in an exponential combination of the attributes and
values, resulting in an exponential number of suboverlays. This limits the

1
For example, alternative rock music is a type of rock music, hence, the topic “music rock”

becomes parent of “alternative rock music” in the hierarchy
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scalability especially when the subscriptions have high number of attributes.

To summarize, unstructured overlays could eliminate the need for special
rendezvous nodes and gateways. However, the existing pub/sub systems built
using unstructured overlays are either incomplete by omitting publication
dissemination techniques and churn handling [Chockler et al., 2007b; Matos
et al., 2010] or they are not scalable because they build overlays per topic
[Baehni et al., 2004]. In Section 3.2 we further study the limitations of these
approaches in more detail.

2.2.3 Peer-Assisted Architectures for Pub/Sub

P2P pub/sub systems are known to be self-organizing, self-healing and also scale as
the number of users grows. If the P2P networks can utilize the resources from user
devices then they can scale with the number of users without any additional cost
of deploying new hardware. On the other hand dedicated pub/sub infrastructures
hosted in datacenters or on cloud infrastructures are known to provide a reliable
pub/sub service. Peer-assisted architectures borrow the best of both P2P and
dedicated infrastructures. Offloading a subset of the tasks done by the dedicated
infrastructure to P2P network can save infrastructure costs such as bandwidth. In
this regard, we explore the peer-assisted architectures proposed in the literature
for pub/sub.

As learned in Section 1.2, given the limited resources of pub/sub infrastructure,
utilizing it to maximize the subscriber satisfaction is critical. Diverting part of
the traffic that cannot be handled by the dedicated pub/sub infrastructure can
potentially avoid service outages. There is also evidence from peer-assisted content
distribution techniques that significant bandwidth costs can be saved if resources
from user devices are also used [Kreitz and Niemela, 2010]. Since social interaction
systems often involve content distribution as well, using peer-assisted techniques
for pub/sub to save costs is in line with the peer-assisted solutions already used
by the popular companies such as Spotify.

Unlike broker-based and P2P pub/sub systems, the number of reported
pub/sub systems with peer-assisted architectures is limited. [Xu et al., 2011]
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propose a system coined Cuckoo which is designed to share the pub/sub traffic
and workload between a dedicated cloud infrastructure and a P2P network. It is
designed to take advantage of the reliability provided by the cloud and
cost-effective and yet scalable notification delivery provided by the P2P. Cuckoo
is designed towards microblogging social interaction systems such as Twitter.
While this is proven to reduce the load on the cloud, it is not clear what to
offload to peers while maximizing the utilization of the available dedicated cloud
resources to meet given quality of service metrics. We believe more can be
achieved with the same cloud resources by using a more sophisticated strategy to
select what to offload. In Chapter 6, we formalize this problem and provide
various algorithms that could be applied in Cuckoo to gain more benefits.

[Kazemzadeh and Jacobsen, 2012] propose a system coined Publiy+ which is
designed to provide peer-assisted content delivery using the pub/sub
communication model. In this work a pool of pub/sub brokers are used for
coordinating and guiding the peers to the source of required content via pub/sub
notifications. While pub/sub is used for improving content distribution, the
pub/sub traffic itself is not offloaded to the peers. PAPaS [Ahmed et al., 2012] is
another system that is focused on improving content distribution using pub/sub.
However, the problem of efficient sharing of pub/sub workload between brokers
and peers has not been explored.

2.3 Pub/Sub Offered as Part of Public Cloud Services

There are several cloud providers offering pub/sub as part of their services such
as Amazon SNS (Simple Notification Service) [Amazon-SNS], Microsoft Azure
Service Bus [MSAzureSB] and PubNub [PubNub]. Enterprises may choose to
deploy pub/sub on these services as an alternative to deploying pub/sub in their
own datacenters. Amazon SNS for example provides APIs to define topics and
subscribers and distribute notifications to the subscribers of the topics. The
subscribers can also be mobile devices receiving the notifications as push
notifications. Microsoft Azure Service Bus provides a messaging service to
deliver messages between cloud applications or in-house datacenter and cloud
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applications. However, there is no concept of topics and subscribers in this case.
PubNub provides an SDK for developing pub/sub services which can be deployed
on the cloud. These systems generally offer the services for a given periodic
slab-based pricing in which the customer is charged according to the usage.

The ready to deploy pub/sub services mentioned above are useful yet
deficient. Resource allocation in clouds and cost estimations are critical for an
enterprise wanting to move the deployment of its proprietary pub/sub engine to
the cloud. However, to the best of our knowledge there are no such tools
available for the designers of TBPS systems. Moreover, the problem of
cost-effective resource allocation for offering pub/sub services on cloud is critical
for the service providers as well and yet it has never been addressed in the
literature. In Chapter 7, we propose techniques for allocating resources and
estimating costs for pub/sub deployment on cloud.

2.4 Pub/Sub Workload Analysis and Characterization

Even though pub/sub is widely researched in the academia, there is a serious lack
of real-world workloads for evaluating pub/sub systems. Workload generators for
pub/sub are also rare [Yu et al., 2009]. Researchers in academia rely on synthetic
workload generation techniques [Baldoni et al., 2007a; Castro et al., 2002; Chockler
et al., 2007a,b]. A pub/sub workload generator needs to consider the distributions
of topic popularity, subscription size, publication event rate of topics, normalized
notification rate per subscriber etc. To the best of our knowledge, no existing work
considers all these metrics together for generating a workload.

As mentioned in Section 1.2, social relations in social networks can be converted
to subscriptions in pub/sub. Hence, the social relations from the social graphs
characterized in [Kwak et al., 2010; Mislove et al., 2007] can serve as subscription
workload for evaluating the pub/sub designed for social interaction. A number of
academic works use the Twitter social graph as subscription workload for pub/sub
[Chen et al., 2013; Rahimian et al., 2011; Xu et al., 2011; Zhang et al., 2013b].
However, these works still rely on synthetic workload generation for publication
events. In Chapter 5, we characterize the publication event rate and notification
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event rate distributions, in addition to characterizing the social graphs of Spotify
and Twitter users.

Even though there have been some characterizations of pub/sub workloads
from real systems in the past [Liu et al., 2005; Tock et al., 2005; Yu et al., 2009],
they all mainly focus on characterizing the distribution of topic popularity in the
workload.

2.5 Content Ranking Techniques

As mentioned in Section 1.3.3, the social interaction notifications generally have
human recipients. Delivering every single event to the users may be overwhelming
for them. Hence, selecting and delivering only a subset of all the matching events
to the subscribers can be useful. One way to select a subset of events is to define
metrics to express the subscriber satisfaction. While subscriber satisfaction is
subjective, one way to quantify the subscriber satisfaction is to simply guarantee
a fixed event delivery rate to the users (explained in detail in Chapter 6). Another
possible way is to rank the events and deliver only top-ranked events. There
are several techniques popular in the literature to filter and rank events. In this
section, we explore and analyze the relevance of those techniques for the scenarios
we consider in this thesis.

2.5.1 Ranking and Top-k in Information Retrieval (IR) Systems

The ranking functions in IR systems are typically designed for searching textual
documents using keyword queries. The relevance scores of documents containing
the given keywords are computed by counting the number of occurrences of a given
keyword in a document (i.e. Term Frequency–TF) normalized by its occurrence in
the entire document corpus (i.e. Inverse Document Frequency–IDF). Many scoring
functions have been proposed in the literature based on the TF-IDF model, the
most widely used one being Okapi BM25 [Manning et al., 2008]. Using such
scoring models the documents can be ranked to select the top-k most relevant
documents for a given keyword query. Top-k queries based on ranking elements
of multidimensional datasets are a fundamental building block for IR systems. In
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IR systems, given a string keyword query, the goal is to retrieve the most relevant
text documents for the given query. The best known general-purpose algorithm
for evaluating top-k queries is Fagin’s threshold algorithm [Fagin, 1999]. There
are also distributed versions of this algorithm proposed [Fagin et al., 2001]. A
detailed study of different top-k algorithms used in relational databases is given
in [Ilyas et al., 2008]. One of the main disadvantages of these approaches is that
they are optimized for static documents and are not suitable for publication events
generated in real-time.

2.5.2 Ranking Events and Top-k in Pub/Sub

There are several ranking and filtering schemes proposed for pub/sub. [Drosou
et al., 2009; Pripužić et al., 2008] provide a way for the subscribers to order their
subscriptions, which is then used to filter and order the matching publication
events. The subscriptions can be specified with numerically quantified priorities.
Further [Drosou et al., 2009] also introduce the concept of diversification if the top-
k events are all similar. The concept of ordering the subscriptions by specifying
priorities can be borrowed and applied to the problems addressed in this thesis to
extend the satisfaction metrics defined in Section 6.2. However, we omit it from
this thesis since it is orthogonal to the problems we consider.

[Machanavajjhala et al., 2008] introduce a multidimensional interval indexing
structure by extending R-Tree structures [Guttman, 1984] to include the score.
The subscriptions are represented as multidimensional range queries, and the
publications are represented as multidimensional points. They also express the
ranking from the publisher point of view. For example, given a publication, what
are the top-k relevant subscriptions? Such a model is useful in targeted
advertising, where advertisements can be expressed in terms of range of values
and the users can be represented as multidimensional points. It is known that
R-Tree structures are limited in scalability with respect to the number of
dimensions.

In [Shraer et al., 2013] news articles are treated as subscriptions and tweets
generated in real-time are treated as publications. Then the TF-IDF ranking
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function Okapi-BM25 is used to annotate each news article with the top-k relevant
tweets. Special indexing techniques are proposed to achieve this efficiently in real-
time. While this approach ranks the incoming social events such as tweets against
subscriptions, the effectiveness of the ranking depends on the content of the tweet
(for example, if a tweet is simply a URL or some metadata such ranking technique
may not work). In the application scenarios such as Spotify social interaction
considered in this thesis, the content of events cannot be treated as a textual
document. Hence, this approach is not suitable for the scenarios considered in
this thesis.

In [Rao and Chen, 2011] the authors propose an RSS aggregation service that
provides subscribers with the personalized textual content dissemination service
over multiple content providers. The service allows the user to subscribe to live
web content using keywords. The ranking techniques from information retrieval
are used to rank the content. Using the ranking function, the content is ordered
and pruned to select the top-k relevant content items and deliver those to the
subscribers via a DHT of brokers. The ranking technique used in this work is
suitable for subscriptions in the form of textual keyword queries. For ordering the
events based on the topics such techniques are expensive and may not scale to
millions of subscriptions as required by the social interaction systems.

[Zhang et al., 2013b] propose a CBPS system with a goal to deliver the top-k
publication events given any ranking function. The subscriptions are expressed
in terms of predicates of attributes and values. While this technique makes the
subscriptions expressive, they are also expensive to evaluate.

2.6 Resource Provisioning in the Cloud and

Datacenters

In this section, we present an overview of related work specific to resource
provisioning techniques used in the cloud and datacenters. We are interested in
works that estimate the cost of deploying distributed services such as pub/sub.
Our goal in this section is to explore the literature to find the state-of-the-art
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techniques for estimating and minimizing the cost of deploying pub/sub.

2.6.1 Resource Provisioning for Publish/Subscribe Systems

To the best of our knowledge there exist no works addressing the problem of cost-
effective resource provisioning tailored for TBPS systems. TBPS engines widely
used in industry such as Apache Kafka [Kreps et al., 2011] support deployment
in cloud and datacenters. However, these systems rely on manual allocation of
resources, and do not provide a way to estimate or minimize the deployment
costs.

In [Tran et al., 2011] the authors propose a system coined EQS which follows
a message-queue architecture similar to a TBPS system. EQS monitors the
workload of individual topics and migrates them to keep the load balance among
the servers in datacenters. In [Hoffert et al., 2010] the authors predict the
resource requirements to adapt to the change in TBPS workload using machine
learning techniques. [Barazzutti et al., 2014] propose an elastic architecture for
pub/sub to scale up and down the number of servers to dynamically adapt to the
incoming pub/sub workload. However, they do not consider minimizing the
interserver bandwidth costs. In addition, [Barazzutti et al., 2014] also use the
first-fit bin packing technique to allocate resources which is considered as a
baseline against more efficient techniques proposed in this thesis.

2.6.2 Resource Provisioning for Stream Processing Systems

One relevant area of research is stream processing in the cloud [Barazzutti et al.,
2013; Gulisano et al., 2012]. Stream processing and complex-event processing
engines are similar to pub/sub systems. However, the operators and semantics
are different. There are a number of resource provisioning techniques for stream
processing system. In [Cerviño et al., 2012], the authors propose adaptive
resource provisioning for processing stream queries with the goal of optimizing
query latency. On the other hand, this work does not aim at minimizing
monetary costs. The number of servers is adapted in the proposed scheme to
accommodate the incoming event rate of streams. At the same time, the solution
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does not focus on minimizing bandwidth consumption or exploring the trade-off
between the number of servers and bandwidth consumption2. In
[Castro Fernandez et al., 2013] the authors propose scaling at operator level for
stream processing. While in [Heinze et al., 2013], the authors propose a
demonstration of cost estimation for streaming queries, they do not aim at
minimizing this cost. This idea is specific to the domain of streaming queries.

In [Ishii and Suzumura, 2011] the authors do consider the problem of
minimizing cost of stream processing on cloud. However, the cost is considered
only for the part of stream processing which is offloaded to the public cloud.

Resource provisioning techniques developed for a stream processing system
differ from the resource provisioning considered in this thesis in many ways.
Firstly, the trade-off between number of servers and bandwidth consumed cannot
be exploited under stream processing semantics. In addition, there is no concept
of subscriber satisfaction metrics, which is essential in our problems. Finally, to
the best of our knowledge these works neither formalize nor do any theoretical
analysis of resource provisioning problems.

2.6.3 Resource Provisioning for Other Applications

There are several papers addressing resource provisioning in the cloud and
datacenters to minimize monetary and other costs in general [Genaud and Gossa,
2011; Vasić et al., 2012; Villegas et al., 2012]. The provisioning techniques used
in these works are generic and oblivious to internal semantics of the applications
they consider, which limits the optimality of allocation and its cost-effectiveness.
For example, this renders exploiting the pub/sub workload characteristics to do
cost-effective resource allocation infeasible.

2.7 Relevant Theoretical Problems and Concepts

In this thesis, we formalize a number of problems arising from challenges of
pub/sub for large-scale social interaction. We also analyze their hardness

2
Introduced in Section 1.3.4 and elaborated with examples later in Section 7.1.1.
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theoretically and propose efficient algorithmic solutions. Hence, this section is
dedicated to exploring the relevant theoretical concepts and problems in the
literature.

The problems of maximizing the number of satisfied subscribers we formulate
in Section 6.2.1 and Section 6.2.2 bears a strong resemblance to (set) coverage
problems; the problem of Budgeted Maximum Coverage (BMC) [Khuller et al.,
1999] being the closest match. A significant difference is that in our setting a
subscriber may need to be “covered” more than once. This special requirement is
a result of satisfaction metric constraint which is to be met for the subscribers.

We also formulate the problem of cost-effective resource provisioning coined
Minimum Cost Subscriber Satisfaction (MCSS ) problem in Section 6.2.
MCSS resembles a combination of the knapsack [Martello and Toth, 1990] and
bin packing problem [Eilon and Christofides, 1971]. There exist works that
provide a formalization for the general problem of resource provisioning in the
cloud, with emphasis on theoretical analysis. In [Sindelar et al., 2011] a variation
of bin packing with various collocation constraints is considered for the problem
of VM allocation and proved NP-Hard. However, these works do not take into
account the specifics of resource provisioning for pub/sub. For example, the
problem of MCSS has a unique set of constraints stemming from the satisfaction
requirement and from the fact that topics are shared across the subscribers,
resulting in the need for cost-effective selection of topic-subscriber pairs.
Furthermore, the fact that the incoming bandwidth depends on the distribution
of topic-subscriber pairs poses additional challenges and calls for customized
allocation algorithms, which we address by introducing a customized version of
bin packing with a number of optimizing heuristics.

2.7.1 Relevant NP-Hardness Reductions

In computational complexity theory there are several polynomial-time reductions
and they are used for proving that one problem (with known difficulty) is no
more difficult than the other. The three most common types of polynomial-time
reductions are explained below:
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• A polynomial-time many-one reduction from a problem A to a problem
B is a polynomial-time algorithm for transforming inputs to problem A into
inputs to problem B (for which hardness is to be established), such that
the transformed problem has the same output as the original problem. An
instance of problem A can be solved by applying this transformation to
produce an instance of problem B, giving input to an algorithm for problem
B, and returning its output.

• A polynomial-time truth table reduction from a problem A to a
problem B is a polynomial-time algorithm for transforming inputs to
problem A into a fixed number of inputs to problem B, such that the
output for the original problem can be expressed as a function of the
outputs for B. The function that maps outputs for B into the output for A
must be the same for all inputs, so that it can be expressed by a truth
table.

• A polynomial-time Turing reduction from a problem A to a problem B
is an algorithm that solves problem A using a polynomial number of calls to
a subroutine for problem B, and polynomial-time outside of those subroutine
calls.

In this thesis our goal is to establish the hardness of the formulated problems by
measuring the relative computational difficulty of the existing problems. Hence,
we use “polynomial-time many-one reduction” techniques which is sufficient to
prove the hardness.

The family of coverage problems are generally proven NP-Hard using
reductions from the Max Cover problem [Hochbaum, 1997]. We instead reduce
Densest-k-Subgraph (DkS ) problem to our B3M problem, which allows us to
rule out the existence of a PTAS. The technique to reduce from DkS to a flavor
of the multi-coverage problem (B3M ) is new. Seminal work on analysis of the
maximization of submodular set functions was originally done in [Fisher et al.,
1978]. In this thesis, we exploit the submodularity property to derive a constant
approximation ratio for its greedy heuristic and to speed up the corresponding
algorithm.
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Typically, researchers construct a reduction to problems which involve
packing items under constraints [Hochbaum and Maass, 1985] from the bin
packing problem or the knapsack problem. In this thesis, we prove the
NP-Hardness of the MCSS problem, by first formulating a decision version of the
MCSS problem, then by reducing the well-known Partitioning Problem [Garey
and Johnson, 1979] to it.
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Chapter 3

PolderCast: P2P Overlay for

Fast, Robust and Scalable

Dissemination in Topic-Based

Pub/Sub

Designing a P2P pub/sub system that is scalable, robust to failures and provides
faster dissemination mechanisms all at once is a challenge. This is attributed
to the high number of desirable characteristics that a large-scale P2P pub/sub
system has to possess all at once in order to be a viable practical solution, as
mentioned in Section 1.3.1. In particular, the list includes: (1) Correct delivery
of all publications, i.e., absence of false negatives or deterministic 100% hit-ratio
guarantee in a failure-free run, (2) High hit-ratio under realistic node churn, (3)
Fast recovery at the end of a churn period and mending of the overlay so as to
achieve 100% hit-ratio, (4) Low degree of overlay nodes, (5) Relay-free routing (also
called topic-connectivity), which means that only subscribers interested in a topic
are involved in routing events for that topic, (6) Scalability with the number of
nodes, topics, number of nodes interested in a topic, and number of topics a node
is interested in, (7) Effective dissemination: fast, with as little duplicate delivery
as possible, and fair distribution of load due to routing and processing, and (8)

43
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Low overhead of overlay maintenance.

The design challenge is amplified due to a number of trade-offs: low node
degree and relay-free routing, robustness under churn and lack of duplicate
delivery, scalability and precise delivery with few false negatives and false
positives are fundamentally at odds with each other. Furthermore, each of the
principal solution approaches provides a bundle of desirable and undesirable
properties at the same time: dissemination over multicast trees is fast and
without duplication but it is fragile, whereas gossiping is robust but lacking
deterministic delivery guarantees.

In this chapter, we present PolderCast1, a P2P architecture for topic-based
pub/sub. To the best of our knowledge, PolderCast is the first solution that
takes all of the above factors into account and harmonizes them. In order to
substantiate this claim, we present a survey of existing approaches and analyze
their performance with respect to most of the above characteristics.

This combination of desirable properties is provided by an implementation
that blends deterministic propagation over maintained rings with probabilistic
dissemination following a limited number of carefully selected random shortcuts.
per topic rings allow for relay-free routing and 100% hit-ratio in absence of node
churn, yet they are constructed in such a fashion so as to reuse the same links for
multiple rings thereby minimizing the average node degree. Although at a
conceptual level this overlay structure encompasses a separate Hybrid
Dissemination [Voulgaris and Van Steen, 2007] overlay per topic, our design
leverages interest locality to produce a single composite overlay with
substantially fewer links and hence, lower node degrees. Our implementation is
based on a new efficient epidemic-based algorithm for creating and maintaining
the proposed overlay in a self-organizing way.

We evaluate and validate the properties of our system using extensive
simulations in large-scale settings of up to 10K nodes, 10K topics, and 5K topics
per node. We use real-world traces from Twitter and Facebook social networks
to model subscriptions. Robustness with respect to node churn is evaluated

1
The term is inspired by the Dutch polder model, in which diverse societal groups

collaboratively negotiate to obtain broadly supported solutions.
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through traces from the Skype super-peer network. We empirically show that
our system (1) converges fast, (2) provides 100% hit-ratio in the absence of node
churn and reasonably good hit-ratio in the presence of node churn, (3) has
logarithmic dissemination speed in terms of number of hops and (4) has constant
factor traffic overhead. We use widely renowned Scribe [Castro et al., 2002] as a
baseline in a number of our experiments.

3.1 Preliminaries

The system consists of a set V of nodes. Each node in the system has a unique
identifier (e.g., a hash of its IP address), assigned to it when joining the system.
Node identifiers are assumed to be sortable and to occupy a circular value space.
We assume that the underlying communication network is fully connected, in the
sense that any node can send a message to any other node, provided it knows its
IP address.

The topic-based publish/subscribe communication system is organized around
a set T of topics. Each node can play the role of a subscriber or publisher or both.
A subscriber v expresses its interest in a set of topics T

v

✓ T . We call |T
v

| the
subscription size of node v. A publisher posts an event on exactly one topic t. The
published event should be delivered to all |V

t

| (V
t

✓ V ) subscribers interested in
t (no false negatives) and only to them (no false positives).

Both publishers and subscribers are allowed to join and leave at any moment,
without any prior notice. Node crashes are, therefore, inherently dealt with as
ungraceful leaves. In fact, there is no way to distinguish between the two. We
assume that a node that leaves and rejoins after a while can remember its prior
state.

3.2 Survey of Related Approaches

In practice, a pub/sub system should satisfy a wide spectrum of desirable
properties in the context of high robustness, low dissemination latency, low
communication overhead, and high scalability. Many of those properties exhibit
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an inherent trade-off with each other so that striking the right balance is a
central challenge in a pub/sub system design and a guiding objective for our
approach.

Table 3.1 compares the characteristics of PolderCast with principally different
approaches for P2P topic-based pub/sub systems.

With respect to robustness, a pub/sub system should ideally guarantee both
100% hit-ratio without node churn and high hit-ratio in presence of node churn.
Consider that existing approaches to P2P pub/sub either utilize epidemic
dissemination (daMulticast [Baehni et al., 2004]), or build specialized
dissemination overlays. It is well-known that while robust under churn, epidemic
dissemination does not provide full reliability, even in a completely static system.
On the other hand, most existing dissemination overlays for topic-based pub/sub
are fragile (such as dissemination trees in Scribe [Castro et al., 2002],
Magnet [Girdzijauskas et al., 2010], or Bayeux [Zhuang et al., 2001]) or at least
they rely on designated nodes whose existence is critical for correct operation of
distributed matching. For example, Scribe and Vitis [Rahimian et al., 2011] have
a dedicated rendezvous node for each topic. Additionally, Vitis builds subclusters
for each topic and the communication between subclusters is handled by gateway
nodes.

While these systems provide a number of churn handling mechanisms,
fragility of dissemination overlays or reliance on central nodes conceptually limit
the potential for high hit-ratio under churn, as we further explore in our
evaluation in Section 3.5.6. SpiderCast [Chockler et al., 2007b] builds an
unstructured overlay that strives to maximize clustering of nodes according to
their interest in topics. As observed in [Matos et al., 2010], this approach may
yield an overlay in which highly-connected clusters are interconnected by few
links, which we call weak bridges. Existence of such weak bridges also impacts
the robustness of the system under churn.

PolderCast combines deterministic dissemination over a ring with probabilistic
dissemination similar to gossiping. The former mechanism guarantees 100% hit-
ratio in a static system while the latter provides a high hit-ratio under churn. This
is further corroborated by the experimental evaluation in Section 3.5.6.
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Table 3.1: Comparison of State-of-the-Art with PolderCast

Property\System Scribe Vitis SpiderCast StAN daMulticast PolderCast
Central nodes⇤ RV RV&GW WB None None None

High hit-ratio under
churn?

7, see
Section 3.5.6 X N/A N/A X X

100% hit-ratio in
absence of churn?

X X N/A N/A 7 X

TCO? 7 7 Probabilistic Probabilistic Deterministic Deterministic
Degree of node v O(log |V |) O(1) O(|T

v

|) O(|T
v

|) ⇥(|T
v

|) O(|T
v

|)
Incl. dissemination? X X 7 7 X X
Average Duplication
Factor

None Scoped
flooding N/A N/A Gossiping  Fanout(f)

Average Delay O(log |V |) O(log2 |V |) N/A N/A O(log |V
t

|) Typically
O(log |V

t

|)#

⇤ RV: Rendezvous. GW: Gateway. WB: Weak bridge.
# For more details refer to Section 3.5.4 and the discussion below in this section.
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Consider the characteristics of the overlay built in various existing
approaches: A low number of relay nodes is instrumental in reducing the
communication and processing cost of dissemination as well as propagation
latency expressed by path lengths. Furthermore, guaranteed absence of relays,
i.e. topic-connectivity [Chockler et al., 2007a], simplifies message routing
mechanisms. On the other hand, fanout is a common minimization parameter in
overlay design, which strongly affects system scalability.

Unfortunately, the desirable characteristics of having a low node degree and
relay-free routing exhibit a fundamental trade-off [Chockler et al., 2007a]. At one
extreme is having a fixed node degree independent of the number of topics a node
is interested in.

Such an approach is proposed in Vitis. This results in a relatively high number
of subclusters that need to be connected by additional means, such as gateways,
rendezvous nodes, and relays. Scribe builds dissemination structures on top of
an underlying DHT whose node degree might be either constant or logarithmic
with the total number of nodes in the system. In these systems, a pair of nodes
interested in the same topic might be connected by a chain of ⇥(log |V |) relays.

At the other extreme of the trade-off are systems that build and maintain a
separate overlay for each topic independently, such as Tera [Baldoni et al., 2007a]
and systems that employ gossiping on a per topic basis, such as daMulticast.
These approaches guarantee topic-connectivity during stable periods without
churn. However, the degree of node v in these systems is in the order of the
number of subscriptions: ⇥(|T

v

|).
SpiderCast and StAN strive to maintain a topic-connected overlay by building

random links between the nodes while exploiting the correlation between node
interests in order to minimize the degree. Since correlations are typically present in
pub/sub workloads, this results in a lower degree compared to Tera or daMulticast.
After the system becomes stable, these systems will eventually produce a topic-
connected overlay with high probability. Yet, the guarantee of relay-free routing is
only probabilistic, which yields low overhead and latencies, but requires additional
mechanisms to route messages across potentially disconnected clusters.

The PolderCast approach we propose in this chapter provides a deterministic
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guarantee of relay-free routing similar to Tera or daMulticast. At the same time,
the degree is similar to that of SpiderCast or StAN due to exploiting
correlations. As shown in Table 3.1, SpiderCast and StAN focus on overlay
construction and maintenance and do not propose any specific routing algorithm,
thereby rendering the discussion about message dissemination properties as well
as hit-ratio nonapplicable to these systems.

For the rest of the approaches, we consider two salient factors that determine
the efficiency of message dissemination:

(a) Average message duplication factor per node: the number of times
(excluding the first) that the same published message is received by a node on
average. When the routing is relay-free, average message duplication factor
directly translates into the communication cost of message dissemination.

In Scribe, Magnet, and Bayeux, a routing tree is used to disseminate
publications, which eliminates any duplication of messages. In the hybrid overlay
approach of Vitis, the node floods a published message to those of its neighbours
that are interested in the message topic. Even though Vitis has a fixed total
degree per node, this fanout may be high enough so as to lead to a high number
of duplicate deliveries for the same published message. In daMulticast, the
configurable fanout of the epidemic dissemination used for propagating published
messages governs the duplication factor. In PolderCast there is a fixed maximum
dissemination fanout f (typically f= 2) for each topic. Each node interested in
the topic forwards a message only once (the first time the node receives the
message) along at most f links, which gives a bound of f on the duplication
factor.

(b) Average path length: the average number of hops required for a
message to reach a node interested in that message. As shown in Table 3.1, all of
the structured and hybrid overlay approaches have an expected path length that
is logarithmic or square logarithmic with the total number of nodes |V | in the
system. Yet, the inclusion of relays nodes (both at the DHT level and pub/sub
implementation level) into the dissemination path causes path lengths for some
nodes being significantly longer than O(log |V |), as we show in Section 3.5.4.
DaMulticast performs gossiping on a per topic basis so that the expected path
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length is logarithmic with the number of nodes O(log |V
t

|) interested in the topic.
In our approach, we also strive to achieve expected path lengths that are

logarithmic with O(log |V
t

|) due to the random shortcuts links used for
dissemination. From the results in [Voulgaris and Van Steen, 2007], it can be
derived that if there is a sufficient number (f -1) of random shortcut links
between the nodes interested in a particular topic, PolderCast guarantees
average dissemination path lengths for that topic to be asymptotically
logarithmic. However, our dissemination mechanism uses a fixed number of
random links independently of the number of topics a node is interested in. This
may potentially render the dissemination mechanism ineffective for a node that
is interested in many topics, in which case the average path length may become
linear with |V

t

| due to the use of ring links only. Fortunately, this scenario does
not manifest itself for typical pub/sub workloads, as confirmed by the empirical
results in Section 3.5. Note that the dissemination fanout f determines the base
of the logarithm and as such, governs the trade-off between the dissemination
speed and duplication factor.

Based on the analysis in this section, we conclude that the solution for topic-
based pub/sub we propose is (a) free from rendezvous and relay nodes (b) robust
and resistant to churn, and (c) it facilitates efficient message dissemination.

3.3 PolderCast: Disseminating Events

We present PolderCast in a top-down approach. In this section we describe the
structure of the target overlay and we explain how dissemination is performed
once this overlay is in place. Then, in Section 3.4, we dive into the mechanisms in
charge of building and maintaining such an overlay.

3.3.1 The Dissemination Overlay

At a conceptual level we maintain a separate ring per topic augmented by
random links shared across the topics. Each ring connects all subscribers of the
corresponding topic and only them. Individual topic rings altogether form a
single, connected, and navigable overlay. Ensuring connectivity among all
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subscribers of a topic, a property known as topic-connectivity, allows for
relay-free routing among them. It is the reason why PolderCast achieves 100%
hit-ratio in the absence of node churn: When an event for a certain topic reaches
any subscriber of that topic, it is guaranteed to reach all remaining subscribers
by being propagated along that topic’s ring. While this distribution mechanism
alone might be adequate for topics with a moderate number of subscribers, its
linear dissemination speed does not scale with the popularity of topics. This is
the reason why we introduce random links serving as dissemination shortcuts.
Propagating events across (some of the) random links to arbitrary other
subscribers of the same topic, accelerates dissemination to exponential speed. It
additionally provides a controlled degree of redundancy that increases robustness
and hit-ratio under node churn.

In this work, we request that a publisher on topic t subscribes to t prior to
publishing events, thus becoming a part of the dissemination ring. This overhead
for publishers is considered acceptable by most applications and in many existing
pub/sub systems.

The rings for each topic are bidirectional and nodes are placed into rings in the
order of their node ids. That is, a node p maintains, with respect to each topic t

in its subscription, two links: one to its t-successor and one to its t-predecessor.
The t-successor of node p is defined as the node with the closest higher than p’s
id (in modulo arithmetic), among all subscribers of topic t. The t-predecessor is
defined likewise for the closest lower id. Figure 3.1 gives a sample topology of
three topics, and the respective intermingling rings.

It should be observed that while the use of rings in hybrid dissemination
structures has appeared in the past [Voulgaris and Van Steen, 2007], their
application to topic-based pub/sub is new. The main challenges of using ring in
pub/sub lies in combining such structures, one per topic, into a single
manageable overlay. In practice, maintaining a separate ring per topic is very
expensive, notably for nodes subscribed to many topics. However, it has been
observed that subscriptions tend to be strongly correlated [Liu et al., 2005]. Our
approach exploits this correlation in order to substantially lower the number of
links maintained: A single link can serve as a ring link for multiple topics.
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Figure 3.1: Topology for three topics {t1, t2, t3}, showing the ring neighbor links
and random neighbor links originating from the node p. Note that q serves as
successor of p for all three topics, and v serves as predecessor of p for topics t1, t2
illustrating link sharing.



3.3. PolderCast: Disseminating Events 53

It is possible to build an overlay with link consolidation across the topics as
the central optimization metric in mind. This approach minimizes node degree
but may result in a per topic ring being partitioned into multiple sub-rings. In
order to avoid this risk, PolderCast takes a more balanced approach and builds a
guaranteed ring for each topic separately but in such a way that links have a
higher chance of being reused in multiple topics. Specifically, rings are
constructed based on node ids instead of their subscriptions. Assume nodes p

and q are both subscribed to t1 and t2, and they are ring neighbors for t1. This
means that they are both on the ring for t2 and their ids are numerically close,
thereby increasing the chance that they will be ring neighbors for t2 as well. We
further investigate the effect of link consolidation in our experiments in
Section 3.5poldercast:sec:experimentalevaluation.

With respect to random links, their choice and quantity may have a profound
impact on the performance, as discussed in Section 3.2. PolderCast combines a
configurable number of random links of two types: interest-induced links formed
between subscribers with similar subscriptions shorten average dissemination path
lengths. At the same time, uniform random links help overcome partitions under
node churn and improve load balancing by diverting incoming links from nodes
that subscribe to many topics, which become a likely target for interest-induced
links. We describe the algorithm for random link formation in Section 3.4 and
consider the importance of the links of each type in Section 3.5.

3.3.2 Event Dissemination

Our event dissemination protocol is inspired by that of RingCast [Voulgaris and
Van Steen, 2007] (the protocol is parameterized by a dissemination fanout, f): A
node receiving an event for topic t for the first time, propagates it f times.
Specifically, if the event has been received through the node’s t-successor (or
t-predecessor), it is propagated to its t-predecessor (or t-successor) and f -1
arbitrary subscribers of t. If the event was received through some third node, or
if it originated at the node in question, it is propagated to both the t-successor
and the t-predecessor, as well as to f -2 other subscribers of t. Finally, if a copy
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Figure 3.2: Dissemination example for a particular topic, in a partitioned ring.
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Figure 3.3: Three-layered architecture. Each layer gossips with the respective
layer in other nodes.

of this event has already been received in the past, it is simply ignored.
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From the results in [Voulgaris and Van Steen, 2007], it can be derived that if
there is a sufficient number (f -1) of random shortcut links between the nodes
interested in a particular topic, PolderCast guarantees average dissemination
path lengths for that topic to be asymptotically logarithmic. Even under node
churn PolderCast tries to achieve complete dissemination as shown
experimentally in Section 3.5.6. Figure 3.2 gives an intuitive illustration of
dissemination in a partitioned ring.

Since we apply this dissemination protocol for multi-topic pub/sub, however,
analyzing its performance in PolderCast is significantly more difficult because the
random links are shared across multiple topics and the number of utilizable random
links varies for each and every node. Furthermore, some of the random links are
skewed towards peers with multiple overlapping topics. This may interfere with
the nice property of exponential dissemination speed that is inherent to many
gossiping protocols. It may also cause a node whose subscription is similar to
those of many other peers to become a hotspot due to a high number of incoming
random links. We evaluate these aspects experimentally in Section 3.5.

3.4 PolderCast: Building the Overlay

PolderCast’s overlay management mechanism is built around three modules:
Rings, Vicinity, and Cyclon, as shown in Figure 3.3. Each module maintains its
own view, managed by a separate gossiping protocol, which gossips periodically,
asynchronously, and independently from the other two modules. In table below
we list the parameters controlling the number of neighbors maintained (view
size), and the maximum number of neighbors included in a gossip message
(gossip size), per module.

module name view size gossip size

Rings `
ring

(per subscribed topic) g
ring

Vicinity `
vic

(in total) g
vic

Cyclon `
cyc

(in total) g
cyc

Considering a node p with topics T
p

, the three modules operate as follows.
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With respect to each topic t 2 T
p

, the Rings module on p is responsible for
discovering p’s t-successor and t-predecessor. It achieves this by considering a few
links to arbitrary subscribers of t as a starting point, and periodically gossiping
with them to trade them for other subscribers of t of gradually closer ids.

The Vicinity module is responsible for feeding the Rings module with a few
neighbors for each topic t 2 T

p

, of arbitrary ids. It is based on Vicinity [Voulgaris,
2006], a topology management protocol that strives at discovering for each node
the closest other nodes based on some proximity function. Per the proximity
function introduced in the context of PolderCast, the more topics two nodes share
the closer they are ranked. Moreover, as detailed in Section 3.4.2, our proximity
function dynamically adapts to favor topics currently under-represented in the
Rings module.

Finally, the Cyclon module [Voulgaris et al., 2005], is a lightweight peer
sampling service [Jelasity et al., 2009], providing each node with a continuous
stream of neighbors chosen uniformly at random from the whole network. As
detailed in Section 3.4.3, this is essential for keeping the whole overlay connected,
and enabling flexible overlay maintenance in the face of failures and node churn.

For any of the three modules, node q being a neighbor of node p means that p
has a copy of q’s profile in the respective module’s view. A node’s profile contains
(i) its IP address and port number, (ii) its (unique) node id, and (iii) the ids of
topics the node is subscribed to, each annotated with a priority that node assigns
to finding neighbors of that topic. The priority of a topic is determined by the
number of neighbors it has in the Rings module: topics with fewer Rings neighbors
are assigned higher priority. Clearly, two or more copies of a node’s profile may
be different, notably when the node updates its subscriptions, or reports different
priorities for its topics. When gossiping to a neighbor, a node sends a fresh copy
of its profile, reflecting its current state.

Note that the three gossiping protocols comprising PolderCast are executed
continuously. In a network characterized by dynamicity, due to nodes departing
or joining at any time, crashing, or merely changing their subscriptions, there is
no notion of final convergence. Instead, nodes engage in a constant convergence
process.
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3.4.1 The Rings Module

The Rings module manages the ring links. That is, it aims at discovering a node’s
successor and predecessor for each topic in its subscription, and at quickly adapting
to new successors/predecessors in dynamic networks.

In that respect, each node maintains `
ring

neighbors for each topic in its
subscription: `

ring

/2 with lower and `
ring

/2 with higher id. It periodically picks
a node from its Rings view, and the two nodes exchange up to g

ring

neighbors to
help each other improve their Rings views.

Assume p selects its neighbor q for gossiping. First, p collects all subscribers
of topics which p and q have in common, considering the union of views of all
three modules. Second, it sorts them by id, and for each topic in common with q

it selects the `
ring

/2 ones with just lower and the `
ring

/2 ones with just higher id
than q’s id. If more than g

ring

nodes have been selected, it randomly picks g
ring

of them. Finally, it sends the selected nodes (i.e., the respective node profiles) to
q. Node q does the same in return.

Although the dissemination protocol requires just two ring links per topic,
namely the topic successor and predecessor, Rings maintains up to `

ring

links per
topic. This provides stand-by successors and predecessors to be used in case of
failures or node churn. Additionally, it helps nodes navigate to their direct ring
neighbors faster, once they have reached the proximity of their ids.

Finally, in order to increase the diversity of neighbors contacted for gossiping,
the Rings module employs a Least Recently Used (LRU) selection policy. This
prevents contacting the same neighbor twice in a short interval, when it probably
has no new useful information, at the expense of not contacting some other
neighbor for a much longer duration. The LRU policy also plays an important
role in churn handling by PolderCast, thus its implementation details are
deferred to Section 3.4.4.

3.4.2 The Vicinity Module

The Vicinity module is responsible for maintaining interest-induced random
links, that is, randomly chosen links between nodes that share one or more



58 Chapter 3. PolderCast

topics. Such links serve as input to the Rings module, as detailed in
Section 3.4.1. Additionally, they are used by the dissemination protocol to
propagate events to arbitrary subscribers of a topic, as explained in Section 3.3.2.

Interest-induced random links are handled by Vicinity [Voulgaris, 2006], a
generic protocol for topology construction and management that lets nodes find
their closest neighbors out of the whole network, based on some proximity
function. In short, each node maintains a view of `

vic

neighbors and periodically
gossips with them to discover nodes of even closer proximity, in which case it
retains them in place of the least proximal neighbors.

Let p choose q for gossiping. Node p merges its views from all three modules.
Then, it selects the g

vic

nodes closest to q by applying the proximity function on its
behalf, and ships them over to q. Upon reception, q merges the received neighbors
with the union of all its views, and updates its Vicinity view to the `

vic

closest
neighbors. Finally, q responds by selecting and shipping back its g

vic

closest to p

nodes.

Clearly, the proximity function plays a crucial role in Vicinity. In the context
of PolderCast, the proximity function is designed to ensure that the Rings module
is supplied with (arbitrary) neighbors for all its topics. In that respect, candidates
subscribed to topics annotated with higher priority by the target node are ranked
closer compared to candidates of lower priority topics. Among candidate nodes
that rank equally in terms of topic priorities, proximity is determined by the
number of topics shared with the target node: the more shared topics, the closer
their ranking.

3.4.3 The Cyclon Module

Uniform random links are handled by the Cyclon peer sampling
service [Voulgaris et al., 2005]. This module’s purpose is twofold. First, it keeps
the whole set of subscribers connected in a single partition, even in the presence
of churn, large-scale failures, or subscription changes. Connectivity is crucial to
let new subscribers find their way to their appropriate neighborhood sets,
irrespectively of where they initially joined the network. Second, it constitutes a
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source of links selected uniformly at random from the whole network. Such a
source of random links is fundamental to the operation of the other two modules.
Further details about the Cyclon protocol can be found in [Voulgaris et al., 2005].

3.4.4 Churn Handling

It is a key design goal of PolderCast to provide a high hit-ratio and reasonably
low delivery latency under node churn, while keeping the number of duplicate
messages controllably small. To that end, PolderCast should adapt promptly to
two types of changes. First, information updates, such as newly joining nodes,
new subscriptions, etc. should be propagated fast. Second, the system should
quickly detect the disconnection (graceful or due to failures) of nodes, and discard
related information from the network.

With respect to propagating new information fast, PolderCast relies on its fast
convergence properties. When a node joins the network, for example, its Vicinity
module will quickly find some neighbors for each topic. Once a neighbor has
been found for some topic, the Rings module can quickly locate the appropriate
successor and predecessor in an already largely connected topic ring. When a
node’s subscription changes, Vicinity will adjust its topic priorities to boost under-
represented (new) topics. We further explore the convergence speed of PolderCast
experimentally in Section 3.5.2.

With respect to ridding the system from outdated links, PolderCast employs
a proactive mechanism for removing dead neighbors from node views. Whenever
a node p gossips with a neighbor q, it temporarily removes q from the respective
module’s view, anticipating that q will respond and will be inserted anew in p’s
view. This way, dead neighbors are silently discarded, while alive ones are
refreshed. To prevent dead neighbors from remaining indefinitely in a view, a
node always selects to gossip with its least recently refreshed neighbor.

Freshness of a neighbor is approximated by an age field, associated with every
view entry. Once per cycle, a node increments the ages of all its neighbors by one.
A neighbor’s age is zeroed when a gossip message (or response) is received from
that neighbor. A neighbor’s age is retained also when that neighbor is handed
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from one node to another. This way, a dead node’s links will have increasingly
higher chance to be selected for gossiping (and consequently discarded), even if
they are copied among third nodes.

Although the age mechanism provides only an approximation of a link’s
freshness, it turns out to work sufficiently well for fast removal of dead links. We
investigate the impact of node churn on the performance of PolderCast in
Section 3.5.6.

3.5 Experimental Evaluation

We evaluate PolderCast by simulation based on real-world traces. We focus on
the overlay properties (such as the node degree), efficiency of dissemination
(delays and duplicate delivery), communication overhead of overlay maintenance,
and performance under node churn (hit-ratio for message delivery and speed of
convergence for overlay construction). We also compare the performance of
PolderCast with Scribe [Castro et al., 2002] as a baseline.

We implement both PolderCast and Scribe using the widely adopted PeerSim
simulator [Montresor and Jelasity, 2009]. Scribe is implemented as an application
atop Pastry DHT [Rowstron and Druschel, 2001a]. We use the implementation
of Pastry for PeerSim, publicly available at [PeerSim-Pastry]. We evaluate both
PolderCast and Scribe at a scale of up to 10K nodes. Experiments of similar scale
are common in this area [Patel et al., 2009; Rahimian et al., 2011].

Unless otherwise mentioned, the view sizes of Cyclon and Vicinity (`
cyc

and
`
vic

, respectively) were set to 20 entries each, and the gossip lengths in all three
protocols (g

cyc

, g
vic

, and g
ring

) were set to 10 entries. The configuration parameters
for Scribe are b = 4 which defines the base 2b = 16 for the log structure of Pastry
DHT and l = 32 for the leaves of the DHT routing table.

3.5.1 Experimental Settings

Subscription Workload: Our subscription workloads come from massively
deployed social networks, namely Twitter and Facebook.
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(1) Twitter dataset: We used a public Twitter dataset [Kwak et al., 2010],
containing 41.7 million distinct user profiles and 1.47 billion social
followee/follower relations. In Twitter, when a user posts a message (known as a
tweet), the tweet is delivered to all followers of that user. As such, each user is
modelled as a topic and all its followers are the respective subscribers. Similarly
the set of users (followees) a user Alice follows, form Alice’s subscription set.
Note that in Twitter, relations are unidirectional, i.e., user Alice following user
Bob does not require also Bob following Alice.
(2) Facebook dataset: We used a public Facebook dataset [Wilson et al., 2009],
with over 3 million distinct user profiles and 28.3 million social relations as a
second workload for our evaluations. Similarly to Twitter, users are modelled as
topics as well as subscribers. However, in Facebook relations are bidirectional,
therefore two friends in the Facebook social graph subscribe to each other in our
model.

Our simulations were performed with workloads of 10K nodes (i.e., up to 10K
topics and 10K subscribers), extracted from the original Twitter and Facebook
social graphs in a methodology inspired from [Patel et al., 2009; Rahimian et al.,
2011]. More specifically, starting with a random set of a few users as seeds, we
traversed the social graph using breadth first search, until the target number of
nodes was reached, and all edges between them were extracted to our sample.

Figure 3.4 shows the complementary cumulative distribution function (CCDF)
of follower/followee counts for both the original Twitter(TW) and Facebook(FB)
datasets, as well as for our respective extracted datasets in the inner plot. The
plots indicate that the original dataset properties were retained in our extracted
sample.

Publication Workload: Due to lack of publicly available real-world publication
workload we synthetically generate publications. We post one publication event
for each topic, initiated by a randomly picked subscriber of that topic. Although
in practice, event arrival rate may vary across different topics, we use a uniform
publication rate since it has no effect on the metrics we consider for evaluating the
PolderCast system.
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Figure 3.4: Distribution of followers and followees, for the Twitter (41.7M users)
and Facebook (3M users) traces. Inner plot: trace samples used (10K users).

Latency and Churn Datasets: We use the King dataset [Gummadi et al.,
2002] to model communication latency between nodes. Finally, we evaluate our
system under node churn, using real-world churn traces: Skype dataset. We use
Skype super-peer churn traces from [Guha and Daswani, 2005], which tracked
joining and leaving timestamps of 4000 nodes for one month, starting on September
12, 2005.

3.5.2 Speed of Convergence

We first evaluate the time it takes to jump-start a PolderCast overlay from scratch.
We start by 10,000 nodes that are already running Cyclon (i.e., each node has `

cyc

links to random other nodes), but whose Vicinity and Rings views are completely
empty, and we let them gossip to self-organize in a PolderCast overlay. Observe
that fast convergence to an optimal overlay upon the extreme case of simultaneous
bootstrapping typically implies fast reconciliation after a period of milder churn.

Given the input, we start by an offline construction of correct target rings to
which the systems should converge over time. Then, we deploy PolderCast.

At each cycle, we measure the percentage of target ring links that are not yet
in place (missing links), as well as the percentage of topics for which the ring
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Figure 3.5: Convergence speed

has not converged yet (incomplete rings). Figure 3.5 shows these metrics for the
Twitter and Facebook workloads, respectively.

In order to assess the overlay’s efficiency in disseminating events, we conduct
another experiment by “freezing” the overlay at the end of each cycle, and posting
one event for each topic. We record the percentage of nodes that missed an event
they should have received (miss-ratio), as well as the percentage of events that
did not make it to all subscribers of their topic (disconnected topics). These
measurements are also shown in Figure 3.5.

The results show that the overlay converges quite fast: Within 60 cycles, 99%
of topic rings are complete. They also indicate that the PolderCast overlay is
highly efficient even with partially complete rings because it takes fewer cycles to
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achieve a connected overlay (0% miss-ratio) per topic. This is due to propagating
events across random links, provided by the combination of Vicinity and Cyclon
views.

We also show that our three-layered architecture explained in Sec. Section 3.4
is essential to improve the speed of convergence. In Figure 3.5 we compare the
convergence speed of PolderCast, without the Vicinity layer in the middle, and we
can see that it takes almost 3-6 times longer to converge. This is because Vicinity
provides interest-induced random links, essential for speeding up the construction
process.

Apart from the speed it is also important to make sure that the overlay
construction is scalable with respect to the number of nodes that participate in a
ring (topic popularity) and the number of topics a node is interested in
(subscription size). As shown in Figure 3.6, even a node interested in over 400
topics converges reasonably fast. This is mainly due to having a higher number
neighbours compared to a node interested in a few topics only, which offer it
much higher reachability for a large number of topics.

3.5.3 Overlay Degree

In Figure 3.7 we assess the effect of a node’s subscription size on its Rings view
size. Due to interest locality, a single neighbor may serve multiple of its topics.
This helps the node retain its Rings outdegree low, and effectively contributes
to higher scalability with respect to the subscription size of nodes. We do not
consider the degree due to random links here since their number is fixed and small
compared to that of ring links.

For the Twitter data, PolderCast manages to exploit correlation in the
subscriptions to a large extent. However, for Facebook data, the node degree
grows almost linearly with subscription size suggesting less subscription
correlation. In Scribe, the average degree of a node v in the system is bounded
by the number of nodes in the Pastry routing table that point to node v. This
number is logarithmic with the total number of nodes and independent of the
number of topics that node is subscribed to. This may be an important
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subscription/ring

advantage in the case of an extremely high number of topics a node is interested
in.

3.5.4 Event Dissemination

We now analyze the event dissemination protocol proposed in Section 3.3.2. We
measure (1) the dissemination delay, in terms of number of hops required for a
publication to reach the subscribers and (2) the duplication factor, namely the
ratio between the number of all event messages received over the number of
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distinct event messages received. The measurements were taken by injecting the
publications as described earlier and averaging the two metrics for 1000 cycles.
From this point on, we run PolderCast with only Facebook data with 10K nodes.

As one can see in Figure 3.8(a), with the increase in dissemination fanout the
average dissemination delay significantly decreases. However, this decrease takes
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place at the cost of an increase in the average number of duplicate messages seen by
nodes as shown in Figure 3.8(b). To compare Scribe with PolderCast we plot the
average delay in Figure 3.8(a). We can see that the average dissemination delay
in Scribe is almost 1.7 times higher than the worst-case dissemination delay of
PolderCast. This is due to the long chain of nodes induced by Scribe dissemination
trees, even though DHT gurantees log |V | hops delay. These longer chains stem
from the inclusion of relay nodes, both at the Scribe and Pastry level.
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Figure 3.8: Event Dissemination Analysis

As shown in plots in Figure 3.8(a,b), the choice of random shortcut links has
an interesting trade-off between dissemination delay and duplicate messages. At
one extreme, if we use the Cyclon view as a source for random shortcut links,
neither the dissemination delay decreases, nor the duplication factor increases
with the increase in fanout f . This is attributed to the fact that since the Cyclon
view is limited in size, and its view is chosen in an interest-agnostic way, the
random shortcuts for a topic the node is interested in are not useful for the topics
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of interest, forcing the dissemination protocol to fall back on ring links. On the
other extreme, if we only use the Vicinity view as a source of random links, it leads
to a significant decrease in average delay, at the cost of an increase in the average
number of duplicates. In PolderCast we balance this trade-off by combining the
Cyclon and Vicinity views, which results in the middle ground both for average
delay and average duplication factor.

The choice of random shortcuts also has implications on the balancing of load
on the nodes. In Figure 3.8(d) one can see that if only Vicinity is used for random
shortcut links, around 20% of the nodes receive messages at least 4 times. This
is due to the fact that nodes that are interested in many topics (> 100) have a
high chance to be present in the Vicinity view of many nodes. Since we use both
Vicinity and Cyclon views for random shortcuts, it reduces the number of duplicate
messages for nodes interested in many topics. It should be noticed that Scribe does
not have any duplicate messages since messages in Scribe are disseminated using
multicast trees.

In Figure 3.8(c) we can see a similar pattern for dissemination delay and we
again take the middle ground between the two extremes. Figure 3.8(c) also shows
that there is a significant number of messages in Scribe with a relatively high
dissemination delay, as we explained above.

3.5.5 Overlay Maintenance

The next experiment aims at evaluating the overhead in overlay maintenance.
We measure the number of control messages sent and received by each node to
maintain the overlay. Note that as shown in Figure 3.9 nodes interested in many
topics (> 100) transmit a higher number of messages. This is due to the fact that
they are more frequently selected as a target for gossiping. This factor does not
play a significant role: the cycle duration can be chosen to be as high as 1 minute
in real scenarios thereby rendering the bandwidth overhead negligible. On the
other hand, more intensive control communication by nodes interested in many
topics contributes to faster overlay convergence.

It is clear from Figure 3.9 that Scribe incurs a higher communication
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overhead. The number of control messages sent and received by a node v in
Scribe is proportional to the number of subscriptions v is interested in. Even
though each node has a limited number of children in the multicast tree to
maintain, Scribe sends regular heartbeat messages for each topic (both topics of
interest and topics for which v is a relay) to keep the trees connected.

The existence of relays and lack of topic-connectivity in Scribe additionally
causes unwanted traffic passing through the nodes. We measure the amount of
overall traffic (both control and application traffic) passing through each Scribe
node and distinguish between the traffic relevant to the subscription topics of the
node and unwanted traffic. In Figure 3.10 we show the amount of unwanted traffic
at each node. We can see that over 90% of the nodes receive more than 80%
of unwanted traffic. Such an overhead does not exist in PolderCast since topic-
connectivity ensures that each node receives only the traffic relevant to the node’s
subscription topics.
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3.5.6 Message Dissemination Under Churn

In this experiment we evaluate PolderCast and Scribe publication dissemination
under the churn model described earlier. We inject publications as explained earlier
with fanout f set to 2. We maintain two successors and two predecessors for each
topic (`

ring

= 4). To assess the resilience of our protocol to node churn, at the end
of each cycle we freeze the overlay and we measure the miss-ratio, i.e., the fraction
of nodes that missed at least one publication event. It is worth noting that we set
the cycle duration to be 1 minute. As a consequence, we introduce 60 times more
node churn during each cycle than originally provided by the churn traces. When
measuring the miss-ratio, we exclude the warm-up period of 10 seconds after the
node joins the network.

As shown in Figure 3.11, for the Skype churn model the miss-ratio in
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PolderCast never grows beyond 0.01 except when there is a sharp drop in
network size. In that case, the miss-ratio momentarily grows to 0.04, but
stabilizes quickly. This is due to (1) the use of random shortcuts, keeping the
dissemination structure connected even though the ring is partitioned, and
(2) since `

ring

= 4, with the failure of one successor/predecessor the ring can still
stay connected. When hundreds of nodes are joining the system (i.e., when there
is a flash crowd), PolderCast continues to maintain the miss-ratio below 0.01.

From Figure 3.11 it can be seen that Scribe has almost 10 times higher miss-
ratio than PolderCast. Especially during the flash crowd at the beginning Scribe
has a significantly higher miss-ratio due to a slower construction of the multicast
trees when around 600 nodes join. Similarly we can see a spike in the miss-ratio
when a sharp drop in network size occurs after around hours 18. There is a spike in
the miss-ratio of PolderCast as well, but the relatively higher miss-ratio of Scribe
is caused by the sudden departure of several rendezvous nodes.
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3.6 Summary

In this chapter we presented PolderCast, a P2P architecture for topic-based
pub/sub which aims to achieve relay-free, fast and robust dissemination over a
scalable overlay with a minimal maintenance cost. PolderCast achieves a delicate
balance between these conflicting but desirable properties. We evaluated
PolderCast with Scribe as baseline, using large-scale simulations with publicly
available real-world traces from Facebook [Wilson et al., 2009] and
Twitter [Kwak et al., 2010].



Chapter 4

Spotify Pub/Sub: Case Study of

a Publish/Subscribe System to

Drive Social Interaction

Spotify is a successful peer-assisted music streaming service that provides access
to over 20 million tracks to its over 40 million active users residing in more than
56 countries1. The technical architecture providing the streaming service and
user behavior of Spotify have been described in two recent studies [Kreitz and
Niemela, 2010; Zhang et al., 2013a]. However, little has been said about the
technical details of one of Spotify’s most engaging features: its ability to facilitate
the social interaction in the form of sharing and following various music activities
among its users in real-time. As of January 2013, at any given point in time up
to 10 million users were actively participating in social interaction. The social
interaction traffic approximately amounts to 2TB of notification data per day.

In this chapter, we explain how the Spotify pub/sub architecture allows the
users to follow playlists, artists, and the music activities of their friends. The
distinctive feature of the architecture is that this entire range of social
interaction is supported by pub/sub. Thus, the study in this chapter adds a new

1
Information as of September 2014. For more recent information see: https://press.

spotify.com/us/information/
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unique application to a currently known list of large-scale systems that report
benefits from using pub/sub, which includes application integration [Reumann,
2009], financial data dissemination [TIBCO], RSS feed distribution and filtering
[Liu et al., 2005], and business process management [Li et al., 2010].

The end-to-end architecture of the pub/sub engine at Spotify is the focus of our
study. The subscriptions are topic-based. The engine is hybrid: It allows relaying
events to online users in real-time as well as storing and forwarding selected events
to offline users who come online at a later point. The architecture includes a DHT-
based overlay that currently spans three sites in Sweden, UK, and USA. The
architecture is designed to scale: It stores approximately 600 million subscriptions
at any given time and matches billions of publication events every day under its
current deployment.

4.1 Spotify Pub/Sub Model and Features

Friend Feed, 
Playlist Updates

In-client
 Notifications

Figure 4.1: Spotify Desktop Client Snapshot

Spotify pub/sub follows the well-known topic-based pub/sub model. Users can
subscribe (or follow) topics, which can be any of the following types:

Friends: Spotify allows its users to integrate with their Facebook account, and,
once this integration is done, by default all Facebook friends who are also
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Figure 4.2: Push Notification

Spotify users become topics that can be followed. A Spotify user can also
follow another Spotify user even if they have not integrated their Facebook
account by finding each other by sharing music or Playlists.

Playlists: Playlists (collections of music tracks) in the Spotify system have
URIs, allowing users to subscribe to playlists created by others.
Additionally, a user can search for publicly available user-created Playlists
within the Spotify client. Subscribing to a Playlist allows users to receive
future updates to the Playlist. By default, a Playlist can only be modified
by its creator, but a Playlist can also be marked as “collaborative”, making
it world writable.

Artist pages: Spotify has dedicated pages for each artist and allows users to
follow them. This allows users to get notifications about new album releases
or news related to the artist.

Any user can become a subscriber of the topics of the types mentioned above.
A subscription is generally a pair of strings, the username of the subscriber and
the topic name. The following are the publication events related to the above
mentioned topic types:
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Friend feed: When a user plays a music track, creates or modifies a Playlist, or
marks an artist or a track or an album as favorite, an event notification is
sent to all the friends following the user. Optionally, these events can also be
published on the associated Facebook wall of the user. The friend feed can
be seen at the bottom-right pane of the desktop client as shown in Figure
4.1.

Playlist updates: Whenever a Playlist is modified by adding or removing a
track or renaming the Playlist, the subscribers of the Playlist are notified
about the update via friend feed. The pub/sub system is also responsible
for instantly synchronizing the Playlist information across all the devices of
all the subscribers of the Playlist.

Artist pages: Whenever a new album related to an artist is added in Spotify and
whenever a Playlist is created by an artist a notification is sent to all the
followers of that artist.

It is worth mentioning that all the publication events mentioned above are
delivered to subscribers in real-time (best-effort as well as guaranteed delivery)
when the user is online, some of them can also be delivered as offline notification
via Email, and they can be retrieved by the user in the future. For example, when
a new album is added for a famous artist with millions of followers, (a) an instant
notification event is sent to the Spotify client software used by all the followers of
the artist who are currently online, (b) an email notification is sent to the offline
followers, and (c) the event is also persisted so that current and future followers
can retrieve the historical events related to the artist in the future. The persistence
of the update is also essential to support multiple devices of the same user i.e. a
user logged into one device may want to retrieve the notification on a different
device at a later point in time.

4.2 Architecture for supporting social interaction

In this section we describe the technical architecture of the system that
facilitates the social interaction between users based on the popular pub/sub
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Figure 4.3: Architecture Supporting Social Interaction

communication paradigm. The pub/sub system at one end consists of publishers
generating publication events and at the other end consists of subscribers, which
are essentially Spotify clients. The pub/sub system is hosted across several
datacenters (referred to as sites within Spotify). There are currently three sites:
Stockholm - Sweden, London - UK and Ashburn - USA. These sites are not
limited to hosting the pub/sub system, their main purpose is to host the music
streaming service and all the backend services necessary for Spotify to function.

4.2.1 Architecture Overview

A high-level architecture consisting of subscribers, publishers, and two core
components, the Pub/Sub Engine and the Notification Module, that are essential
for enabling the social interaction between users is shown in Figure 4.3. The two
core components are crucial for supporting high-performance real-time event
delivery and reliable offline notifications in a resource-efficient manner.

Whenever designing a system for delivering publication events, the architects
have to address a fundamental trade-off between latency and reliability. In order
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to address this trade-off the system supports three essential event flow paths.

Real-time to online clients: The real-time delivery of events is done by the
Pub/Sub Engine. However, the Pub/Sub Engine is lightweight i.e. it does
not make the incoming events persistent, also there are no acknowledgments
in place to detect failures, which results in a best-effort delivery of publication
events without any guarantees but with low latency. Notice that in Figure 4.3
the Pub/Sub Engine directly receives input from three different sources: the
Presence service, the Playlist service, and the Notification Module. Output
is delivered to the subscribers via Access Points.

Persisted to online clients: The motivation for having this event-flow path
for the delivery of publication events is purely based on the application
requirement. The requirement is that some publication events like an album
release or a Facebook friend joining Spotify are classified as critical for the
users, and these critical publications must be delivered reliably, and at least
once across all devices. This event flow path is realized by the Notification
Module by storing the incoming publication events in the Cassandra cluster
[Lakshman and Malik, 2010] for reliable and offline delivery. This will be
explained in detail later in Section 4.2.3.

Persisted to offline clients: Whenever a client comes online, it can retrieve the
publication events from the Notification Module by sending a pull request
with the time-stamp of the last seen event. This path is shown in Figure 4.3.
The client may receive the same notification twice: once when it was online
last time and another time when it came back online. However, the client
software can distinguish already seen publications using the time-stamp of
the publications.

4.2.2 Subscribers and Publishers

The Access Points (APs) act as an interface to all the external clients. From a
pub/sub perspective, APs are responsible for relaying client join/leave messages to
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Table 4.1: List of topic types and corresponding services on Spotify pub/sub

Topic
Type

URI Service Notification Type

User hm://presence/user/<user-
name>/

Presence Friend feed

Playlist hm://playlist/user/<user-
name>/playlist/<playlist-
id>/

Playlist Friend feed, In-
Client, Push and
Email

Artist hm://notifications/feed/
artist-id%notification-type/

Artist
Monitoring

In-Client, Push
and Email

Social hm://notifications/feed/
username%notification-
type/

Social In-Client, Push
and Email

various services, relaying subscription/unsubscription requests from clients to the
pub/sub service, and relaying publication messages from the pub/sub service to
clients. The APs are responsible for maintaining the mapping between the TCP
connection to the client software and the topics and vice versa. This mapping is
crucial for relaying subscriptions, unsubscriptions and publications.

All Subscribers in the pub/sub system are client software instances running on
user devices. The client is a proprietary software application available for several
desktop and mobile devices. A snapshot of the desktop client is shown in Figure
4.1. There are two ways of subscribing to a topic: Firstly, when a user explicitly
follows a particular user, artist or playlist from the client interface and secondly,
the social relations established from Facebook connections. In the former case
subscription to the topic is done explicitly, while in the latter case subscriptions
are done implicitly.

Whenever the client subscribes to a topic, the subscription information is sent
to the Access Points. This information includes the user name of the subscriber
and the corresponding URI for the service, as listed in Table 4.1. However, since
the subscription information is needed by both the Pub/Sub Engine and the
Notification Module there are two distinct subscription flow paths:

Subscriptions to the Pub/Sub Engine: The client sends a list of topics and
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the URI of the relevant service to an AP, which are eventually forwarded to
the Pub/Sub Engine.

Subscriptions to the Notification Module: If the subscription request is
for the Social service, the Artist Monitoring Service or the Playlist service,
the request is forwarded from an AP to the respective services. These
services are then responsible for providing the subscription information to
the Notification Module.

The Publishers of the pub/sub system are services running in the Spotify sites.
All publications for the topics mentioned in the previous section are generated from
four services, listed below and shown in Figure 4.3. The specific topics for these
services are used in the form of URIs for communication and matching purposes
and they are listed in Table 4.1. These URIs use a protocol internal to Spotify,
denoted hm (Hermes).

The Presence Service is responsible for receiving friend feed events generated
by users from client software. Whenever a user takes an action to trigger
friend feed (as described in Section 4.1) the client generates a message to
the user topic type via APs. The Presence service then stores the event in
main memory and forwards the received event to the Pub/Sub
Engine (shown in Figure 4.3 and explained in detail in Section 4.2.4) to be
matched and delivered to the client software of the subscribers. All the
events from the Presence service that are intended for the subscribers of a
user are delivered to clients in real-time in a best-effort manner (i.e., no
fault-tolerance techniques are used and hence no delivery guarantees).
Also, Presence events are not persisted in secondary memory. Instead, only
the last seen event is stored in main memory, due to the significantly
higher volume of traffic compared to other services. All Presence events
can be seen at a friend feed pane at the bottom-right corner of the Spotify
desktop client software as shown in Figure 4.1.

The Playlist Service is mainly responsible for tracking playlist modifications
made by users. As explained in Section 4.1, a playlist can be subscribed to
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in two ways: a user can explicitly subscribe to playlists, and, in addition
to that, by default all users are also subscribed to the playlists of their
friends. The Playlist service treats the publications for these two types of
subscriptions differently. playlist updates from friends are shown in friend
feed and are delivered via the Pub/Sub Engine, and the rest are delivered
via the Notification Module. The playlist service also provides subscription
lists (i.e., given a playlist, all the subscribers of the playlist; and, given a
user, all the subscribed playlists of the user).

The Social Service is responsible for managing the social relations of
Spotify users as well as integration with Facebook. The Social service
generates a publication event when a Facebook friend of an existing user
who is not already using Spotify joins Spotify. It also provides an interface
to obtain all the friends of a user who are subscribers to the friend feed
from the given user. Finally, it is also responsible for posting user activities
on the Facebook wall for those users who opted for this feature.

AP1

Site(1 Site(2

Aggregator

A AB B

Service Service

AP2 AP1 AP2

Client Client Client Client Client Client Client Client... ... ......

Pub/Sub
Broker(Overlay

Aggregator AggregatorAggregator

Access(
Points

Pub/Sub
Engine

Figure 4.4: Real-Time Pub/Sub

The Artist Monitoring Service is responsible for generating publication
events whenever there is a new album or track for an artist and new
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playlists created by an artist. Note that this service is essentially a batch
job running at regular intervals (typically once a day) that queries an
external database to detect any new album releases for the artist.

A summary of all topics types that can be subscribed by the clients and the
corresponding services producing publications are listed in Table 4.1.

4.2.3 The Notification Module

The publication events for all the topics are delivered to clients in several ways.
The Notification Module receives the publication events from all services, except
the Presence service, and then classifies them and delivers them to the subscribers
in the form of the following notification types:

In-client notification: Some events like artist updates and new Facebook
friends joining Spotify are shown in a notification icon at the top-right
corner of the Spotify desktop client, as shown in Figure 4.1. Note that
unlike friend feed, in-client notifications are persisted for guaranteed
delivery.

Push notifications: Push notifications are for mobile devices. The
Notification service forwards the events to the corresponding push
notification services provided by the vendors of the user devices. An
example of the push notification is shown in Figure 4.2.

Email notifications: When a user is not online, events like artist, playlist and
friend updates are sent via email excluding the users who have opted out of
this service.

A summary of the topics and the notification types with which they can be
delivered to the subscribers is listed in Table 4.1.

An important component of the Notification Module is the Rule Engine. It
has the logic for classifying every publication event into one of the above
mentioned notification types. The rules are embedded in the Rule Engine, but
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the subscription information is obtained from the respective publication services.
The rules are based on the following parameters:

• Online status of the user.

• Client device type (desktop or mobile).

• User subscription preferences on email notifications.

Depending on the notification type, the Rule Engine will forward the
publication event to the Pub/Sub Engine and Cassandra for persistence.

Publication Event Persistence

The motivation for persistence of publication events is driven by the following
goals: reliable delivery of publications, offline delivery and future retrieval of
publications, and a smooth way to deliver publication events to the same user
but using clients from different devices. All publication events generated from
the playlist, Social and Artist services are persisted in a Cassandra cluster in a
column family called events, as shown in Figure 4.3. It is worth noting here that
each publication event is stored as (topic, subscriber) pairs in the Cassandra
cluster. This is a significant blowup of data for the topics with millions of
subscribers. Since the persistence of these events requires significant storage and
computing resources the following measures are taken:

• Presence events, which are of significantly higher volume (as shown with
workload analysis in Section 5.1), are not persisted.

• Each publication event in the events column family has an expiry date of 90
days by default (i.e., no events are retained over 90 days).

Once the events are written to the events column family, each event is processed
by the Rule Engine, which constantly polls events and detects the new events.
Based on the generated rules, the Rule Engine decides if the events are to be sent to
the Pub/Sub Engine for real-time delivery or written back to the Cassandra cluster
but to a different column family called Notifications along with the notification
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type to be used. The Notification service, which polls the Notifications column
family, delivers the publication events using the notification type suggested by the
Rule Engine.

Finally, to support pull requests from clients, the column family Timestamps
is used for keeping track of the time-stamp of the last seen event for each client.
Whenever a client connects to an AP, a request is sent to the Notification service
with the time-stamp of the last seen event, and the Notification service responds
with all publications that were generated after than the given time-stamp. Note
that time synchronization is not a problem here since the clients adhere to the clock
of an AP. The time-stamp check also helps avoid duplicate delivery of publication
events and, once a notification is read on one device it will be shown as read in all
the other devices of the same user.

4.2.4 Pub/Sub Engine

The Pub/Sub Engine consists of Aggregators, responsible for aggregating
subscriptions and distributing publications. The core component of the Pub/Sub
Engine is a DHT overlay of broker servers managing subscriptions, publication
matching, and delivery. A diagram with the different components of the
Pub/Sub Engine is shown in Figure 4.4.

The Aggregators sit between the APs and the pub/sub broker overlay. When
a client connects to Spotify via an AP, it also sends a set of subscriptions by
sending all the friends, playlists and artists the user is interested in. Each
topic-subscriber pair is considered a separate subscription. All subscriptions are
managed for matching purposes in main memory. In order to scale w.r.t. the
number of subscriptions and publication events, the Aggregators are crucial. The
Aggregator locally aggregates all the subscriptions for a given topic and sends a
single subscription on their behalf to the pub/sub broker overlay. The
Aggregator distributes the publication to the APs in the reverse direction and it
is also responsible for hashing the subscription to a respective broker in the
pub/sub broker overlay.

The pub/sub brokers are organized as a DHT (Distributed Hash Table) overlay
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with the subscription as the key. The overlay of pub/sub brokers have the following
responsibilities:

Managing subscriptions: pub/sub brokers are responsible for receiving
subscription requests from Aggregators and storing the subscriptions in
main memory. The brokers are responsible for maintaining the mapping
between the topics and the corresponding Aggregator where the
subscription came from. This mapping is absolutely crucial for routing the
publications to the right Aggregator. Pub/sub brokers also receive
unsubscription requests for a topic from the Aggregators when there are no
more online subscribers for that topic.

Matching publications: pub/sub brokers match the incoming publications
from the publisher services against in-memory subscriptions.

Forwarding matched publications: Once the matching entries are found the
publication is forwarded to all the corresponding Aggregators.

Cross-site forwarding: The broker overlay is also responsible for forwarding
publications to a different site if there are any subscribers. Note that the
pub/sub broker overlay spans all the sites.

Each broker at a site has a one-to-one corresponding broker in other sites
which exchange their subscriptions and publications from the
corresponding sites. For example, as shown in Figure 4.4, broker A at site
1 has a corresponding broker A at site 2 (i.e., all the subscriptions obtained
within site 1 and managed at broker A, are also forwarded and replicated
to the corresponding broker A of site 2 and vice versa). Whenever there is
a publication for a subscription at the broker A of site 1, if there is a
matching subscription registered from the broker A of site 2, the
publication is forwarded via a cross-site link to the broker A of site 2. Then
broker A of site 2 forwards the publication to the corresponding subscriber
at site 2 via an AP. This cross-site DHT overlay of pub/sub brokers
facilitates interaction among Spotify users that follow each other but are
connected to different sites.
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Load Balancing: Since all subscriptions are main memory, it is crucial to have
a scalable solution to manage them. The DHT organization of the pub/sub
brokers is the key to scale in-memory storage of over 600 million
subscriptions. The pub/sub broker overlay is also designed to distribute
the load publication matching and forwarding load among the brokers.

4.3 Summary

In this chapter, we presented the architecture of a system that allows
Spotify users to follow playlists, artists, and the music activities of their friends.
The architecture is realized by pub/sub, a popular communication paradigm. We
described how a hybrid system with a scalable Pub/Sub Engine driven by a
DHT overlay of brokers that facilitates real-time delivery of events and also a
Notification Module to persist important events for offline notification as well as
future retrieval of events.



Chapter 5

Pub/Sub Workload Analysis

In this chapter, we study the pub/sub workload from traces recorded at Spotify
and collected from the Twitter APIs.

For Spotify traces, the objective of the study is twofold: first, we characterize
the workload of the pub/sub system in terms of event publication rates, topic
popularity, subscription sizes, normalized notification rate per subscriber.
Unfortunately, there exist precious few characterizations of subscriptions and
synthetic workload generators for pub/sub systems [Yu et al., 2009]. In view of
this shortage, the value of our characterization is that it can be used towards
corroborating the validity of synthetic workloads as well as their generation. One
particularly surprising finding that we explain in this chapter is that the event
publication rate for a topic is not correlated with the topic popularity.

The second goal of the study is to analyze the message traffic produced by
the pub/sub system and derive trends and patterns. In particular, we study the
temporal patterns of subscription rate, unsubscription rate and publication event
generation rate. From the observations we also conclude that the traffic due to
the activity of following friends dominates the total traffic of social interactions.

For Twitter traces, we focus only on the first goal since we could obtain the
data only from public APIs for analyzing publication event rates, topic popularity,
subscription sizes and normalized notification rate per subscriber.

87
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Figure 5.1: CCDF of Topic Popularity

5.1 Analysis of Spotify Pub/Sub Workload

In this section we study the different characteristics and patterns emerging from
the pub/sub workload at Spotify. The main goal of the study is to characterize
the workload used by a deployed pub/sub system, thereby serving as a reference
for workload-modeling purposes in the pub/sub community in both industry and
academia. Another goal of this study is to analyze the message traffic produced
by the Spotify pub/sub system and derive trends and patterns.

All the results presented here are based on traces collected from production
data. The traces were collected during 10 days from Thursday, 10 Jan 2013 to
Saturday, 19 Jan 2013.

5.1.1 Analysis of Traces From The Presence Service

In this section, unless explicitly mentioned, we study the subscriptions and
publications given as input to the Presence service. We restrict our analysis to
the Presence service due to its dominance of the pub/sub workload in Spotify,
which is illustrated later in this section. In order to simplify our analysis, in
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these experiments, we consider only users with desktop clients, who have been
online at the Stockholm site and have produced at least one publication in the
studied time period, and their corresponding subscribers.

We study the following characteristics of the workload:

• The distribution of Topic Popularity: The Complimentary Cumulative
Distribution Function (CCDF)1 of the percentage of the total number of
subscribers subscribing to a topic, shown in Figure 5.1.

• The distribution of Subscription Size: The CCDF of the percentage of
total number of topics subscribed by a single subscriber, shown in Figure
5.2.

• The distribution of Publication Event Rate (per topic): The CCDF
of the percentage of total publication events generated for the chosen time
period, shown in Figure 5.3.

In Figure 5.1, it can be seen that the log-log plot of CCDFs of topic
popularity resembles a straight line until very low values of topic popularity
(10�5%). Similarly, the log-log plot of CCDF distribution of subscription size in
Figure 5.2 resembles a straight line as well until subscription size of at least
10�6%.

This indicates that topic popularity and subscription size distributions in
Spotify pub/sub may follow power-law-like distributions similar to node degree
distributions in typical social networking graphs [Mislove et al., 2007]. This
behavior is due to the fact that subscriptions and topics in Spotify pub/sub are
predominantly defined by the social relations between Spotify users. In addition,
as mentioned in Section 4.1, it is known that when a Facebook friend of a
Spotify user joins Spotify, by default they become subscribers of each other. This
observation motivates the use of social graphs as workloads for academic works
on topic-based pub/sub systems as done in [Chen et al., 2013; Rahimian et al.,
2011; Zhang et al., 2013b].

1
CCDF is the probability of a random variable X to be greater than a given value y
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Figure 5.2: CCDF of Subscription Size per user
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Figure 5.3: CCDF of Publication Event Rate per topic

The CCDF of Publication Event Rate in Figure 5.3, on the other hand, does
not follow a power law. There is a sharp deviation around 0.0005% of the total
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Figure 5.4: CCDF of Normalized Notification Rate per user

number of publication events.

Next we study the distribution of the number of publications attracted by
each subscribers. We call it Normalized Notification Rate per subscriber (NNR

v

),
which we define as the percentage of total publications events matching the topics
subscribed by a subscriber. NNR per subscriber is similar to the subscription
cardinality metric proposed for content-based subscriptions by [Li, 2010]. The
only difference is that NNR is defined per subscriber while subscription cardinality
is defined for each subscription and each subscriber can subscribe to multiple
subscriptions. It is mathematically expressed as below:

NNR
v

=

P
t2Tv

ev
tP

t

02T ev
t

0
⇤ 100

Where, T is a global set of all topics, T
v

✓ T is a set of topics subscribed by
a subscriber v, ev

t

is the publication event rate of topic t. Thus, a subscriber
with a Normalized Notification Rate of, for example, 0.1%, receives 0.1% of all
publications in the system.

In Figure 5.4 the x-axis shows the Normalized Notification Rate (NNR) values
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and the y-axis the probability that a subscriber has the Normalized Notification
Rate value greater than or equal to that of the corresponding value shown on the
x-axis (in other words CCDF). This distribution is an interesting result for the
pub/sub community since the distribution of number of events received by each
subscriber is an important design parameter for many pub/sub systems [Li, 2010]
and they are generally estimated probabilistically. Our analysis shows a diverse
Normalized Notification Rate ranging from 0.2% to as low as 10�7%. In addition,
more than 90% of the subscribers have NNR < 0.001% which appears to us as
being very low.

Each subscriber is allowed to subscribe to an arbitrary number of topics. That
results in arbitrary subscription sizes for the subscribers. A study about the
correlation between subscription sizes and the corresponding matching events is
crucial for understanding the resources needed to handle the publication traffic
at the brokers. We do this study by considering each subscriber’s Normalized
Notification Rate and the corresponding subscription size. We show in Figure
5.5 that, as the number of topics followed by a subscriber (i.e., subscription size)
increases, the number of publications received by the subscriber (i.e, Normalized
Notification Rate) increases linearly. In Figure 5.5, we show only a 1% random
sample of all the points.

As suggested earlier, the subscription workload for the Spotify pub/sub system
is characterized by a social graph. However, when we study the topic popularity
(number of subscribers of each topic) and the corresponding publication event rate
for that topic, we see no correlation at all. i.e. a topic with very few subscribers
can lead to significantly more publications than topics with many subscribers.
This behavior is shown in Figure 5.6. We conjecture that the reason for this is
that, unlike social networks, the activity in Spotify pub/sub is determined by the
music-listening behavior of users. This implies that a frequent listener of music in
Spotify does not necessarily have a high number of subscribers, similarly a user
with many subscribers is not necessarily a frequent listener of music. We leave the
confirmation of this conjecture for future research. Again we show a 1% random
subset of the original data points.
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5.1.2 Pub/Sub Traffic Analysis

The following measurements correspond to all the publisher services mentioned in
Section 4.2 and are not limited to the Presence service. These traces also include
mobile users in addition to the desktop users. We also include traces for these
measurements for the same 10 days mentioned earlier.

Publication Traffic

First we study the distribution of publication traffic by separately decomposing it
per service.

The Presence Traffic: From Figure 5.7 it is easy to observe that, for the
Presence service, there is a periodic pattern of publication traffic on a daily
basis with peak traffic towards the evening around 6 PM and the lowest
traffic around 2 AM. Further, the traffic is slightly lower during weekends
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compared to weekdays. Without further analysis it is easy to see that this
pattern is similar to the pattern for playbacks as observed in [Zhang et al.,
2013a]. The reason for this pattern is simply that the publications generated
by the Presence service are generated due to the playback of music tracks.
It is easy to observe from Figure 5.7 that Presence events form the majority
of the publication traffic.

Playlist Traffic: There is a similar daily periodic pattern in the Playlist
publication traffic, with highest traffic around 6 PM and lowest traffic
around 2 AM. However, in contrast to the Presence service, the Playlist
service traffic has slightly higher traffic on Sunday compared to the
weekdays.

Notifications Traffic: For Notifications traffic, which includes updates to artist
pages and updates from the Social service, one can observe small spikes
with notifications every day stemming from batch jobs launched for artist
updates. In Figure 5.7, it can be noticed the notification module generates
significantly low traffic in comparison with the traffic generated from the
Presence service and the Playlist service. This observation is consistent with
the hybrid design principle: real-time notification for the Presence service
and offline notification for artist pages and social updates.

In Spotify, as mentioned earlier the users are connected to three different sites.
The need for forwarding pub/sub notifications across sites arises since users in one
site sometimes subscribe to users or artists connected to other sites. To observe
this, we compare the total publication traffic (from all services) generated and
notified within the same site (local site) against the publication traffic generated
and forwarded from the rest of the sites (called remote sites). Remote traffic is due
to the music activity of users in a remote site for which there is at least 1 subscriber
in the local site. As we can observe from Figure 5.8, remote traffic is nearly an
order of magnitude lower than local traffic. This observation is in accordance
with the design of Spotify pub/sub as described in Section 4.2.4. Specifically, the
pub/sub system at each site is designed to handle high local traffic, assuming that
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Figure 5.8: Publication traffic within the sites vs across the sites

the remote traffic forwarded across sites is significantly lower.

Subscription Traffic

Figure 5.9 shows the pattern of subscriptions and unsubscriptions. There is a
periodic pattern in subscriptions and unsubscription rates as well, and this is due
to users joining and leaving Spotify at regular intervals. This periodic churn
behavior can help model the churn of subscribers in a pub/sub system. Many
research works [Castro et al., 2002; Li, 2010] in the area of pub/sub use synthetic
churn workloads or adapt churn traces from other peer-to-peer systems like
file-sharing services or Skype. In this section, we characterize churn using traces
from an actually deployed pub/sub system. Again, similar to publication traffic,
subscription requests exhibit a daily pattern of evening peaks and early morning
troughs as well. However, the weekly pattern of subscription traffic is
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Figure 5.9: Subscription and unsubscription rate

significantly different from the weekly pattern of publication traffic. This is
because the subscription traffic is a result of users logging in and out of the
system while publication traffic is due to the playback of music.

From the Figure 5.9 it can also be observed that the rate of subscriptions and
unsubscriptions match approximately, hence the change in number of subscriptions
for the chosen 10 day period is negligible. This hypothesis is confirmed by Figure
5.10, which shows that there is little variation in the number of subscriptions
for the chosen time period. In Figure 5.10 we can also see that the number of
subscriptions is dominated by the Presence service. This is because when users
register with Spotify for the first time, they have more subscriptions from following
their friends than from following Playlists, artists and album pages. This also
confirms our previous claim that the Presence traffic dominates Spotify pub/sub
traffic.

In the traffic plots even though the data is aggregated from multiple sites in
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Figure 5.10: Pattern of percentage of total number of subscriptions

different timezones, we only see single peaks and troughs every day. This is
because when the traces were collected (January 2013), Spotify pub/sub traffic
was dominated by activity at one of the sites, while activity at other sites were
negligible. Moreover, the users from a same timezone are not guaranteed to
connect to the site in the same timezone due to load balancing.

5.2 Analysis of Twitter Traces

We used the Twitter social graph made publicly available by [Kwak et al., 2010],
in conjunction with the information about the number of tweets that we crawled
ourselves. Since the Twitter user ids in this data set are real user ids, we made use
of the public Twitter APIs to obtain the number of tweets of each user in the data
set from 30th Oct 2013 to 9th Nov 2013. We consider all the Twitter users who
tweeted at least once during those 10 days (active users) and omit the rest. This
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Figure 5.11: CCDF of #Followers and #Followings

process provided us with around 8 million active users and their corresponding 30
million subscribers. This data trace can be downloaded from the link provided2.

In the first set of experiments we analyze the characteristics of the number
of follower/following distributions and show that our sample is representative of
the original data set. This can be verified from the Complementary Cumulative
Distribution Function (CCDF) of the number of followings in Figure 5.11. The
distinctive anomalies observed in [Kwak et al., 2010] at 20 and 2000 followings
can be seen here too. The glitches indicate the default values in the number of
followings and restrictions on number of followers imposed until 2009 respectively.
There are around 550 users following more than 10000 users in our sample. The
CCDF of the number of followers is also shown in Figure 5.11 and there is a
visible glitch at 105, as seen in the original data in [Kwak et al., 2010]. In our
sample, there are around 4000 users having more than 104 followers and 66 users
beyond 1 million followers. By manual verification, they are found to be famous
personalities, celebrities and news agencies.

Next we analyze the distribution of the number of tweets tweeted by users in

2
http://tidal-news.org/data/icdcs14/tweetrates.tgz

http://tidal-news.org/data/icdcs14/tweetrates.tgz
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our sample in a 10-day period Figure 5.12. Of the 8 million users who are active,
around 4 million of them tweeted less than 10 tweets in 10 days. Around 46000
users tweeted more than 1000 tweets in 10 days, which is significantly high for
human users. From random sample verification, these users are found to be news
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agencies or tweet aggregation bots re-tweeting. There was one user tweeting more
than 105 tweets and it was found to be a bot as well. Most celebrities produce
relatively few tweets, despite their high number of followers. We explore this in
detail in Figure 5.13. For each unique number of followers on the x-axis we show
the corresponding mean tweet rate (event rate) on the y-axis. The mean event
rate grows linearly with the number of followers until 105 followers. Finally, the
smaller cloud corresponding to a number of followers between 105 and 2 ·106 has a
relatively lower tweet rate than expected from the linear behavior. As mentioned
earlier, this is because celebrities and popular news agencies tend to have more
followers yet produce relatively few tweets.

Since our satisfaction metric ⌧ is directly related to the number of events
received by subscribers, it is worth studying the distribution of the number of
tweets received by each user. For this purpose we use the Normalized Notification
Rate (NNR

v

) of a subscriber v defined in Section 5.1:

NNR
v

=

P
t2Tv

ev
tP

t2T ev
t

· 100
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In Figure 5.14 we show the CCDF of NNR
v

. In our sample there are about
455 million tweets recorded, and around 3 million users receive more than 7000
tweets, and there is one user receiving 4% of all the tweets, i.e. 18 million tweets.
Finally, we consider the correlation between the number of followings a user has
and the corresponding mean NNR

v

in Figure 5.15. In order to smooth the curve
in this plot, we represent the data points for the subscribers having the same
subscription sizes with a single point representing their mean NNR

v

value. It is
clear that NNR

v

grows linearly with the number of subscriptions. However, there
are noticeable glitches at 20 and 2000 followings, due to the same reason as the
one for the glitches in the #Followings CCDF.
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5.3 Summary

In this chapter, we did an extensive analysis of two real workloads from two social
interaction systems: Spotify and Twitter. Both workloads were analyzed using
real traces collected from the actual deployed systems.

For the Spotify workload, we had access to the production system and we
characterized the system workload using the production traffic. Such
characterization helps model pub/sub workloads for research. We also analyzed
the pub/sub traffic at Spotify to derive trends and patterns.

We collected and analyzed Twitter traffic for 10 days crawled from the public
APIs of Twitter. We observe interesting trends in publication event rate and
normalized notification rate per subscriber.
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Chapter 6

Publish/Subscribe to Maximize

the Satisfaction Metrics of Users

in Social Interaction

Traditionally, pub/sub implementations are either centralized or based on a
federated organization of cooperatively managed servers, an increasingly higher
number of pub/sub applications are being deployed in P2P
environments [Triantafillou and Aekaterinidis, 2009]. In particular, the pub/sub
service at Spotify described in Section 4.2.1 is suitable for a peer-assisted
implementation, in line with the reported peer-assisted implementation of other
Spotify services such as music streaming [Kreitz and Niemela, 2010]. In a
peer-assisted implementation, a limited number of servers provide a guaranteed
high-quality service to a subset of pub/sub subscribers while the rest of
subscribers receive notifications through peers, thereby getting a best-effort
service that works convincingly well in practice. The part of the workload
assigned to a server is dictated by maximizing server utilization as well as the
overall quality of service given to the subscribers.

In this chapter, to the best of our knowledge, we provide the first formal
treatment of this subject. Specifically, we introduce a measure of subscriber
satisfaction that lends itself to a large class of pub/sub notification services

105
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where (a) publication event message delivery is best-effort: reliable delivery is
desirable but it is not mandatory to deliver all notifications, and (b) every
notification is intended to be read by a human user, so having a cumulative
delivery rate to a particular subscriber above a certain threshold might not bring
significant benefit to the user experience. For example, many applications where
notifications are generated due to social interaction fall into this class of pub/sub
services: following the tweets of selected users in Twitter, monitoring updates to
the profiles of a user’s friends in Facebook, or receiving instant notifications
related to favorite artists and albums in Spotify. According to our satisfaction
metric, we consider a subscriber satisfied in such applications if and only if the
user receives all notifications of interest at a configurable minimum threshold
delivery rate. We also provide a fractional satisfaction metric: If a subscriber
receives fewer notifications than desired, the satisfaction of the subscriber is
defined as a fraction of the actual and desired number of notifications.

Then, we introduce a principal optimization problem: given a server with a
limited capacity, and a workload consisting of (a) a set of topics each with its
own publication event rate, and (b) a set of subscribers with their interests; the
goal is to maximize the number of subscribers with their cumulative delivery rate
of publications to match a certain threshold (satisfaction metric), while
respecting the budget constraint imposed by the limited resources of the backend
servers. We define two distinct flavors of the problem: a “Budgeted Maximum

Multiset Multicover” (B3M ) and “Fractional Budgeted Maximum

Multiset Multicover” (F-B3M ) using the binary and fractional satisfaction
metrics, respectively. We prove that both flavors are NP-Hard. We reduce
B3M from the Densest-k-Subgraph (DkS ) problem [Feige et al., 1997], a new
way to reduce max cover problems. We also show that, while B3M does not
admit a Polynomial-Time Approximation Scheme (PTAS) unless NP has
randomized algorithms that run in sub-exponential time, F-B3M has a
polynomial-time approximation algorithm with a guaranteed constant ratio of
1
2

�
1� 1

e

�
. Furthermore, we derive an upper bound for the optimal solution of

each problem.
We evaluated the proposed heuristics for B3M and F-B3M using a large-scale
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real data set from the pub/sub system of Spotify. We show that the heuristics
provide an approximation of at least 0.7 for both problems, for the given dataset,
using the derived upper bound on the optimal solution as the baseline. Finally,
we propose various optimizations to make the heuristics more efficient. We show
that the heuristics run in less than 30 seconds for workloads with over a million
topics, and in less than one second in most realistic scenarios.

6.1 Motivating Application Scenario and Proposed

Pub/Sub Architecture

As discussed in Section 1.3.3, utilizing the pub/sub infrastructure to
maximize the number of subscribers receiving the notifications at a minimum
threshold can be useful. In addition, the workload that cannot be handled by the
dedicated infrastructure can be offloaded to a lower cost external system (such as
a peer-to-peer network). In this regard, the problem of selecting a subset of the
workload in such a way as to maximize subscriber satisfaction while respecting
the backend capacity needs to be solved. As shown in Sections 6.2.1 and 6.2.2,
this is a challenging optimization problem.

In this chapter, we propose a methodology to select a subset of the pub/sub
workload such that this subset is within the capacity of a backend service with
limited resources, while user satisfaction is maximized. This approach can help
system managers to deal with the trade-off between deploying additional hardware
and satisfying more users. It can also be used as a mechanism to drop or divert
part of the pub/sub workload to an external lower cost system with lower quality of
service, such as a pool of lower-reliability servers, or a set of computers belonging
to end users (peers) forming a peer-to-peer network.

To facilitate the offloading of the workload we propose an idea of a service
called Offloading Decision Service (ODS). In order to perform its work, the ODS
divides the total pub/sub load on a per topic basis and then decides for each topic
whether the topic can be managed by the backend service without exceeding the
capacity. In this context, managing a topic means taking care of delivering the
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corresponding topic events for all subscribers of that topic.

The rationale for this design decision is that we believe that organizing the
pub/sub load at this granularity level greatly simplifies system design compared
to an approach based on dealing with each (topic, subscriber) subscription pair
individually. While offloading at (topic, subscriber) granularity may be beneficial,
it poses additional overhead to the pub/sub system and the ODS, making the
offloading more complicated and expensive.

We now show the benefits of the ODS in the context of practical pub/sub
systems designed for social interaction.

6.1.1 A Peer-Assisted Approach to Social Interaction Among
Spotify Users

Spotify uses a pub/sub system to facilitate social interaction among its users. A
Spotify user can follow friends (from Facebook or native to Spotify), artists and
playlists. The pub/sub system delivers the friend feed, artist updates, and
playlist updates to the appropriate Spotify users. The Spotify pub/sub system is
implemented as a backend service running in Spotify’s datacenters. Details
about Spotify’s pub/sub system have been presented in Chapter 4. With the
ever-growing user base of Spotify it is crucial for its pub/sub to scale accordingly.
Typically, such services are scaled horizontally by deploying new hardware. In
this chapter, we provide a tool that can help system managers to estimate the
amount of user satisfaction that can be achieved with existing resources, and
estimate how it can be improved with additional hardware. We also show how
the existing Spotify pub/sub architecture can be extended to divert part of the
pub/sub workload to a P2P network by solving the proposed optimization
problems, in line with the existing peer-assisted streaming solution already used
by Spotify.

In a peer-assisted architecture, part of the load that is normally managed by
a server in a classical client/server architecture, is managed by clients themselves,
which act as servers towards other clients, and are referred to as peers. This
approach has the advantage that it can reduce implementation costs, and can
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Figure 6.1: Proposed peer-assisted architecture for Spotify pub/sub

potentially scale easily with respect to the number of users, since peers bring with
them an amount of resources that is proportional to the load the system has to
handle.

Figure 6.1 shows our proposed peer-assisted pub/sub architecture. This
architecture is designed to retain all the existing modules explained in
Section 4.2. The only new module is the Offloading Decision Service (ODS)
introduced earlier.

As shown in Figure 6.1, the ODS has access to Publishers and the
Notification Module of the pub/sub architecture of Spotify to collect statistics
about publication event rates and topic popularity. Depending on the
satisfaction metric used, ODS will solve B3M or F-B3M, using collected
statistics and the heuristics presented in Sections 6.3 and 6.4. The ODS then
instructs the pub/sub engine to consider the list of topics it has found to
maximize the subscriber satisfaction for real-time delivery of publications using
its pool of brokers, while the remaining topics are offloaded to the P2P network.
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The ODS constantly monitors changes to the publication event rates as well as
subscriptions and unsubscriptions and uses these updated statistics to
periodically recompute the solutions for B3M or F-B3M to maximize the
subscriber satisfaction. Therefore, an additional requirement for the ODS is that
it should employ lightweight algorithms that can be executed relatively quickly.
In this regard, we propose efficient algorithms to solve B3M or F-B3M in
Sections 6.3 and 6.4 and validate them in Section 6.5 to show that they can be
executed in real-time for real traces from Spotify.

6.1.2 Cloud-Based Peer-Assisted Microblogging Service

In [Xu et al., 2011], Cuckoo, a new Twitter-like microblogging system that offloads
the workload from the cloud to a P2P network is proposed. However, the offloading
technique does not consider optimality and hence it may result in underutilization
of the cloud resources. In addition, Cuckoo could benefit from our definition of
satisfaction metrics to deal with overwhelming event rates of the topics related to
news media. The Cuckoo design relies on offloading the topics with low publication
rate and few subscribers to the P2P network. While this is proven to reduce the
load on the cloud, we believe more can be achieved with the same cloud resources
by using a more sophisticated strategy to select what to offload. In Sections 6.2.1
and 6.2.2 we formalize this problem and provide approximation algorithms that
could be applied in Cuckoo.

It is worth noting that application of the ODS is not limited to the two scenarios
described above. It is not hard to see the applicability of the ODS in many other
pub/sub system with limited resources.

6.2 Problem Definitions

The two variations of satisfaction metrics mentioned earlier in this chapter prompt
problems that are similar in nature but very different in hardness, as we show in
Sections 6.3 and 6.4. In the first metric, we are interested in maximizing the
number of subscribers receiving at least ⌧ (satisfaction threshold) events related
to them from the backend service. A subscriber is considered satisfied if and only
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if at least ⌧ relevant events are received. This definition of user satisfaction is
suitable for applications with events that are relatively infrequent but important
for the user. Spotify updates about favorite albums and artists fall in this category.
In this regard, we define a problem coined Budgeted Maximum Multiset Multicover
(B3M ) in this section. In Section 6.3 we analyze the hardness of B3M and propose
a feasible heuristic.

In the second metric we quantify the amount of benefit towards the
satisfaction of a subscriber with a fraction of cumulative events delivered to a
subscriber relative to the given satisfaction threshold of ⌧ . The goal is to
maximize the sum of fractional benefits of individual subscribers of the topics set
to be served by the backend servers. This definition is appropriate for
applications where events are frequent but of relatively low importance. An
example would be Spotify’s updates about the activities of the friends of each
given user. In this regard we define the Fractional Budgeted Maximum Multiset
Multicover (F-B3M ) problem. In Section 6.4 we analyze the hardness of
F-B3M and propose a feasible heuristic that also gives a guarantee on the
quality of the output.

In both flavors of the problem, we want to ensure that the computational
and communication costs to serve the events needed to maximize the number of
satisfied subscribers does not exceed a given limit on the capacity of the resources
at the backend service.

Before we define the problem more formally, we introduce the following
notations:

T : A collection of l topics {t1, t2, ..., t
l

} in the system.

V : A collection of n subscribers {v1, v2, ..., vn} participating in the pub/sub
system. A subscriber can subscribe to one or more topics from T .
Subscribers in a typical pub/sub system are generally end-user applications
(e.g. Spotify client software).

T
v

: The interest of subscriber v, that is, the set of topics subscribed by v.

Int : The collection of interests {T
v1 , Tv2 , ..., Tvn} for all subscribers in V .



112 Chapter 6. Subscriber Satisfaction Problems

ev
t

: Event rate of the publications generated for a topic t, that is, mean of events
published to topic t during a given period (e.g., per minute or per hour).
Without loss of generality, we assume that ev

t

> 0. When we say ‘event’ in
the rest of this thesis we mean a publication event message generated by the
backend service for a topic intended for all subscribers of the topic.

⌧ : A system parameter that represents the satisfaction threshold for a subscriber.
It is defined as a constant specifying the number of events to be delivered to a
subscriber by the backend service in order for the subscriber to be considered
satisfied. The period over which the events are to be delivered is the same
as the time unit of ev

t

.

⌧
v

: Subscriber-specific satisfaction threshold. In practice, the total event rate
of the topics subscribed to by a subscriber is sometimes less than ⌧ . In
such cases we need to serve all the events the subscriber is interested in to
meet the satisfaction threshold. It is mathematically expressed as follows:
⌧
v

= min(⌧,
P

t2Tv
ev

t

).

V
t

: V
t

✓ V is a non-empty set of subscribers to topic t. Given Int, V
t

can be
derived trivially.

cost(t) : Represents the non-zero cost of serving a topic t by the backend service.
We say that the cost of a topic is normalized if it costs 1 per event sent
by the server to each subscriber of the topic and hence, normalized cost is
defined as cost(t) = ev

t

· |V
t

|.

C : Capacity of the backend service. A constant to quantitatively represent the
amount of resources available to the backend service. C has same unit as
cost.

S : Solution (S ✓ T ). It is a set of topics that can be served by the backend service
with a cost that does not exceed a given resource constraint expressed by
the constant C.

�(S) : Represents the sum of the satisfaction for all subscribers, given a potential
solution S. We want to maximize this function.
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6.2.1 The Problem of Budgeted Maximum Multiset Multicover
(B3M ):

Given an instance of T , V and their interests Int, the goal of the
B3M (T, V, ev, cost, Int, ⌧, C) problem is to find S ✓ T so as to maximize the
objective function defined below:

Maximize �(S)=
X

v2V
f(v), subject to

X

t2S
cost(t)  C (6.1)

f(v) is a function that indicates if subscriber v is receiving a number of events
that meets the satisfaction threshold:

f(v) =

(
1 if

P
{t2S\Tv} evt � ⌧

v

0 otherwise
(6.2)

The first condition in the Equation (6.2) is the case when a subscriber v is
receiving publication events at a rate not lower than ⌧

v

. In order for v to
contribute to the objective function f(v), the solution S must include enough
topics subscribed by v with a total event rate of at least ⌧

v

.

6.2.2 The Problem of Fractional Budgeted Maximum Multiset
Multicover (F-B3M ):

We now define a relaxed version of the B3M problem in which we quantify the
satisfaction relative to the number of events covered for a subscriber v out of ⌧

v

events. Given an instance of T , V and their interests Int, the goal of the F-
B3M (T, V, ev, cost, Int, ⌧, C) problem is to find S ✓ T so as to maximize the sum
of the fractions for all the subscribers.

Maximize �(S)=
X

v2V
g(v), subject to

X

t2S
cost(t)  C (6.3)
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g(v) is the fraction of events subscriber v receives, and it is defined as:

g(v) =

(
1 if

P
{t2S\Tv} evt � ⌧

vP
{t2S\Tv} evt

⌧v
Otherwise

(6.4)

The difference between B3M and F-B3M lies in the definition of the
satisfaction metrics in Equation (6.2) and Equation (6.4) respectively. In
Equation (6.2) the satisfaction is defined in a binary fashion i.e. the satisfaction
is 0 when less than ⌧

v

events are received by the subscriber and 1 otherwise. On
the other hand in Equation (6.4) a fraction of events received up to ⌧

v

is
considered instead of a binary 1 or 0. This subtle difference makes the two
problems fundamentally different in terms of difficulty of solving. We explore
this in detail in Sections 6.3 and 6.4.

6.3 Hardness of B3M and its Solution Approach

In this section we prove that B3M is NP-Hard and we also show that B3M has
no Polynomial-Time Approximation Scheme (PTAS). We further propose an
algorithm to give an upper bound on B3M instances. We use this bound to
evaluate a greedy heuristic we propose in Section 6.5.2.

6.3.1 Hardness of B3M Problem

To establish the hardness of B3M we prove that the well-known hard problem
of Densest-k-Subgraph (DkS ) can be reduced to a special case of B3M. We now
define the DkS problem and an auxiliary unit-cost version of B3M.

Definition 6.1 (Densest-k-Subgraph). Given an undirected graph G(U,E) the
Densest-k-Subgraph (DkS(U,E, k)) problem on G is the problem of finding a subset
U 0 2 U of vertices of size |U 0| = k with the maximum induced average degree. The
average degree of the optimal subgraph is 2|E(U 0)|/k. Here |E(U 0)| denotes the
number of edges in the subgraph induced by U 0.

The DkS problem can be proven to be NP-Hard by reduction from the Max-
Clique problem [Feige et al., 2001]. In [Feige et al., 1997] it has been shown that



6.3. Hardness of B3M and its Solution Approach 115

DkS is also NP-Hard even when restricted to a maximum degree of 3. The best
known approximation algorithm achieves a ratio of O

�
n1/4+✏

�
and runs in 2n

O(1/✏)

time, for any ✏ > 0 [Bhaskara et al., 2010]. On the other hand, it is known that
DkS does not admit a PTAS [Khot, 2006].

Definition 6.2 (UC-B3M ). We define an auxiliary problem coined Unit-Cost-
B3M(UC-B3M) which is a restricted version of B3M. We define UC-B3M to be an
instance of B3M with unit-cost for all the topics 8t 2 T : cost(t) = 1 and unit event
rate ev

t

= 1, each subscriber subscribes to exactly two topics 8v 2 V : |T
v

| = 2,
no two subscribers subscribe to same set of topics 8v1 6= v2 : T

v1 6= T
v2 and the

satisfaction threshold ⌧
v

= 2.

Lemma 6.3. UC-B3M is NP-Hard.

Proof. Given an instance of DkS (U,E, k) we construct an instance of
UC-B3M (T, V, ev, cost, Int, ⌧, C) in the following way: we take T with topics that
one-to-one correspond to the vertices in the set U . We take V to one-to-one
correspond to the edges in the set E. We build Int from the edges incident on the
vertices. For example, V

t

corresponds to the edges incident on the corresponding
vertex in U . We set C = k . We now prove that there is an induced subgraph
of A(U 0, E0) with average degree � and exactly k vertices if and only if there is a
solution S to UC-B3M with value at least |E(U 0)| (i.e., the total number of edges
in the induced subgraph).

To see this, we observe that a subscriber in our UC-B3M instance only
contributes to the objective function if both of her topics are included in S. This
precisely corresponds to the condition if and only if that exact edge with the
vertices corresponding to those two topics is in the induced subgraph of the
DkS instance. We can, without loss of generality, assume that S contains
precisely k topics as the cost of each topic is 1 and the objective function is
non-decreasing in the number of selected topics.

As we know that DkS is NP-Hard [Feige et al., 2001], it follows that UC-B3M is
NP-Hard too.

Theorem 6.4. B3M is NP-Hard.
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Algorithm 1: Heuristic value of topic t given partial solution S 0

1 GetHeuristicB3M(t, ev, cost(t), Int,S 0
, ⌧)

Input: t, ev, cost(t), Int,S 0
, ⌧

Data: h 0 : Heuristic value
rem

v

 0: Events remaining to make user v happy
2 foreach {v 2 V

t

} do
3 rem

v

 ⌧

v

�
P

{t02S0\Tv} evt0

4 if rem

v

> 0 then
5 h h+min

⇣
1,

evt

remv

⌘

6 return h

cost(t)

Proof. UC-B3M is a special case of B3M. From Lemma 6.3 we know that UC-
B3M is NP-Hard and hence B3M is NP-Hard too.

Corollary 6.5. Assuming NP 6✓ \
✏>0BPTIME(2n

✏
), there is no Polynomial-Time

Approximation Scheme (PTAS) for B3M.

Proof. The statement follows directly for UC-B3M from the reduction given in
Lemma 6.3 together with a result by Khot [Khot, 2006] saying that unless NP has
randomized algorithms that run in sub-exponential time (more formally: NP ✓
\
✏>0BPTIME(2n

✏
)) there is no PTAS for DkS. As UC-B3M is a special case of

B3M , the statement also holds for B3M .

6.3.2 Greedy Heuristic for B3M

In the greedy algorithm to solve B3M, in each iteration of the algorithm, a topic t

is chosen so as to maximize the ratio between its benefit and its cost. The benefit
of a topic is quantified by its total contribution towards the objective function
relative to the already chosen topics S 0. This is done for each subscriber of a topic
in a for loop (between Lines 2 and 5 of Algorithm 1). We define the contribution
of a topic t by considering the following scenarios: Adding t to the solution S 0

(a) guarantees to deliver ⌧
v

events to its subscriber v (b) contributes partially
to the target ⌧

v

events for its subscriber v. In the first case, the contribution
is of value 1. In the second case, the contribution is the ratio between ev

t

and
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Algorithm 2: Greedy solution for B3M

1 GreedyB3M(T, V, ev, cost, Int, ⌧, C)
Input: T, V, ev, cost, Int, ⌧, C
Data: A : Array of size l

Result: S 0  ; : Output set of topics
2 foreach t 2 T do
3 A[t] GetHeuristicB3M(t, ev, cost(t), Int,S 0

, ⌧)

4 while T 6= ; do
5 t argmax{t02T}A[t

0
]

6 if A[t] = 0 then
7 break
8 if cost(t) +

P
t

02S0 cost(t
0
)  C then

9 S 0  S 0 [ {t}
10 foreach {t0 : V

t

\ V

t

0 6= ; ^ t

0
/2 S 0} do

11 A[t

0
] GetHeuristicB3M(t

0
, ev, cost(t

0
), Int,S 0

, ⌧)

12 T  T \ {t}
13 return S 0

the remaining events needed to reach the target ⌧
v

(computed in Line 3). The
intuition behind this choice is to give higher priority to a topic that satisfies a
subscriber and hence, directly contributes to the objective function. On the other
hand, a topic contributing partially to the satisfaction of its subscriber is given
relatively lower priority. This step is repeated for each subscriber of the topic t

and the contribution is accumulated as a sum (Line 5). Finally, in Line 6 the total
contribution is divided by the topic’s cost to return the benefit-cost ratio.

The pseudocode of the greedy algorithm to solve B3M is sketched in
Algorithm 2 and the greedy strategy is to choose a topic that maximizes the
objective function. In Lines 2 and 3 an array containing the benefit-cost ratio of
the individual topics is initialized using Algorithm 1. In practice, this array can
be a max-heap structure optimized for obtaining elements with maximum value.
A topic that maximizes the benefit-cost ratio in each iteration is selected in
Line 5. The topic is added to the solution if its addition keeps the cost of the
solution within the budget. Otherwise the topic is ignored. If the topic is added
to the solution, the benefit-cost ratio of all the topics not selected so far are
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updated based on the current solution set S 0 (Lines 10 and 11). V
t

\ V
t

0 is the set
of subscribers common to subscribers of t and subscribers of t0. The algorithm
terminates when it has considered all the available topics, or when all subscribers
have been covered in which case the benefit-cost ratio of all the topics would be 0
(Line 7).

Theorem 6.6. The run time complexity of Algorithm 2 is O
�
|T |2(|V |+ log |T |)

�
.

Proof. The data structure A can be any max-heap structure supporting insertion,
update, and extracting the maximum element in time O

�
logn

�
, e.g., a binary heap.

The initialization of the array to store the heuristic values per topic done in Line
3 of the Algorithm 2 and Algorithm 7 has complexity of O

�
|T ||V | log |T |

�
. Once

a topic is selected a while loop (Lines 9 to 12) is exectued to update the topics
in the top of the heap until there is no more change. This loop runs |T | times in
the worst-case. Within the loop, re-evaluating the heuristics has complexity of |V |
and updating A has takes time O

�
log |T |

�
. Hence the run time complexity of the

Algorithm 2 is

O
�
|V ||T | log |T |+ |T |2 (|V |+ log |T |)

�
⇡ O

�
|T |2(|V |+ log |T |)

�
.

Theorem 6.6 gives the worst-case run time complexity, the cost being
dominated by updating the cost for all topics in Lines 10 and 11 of Algorithm 2
when a topic is added to the solution. We remark that in practice, the code runs
significantly faster than this bound would imply. One of the reasons being that
the number of updates is bounded by max

t 6=t

0 |V
t

\ V
t

0 |, which is usually
significantly lower than |T |.

We now turn to the subject of computing an upper bound on the optimal
solution. For this analysis, we only consider the case when the cost function is
normalized, i.e., cost(t) = ev

t

· |V
t

|.

Theorem 6.7. Given an instance B3M(T, V, ev, cost, Int, ⌧, C) where the costs are
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normalized, for any solution S it holds that:

�(S)  max

 
��V 0�� :

X

v2V 0

max

✓
⌧
v

,min
t2Tv

ev
t

◆
 C

!
,

where V 0 ✓ V.

Proof. With normalized costs, one can see that the amortized cost to cover each
subscriber v is at least ⌧

v

. The cost is also bounded by the lowest event rate of
any event in which the subscriber is interested. Detailed proof is given below.

Given a data set and a capcity constraint, we can derive an upper bound
on the number of subscribers that can be maximized. Intuitively, we can spend
the available capacity minimally to buy satisfied subscribers. However, since we
consider the case of normalized costs, in order to obtain a tighter bound we only
pay amortized cost of a topic for each of its subscribers. We elaborate this idea
below:

We first show that the theorem holds for an instance where 8
t2T |Vt

| = 1, and
then show that it generalizes to the full setting with normalized costs.

When each topic has only a single subscriber, consider the capacity that must
be spent to add a user to the solution set. A subscriber v can be satisfied when
topics with total event rate of ⌧

v

are selected in the solution. Hence, the
minimum capacity that must be spent to satisfy a subscriber is ⌧

v

. To tighten
this bound slightly, we also observe that if 8

t2Tvevt � ⌧
v

, then the semantics of
the B3M definition dictates that a topic must be completely paid for or not at
all. Hence, the capacity that must be spent in such a scenario is min

t2Tv evt.
Note that the topic’s costs here are normalized, i.e., cost(t) = ev

t

⇤ |V
t

|. Since
|V

t

| = 1, we derive the clause max (⌧
v

,min
t2Tv evt) as a cost to satisfy a single

subscriber. Clearly, the solution set must have sufficient capacity to add all
users, so summing up these bounds, we get the theorem as stated.

Considering the general setting of the problem where topics can be subscribed
to by multiple users, we see that our bound still holds. As costs are normalized,
we can easily amortize the cost of adding a subscriber to the solution. As the cost
of a topic is cost(t) = ev

t

⇤ |V
t

|, when we select a topic we add an amortized cost
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Algorithm 3: Upper bound for B3M with normalized topic costs
1 GetUpperBound(V, T, ev, Int, C, ⌧)

Input: V, T, ev, Int, C, ⌧
Data: C : Array of size n

csubs ; : Set of subscribers covered
2 foreach {v 2 V } do
3 C[v] max (⌧

v

,min

t2Tv evt)

4 while V 6= ; do
5 v  argmin{v02V } C[v

0
]

6 if C[v] +

P
v

02csubs C[v

0
]  C then

7 csubs csubs [ {v}
8 V  V \ {v}

9 return |csubs|

of ev
t

to each of the subscribers of the topic. The bound we derived on the setting
where each topic has a single subscriber also applies to the amortized costs, and
thus the theorem follows.

Theorem 6.7 presents a way to compute an upper bound on the optimal
solution. Since Algorithm 2 gives an unbounded approximation ratio, we make
use of Theorem 6.7 to evaluate how well our proposed heuristic performs on
real-world inputs (see Section 6.5.2). This theorem can be readily turned into an
algorithm as shown in Algorithm 3. In Lines 2 and 3 the minimum cost to
consider a subscriber satisfied is initialized in an array. Then, in each iteration
the subscriber with the least cost is selected until there is no more budget left to
cover more subscribers (between Lines 4 and 8). Finally, the number of selected
subscribers is returned as the upper bound for the optimal solution (Line 9).

6.4 Hardness of F-B3M and its Solution Approach

In this section we analyze the hardness of F-B3M . Comparing to the results we
obtained for B3M , the direct reduction we did from Densest-k-Subgraph no longer
works as in that case it is imperative that we are not “paid” for a partially satisfied
subscriber. This also means that the approximation-resistance results obtained
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for B3M do not translate. For F-B3M , we are instead able to give a greedy
approximation algorithm with an approximation ratio of 1

2

�
1� 1

e

�
. F-B3M is still

NP-Hard, which we first prove by a reduction from the (unweighted) Maximum
Coverage problem [Hochbaum, 1997].

Theorem 6.8. F-B3M problem is NP-Hard.

We prove that F-B3M is NP-Hard by polynomially reducing it from the
problem of Maximum Coverage problem. We first define the Maximum Coverage
problem.

Definition 6.9 (Maximum Coverage). In the (unweighted) Maximum Coverage
problem, input consists of a collection of sets S = {s1, s2, . . . , sn} and a parameter
k. The goal is to find a subset S0 ✓ S maximizing |

S
s2S0 s| subject to |S0|  k.

Proof. Given an instance of Maximum Coverage(S, k) we construct an instance of
F-B3M (T, V, ev, cost, Int, ⌧, C) in the following way: we take T with topics that
one-to-one correspond to the sets in the collection S and let cost(t) = 1. We take
V that one-to-one correspond to the elements of

S
s2S and construct Int from set

membership relationship of sets in S. We further let ev
t

= 1, set ⌧ = 1, and let
C = k.

From this construction it is easy to see that there is a solution of size d of the
Maximum Coverage instance if and only if there is a solution of value d of the F-
B3M instance. As Maximum Coverage is NP-Hard, this concludes the proof.

6.4.1 Greedy Heuristic

Theorem 6.10. The objective function in the F-B3M problem from Expression
(6.3) is a submodular function.

Before we prove Theorem 6.10, we define the submodularity propery.

Definition 6.11 (Submodularity). A function � is said to be submodular for any
set A ✓ B if the following holds:

�(A [ x)� �(A) � �(B [ x)� �(B)
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for any element x /2 B.

Proof. Intuitively, the objective function for F-B3M is submodular because the
incremental gain from adding a new topic is fractional i.e, reaching a threshold of
⌧ to have incremental gain is not a requirement. However, a larger set is more
likely to have covered more subscribers and higher number of times hence the gain
is incremental. In addition to that adding a topic with subscribers already covered
⌧ to a larger set of topics gives no incremental gain in the objective function. On
the other hand adding it to a smaller set of topics would give larger incremental
gain. Let us now capture the intuition mathematically. Assume that we have two
solution sets S1 and S2 such that S2 ✓ S1. Adding a topic t /2 S1 to these sets
always has non-negative incremental gain in their respective objective functions.
However, the amount of incremental gain depends on the following scenarios:

1. The subscribers V
t

of topic t are already covered ⌧ times in both S1 and S2.
Hence, adding t does not lead to any incremental gain for both sets. Note
that this case can be extended to both sets already covering equal number
of times, and the incremental gain will be the same for both.

2. V
t

are covered in S1 x times and they are covered y times in S2 such that
x � y (again, note that the other way round is not possible since S2 ✓ S1).
The following sub-cases are possible:

(a) If x+ ev
t

� ⌧ and y + ev
t

� ⌧ then, since we know that x � y, S1 will
have lower gain because

P
v2Vt

⌧v�x

⌧v

P

v2Vt

⌧v�y

⌧v

(b) If x + ev
t

� ⌧ and y + ev
t

< ⌧ then, the incremental gain for S2 is
higher because the incremental gain for S1 is

P
v2Vt

⌧v�x

⌧v

P

v2Vt

evt
⌧v

since we know that x+ ev
t

� ⌧ .

(c) Finally, if x+ ev
t

< ⌧ and y+ ev
t

< ⌧ then, both S1 and S2 have same
the incremental gain.

3. V
t

are covered ⌧ times in S1 but not in S2 (note that the other way round
is not possible since S2 ✓ S1). Hence, adding t to S1 results in no
incremental gain while the objective function for S2 is incremented with
exactly

P
v2Vt

min(remv ,evt)
⌧v

, where, rem
v

= ⌧
v

�
P

{t02S0\Tv} evt0 .
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All possible scenarios are covered using the above cases. It is easy to see that
in all of the above scenarios the following always holds for any t /2 S1.

�(S1 [ t)� �(S1)  �(S2 [ t)� �(S2)

Algorithm 4: Heuristic value of topic t given partial solution S 0

1 GetHeuristicFB3M(t, ev, Int,S 0
, ⌧)

Input: t, ev, Int,S 0
, ⌧

Data: h 0 : Heuristic value
rem

v

: Events remaining to make user v happy
2 foreach {v 2 V

t

} do
3 rem

v

 ⌧

v

�
P

{t02S0\Tv} evt0

4 if rem

v

> 0 then
5 h h+

min(remv ,evt)
⌧v

6 return h

From Theorem 6.10 we infer that the F-B3M problem is essentially the
budgeted maximization of a submodular function. The generalized greedy
heuristic for maximization of submodular functions is known to guarantee a
constant approximation factor as shown in [Fisher et al., 1978]. Unfortunately,
greedily selecting topics with best benefit-cost ratio for a budgeted maximization
of a submodular function no longer gives a constant approximation guarantee.
Greedily choosing the topics similarly to the solution for B3M performs
arbitrarily poorly.

To see why the simple greedy approach fails, consider an instance with two
topics t1 and t2 with �(t1) = 1 and cost(t1) = 1 and �(t2) = x for some x > 1 and
cost(t2) = x + 1 and with C = x + 1. The heuristic of benefit-cost ratio prefers
t1 over t2. Having spent a budget of 1 the heuristic can no longer select t2 and
terminates with �(t1) = 1 while the optimal solution is choosing t2 with the gain
�(t2) = x giving an approximation ratio of x.

Taking inspiration from [Khuller et al., 1999], we address this problem by
running two instances of a greedy algorithm, each using a different heuristic. The



124 Chapter 6. Subscriber Satisfaction Problems

Algorithm 5: Appropriate simple greedy algorithm for F-B3M, given a type
1 GreedyFB3M(T, V, ev, cost, Int, ⌧, C, type)

Input: T, V, ev, cost, Int, ⌧, C, type
Data: A : Array of size l

Result: S 0  ; : Output set of topics
2 foreach t 2 T do
3 A[t] ComputeHeuristic(t, ev, cost(t), Int,S 0

, ⌧, type)
4 while T 6= ; do
5 t argmax{x2T} A[x]

6 T  T \ {t}
7 if cost(t) +

X

t

02S0

cost(t

0
)  C then

8 S 0  S 0 [ {t}
9 repeat

10 t

0  t

11 t argmax{x2T} A[x]

12 A[t] ComputeHeuristic(t, ev, cost(t), Int,S 0
, ⌧, type)

13 until A[t0] = A[t]

14 return S 0

Algorithm 6: Appropriate heuristic, given a type

1 ComputeHeuristic(t, ev, cost(t), Int,S 0
, ⌧, type)

Input: t, ev, cost(t), Int,S 0
, ⌧, type

2 if type = G then
3 return GetHeuristicFB3M(t, ev, Int,S 0

, ⌧)
4 else if type = R then
5 return GetHeuristicFB3M(t, ev, Int,S 0

, ⌧)/cost(t)
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Algorithm 7: Greedy algorithm for F-B3M

1 ModifiedGreedyFB3M(T, V, ev, cost, Int, ⌧, C)
Input: T, V, ev, cost, Int, ⌧, C

2 S 0  GreedyFB3M(T, V, ev, cost, Int, ⌧, C,G)
3 S 00  GreedyFB3M(T, V, ev, cost, Int, ⌧, C,R)
4 if �(S 0

) � �(S 00
) then return S 0

5 else return S 00

first algorithm, which we refer to as being of type G, uses � as shown in Algorithm
4. The second algorithm, of type R, uses the benefit-cost ratio (�/cost(t)). The
final solution is the best of the two solutions provided by executing the algorithms
of type G and R, respectively. The pseudocode of the simple greedy algorithm
is shown in Algorithm 5. Algorithm 7 is the pseudocode for the modified greedy
algorithm to solve the F-B3M problem that executes the simple greedy algorithms
of type G and R and selects the best solution.

Our simple greedy algorithm (Algorithm 5) includes an optimization that is
important in practice, but does not affect the worst-case run time. After selecting
a topic, the contribution of other topics needs to be updated. Here we observe
that, due to submodularity, the contribution of those topics can only decrease.
Thus, we loop over the sorted list of topics in descending order of value and stop
updating as soon as the contribution of the topic with maximum contribution (top
topic in max-heap) does not change. This is done between Lines 9 and 12.

Theorem 6.12. Algorithm 7 has an approximation ratio of 1
2

�
1� 1

e

�
.

Proof. A general result for budgeted maximization of submodular functions was
given by Krause and Guestrin [Krause and Guestrin, 2011][Theorem 1]. Our
Algorithm 7 is a minor extension of theirs, the difference being that they only
select a single element when type = G.

We remark that, following [Krause and Guestrin, 2011], one can also create a
greedy heuristic with an approximation ratio of 1� 1

e

at the cost of an additional
factor of |T |3 in the running time of the algorithm.
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Theorem 6.13. Given an instance B3M(T, V, ev, cost, Int, ⌧, C) where costs are
normalized, for any solution S it holds that:

�(S)  max

 
��V 0�� :

X

v2V 0

max

✓
⌧
v

,min
t2Tv

ev
t

◆
 C

!
+ 1 ,

where V 0 ✓ V.

Note that Theorem 6.13 is an extension of Theorem 6.7 with a minor difference
in that there may be a fractional contribution to the objective function. This
fractional part is upper bounded by 1.

Theorem 6.14. Algorithm 7 has run time complexity of O
�
|T |2(|V |+ log |T |)

�
.

Proof. The same proof for Theorem 6.6 is applicable here. Hence, the proof is
omitted.

6.5 Evaluations

6.5.1 Experimental Setup

We implemented both GreedyB3M and ModifiedGreedyFB3M using C++. To
evaluate these heuristics we make use of real data from Spotify’s deployed pub/sub
system. The data consists of about 1.1 million topics and 4.9 million subscribers.
The traces were gathered for 10 days from Spotify’s datacenter at Stockholm.
For more information about the data traces we refer to Section 5.1. We use the
normalized cost function: for each topic cost(t) = ev

t

· |V
t

|. To choose C we
analyzed the full data traces and computed the total capacity needed to handle
the full traces in terms of the total cost of all the topics

P
t2T cost(t). Unless

mentioned explicitly, for evaluations in this chapter we set the capacity constraint
C to be 10% of this sum. For ⌧ we used 1%(27) to 100%(2763) of the mean event
rate of all the topics. All experiments were executed single threaded on a server
with 16 cores of Intel Xeon 2.13GHz processors and 32 GB of RAM.
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Figure 6.2: Comparison of GreedyB3M with the Estimated Upper Bound

6.5.2 Performance of GreedyB3M

First we analyze the performance of GreedyB3M (Algorithm 2) comparing it to
the upper bound computed by GetUpperBound (Algorithm 3). To visualize the
performance we observe that both algorithms iteratively construct solutions. Thus,
in Figure 6.2 we show the progress of the GreedyB3M algorithm after selecting
a topic in each iteration, by comparing the service capacity used so far (x-axis)
against the number of satisfied subscribers (for a given ⌧) (y-axis) by the chosen
topics. Note that this represents a single run of GreedyB3M until a budget C of
10% of the workload is reached. However, the intermediate results are equivalent
to having stopped GreedyB3M at the corresponding values of C. We can see that
the gap between GreedyB3M and the upper bound increases as C also increases in
most cases when C is restricted to 10%.

An interesting observation is that, with C equivalent to 10% of what is needed
to handle the full workload, the gap between GreedyB3M and the upper bound
increases as ⌧ increases from 27 to 276 (the approximation ratio drops from 0.87 to
0.75, as shown in Figure 6.3). However, this changes when ⌧ is increased to 2763,
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Figure 6.3: Computed approximation ratios for B3M and F-B3M with varying ⌧

in which case the approximation ratio of GreedyB3M increases from 0.75 to 0.82.
⌧ ⇡ 27 is a reasonably realistic value. With this parameter we satisfy around 72%
of all subscribers (3.5 million of the total 4.9 million). The upper bound gives that
at most 86% (4.2 million) of subscribers can be satisfied, with an approximation
ratio of around 0.83.

6.5.3 Performance of ModifiedGreedyFB3M

We now analyze the performance of ModifiedGreedyFB3M. From the theoretical
results, we know that ModifiedGreedyFB3M guarantees an approximation ratio of
1
2

�
1� 1

e

�
. In our real-world data set, we achieve a significantly better ratio (up to

0.9). Analogously to our analysis of GreedyB3M, we use the upper bound given
by Theorem 6.13. This theorem can be easily turned into an algorithm identical to
Algorithm 3 but with the change that in the last step (line 9) we return |csubs|+1

instead. Since the goal of F-B3M is to maximize the total satisfaction fraction
among the subscribers of all the topics, the outcome is measured in terms of
total fraction instead of number of subscribers. As shown in Figure 6.4, a similar
pattern to GreedyB3M is observed in the approximation ratio when the ⌧ changes
from 27 to 2763. However, the gap between the ModifiedGreedyFB3M and the
upper bound is much lower compared to the gap between GreedyB3M and its
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corresponding upper bound. For example for ⌧ = 2763 the approximation ratio
between ModifiedGreedyFB3M and the upper bound is 0.9 compared to 0.82 for
GreedyB3M, as shown in Figure 6.3.

GreedyB3M and ModifiedGreedyFB3M algorithms are intended to run on a
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regular basis, thus it is important that they are fast. In Figure 6.5 the running
times of the greedy approaches proposed in this chapter are shown in seconds
(mean of 3 runs). We also introduce a naive version coined
ModifiedGreedyFB3MSlow, to evaluate the gain of exploting submodularity
structure to lazily updating costs in ModifiedGreedyFB3M as explained in
Section 6.4.1 . ModifiedGreedyFB3MSlow is identical to ModifiedGreedyFB3M
except between lines Lines 9 and 12 of Algorithm 5. Instead of lazily updating
topic costs, all the topics that have a common subscriber with the chosen topic
in the current iteration are updated (same as lines 6 and 7 of Algorithm 2).
From Figure 6.5 it is clear that ModifiedGreedyFB3M outperforms
ModifiedGreedyFB3MSlow and runs in less than 20 seconds for all values of ⌧ ,
while without optimization it takes a maximum of 33 seconds to run for ⌧ = 276.
It is clear that these algorithms are in general fast to run in large-scale settings
and can be run on a regular basis.
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6.5.4 Real-Time Performance

The solutions for B3M and F-B3M are expected to be run periodically to
recompute the solution. In these periodic computations, the input sizes are
smaller as they only need to provide a solution until the next computation,
meaning that topics without publications can be ignored. To evaluate their
performance in this scenario, we use the stream of publications from Spotify with
a fixed ⌧ = 20 and C varying from 1% to 50%. We divide the stream in smaller
time windows, where each window is an hour long. We then execute our
algorithms for the topics active in 10 consecutive time windows. In Figure 6.6 we
show the execution time of the GreedyB3M and ModifiedGreedyFB3M
algorithms. The algorithms execute in just a few hundred milliseconds, and
ModifiedGreedyFB3M executes at least twice as fast as GreedyB3M due to the
proposed optimization. The running times reflect the size of the workload and,
for a typical workload in Spotify, the solutions are suitable for periodic execution
in real-time. In Figure 6.7 we show that both heuristics provide similar
approximation ratios. However, ModifiedGreedyFB3M performs slightly better
in all cases. An interesting observation is that, as C increases, the approximation
ratios also increase.

6.6 Summary

In this chapter, motivated by practical scenarios in a real deployed pub/sub
system at Spotify, we proposed a new approach to maximize subscriber
satisfaction. In the process, we introduced a new set of problems (B3M and
F-B3M ) to address the maximization of the number of satisfied subscribers in a
pub/sub system and proposed greedy heuristics to solve both problems. We
proved that B3M is NP-Hard by reduction from the DkS problem and, as a
corollary, also proved that B3M has no PTAS under a standard assumption.
F-B3M is a relaxed version of B3M that is relatively easy to solve. We proved
that the objective function of F-B3M is submodular, derived a constant
approximation bound for its greedy heuristic, and proposed a way to exploit the
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submodularity of the objective function to improve the running time of the
heuristic for typical scenarios. We evaluated our heuristics for both problems
using a large-scale real data set from Spotify’s pub/sub system and compared
their performance with upper bounds we derived for the optimal solutions of
both problems. We illustrated that, with a realistic pub/sub workload as input,
our heuristics achieve an approximation ratio of at least 0.7 and they can be run
in under a second in a realistic scenario to adapt to the workload variations. We
conclude that we have demonstrated that there is theoretical and practical
evidence that pub/sub systems (like Spotify’s pub/sub) can benefit from the
algorithms presented in this chapter.



Chapter 7

Resource Provisioning for

Scalable Publish/Subscribe to

Drive Social Interaction

Traditionally, pub/sub engines have been deployed on in-house enterprise clusters.
However, with the advent of cloud computing, a viable alternative of running
pub/sub services in the cloud became available. An enterprise may choose between
using a generic pub/sub engine (such as Azure Service Bus or PubNub included
in Microsoft Azure and Amazon EC2, respectively) and moving the deployment
of its proprietary engine optimized for the application needs to the cloud. While
the questions of cloud resource allocation and cost become critical in this context,
they have never been considered for pub/sub services.

In this chapter, we consider the problem of resource provisioning for a special
class of pub/sub systems designed to drive notifications due to online social
interaction among users. For example, as described in Section 4.2.1, in Spotify, a
pub/sub engine is used to notify users about the music activity (e.g. music
playback, playlist updates) of their friends and favorite artists. Another example
is Twitter, where users can follow any other user, and published tweets are
disseminated to all the following users. In such systems, we can model users as
both topics and subscribers. A user is a topic if she has followers subscribing to
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her publications and at the same time, she can be a subscriber if she follows
some users.

The pub/sub applications for social interaction are characterized by a
significant data volume, e.g., the Spotify pub/sub service described
in Section 4.2.1 is required to send an order of 2 Terabytes of notifications every
day and Twitter is known to send at least 8 Terabytes of tweets every
day [Krikorian, 2010]. In addition to that, each user generally subscribes to a
high number of notifications. For example, in a sample we analyzed, more than 3
million users were receiving more than 1000 tweets per day. In such applications,
every notification is intended to be read by a human user so that having a
cumulative delivery rate to a particular subscriber above a certain threshold will
not bring any benefit. To this end, in Chapter 6 we defined satisfaction metrics
that ensure delivery rates of at least a predefined threshold, but, past this
threshold, users are not considered to be more satisfied. Therefore, in order to
guarantee that every subscriber is satisfied, the system has to ensure that the
rate of notifications of interest delivered to each subscriber is not below a
configurable satisfaction threshold delivery rate.

Intuitively, a pub/sub system designed to meet the satisfaction threshold for
all subscribers itself can save significant amount of resources (e.g. number of
servers and bandwidth consumed). However, given the large-scale workload to
be handled by such pub/sub engines, distributing the workload on several servers
becomes inevitable. Therefore, a pub/sub engine to be deployed on a datacenter
or a public cloud could benefit from a tool to estimate and minimize the total
costs involved.

In order to include monetary costs of resources (VM deployment cost and
bandwidth cost) in our problem, we adopt a standard pricing model used by
Infrastructure-as-a-Service (IaaS) providers such as Amazon EC2. This model
includes separate expense components due to the use of virtual machines and
bandwidth, under resource constraints for individual virtual machines. We
formulate a problem of Minimum Cost Subscriber Satisfaction (MCSS ), that is
how to allocate resources for the given pub/sub workload so as to minimize the
cost while keeping every subscriber satisfied. While the main goal of solving this
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problem is to help companies that move their operation to the cloud, the
problem is also beneficial for minimizing resource consumption for companies
that continue using in-house deployment. As we show later in Section 7.1.1,
sometimes, there is an interesting trade-off between minimizing resources of
different types: minimizing the number of virtual machines may lead to increased
bandwidth consumption and vice versa. In other words, the problem of
optimizing the cost is more complex than just separately minimizing resources of
each type.

In this chapter, to the best of our knowledge we provide the first formal
treatment of this subject. We prove MCSS to be NP-hard and provide an
efficient heuristic solution. The solution works in two stages: first we select a
subset of the workload that is sufficient for satisfying all subscribers. Then, we
assign the chosen subset to virtual machines using an algorithm based on a
customized version of bin packing, with a number of optimizations. While
separating between the two stages may lead to sub-optimality in the solution, we
show experimentally that this sub-optimality is insignificant for practical
workloads.

We evaluate the solution empirically using large-scale real traces from Spotify
and Twitter. We use two baselines in the evaluation: a (possibly non-tight) lower
bound as well as a naive solution. We show that the proposed approach can cut
down costs by up to 74% with Twitter traces and up to 38% with Spotify traces
when compared to the naive alternative. On the other hand, our solution
performs only 15% worse compared to the lower bound in many cases.
Additionally, we show how we gradually improve the results by incrementally
introducing a number of optimizations and evaluating the impact of each
optimization. The proposed solution runs in under 30 seconds for the Spotify
workload with 5 million subscribers and 1.1 million topics and under 25 minutes
for the Twitter workload with 30 million subscribers and 8 million topics.

In summary, our main contributions in this chapter include: (1) a technique to
estimate the amount of resources needed to deploy pub/sub for social interaction
on datacenters, (2) cost-effective resource provisioning based on the Amazon EC2
pricing model, (3) formalization of the resource provisioning problem for pub/sub,
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and (4) a large-scale empirical evaluation to show the practical benefits of our
solution.

7.1 Resource Provisioning Model and Problem

Definition

7.1.1 Intuition for the Resource Provisioning Model

Customers of IaaS providers can usually rent virtual machines (VMs) of certain
predefined CPU, memory and bandwidth capacities either on an hourly basis or for
a fixed duration. In addition to this, they are also charged by the total incoming
and outgoing (to and from the cloud) bandwidth consumption of their application.
Our goal is to find an allocation of the pub/sub workload to a set of VMs such
that it minimizes the total monetary cost (combined cost of VM utilization and
bandwidth) while ensuring that all subscribers are satisfied.

Intuitively, the monetary costs of deploying a pub/sub system in the cloud is
directly proportional to the size of the workload it will handle (e.g. number of
publications and number of recipient subscribers). Hence, choosing a subset of
workload amounting to the least bandwidth consumption so as to meet the
satisfaction of all subscribers can readily save costs. In our model, each topic has
its own publication rate and choosing the subset of the topics to meet
satisfaction metrics can reduce the workload. However, selecting a topic with all
of its subscribers may not always be beneficial to all the subscribers. On the
other hand, if we have a choice to include or exclude topic-subscriber pairs,
depending on their contribution to the satisfaction of subscribers, we can choose
a more resource-efficient workload and do a cost-effective allocation. Thus, in our
model we choose a subset of the pub/sub workload at the granularity of
topic-subscriber pairs.

To simplify the problem, the only capacity constraint we take into account
for allocating load to a VM is the VM’s bandwidth capacity. We do not
explicitly consider the constraints on other resources such as CPU, memory and
disks. The reason is that, in our system, resource consumption is driven by the



7.1. Resource Provisioning Model and Problem Definition 137

delivery of publications to subscribers, which is essentially a network-bounded
operation. Thus, bandwidth constraints also serve as constraints on other VM
resources. A pub/sub system generally has an incoming stream of publications
for each topic and an outgoing stream of notifications to all the subscribers of
the topic, thus requiring incoming and outgoing bandwidth resources for
deployment on the cloud. In our model, we consider minimizing both incoming
as well as outgoing bandwidth. Typically, every IaaS provider has different costs
for incoming and outgoing bandwidth consumption. However, to simplify the
problem, we assume they cost the same and that each VM has the same
incoming and outgoing bandwidth capacity.

Given that we want to minimize the cost of VM utilization and the cost of
bandwidth consumption, it is worth noting that there is a trade-off between the
number of VMs and the amount of bandwidth that is needed to satisfy all
subscribers. For example, consider a user v subscribing to topics t1, t2, t3.
Assume that the satisfaction threshold is specified in such a way that t1, t2

together satisfy v or t3 alone satisfies v (shown in Figure 7.1(a)). In addition,
assume that there are two VMs b1 and b2 with available capacity as shown in
Figure 7.1(b). Based on the definition of our satisfaction metric, there are two
possible solutions to meet the satisfaction of subscriber v, as shown in Figure 7.2.
The allocation shown in Solution 2 uses three VMs and yet consumes less
bandwidth than the allocation done in Solution 1 with two VMs.

To balance this tradeoff, we set the goal of our problem as to minimize the
combined cost of VM utilization and total bandwidth consumption. We define an
optimization problem with this objective in Section 7.1.3. In Section 7.2.2 as part
of the solution, we employ various optimization techniques to balance the above
mentioned tradeoff.

7.1.2 Model and Notations

Before we define the problem more formally, we introduce the following notations
which were partly introduced in the Section 6.2:

T : A collection of l topics {t1, t2, ..., t
l

} in the system.
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(a) Selecting either t1, t2 together or t3 alone 
meets the satisfaction threshold of user v 

(b) VMs available, white space 
indicates available capacity

Figure 7.1: Tradeoff scenario

b1

t3

t2

t1

b2

b3

Solution 1: selecting t1, t2 can be allocated 
to existing VMs (no extra VMs needed) 
but costs higher total bandwidth

Solution 2: selecting t3 requires 
deploying a third VM b3  but costs lower 
total bandwidth compared to solution 1

Figure 7.2: Two possible allocations to meet satisfaction threshold of the user v.

V : A collection of n subscribers {v1, v2, ..., vn} participating in the pub/sub
system. A subscriber can subscribe to one or more topics from T .
Subscribers in a typical pub/sub system are generally end-user applications
(e.g. Spotify client software). In the rest of this chapter we use subscribers
and users interchangeably.
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T
v

: The interest of subscriber v, that is, the collection of topics subscribed by v.

Int : The collection of interests {T
v1 , Tv2 , ..., Tvn} for all subscribers in V .

ev
t

: Event rate of the publications generated for a topic t, that is, the average
number of events published to topic t during a time unit (e.g., per minute
or per hour). Without loss of generality, we assume that ev

t

> 0. When we
say ‘event’ in the rest of this chapter we mean a publication event message
generated by the publisher of a topic intended for all subscribers of the topic.

⌧ : A system parameter that represents the satisfaction threshold for a subscriber.
It is defined as a constant specifying the number of events to be delivered to
a subscriber in order for the subscriber to be considered satisfied.

⌧
v

: Subscriber-specific satisfaction threshold. In practice, the total event rate
of the topics subscribed to by a subscriber is sometimes less than ⌧ . In
such cases we need to serve all the events the subscriber is interested in
to meet the satisfaction threshold. It can be expressed as follows: ⌧

v

=

min(⌧,
P

t2Tv
ev

t

).

V
t

✓ V : The (non-empty) set of subscribers to topic t. Given Int, V
t

can be
derived trivially.

cost(t, v): Represents the non-zero cost of serving a topic-subscriber pair (t, v)

by any server/VM. For evaluation purpose cost(t, v) = 2·ev
t

, to include both
incoming and outgoing bandwidth requirements which are proportional to
the event rate of the topic.

C1 : A function to compute the cost of renting virtual machines from the cloud
service provider.

C2 : A function to compute the cost of consuming the total bandwidth (both
incoming and outgoing) on the cloud by a given pub/sub workload. Note
that, to simplify the problem, we assume the same cost function to compute
the cost of both incoming as well as outgoing bandwidth.



140 Chapter 7. Resource Provisioning for Pub/Sub

BC : A fixed bandwidth capacity of a virtual machine which cannot be
exceeded. We assume that bandwidth capacity includes both incoming and
outgoing bandwidth capacity. We exclude the bandwidth consumed by any
communication between the VMs in this capacity. We assume that BC is
large enough to accomodate a topic-subscriber pair with maximum total
bandwidth requirement i.e, BC � max

t2T
2 · ev

t

bw
b

: The total bandwidth consumption (incoming as well as outgoing) of virtual
machine b. It must be ensured that bw

b

never exceeds BC.

B : A set of virtual machines allocated to handle the given pub/sub workload, and
an individual virtual machine is referred to as b 2 B. We want to minimize
C1 (|B|) + C2

�P
b2B bw

b

�
.

7.1.3 Formal Definition of the Minimum Cost Subscriber
Satisfaction (MCSS) Problem:

Given an instance of T , V and their interests Int, the goal of
MCSS(T, V, ev, Int, ⌧, BC, C1, C2) is to determine the minimum cost in terms of
the number of required VMs and the total bandwidth consumed to satisfy all the
subscribers.

To capture the allocation of topic-subscriber pairs to a VM we introduce an
integer variable x

tvb

= 0, 1 which is 1 if the topic-subscriber pair tv is assigned to
the virtual machine b.

x
tvb

=

(
1 if tv is assigned to b

0 otherwise
(7.1)
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We now define the problem more formally below:

Minimize C1 (|B|) + C2

 
X

b2B
bw

b

!

Where, bw
b

=
X

v2V

X

t2T
x
tvb

ev
t

+
X

t2T

✓
max
v2Vt

x
tvb

◆
ev

t

Subject to: bw
b

 BC, 8b 2 B
X

v2V
f
v

= |V |

(7.2)

Where, f
v

is a an integer variable that indicates if subscriber v is receiving a
number of events that meets the satisfaction threshold:

f
v

=

(
1 if

P
t2Tv

(max
b2B x

tvb

) ev
t

� ⌧
v

0 otherwise
(7.3)

In the above definition the total bandwidth bw
b

consumed by a VM b is defined
as the sum of two expressions. The first expression represents the outgoing traffic
(number of topic-subscriber pairs assigned to b multiplied by the event rates of the
topics). The second expression represents the incoming traffic, which is exactly
the sum of the event rates of the unique set of topics that are assigned to a VM
b. The goal of max

v2Vt xtvb in Equation (7.2) is to avoid adding the event rate of
a topic once for each pair and instead only once per VM. In Equation (7.3) we
use max

b2B x
tvb

to ensure that a topic-subscriber pair (t, v) is considered towards
satisfaction of v only if (t, v) is allocated to at least one VM b.

We also define DCSS(T, V, ev, Int, ⌧, BC, C1, C2, CT

), the corresponding
decision problem of MCSS, which is to determine if it is possible to achieve a
total cost of at most C

T

, where, C
T

is a given constant.

7.1.4 Hardness of DCSS Problem

To establish the hardness of DCSS we prove that the well-known NP-Hard problem
Partition Problem (PP) [Garey and Johnson, 1979] can be reduced to a special
case of DCSS. We now define the PP problem.
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Definition 7.1 (Partition Problem (PP) [Garey and Johnson, 1979]). The task
of an instance of a partition problem PP(S) is deciding whether a given multiset
S = {x1, x2, ..., xn} of positive integers x

i

can be partitioned into two subsets S1

and S2 such that
P

xj2S1
x
j

=
P

xk2S2
x
k

and S \ S1 = S2.

Theorem 7.2. DCSS is NP-Hard.

Proof. Given an instance of PP(S), we create an instance of DCSS in the following
way: For each integer x

i

2 S, create a topic t with ev
t

= x
i

and a single subscriber
v
i

of the topic. This means that each topic t costs 2x
i

bandwidth to be served
since the incoming and outgoing bandwidth each cost x

i

respectively. Set BC =
P

xi2S x
i

and ⌧ = max
xi2Sxi to ensure all topic- subscriber pairs are selected as

part of the solution. We also set C1(x) = x, and C2(x) = 0, meaning that the cost
of a solution will be the number of VMs used. Finally, we set the cost threshold
C
T

for the decision problem DCSS as 2.
With this reduction, a reduced instance of PP is in essence the same instance

where all input values have been doubled. In the reduced instance, all topic-
subscriber pairs must be picked and this will use up exactly as much bandwidth
as 2 VMs have. Thus, if the reduced instance is a yes instance, a partition can be
achieved by letting S1 consist of all topics served by one VM.

7.2 Solution Approach

The Integer Program formulation of MCSS defined in Section 7.1 is NP-Hard
according to Theorem 7.2 and hence it is expensive to solve optimally in practice.
Specifically, with the typical scale of pub/sub systems consisting of millions of
topics and subscribers we need to deal with millions of variables to be considered
in Equation (6.1). To the best of our knowledge, we are not aware of any IP
solvers with the ability to scale to millions of variables. Instead, we propose a
heuristic approach to solve MCSS. We solve the MCSS problem by dividing it
into two relatively simpler sub-problems which are solved one after the other,
thereby introducing two stages in our solution.

In the first stage, we solve a simplified version of the MCSS in which we
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are given a hypothetical single VM with unlimited capacity. Then the goal is to
meet the satisfaction threshold of all subscribers by selecting topic-subscriber pairs
and allocating them to this hypothetical VM with unlimited bandwidth capacity.
This sub-problem aims at selecting those pairs that minimize the total bandwidth
consumption. After having solved the first stage, we move on to the second stage,
in which we know that the output of Stage 1 satisfies the constraint

P
v2V f

v

= |V |
from Equation (6.1). The goal of the second stage is to allocate the selected pairs
to VMs in a manner to satisfy the capacity constraints of the VMs from Equation
(6.1). We also want to consider the trade-off between the number of VMs and
total bandwidth consumption explained in Section 7.1.1.

7.2.1 Stage 1: Selection of Topic-Subscriber Pairs

The pseudocode of Stage 1 is presented in Algorithm 9. In this stage, for each
subscriber, we select a subset of topic-subscriber pairs that meet the satisfaction
threshold of the user while trying to minimize the bandwidth cost. Note that, for
each subscriber, it is basically a variant of the knapsack problem [Martello and
Toth, 1990] that can be solved optimally using dynamic programming. However,
given the large number of subscribers and topics, the optimal solution is too costly
in terms of execution time. Instead, we solve the problem using a greedy heuristic
based on a benefit-cost ratio for each (t, v) pair (see Algorithm 8.).

The cost of a (t, v) pair is the amount of bandwidth it requires, which is
2 · ev

t

for every (t, v). This is the amount of (incoming) bandwidth required to
push events for topic t into the individual VMs plus the amount of (outgoing)
bandwidth required to deliver the event to user v.

We define the benefit of (t, v) in terms of the contribution of t towards the
satisfaction of user v. To determine this benefit, we first calculate the remaining
event delivery rate required to satisfy v, which we refer to as rem

v

, which is ⌧
v

minus the sum of the event rates of the topics already included in the solution
to which v has subscribed (see Line 2). If v is already satisfied without adding
(t, v), then the benefit of (t, v) is zero. If including (t, v) in the solution makes v

satisfied, then the benefit of (t, v) is 1 (maximum benefit value); otherwise, the
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Algorithm 8: Heuristic value of topic, subscriber pair (t, v) having selected
S
1 GetBenefitCostRatio(t, v, ⌧

v

, cost(t, v),S)
Input: t, v, ⌧

v

, cost(t, v),S
Data: benefit 0 : Benefit of t towards v

rem

v

 0: Remaining event rate needed to satisfy user v
2 rem

v

 ⌧

v

�
P

{(t0,v):(t0,v)2S^t02Tv} evt0

3 if rem

v

> 0 then
4 benefit min

⇣
1,

evt

remv

⌘

5 return benefit
cost(t,v)

Algorithm 9: Stage 1 of solution for MCSS : Greedy pair selection
1 GreedySelectPairs(T, V, ev, cost, Int, ⌧)

Input: T, V, ev, Int, cost, ⌧
Data: A : Array of size |T |
Result: S  ; : Output set of (t,v) pairs

2 foreach v 2 V do
3 ⌧

v

 min(⌧,

P
t2Tv

ev

t

)

4 foreach t 2 T

v

do
5 A[t] GetBenefitCostRatio(t, v, ⌧

v

, cost(t, v),S)
6 while

P
(t,v)2S evt < ⌧

v

do
7 t argmax{t02Tv} A[t

0
]

8 S  S [ {(t, v)}
9 A[t] 0

10 foreach t

0 2 T

v

do
11 if (t

0
, v) 62 S then

12 A[t

0
] GetBenefitCostRatio(t0, v, ⌧

v

, cost(t, v),S)

13 return S

benefit is the ratio ev
t

/rem
v

(Line 4).
Under this heuristic, all topics that contribute to satisfy v without exceeding

the satisfaction threshold have the same benefit-cost ratio and are preferred over
those that exceed the threshold. The latter are penalized in proportion to the cost
they introduce (Line 5).

For each subscriber, all pairs with topics in T
v

are potential candidates for our
solution. However, we want to select the pairs with the least bandwidth costs.
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In this regard, for each candidate pair the benefit-cost ratio is computed using
Algorithm 8 and stored in an array A (from Line 4 to Line 5 of Algorithm 9).
Then, we select the (t, v) pair with maximum heuristic value in each iteration
until the satisfaction threshold ⌧

v

for subscriber v is met (from Line 7 to Line 12).
In each iteration after selecting a (t, v) pair, the heuristic value of the rest of the
pairs is updated since the benefit of a pair (t2, v) decreases after having chosen
(t1, v) as the remaining number of events decreases. A set of all the chosen pairs
for every subscriber V is returned in Line 13.

As an example for the selection of topic-subscriber pairs consider the scenario
in Figure 7.1 of Section 7.1.1. According to our heurisitc, both t1 and t2 have
benefit-cost ratio of 1/⌧

v

but t3 has benefit-cost ratio of 1/(2 · ev
t3). Assuming

ev
t3 > ⌧

v

> ev
t1 > ev

t2 , (t1, v) and (t2, v) pairs are selected as part of the solution
and (t3, v) is omitted.

In order to illustrate the importance of cost-effective selection
topic-subscriber pairs, we compare and contrast GreedySelectPairs (GSP)
against a naive solution RandomSelectPairs (RSP). In RandomSelectPairs,
for each subscriber select an arbitrary subset of topics so as to satisfy the
subscriber while ignoring the benefit-cost ratio. Specifically, for each subscriber v

in V , enough (t, v) pairs are selected in no particular order to reach the
satisfaction threshold ⌧

v

.

7.2.2 Stage 2: Allocation of Topic-Subscriber Pairs to VMs

In the second stage, the goal is to allocate the topic-subscriber pairs in S
selected from Stage 1 to VMs. It is interesting to note that the goal of our
second sub problem is very similar to the well-known bin packing problem
[Lewis, 2009]. Hence, as a first attempt we propose First-Fit Bin Packing
FFBinPacking (FFBP) (e.g. used in [Genaud and Gossa, 2011; Villegas et al.,
2012]) as a solution for Stage 2. In Algorithm 10, the pseudocode to allocate the
topic-subscriber pairs to VMs in a First-Fit manner is given. Each
topic-subscriber pair in S is considered in no particular sequence (Line 2 to
Line 20). If a pair (t, v) can be allocated to an existing VM it is done so with the
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Algorithm 10: First-Fit Bin Packing Algorithm for Stage 2 of MCSS :
1 FFBinPacking(S, BC)

Input: S, BC

Result: B  ; : Set of VMs with allocated (t,v) pairs
2 foreach (t, v) 2 S do

// Try assigning to the first VM that can fit (t, v)

3 foreach b 2 B do
4 if 8v0 2 V

t

: (t, v

0
) /2 b then

5 if 2 · ev
t

 BC � bw

b

then
6 b b [ (t, v)

7 S  S \ (t, v)
8 bw

b

 bw

b

+ 2 · ev
t

9 break

10 else if ev

t

 BC � bw

b

then
11 b b [ (t, v)

12 S  S \ (t, v)
13 bw

b

 bw

b

+ ev

t

14 break

// Deploy new VM if existing VMs cannot fit (t, v)

15 if (t, v) 2 S then
16 b new VM with bandwidth capacity BC

17 B  B [ b

18 b b [ (t, v)

19 S  S \ (t, v)
20 bw

b

 bw

b

+ 2 · ev
t

21 return B

first found VM having enough free capacity to include it (Line 2 to Line 12). If
none of the existing VMs has enough free capacity to include (t, v), a new VM is
deployed and added to the collection B of existing VMs (Line 16 to Line 20).

While the First-Fit strategy for bin packing is simple and strives to minimize
the number of VMs used, in our setting, it is not favorable with respect to
bandwidth consumption. We illustrate this with an example. Consider a case
with two topics t1 and t2 with ev

t1 = 20 events/min and ev
t2 = 10 events/min

with each message around 1KB, let ⌧ = 30 events/min and consider 3 subscribers
forming 5 pairs: (t1, v1), (t2, v1), (t2, v2), (t1, v2), (t2, v3). Assume there are two
VMs b1 and b2 with a remaining capacity of 60 KB/min and 100 KB/min
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Figure 7.3: Various VM allocation optimizations

respectively (both incoming and outgoing bandwidth combined in Figure 7.3a)
and their respective occupied capacity is shown in dark grey and their respective
available capacity is left unfilled. In Figure 7.3b the outcome for FFBP from
Algorithm 10 is shown. Because of the First-Fit strategy, the topic-subscriber
pairs of the same topics are split across different VMs resulting in total
bandwidth consumption (both incoming and outgoing) of 130 KB/min. Note
that allocating t1 and t2 to both b1 and b2 results in additional overhead of
replicating publications events, hence in total an extra 30KB/min (20KB/min
from t1 and 10KB/min from t2) is contributed to the overall bandwidth
consumption.

Here we make an important observation that FFBP has high runtime
complexity of O

�
|T ||V ||B|

�
, because each topic-subscriber pair is considered

individually. This can be improved if we group the topic-subscriber pairs of the
same topic before allocating them to the VMs. This optimization, in addition to
speeding up the algorithm, also has an advantage of saving bandwidth overhead.
As all pairs of a topic are considered at the same time, the splitting of pairs
across different VMs will be reduced, thereby reducing the incoming bandwidth
overhead. This can be observed in Figure 7.3c. With this optimization the pairs
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Algorithm 11: Stage 2 of MCSS : Customized bin packing
1 CustomBinPacking(S, BC, C1, C2)

Input: S, BC

Data: P  ; : Temporary set to hold topic-subscriber pairs to be
allocated to VMs

b new VM with bandwidth capacity BC : VM currently being
allocated
Result: B  ; : Set of VMs with allocated (t,v) pairs

2 while S 6= ; do
3 t argmax{t0}

P
(t0,v)2S evt0

4 foreach v 2 V

t

do // Group subscribers of topic t

5 if (t, v) 2 S then
6 P  P [ (t, v)

7 S  S \ (t, v)

8 if CheaperToDistribute(t,B, BC, P, C1, C2) is true then
9 while P 6= ; do

10 b argmax

b

02B{BC � bw

b

0}
11 if 2 · ev

t

 BC � bw

b

then
12 bw

b

 bw

b

+ ev

t

13 while P 6= ; and ev

t

 BC � bw

b

do
14 (t, v) any random (t

0
, v

0
), such that (t0, v0) 2 P

15 b b [ (t, v)

16 P  P \ (t, v)
17 bw

b

 bw

b

+ ev

t

// For the remaining pairs deploy new VMs

18 while P 6= ; do
// Deploy new VM

19 b new VM with bandwidth capacity BC

20 B  B [ b

21 bw

b

 bw

b

+ ev

t

22 while ev

t

 BC � bw

b

do
23 b b [ (t, v)

24 P  P \ (t, v)
25 bw

b

 bw

b

+ ev

t

26 return B

related to t2 are on the same VM avoiding replication of publications related to
topic t2 (cost is amortized once per VM), hence the total bandwidth
consumption is down to 120 KB/min. However, the pairs related to t1 are still
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on different VMs. We can improve this further by selecting the topic with
maximum event rate first and the VM with most free capacity first. These
optimizations give priority to the allocation of pairs of topics with maximum
event rate, which have the most overhead when split among different VMs, to
the VMs with most free capacity. In Figure 7.3d we can see that by applying
these optimizations we allocate each topic and its subscribers on a minimal
number of VMs, thereby reducing the incoming bandwidth consumption to 100
KB/min instead of 130 KB/min using FFBP.

The pseudocode for the solution for Stage 2 CustomBinPacking (CBP)
with the optimizations mentioned above is presented in Algorithm 11. We
consider topics and their associated subscriber pairs in the non-increasing order
of their event rates for the purpose of allocation (Line 3). We then group the
topic-subscriber pairs of the same topic together (From Line 4 to Line 7). Next
we compare the cost of distributing among existing VMs to cost of deploying new
VMs and choose the most cost-effective option (Line 8). The comparison of costs
is done in CheaperToDistribute (Algorithm 12). The CheaperToDistribute

algorithm is a heuristic to decide on distributing the pairs of the current topic in
question to already deployed VMs or to allocate them to a new VM. This
algorithm is used when the pairs of the current topic in question cannot be
allocated to the current VM. In Algorithm 12, we first compute the estimated
total cost when deploying new VMs and allocating to them (between Lines 2
and 4). Then we iteratively compute the cost of allocating to a VM with
maximum available capacity, until there are no more pairs left in P (between
Lines 5 and 14) or none of the existing VMs have enough capacity left to
accommodate even a single pair. It is possible that some pairs can be left
unallocated to the existing VMs in which case new VMs need to be deployed.
The cost of the extra VMs needed and corresponding bandwidth consumption is
computed between Lines 15 and 17. Finally Algorithm 12 returns true if
allocating to existing VMs is cheaper and returns false otherwise (in Lines 18
and 19).

Each of the above optimizations gives an incremental improvement to our
solution in practice. We explore the impact of each optimization with Spotify and
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Algorithm 12: Computes the cost of distributing current topic to existing
VMs
1 CheaperToDistribute(t,B, BC, P, C1, C2)

Input: t,B, BC, P, C1, C2
Data: curbw  

P
b2B bwb

: Current bandwidth consumption
curvms |B|: Number of VMs currently in use
extravms 0: Extra VMs needed if existing VMs used
extrabw  0: Extra bandwidth requirement
newvmsbw  0: Bandwidth needed if new VMs are used
newvms 0: Number of new VMs needed for allocation
TV  ;: Temporary set of VMs
Result: distribute false
// Estimate the cost of deploying on new VMs

2 if P 6= ; then
3 newvms d(|P | · ev

t

)/BCe
4 newvmsbw  (|P |+ newvms) · ev

t

// Estimate the cost of distributing to existing VMs

5 while P 6= ; and B \ TV 6= ; do
6 b argmax

b

02B\TV

{BC � bw

b

0}
7 if 2 · ev

t

 BC � bw

b

then
8 newbw  ev

t

9 while P 6= ; and newbw  BC � bw

b

do
10 (t, v) any random (t

0
, v

0
), such that (t0, v0) 2 P

11 newbw  newbw + ev

t

12 P  P \ (t, v)
13 extrabw  extrabw + newbw

14 TV  TV [ b

15 if P 6= ; then
16 extravms d(|P | · ev

t

)/BCe
17 extrabw  extrabw + (|P |+ extravms) · ev

t

18 if C1(curvms+ extravms) + C2(curbw + extrabw) <

C1(curvms+ newvms) + C2(curbw + newvmsbw) then
19 distribute true
20 return distribute

Twitter traces in Section 7.3.4.
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Algorithm 13: Lower bound for MCSS

1 GetLowerBound(T, V, ev, Int, ⌧, BC, C1, C2)
Input: T, V, ev, Int, ⌧, BC, C1, C2
Data: bwcostlb 0 : Lower bound on the cost to satisfy all

subscribers
2 foreach {v 2 V } do
3 ⌧

v

 min(⌧,

P
t2Tv

ev

t

)

4 bwcostlb bwcostlb+max (⌧

v

,min

t2Tv evt)

5 return C1(dbwcostlb/BCe) + C2(bwcostlb)

7.2.3 Lower Bound

Combining the solutions for both stages GSP from Algorithm 9 and CBP from
Algorithm 11, gives us a complete solution for MCSS. While dividing the solution
into two stages makes it simpler to solve, it renders our solution sub-optimal. By
separately considering the selection of topic-subscriber pairs and their allocation
to VMs, we lose an opportunity to make a better allocation of the pairs to the
VMs. However, in Section 7.3 we show that our approach works well in practice.

Deriving theoretical bounds on our solution is difficult because of various
optimizations we introduce and we omit it. However, using Theorem 7.3 for a
given data input we can estimate a lower bound on the objective of MCSS.

Theorem 7.3. Given an instance MCSS(T, V, ev, Int, ⌧, BC, C1, C2), for any
solution B it holds that:

C1 (|B|) + C2

 
X

b2B
bw

b

!
� C1

0

BBBB@

2

6666666

X

v2V
max

✓
⌧
v

,min
t2Tv

ev
t

◆

BC

3

7777777

1

CCCCA

+ C2

 
X

v2V
max

✓
⌧
v

,min
t2Tv

ev
t

◆!

Proof. The goal here is to derive a lower bound on the total cost of the allocation.
Consider the capacity that must be spent to add a user to the solution set. A
subscriber v can be satisfied when topics with total event rate of ⌧

v

are selected



152 Chapter 7. Resource Provisioning for Pub/Sub

in the solution. Hence, the minimum capacity that must be spent to satisfy a
subscriber is ⌧

v

. To tighten this bound slightly, we also observe that if 8
t2Tvevt �

⌧
v

, then the semantics of the MCSS definition dictates that we must choose at the
granularity of topic-subscriber pairs. Hence, the capacity that must be spent in
such a scenario is min

t2Tv evt. Hence, we derive the clause max (⌧
v

,min
t2Tv evt)

as a cost to satisfy a single subscriber. So summing up these bounds, we get the
lower bound on the outgoing bandwidth consumption to satisfy all subscribers.

Now, to derive a bound on the number of VMs, we simply divide the total
bandwidth consumption by the bandwidth capacity of the individual VM BC and
round it up.

Theorem 7.3 can be easily turned into an algorithm to derive the lower bound
and the pseudocode is presented in Algorithm 13. For each subscriber we select
the bare minimum bandwidth cost required to satisfy the subscriber (Line 2 to
Line 4). Then we derive the lower bound on the number of VMs by dividing the
lower bound on bandwidth consumption by bandwidth capacity BC per VM and
using cost functions we derive the lower bound on total cost in Line 5. In Section
Section 7.3.4 we evaluate GSP with CBP and RSP with FFBP and compare them
against the lower bound obtained using Algorithm 13.

7.3 Experimental Evaluation

The goal of the experimental evaluation is to study the effectiveness of the proposed
solution in minimizing the total cost of deploying pub/sub for social interaction
in systems like Spotify and Twitter on a public cloud service. In this section,
we evaluate our solution by considering each stage of the solution incrementally.
We repeat all our experiments for Spotify as well as Twitter traces with various
practical settings.
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7.3.1 Experimental Setup

We implemented all algorithms presented in this chapter using C++. All
experiments were executed on a server with Intel Xeon 1.87GHz processors and
132 GB of RAM. We executed experiments with ⌧ varying from 10 to 1000. For
the cost function we followed the Amazon EC2 cost-model1. We used the pricing
for On-Demand Instances with Compute Optimized - Current Generation. For
our experiments, we considered the pricing for 2 types of VM instances c3.large
(costs $0.15 per hour) and c3.xlarge (costs $0.3 per hour), these instance types
are our choice for evaluation because they have specified bandwidth limits2. We
set c3.large and c3.xlarge with bandwidth capacities of 64 mbps and 128 mbps
respectively derived from Amazon specified bandwidth limits. Even though we
repeated our experiments using other instance types, we omit their results
because they provide no significant new information. For the bandwidth cost we
use $0.12 per GB for both incoming as well as outgoing bandwidth taken from
data transfer costs of Amazon EC2 pricing model (subject to change).

Bandwidth consumption is measured in bytes per unit of time; hence, we need
to convert the event rates in our model to bytes. We know that each tweet has
a maximum length of 140 characters. However, from the information given in
[Krikorian, 2010], the mean size of a tweet is 200 bytes; thus, in our experiments
we set the message size of a twitter publication as 200 bytes as well. For the
Spotify case, after measuring the mean message size of a sample of messages from
Spotify traces we found it to be 111 bytes. But we set the message size as 200
bytes to make the comparison with Twitter traces easier.

7.3.2 Data Traces

Spotify Traces The trace consists of about 1.1 million topics and 4.9 million
subscribers forming about 12 million topic-subscriber pairs. The traces were
gathered for 10 days (9th Jan 2013 to 19th Jan 2013) from Spotify’s datacenter
at Stockholm (one of the three datacenters). The events we collected were

1
http://aws.amazon.com/ec2/pricing

2
https://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf
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restricted to the music playback events from users with at least one follower. For
more information about the Spotify trace, and its detailed analysis
see Section 5.1.

Twitter Traces We use the publicly available Twitter social graph well studied
in [Kwak et al., 2010]. We model the Twitter users as topics and their followers as
subscribers. The subscriptions (subscribed topics) of a subscriber is the followings
of a user (the list of Twitter users followed by the user). The number of tweets
published by a particular user t corresponds to the event rate ev

t

for a given
period of time. We used the public Twitter APIs to obtain the number of Tweets
of each user in the data set by [Kwak et al., 2010] from 30th Oct 2013 to 9th Nov
2013. We consider all the Twitter users who tweeted at least once during those
10 days (active users) and omit the rest. This process provided us with around
8 million active users and their corresponding 30 million subscribers, and around
683.5 million topic-subscriber pairs. For a detailed analysis of Twitter traces refer
to Section 5.2.

7.3.3 Comparison of Approaches for Stage 1

We first explore the impact of using GreedySelectPairs (GSP) presented in
Algorithm 9 with RandomSelectPairs (RSP) as a baseline on the total cost with
FFBinPacking as Stage 2 solution for both. We run experiments with c3.large
and c3.xlarge VM cost functions. From Section 7.2 we know that, unlike RSP,
GSP selects topic-subscriber pairs to satisfy all the subscribers while trying to
minimize the bandwidth requirement. This helps in reducing both the number of
VMs and bandwidth consumption and hence the total cost. Figure 7.4(A) shows
the impact of GSP using Spotify traces and c3.large. With ⌧ = 10 it results in a
33% reduction in the number of VMs, 22.9% bandwidth reduction and a 33%
reduction in total cost. However, as ⌧ increases to 100 and 1000, the cost
reduction drops to 27.6% and 10.9% respectively. The reason for the drop in cost
reduction is that higher values of ⌧ leave little for optimization, since a higher
fraction of all topic-subscriber pairs are needed to satisfy the problem
constraints. A similar pattern is observed in Figure 7.4(B) for VM type c3.xlarge
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Figure 7.4: Impact of introducing optimizations (a) to (e) with Spotify traces

with BC = 128 mbps. A 32.7% reduction with ⌧ = 10 and 17.6% and 10.8%
reduction with ⌧ = 100 and ⌧ = 1000 respectively.

Now we study the impact of GSP with Twitter traces. As seen in Figure 7.5(A),
the cost reduction is significantly higher compared to Spotify traces. With ⌧ =

10 there is a reduction of 71% and 51.4% with ⌧ = 100. However, with ⌧ =

1000 the reduction is only 29.1%, suggesting that as ⌧ increases, the room for
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minimizing costs also decreases. We observe the same pattern in Figure 7.5(B)
as well with BC = 128 mbps. The improvements are 70%, 51.9% and 20.3% for
⌧ = 10, 100, 1000 respectively.

7.3.4 Comparison of Approaches for Stage 2

In Stage 2 of our solution, the goal is to allocate the topic-subscriber pairs from
Stage 1 to VMs so as to minimize the cost. In this section we explore the impact
of various optimizations introduced in Section 7.2.2 for Stage 2 of our solution on
the total cost. To analyze the effectiveness of these optimizations, we fix the
approach for Stage 1 as GSP for the rest of the experiments unless mentioned
explicitly. By incrementally introducing the optimizations we study their
incremental impact in the following order: (a) with only FFBinPacking

(FFBP), (b) introducing grouping of pairs by topics, (c) introducing most
expensive topic first, (d) introducing most free VM first, (e) introducing choice of
allocation based on cost-model. In Figures 7.4 and 7.5 the bar plots contain the
corresponding bars to represent the improvement in total cost, number of VMs
and bandwidth consumption respectively, in the same order of the optimizations
listed above. Finally, we also compare the impact of including all these
optimizations with the lower bound obtained by running the Algorithm 3.

We start with optimization (a), FFBP presented in Algorithm 10. In
Figure 7.4(A) and Figure 7.4(B) the outcome of FFBP when used in conjunction
with GSP topic-subscriber pair selection technique can be seen for different
values of ⌧ and for c3.large and c3.xlarge VM types. However, as mentioned in
Section 7.2.2 since FFBP considers the pairs to be allocated to VMs in arbitrary
order and at individual pair level, there is room for improvement. Hence, we
introduced optimization (b), (presented in Algorithm 11 CustomBinPacking

(CBP)) the grouping of pairs belonging to the same topic and analyze its
effectiveness. The grouping of pairs optimization results in a cost reduction of
about 3.5% for Spotify traces in most cases. However, in some cases we see an
increase in cost up to 1.6%. This behavior is because of the trade-off between the
number of VMs and the total bandwidth consumption. For example, in
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Figure 7.4(A) for ⌧ = 10 and in Figure 7.4(B) for all values of ⌧ , it can be
noticed that, even though there is a decrease in bandwidth consumption of about
8 to 10%, the corresponding number of VMs increase by 2 to 4%. The increase in
total cost in some cases suggests that grouping of topics alone is not always
beneficial. This behavior is due to the fact that the grouping of pairs
optimization is aimed at minimizing bandwidth consumption. As explained in
Sections 7.1 and 7.2, because of the trade-off between the number of VMs and
bandwidth consumption, we see an increase in total cost. As we show later in the
experiments, this optimization has an impact in conjunction with other
optimizations.

For Twitter traces, we can observe a behavior similar as that seen in
Figure 7.5(A) and Figure 7.5(B). In all cases there is a slight decrease in cost due
to the grouping of topics, even though in some cases there is an increase in the
number of VMs. This can be clearly observed with ⌧ = 1000 and BC = 128

mbps, in Figure 7.5(B). In this case there is a decrease in bandwidth
consumption of 8% which results in increase of 0.5% in VMs (one VM). However,
the total cost still decreases because the decrease in bandwidth consumption
overshadows increase in number of VMs. This behavior is again attributed to the
trade-off between the two metrics.

Next we study the impact of introducing optimization (c), the ordering of
topics in decreasing order of event rates and selecting the topics and their pairs
with maximum event rate for allocation first. As explained in Section 7.2.2, the
rationale behind this optimization is to give priority to expensive topics to avoid
pairs belonging to the same expensive topic being allocated to different VMs. This
optimization can result in an increased number of VMs with a slight decrease in
bandwidth consumption in some cases, as in Figure 7.4(A) for ⌧ = 100. However,
in most cases it results in a decrease in the total cost up to 2.5%. For Twitter
traces, in Figure 7.5(A) and Figure 7.5(B) we can notice a slight decrease in total
cost up to 2.4%. It is worth noting that, even though this optimization does not
show many benefits on its own, we next show that it works well together with
selecting VMs with most available capacity first.

As done in Algorithm 11, we try to allocate all the pairs of a topic to the
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Figure 7.5: Impact of introducing optimizations (a) to (e) with Twitter traces

most recently deployed VM. If that is not feasible, we try to allocate them to
existing VMs. Now we analyze the impact of introducing optimization (d) in
which we choose the VMs with most free capacity first while allocating the pairs
among already deployed VMs. For both Spotify and Twitter traces, we observe
a reduction in cost with this optimization. The reduction in number of VMs is
the main contributor for reduction in cost with this optimization. In most cases
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bandwidth consumption remains the same or even slightly increases again due to
the trade-off with the number of VMs. For Spotify traces there is a decrease in cost
of up to 10.7% and for Twitter traces the decrease is up to 9.5%. An interesting
observation here is that the decrease in cost is slightly higher for ⌧ = 100 and
1000 than ⌧ = 10. It is worth noting that the improvement we see from this
optimization is also the result of optimizations (b) and (c).

Finally, we introduce optimization (e), the decision to allocate to existing
VMs at the cost of extra bandwidth consumption against deploying new VMs
based on the cost-model presented in Algorithm 12. The decision to deploy a new
VM instead of existing VMs is done if it results in decreased total cost. This
optimization is supposed to balance the trade-off between the number of VMs
and bandwidth consumption. However, we observe lower cost reduction than
expected. For Spotify, the maximum cost reduction is 1.2% and for Twitter it is
0.2%. The reason for this behavior is that, in our cost-model, the bandwidth per
GB is only $0.12. Thus, the bandwidth is significantly inexpensive. For example,
for a topic t with ev

t

10000 events/day (2 MB/day), even if all the subscriber
pairs of t are spread across 100 different VMs the bandwidth overhead is 200 MB
and costs only $0.024. With such a low overhead the cost-model hardly makes a
difference. In addition to that, the cost-model is suboptimal since it takes the
decision for each topic independently. Hence, the overhead of extra bandwidth
due to distributing the pairs of a topic is generally significantly lower than
deploying the new VMs. We leave further exploration of this optimization for
future work.

7.3.5 Runtime Performance Evaluation

In this section, we show the runtime performance of our approaches. The faster
runtime performance of the VM allocation approaches on cloud are crucial, since
the allocation may be required to run periodically to adapt to the workload. We
first analyze the running times of solutions for Stage 1. It is clear that selecting an
arbitrary set of pairs (RSP) is faster than selecting pairs according to the greedy
heuristic (GSP). However, in Figure 7.6 we can see that the runtime of GSP for
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Stage 1 with Spotify traces is only at most two seconds slower than GSP in all
cases. Increasing ⌧ requires more topic-subscriber pairs to be selected. The near-
constant time for GSP suggests that our approach is scalable with ⌧ . In Figure 7.7
we can see a similar pattern for Twitter traces. However, since the Twitter trace
has a much higher number of pairs (638.5 million), it results in significantly higher
runtime for both RSP and GSP compared to Spotify traces. RSP takes up to 986
seconds, on the other hand GSP takes up to 1471 seconds. The slower running
time of GSP is because it inspects all the 638.5 million pairs at least once to select
the best pairs according to the heuristic. On the other hand, RSP selects the first
subset of pairs meeting the satisfaction threshold and returns pairs which result
in significantly higher cost. This is a clear trade-off between quality of output and
running time.
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Figure 7.6: Stage 1 Runtime for Spotify traces

Next we analyze the runtime performance of FFBP and
CustomBinPacking (CBP) solutions for Stage 2. We restrict our comparison
between running times for optimization (a) and the solution in Algorithm 11
including all other optimizations (optimization (a) to (e)) and assuming input
from GSP readily available in main memory. From Figures 7.8 and 7.9 we can
see that CustomBinPacking (CBP) outperforms FFBP up to 10 times better
with Spotify traces and around 1000 times with Twitter traces. The fast runtime
of CBP is attributed to the optimization related to grouping of pairs on a per
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Figure 7.7: Stage 1 Runtime for Twitter traces

topic basis to allocate them to VMs (O
�
|T ||B|

�
). On the other hand,

FFBP considers the VMs in the order of first-fit, hence in the worst-case it may
have to check the feasibility to allocate with all the deployed VMs
(O
�
|T ||V ||B|

�
). It is worth noting that even though GSP is slower than RSP on

its own, in combination with CBP the overall runtime performance is better
than RSP in combination with FFBP in most cases. For example, GSP with
CBP takes 1484.7 seconds in total compared to 2186 seconds taken by RSP with
FFBP for Twitter traces with ⌧ = 1000 on a c3.large instance.
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7.3.6 Summary and Discussion

In this section, we empirically evaluate our solution by considering the isolated
impact of each stage and each optimization. We compare the performance of
GSP and RSP while using FFBP as a solution for stage 2. In summary, GSP
provides an improvement in the total cost of up to 33% for the Spotify and 71%
for the Twitter traces. Subsequently, we fix GSP as the solution for Stage 1 and
analyze the incremental impact of individual optimizations ((b) to (e)) introduced
for Stage 2. Even though each optimization is improving the cost in only a subset
of cases, we observe a cumulative improvement of up to 5%. With a combination
of GSP and CBP we attain a total saving of up to 74% for the Twitter traces
and 38% for the Spotify traces. In absolute values, this translates into $4000 and
$2000 for the Twitter and Spotify traces respectively. Note that these savings are
for sampled traces (about 10% sample for Spotify and 1% sample for Twitter) for
a 10 day period. We can expect higher savings for a longer period and full traces.

The runtime for the Spotify traces on a moderately powerful server is under
30 seconds for our complete solution, suggesting that it is fast and it can be run
periodically to re-allocate the workload. For example, it can be run every hour
to adapt to the changes in the event rates, new subscriptions, unsubscriptions,
etc. However, for the Twitter traces it runs relatively slower (about 25 minutes)
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because of the larger scale. Even though our solution can be run at longer periods
(e.g., once per day), it is desirable to adapt in a dynamic and online fashion. In
some works such as [Cerviño et al., 2012] dynamic approaches are suggested for
adaptive provisioning. However, in order to solve our problem there is a need to
take into account additional factors such as the effects of dynamic workload on
the user satisfaction metric. We plan to tackle the challenge of devising an online
algorithm as part of future work.

7.4 Summary

In this chapter, we have proposed a new approach for resource provisioning for
pub/sub in the cloud using a cost-effective resource allocation. The approach is
directed towards a particular class of pub/sub that is used to drive social
interaction, e.g., among Spotify and Twitter users. To formalize the challenge of
cost-effective resource allocation, we have introduced the MCSS problem and
established its hardness by a reduction from the well-known partitioning
problem. We have provided an efficient heuristic for MCSS consisting of a
number of optimizations. Our approach can be used as a tool by pub/sub
architects to estimate and provision resources to satisfy all subscribers in a
datacenter or in a cloud. We have evaluated the proposed heuristic solution
empirically using large-scale real traces from Spotify and Twitter. Using an
Amazon EC2 pricing model, we have showed that our solution can save up to
74% and up to 38% of the total cost for Twitter and Spotify respectively when
compared to a naive alternative. We have also provided a comparison against a
derived lower bound and showed that in many cases our approach results in a
cost that is only 15% higher.

Finally, our approach has a reasonably low computation time, as corroborated
by the experiments. Hence, it can also be used for dynamic allocation if run at
periodic intervals to re-provision the resources and re-allocate to the workload.
In the future, we plan to extend this work to fully support dynamic on-demand
provisioning and allocation for pub/sub.
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Chapter 8

Conclusions and Future Work

Designing pub/sub for large-scale social interaction is inherently a difficult task.
There are several challenges involved in scaling a pub/sub system to millions of
subscribers and billions of publications. In this thesis, we identified a number
of critical challenges not yet addressed in the literature. We transformed those
challenges into several research problems and provided efficient solutions. We also
validated our ideas under realistic scenarios using large-scale traces from real-world
systems. In this chapter we list the most significant observations and conclusions
of this thesis. Finally, we present an overview of possible future directions for the
research ideas introduced in this thesis.

8.1 Summary of The Results

8.1.1 PolderCast

PolderCast was designed with the aim of harmonizing several conflicting and yet
desirable characteristics of a P2P TBPS system. In Chapter 3, we proposed a
layered architecture that relies on gossiping techniques to build and maintain a
pub/sub overlay. We also proposed a hybrid dissemination algorithm using a
combination of neighbor and random links in the ring for robust and faster
dissemination of publication events.

We evaluated PolderCast using the Twitter and Facebook traces. The

165
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experiments corroborate that PolderCast swiftly constructs a topic-connected
overlay, which is scalable, robust and promotes fast dissemination of events with
minimal overlay maintenance overhead when compared to Scribe. This is
achieved by a unique amalgamation of per topic dissemination over a hybrid
dissemination structure consisting of a maintained ring per topic and carefully
chosen random shortcut links provided by the underlying Peer Sampling
Service [Jelasity et al., 2009]. The hybrid dissemination structure is maintained
over a gossiping architecture with three layers:

Rings: protocol at the top layer responsible for maintaining rings

Vicinity: protocol at the middle layer collecting nodes with similar interests for
two important purposes: (a) feeding the Rings layer to swiftly build and
maintain the induced ring per topic (b) acting as a pool for random shortcuts
between the nodes with similar interests

Cyclon: at the bottom layer keeping the overlay connected and providing purely
random shortcuts.

Along with the robust overlay structure, the regular gossiping at each layer is
responsible for repairing any damages or changes to the overlay ensuring a reliable
dissemination service.

With traces from Twitter and Facebook we showed that PolderCast quickly
constructs a topic-connected overlay for every topic in the system. We also
demonstrated that overlay construction and maintenance is scalable with the
number of nodes per topic and topics per node. We then illustrated that
PolderCast facilitates event dissemination with a balance between delay and the
number of duplicate messages. An extensive analysis of different choices for
random shortcut links for achieving the desired balance between dissemination
delay and amount of duplicate messages was conducted. Finally, we tested
PolderCast performance under churn using Skype super-peer churn traces [Guha
and Daswani, 2005]. With Scribe as a baseline, we showed that PolderCast
provides a more robust performance in these experiments.
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8.1.2 Study of Real-World Pub/Sub Systems and Workloads

Case Study of Spotify Pub/Sub Spotify is a popular music streaming service.
Apart from its large user base and large music catalog, the traffic it generates due
to social interaction is also large-scale. Use of pub/sub to drive such a large-scale
notification system is of special interest to the pub/sub research community.

In Section 4.2.1, we presented the architecture of Spotify pub/sub that allows
users to follow their friends, public playlists, their favorite artists etc. The
architecture facilitates both real-time and offline delivery of notifications due to
music activities of their friends and artists and updates to the playlists they
follow. At the core of the pub/sub system is a DHT-like ring overlay of pub/sub
brokers. The overlay is responsible for matching and delivering publication
events. The events are also persisted in a Cassandra [Lakshman and Malik, 2010]
cluster for offline delivery to the users who are not online during the real-time
notification delivery.

Pub/Sub Workload Analysis It is crucial to gain insights into pub/sub
workloads for design of effective pub/sub systems. In this regard, we did a
detailed analysis of large-scale pub/sub workloads from the Spotify and Twitter
social interaction systems in Chapter 5. The workload from Spotify consisted of
1.1 million topics and 4.9 million subscribers. On the other hand, the Twitter
traces were larger than the Spotify traces with 8 million topics and 30 million
subscribers.

Here we list a summary of important observations we gathered from the
analysis of the Spotify pub/sub workload:

• Topic popularity and subscription sizes follow a distribution close to a power
law, similar to degree distributions in social graphs.

• Publication event rate does not follow a power law distribution.

• The normalized notification rate per subscriber is very low (max 1%) and
varies from 1% to as low as 10�7%, indicating subscriptions with diverse
values.
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• The number of events received by a subscriber in a given unit of time
(normalized notification rate per subscriber) is linearly proportional to the
number of topics subscribed to by that subscriber.

• The publication event rate of a topic bears no relation to its popularity. We
conjecture that this is due to music activity not being the determinant factor
in social relations.

• Publication traffic shows a daily pattern. It is lowest at 2 AM and highest
around 6 PM. It also shows a weekly pattern with slightly lower traffic during
weekends.

• Publication traffic from local sites is much higher compared to publication
traffic from remote sites.

• Subscription and unsubscription rates imply significant churn in
subscriptions. However, the total number of subscriptions does not change
significantly in a 10-day period.

• Both subscription and publication traffics are dominated by the traffic
generated from the real-time notifications due to music listening activity.

For Twitter traces, we were able to obtain only the data from public Twitter
APIs. As a result of this the data we obtained limited us to do the analysis of
publication event rates, topic popularity, subscription sizes and normalized
notification rate per subscriber. Unfortunately, we could not conduct the
analysis of temporal patterns in the Twitter traffic.

Here we list the important observations from the analysis of Twitter traces:

• Topic popularity and subscription sizes follow a power law distribution
except for a couple of anomalies in subscription sizes. In particular,
subscription sizes at 20 and 2000 respectively showed anomalies. This is
due to the restrictions Twitter imposed until 2009 in the maximum number
of followings a user can have (2000) and the default number of
recommendations to follow (20).
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• An interesting observation stemming from the distribution of subscription
sizes is that, around 550 users follow more than 10000 users which is a large
subscription size for a TBPS system.

• We observed an anomaly in the distribution of the number of followers at
105. We verified that this was due to celebrities having significantly higher
number of followers than normal users. Around 66 users in our traces had
more than 1 million followers.

• Looking at the dependency of the number of followers and publication event
rate, we observe that it is a linear dependency up to a certain point. The
linearity breaks due to celebrities since even though they have a significantly
higher number of followers, they tend to tweet less often.

• Studying the correlation between subscription sizes and the normalized
notification rate per subscriber, we observe that it is a linear dependency
except that we see the same glitches observed in the distribution of
subscription sizes.

The results obtained above characterize a real pub/sub workload from two
large-scale social interaction systems. These results come handy for pub/sub
designers in building pub/sub systems. In addition, these results are useful for
generating synthetic workload that can be used to evaluate pub/sub systems.
The Twitter traces are available for the public1.

8.1.3 Subscriber Satisfaction Problems

Inspired by the social interaction at Spotify and observing in Chapter 6 that
social notifications mostly have human recipients, we proposed subscriber
satisfaction metrics. To the best of our knowledge we are the first to propose
subscriber satisfaction metrics with threshold limits on the number of events a
subscriber can receive. We introduced two flavors of the satisfaction metrics: (1)
a binary satisfaction metric in which the subscriber is considered satisfied only if

1
Can be downloaded here: http://tidal-news.org/data/icdcs14/tweetrates.tgz
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100% of the satisfaction threshold is met (2) a fractional satisfaction metric in
which a fraction of satisfaction threshold (up to 100%) is met. We proposed new
approaches to maximize the satisfaction metrics. These two metrics resulted in
two different problems. We coined those two problems as Budgeted Maximum
Multiset Multicover (B3M ) and Fractional Budgeted Maximum Multiset
Multicover (F-B3M ).

Here is the list of most significant results and conclusions we obtained by
analyzing and solving B3M and F-B3M problems:

• We proved that B3M is NP-Hard by reducing the Densest-k-Subgraph (DkS)
problem to it. Unlike existing reductions that transform the Max Cover
problem to a variety of covering problems, we introduce a novel reduction
from the DkS problem to the B3M problem.

• Reducing from the DkS problem also helped us to prove that there is no
PTAS for B3M assuming NP 6✓ \

✏>0BPTIME(2n
✏
).

• We provided a greedy heuristic solution for the B3M problem that works in
practice.

• We proved that F-B3M is also NP-Hard by reducing the Budgeted Max
Cover problem to it.

• We provided a greedy algorithm with constant approximation guarantee for
the F-B3M problem.

• By exploiting the submodularity property of the objective function of the
F-B3M problem we optimized the performance of the greedy algorithm for
the F-B3M problem.

• We derived a loose upper bound for both B3M and F-B3M problems to
compare the result of our solutions to the result obtained by the upper
bound.

• We validated the solutions by evaluating them with the large-scale traces
from Spotify.
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• We showed that our solutions for B3M can meet practical values of
satisfaction metrics for up to 72% of all the users, with infrastructure
capacity limited to 10% of what is required for delivering all publication
events. Under the same settings, a cumulative satisfaction value of over 3.5
million was achieved for F-B3M, compared to 4.2 million achieved by the
derived upper bound (ratio of 0.86 to the upper bound).

• We also showed that our algorithms run in under 30 seconds for 1.1 million
topics and 4.9 subscribers and under 1 second for smaller workloads including
traces from 1 hour time windows.

The results above indicate that there is both theoretical and practical potential
for pub/sub systems to benefit from our solutions. In particular, our solutions
provide a way to efficiently select part of the workload so as to maximize subscriber
satisfaction under resource constraints and offload the rest to P2P networks.

8.1.4 Resource Provisioning for Pub/Sub

In Chapter 7, we proposed a cost-effective resource allocation technique for
large-scale TBPS systems. Our solution is useful for resource allocation both in
public clouds and in-house datacenter infrastructures. For datacenter settings,
our solution minimizes the number of servers and amount of bandwidth required
to meet the satisfaction metrics of all the subscribers. For cloud settings, our
solution minimizes the monetary cost of deploying pub/sub for a given pricing
model. We introduced a novel problem coined Minimum Cost Subscriber
Satisfaction (MCSS ) problem to formalize the challenges of cost-effective
resource allocation for pub/sub.

Important observations and results from the analysis of the MCSS problem
and evaluation of its solution are listed below:

• By reducing the well-known Partitioning Problem [Garey and Johnson, 1979]
to our MCSS problem we proved that it is NP-Hard .

• We provided a two stage greedy heuristic for the MCSS problem.
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• We proposed a customized bin packing solution with several optimizations
to improve the cost-effectiveness of resource allocation.

• By using two large-scale real-world traces from Spotify and Twitter, we
validated and extensively evaluated our solution.

• In order to show the effectiveness of our allocation technique, we compared
our solution consisting of customized bin packing with a naive baseline
consisting of the first-fit bin packing algorithm. We selected this baseline
because many existing resource allocation techniques rely on the first-fit
bin packing algorithm.

• We also derived a lower bound that the objective function of MCSS can
achieve. The lower bound we derived is not necessarily tight and provides a
minimum cost that any allocation strategy could achieve. Then we compared
our solution to the lower bound to measure the gap between the theoretical
minimum and our result.

• We showed that our solution saves server and bandwidth costs up to 72% for
the Twitter traces and 37% for the Spotify traces compared to the baseline
solution. On the other hand, our solution incurs only up to 15% higher cost
compared to the derived loose lower bound.

• We demonstrated that our resource allocation algorithm is fast. In
particular, it runs under 1 second for the Spotify traces consisting of 1.1
million topics and 4.9 million subscribers. In addition, for the Twitter
traces consisting of 8 million topics and 30 million subscribers it runs under
10 seconds.

With the results from the large-scale evaluation of our solution, we conclude
that our solution provides a method to minimize the costs incurred in deploying
a TBPS system that scales to millions of subscribers.



8.2. Lessons Learned 173

8.2 Lessons Learned

In the process of designing scalable pub/sub solutions for social interaction we
learned several lessons during this thesis. In this section we highlight the most
significant of them.

8.2.1 Workload Analysis

It is critical to analyze real pub/sub workloads for designing effective pub/sub
systems.

The workload analysis we did in Chapter 5 provided us many insights with
respect to potential issues that a pub/sub system may face. These insights also
inspired us to propose novel problems aimed for designing effective pub/sub
systems.

Massive Scale: Social interactions are massive in scale consisting of millions
of users and billions of notifications. Therefore, it was clear that we needed
techniques that can scale massively.

Event Overload: Many users receive an overwhelming number of
notifications. This observation inspired us to introduce novel satisfaction
metrics for limiting the number of events received by the users. Further,
this prompted us to formulate the subscriber satisfaction problems under
resource constraints.

Skewed Popularity: Some topics are extremely popular and some topics
generate publications at a significantly higher rate than others. When
there is increased pub/sub traffic, part of the workload that cannot be
handled by the pub/sub infrastructure could be offloaded to a cheaper
infrastructure. The peer-assisted design proposed in this thesis is inspired
by such scenarios.

Traffic Variation: Pub/sub traffic can vary significantly at different points in
time. The unpredictability of the pub/sub traffic inspired us to design a
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tool that can estimate and allocate the required resources in datacenters
and clouds.

While workload analysis potentially has many benefits, obtaining real
workloads is not an easy task. The evidence for that is apparent from the lack of
studies of real workloads in the literature. In this regard, collaborating with
enterprises using similar systems and applications can be useful. Inspiration for
many research problems in this thesis is a result of a collaboration with Spotify
that allowed us to study their pub/sub design and workload.

Once the traces have been collected, there are several issues that need to be
addressed before they can be analyzed or used for evaluation. First of all the data
must be sanitized. For example, in the Spotify traces we collected there were large
numbers of diagnostic messages sent along with the pub/sub traffic and eliminating
them was essential for obtaining the real pub/sub traffic. Furthermore, processing
the collected traces when they are of massive scale often requires scalable data
processing techniques. For instance, after collecting the Spotify traces, we had to
run a few Hadoop map/reduce jobs to compute a number of aggregate values such
as the event rate of all topics. Data sanitization and preprocessing before using
the traces are essential and sometimes time consuming.

8.2.2 Theoretical vs. Experimental Validation

In Computer Science, the validation of proposed ideas is critical. There are
typically two ways of validating ideas: (1) formal methods consisting of
theoretical proofs and guarantees (2) empirical validation through experiments.
Systems built with sound theoretical foundations provide robust guarantees on
performance and quality of results. On the other hand, experimental validation
provides a testament that the idea works in practice. One of the lessons learned
in this thesis is that, while designing a large-scale distributed system, a
combination of both approaches yields better and faster results than using either
of them individually. In this section we explain the rationale behind this choice
with examples.

With the help of formalization and theoretical proofs we showed that B3M,
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F-B3M and MCSS problems are computationally hard and exact solutions for
them would be computationally expensive and not scalable. As a result, in this
thesis we had to resort to heuristic solutions.

Furthermore, with the help of more theoretical proofs we were able to
establish certain feasibility results. For example, using Corollary 6.5, we proved
that there is no PTAS for the B3M problem. This gave us a proof that designing
an approximate algorithm for the B3M problem is difficult.

In another instance, theoretically proving that the objective function of
F-B3M exhibits the submodularity property assured us a greedy approximate
solution with constant approximation ratio (based on [Fisher et al., 1978]).
Further, we were able to exploit the submodularity property of the objective
function to improve the performance of our solution (depicted in Algorithm 5).

From these examples the benefits of theoretical analysis of the proposed
problems and solutions is clear. While theoretical analysis provides sound
guarantees on the problems and solutions, it may not provide insights on how
the solutions may behave in practice.

For assessing the performance of the proposed algorithms, typically, the worst-
case complexity is derived. However, the worst-case complexity may not represent
their performance in practice. In this regard, extensive experimental analysis
using real traces obtained from deployed systems help in validation of our ideas
for practical settings. For example, in Chapters 6 and 7, validating our ideas with
real large-scale traces from Spotify and Twitter assured us that our solutions can
potentially scale to millions of users efficiently.

While experimental validation provides insights on performance in practical
settings, it does not quantify the quality of results. While deriving
approximation ratios for the proposed algorithms is a reliable way to quantify
their relative performance, it may be difficult and time consuming in many cases.
For example, the two stage solution proposed for the MCSS problem in
Section 7.2 consists of a number of optimizations, making it difficult to derive an
approximation ratio. In many cases, deriving upper or lower bounds provides a
faster and yet a reliable way of comparing how far a given solution is from the
theoretical optimal solution. In Sections 6.3, 6.4 and 7.2, we derived such bounds
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that helped us in determining the relative performance of our approaches
compared to the best performance that any feasible solution can achieve.

8.2.3 Simulation vs. Real Deployment

Implementing the proposed algorithms and system designs is essential for
experimental validation. Computer Science researchers are often faced with the
choice of simulating the system or implementing and deploying the real system.
Simulation simplifies the implementation of a system design, speeds up obtaining
results and can potentially scale massively. However, the trade-off is that it does
not consider all the issues faced in practice. Alternatively, building and
deploying prototypes in real system settings provides more accurate results at
the cost of increased engineering efforts and slower result collection.

In this thesis the choice of validating the system using simulations was made.
However, the simulation settings are made as realistic as possible with many careful
considerations:

Trace-Driven Simulations: For evaluating all the algorithms and system
designs presented in this thesis, we used real traces collected from
production systems. Before using the traces, they were analyzed in detail
to understand their characteristics and confirm that they are
representative. For example, we used the Twitter and Facebook social
graphs as the subscription workload for evaluating the PolderCast system.
In addition, we used traces from the Skype P2P network [Guha and
Daswani, 2005] for modeling the churn and we introduced latency from the
measurements taken by [Gummadi et al., 2002]. Finally, we used the
Spotify and Twitter social interaction traces to evaluate the algorithms
proposed for the subscriber satisfaction and resource allocation problems.

Sensitivity Analysis: In order to consider the practical settings and
parameters for the simulations, we did an extensive sensitivity analysis of
our simulations. For example, in Section 3.5, we evaluated the performance
of the PolderCast dissemination algorithm with different values of the
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dissemination fanout parameter. More examples are from Sections 6.5
and 7.3, where we repeated our experiments with up to four exponential
variations of a value derived from the traces for the satisfaction threshold
parameter (⌧).

Scale: We scaled our simulations for evaluating the subscriber satisfaction and
resource allocation problems to several millions of subscribers. Hence, these
simulations provide evidence that it is possible for our solutions to scale
massively. Obtaining such a result from a real deployment would require us
to implement a full pub/sub system and deploy it in a production
environment such as Spotify with participation of millions of users. It is
difficult to achieve that in practice. On the other hand, we were able to run
PolderCast simulations with up to only 10000 nodes due to scalability
issues of the PeerSim simulator. However, we believe that PolderCast can
potentially scale further.

8.3 Research Limitations

In this thesis, we thoroughly analyzed the research problems arising from the
design of pub/sub for large-scale social interaction and we also proposed solutions
for those problems with both theoretical as well as empirical results. However, as
in most research works, there are still limitations to the research conducted in this
dissertation due to several technical and non-technical hurdles. In this section,
we discuss important limitations of this dissertation and reflect on reasons behind
them and suggest possible solutions to overcome these limitations in the future.

8.3.1 Pub/Sub Trace Analysis

One of the main challenges faced by pub/sub researchers is the lack of real-world
workloads. Even though we analyzed real traces from production social-interaction
systems in Chapter 5, they still have following shortcomings:

1. The Spotify trace analysis presented in this thesis does not provide absolute
numbers. For example, the topic popularity, publication event rate and
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subscription cardinality are expressed in percentages instead of their total
values. This is a result of the restriction imposed by the Spotify organization
not to disclose absolute numbers due to business reasons.

2. Both Spotify and Twitter traces were samples collected for a period of 10
days. While this provides a good sample to analyze their characteristics,
traces collected over longer periods could exhibit long-term patterns in the
pub/sub traffic. Moreover, traces collected over longer periods may avoid any
coincidental characteristics that traces collected over shorter periods exhibit.
However, 10 days are sufficient to capture the short-term weekly patterns
that are generally observed in most traces driven by user behaviors such as
in [Zhang et al., 2013a]. For Spotify traces, collecting them on a production
system was allowed for only limited time. Similarly, for Twitter, public APIs
are limited in access. Given sufficient resources, time and unlimited access
to the traces, it is possible to study long-term patterns and obtain perhaps
more interesting results.

3. Even though the Twitter traces we collected were made public, the Spotify
traces are not available for use by other researchers to evaluate their systems.
In addition, lack of access to Spotify traces also limits the reproducibility
of the results obtained from the experiments that utilize the Spotify traces.
Restriction by the Spotify organization not to make their traces public is
the reason for this limitation. Hence, there is a need for formalizing and
implementing a model to generate synthetic traces that mimic the actual
Spotify trace distributions. This is important in order for researchers to
generate sample traces that are representative of the original traces. We
could not design a generator due to limited duration of the thesis.

8.3.2 Trace-Driven Simulations

Utilizing traces from real applications to validate the pub/sub systems through
simulations or emulations is widely practiced by academic researchers. However,
that practice still has limitations.
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1. Using specific traces for validation could limit the generality of systems. To
avoid this, we used two different traces in both Chapter 3 and Chapter 7.
However, there is still a need for evaluating the solutions presented in this
thesis with more (general) traces. Designing a pub/sub system to handle
generic traces could make it more robust and when considering alternative
scenarios.

2. Trace-driven simulations adopted in this thesis are a good representative of
the real deployment and they provide insightful results. However, it may not
be feasible to simulate all scenarios that could occur in practice using trace-
driven simulations. Given sufficient time and resources, it should be possible
to deploy them in real settings with real users to validate the systems in the
future.

8.3.3 Formal Analysis

Formal analysis to provide theoretical guarantees was used on several occasions
in this thesis. However, formal analysis for some algorithms were omitted due to
their difficulty.

1. In Chapter 6, while we provide an approximation ratio for the proposed
algorithm to solve the F-B3M problem, we were unable to provide a
similar analysis for the proposed heuristic for solving the B3M problem
(Algorithm 2). As shown in Section 6.3, the B3M problem is NP-Hard
(reduction from the DkS problem). The difficulty of providing a solution
with an approximation ratio to the B3M problem is similar to that of
solving the DkS problem with an approximation guarantee. Therefore, any
efforts to derive an approximation ratio for Algorithm 2, will presumably
take a lot of effort and such it is beyond the scope of this thesis.

2. Similarly, in Chapter 7, while we prove that the MCSS problem is NP-Hard,
we do not provide any approximation guarantees for the proposed heuristics.
This is because, decomposing the proposed solution for the MCSS problem
into two different steps (as done in Section 7.2), makes it harder to derive an



180 Chapter 8. Conclusions and Future Work

approximation bound. On the other hand, we derive a lower-bound on the
objective function of the MCSS problem that provides a baseline to compare
our solution against.

8.4 Future Research Directions

We plan to extend our work in several directions as explained in this section.

8.4.1 Extensions to PolderCast

While PolderCast is focused on building pub/sub overlays, one of the interesting
applications is to deploy social networking features on it. Extending PolderCast
to deploy a real social network poses many more challenges.

PolderCast could be extended to include techniques to persist the publication
messages, so that nodes joining after being offline for a period could retrieve the
messages they lost. One of the main reasons why the hit-ratio of PolderCast
under churn does not reach 100% (in Section 3.5) is that when nodes come back
online they have no way of retrieving the lost events. We believe it would be a
useful extension to improve the reliability of PolderCast. Moreover, notification
persistence for future retrieval is one of the essential features of social networks.
The challenge here is designing a strategy to partition and replicate events so as
to maximize their availability. We could use the replication and data partitioning
strategies utilized in the existing P2P systems [Blake and Rodrigues, 2003; Pace
et al., 2011; Rowstron and Druschel, 2001b]. However, these techniques violate
topic-connectivity by storing events on nodes not subscribing to events’ topics.
Hence, there is a need to consider this problem in the context of pub/sub overlays.

To realize PolderCast as a fully functioning P2P pub/sub system for social
interaction, we must be able to deploy it on a real P2P network. However,
deploying it on a P2P network consisting of user computers and devices such as
smartphones requires several extensions to PolderCast. The challenge here is to
preserve the desirable characteristics of a P2P pub/sub system described in
Section 1.3.1 while deploying it on a real network.
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• Overlay construction must consider the techniques to establish end-to-end
connectivity between the peers. NAT traversal techniques could help in this
direction. Some nodes may not be reachable at all due to firewall restrictions.
In such situations the neighbor selection and the dissemination algorithm of
PolderCast may have to take these restrictions into account.

• Since P2P systems rely on resources provided by the participating devices,
it is crucial to design meaningful incentives for the users to share resources.
Without an incentive mechanism it is hard to convince users to share their
resources and ensure fairness among participating peers. While we could
borrow incentive mechanisms used in existing P2P networks such as in bit
torrent networks [Levin et al., 2008], it is not clear if those incentives are
appropriate for pub/sub systems.

• Even though privacy issues are not addressed in this thesis, they are very
important to consider before deploying PolderCast on a real P2P network.
An example of a privacy issue is: while gossiping is a lightweight technique
to build pub/sub overlays, it reveals node interests and other information
to the neighbors. Developing gossiping techniques that effectively build
pub/sub overlays without revealing private information of the nodes is an
open problem.

8.4.2 Peer-Assisted Pub/Sub System

In Section 6.1, we presented a peer-assisted architecture that includes a way of
offloading pub/sub workloads to P2P networks. In order to build a working peer-
assisted system, there is a need for designing a peer-assisted architecture that can
seamlessly combine a P2P network and a dedicated infrastructure.

In this regard, integrating a P2P TBPS system such as PolderCast with the
peer-assisted architecture proposed in this thesis could lead to a new problem:
how to share the workload between the dedicated infrastructure and currently
available peers with a certain capacity so as to meet the satisfaction requirements
of all users? By considering the available resources in a P2P network in real-time,
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we could design a more reactive algorithm to disseminate messages. For example,
a sudden surge in events generated by popular topics could be disseminated using
a combination of the dedicated infrastructure and a P2P network by considering
currently available resources in both systems.

8.4.3 Different Satisfaction Metrics

The satisfaction metrics we proposed in this thesis (in Chapter 6 and Chapter 7)
are inspired by the Spotify application scenario, where the event delivery rate
beyond a certain threshold is considered not useful for the users. However, the
satisfaction metrics can be extended to include more metrics such as ranking and
top-k semantics explained in Section 2.5. If a scoring function to rank the events
received by a user is given, extending the satisfaction metric to include top-k
semantics leads to a new problem: how to maximize the total score of the ‘k’ events
that each user receives at any point in time such that the resource constraints are
not violated. Alternatively, the problem is to select a minimum cost subset of
the workload so as to maximize the total score of the ‘k’ events delivered to each
user. One possible solution for such a problem is to modify the heuristics used to
solve B3M, F-B3M and MCSS problems (presented in Sections 6.3, 6.4 and 7.2)
to include weighted benefit values for each topic-subscriber pair based on the given
scoring function. Similarly, the benefit-cost heuristic could be adapted to match
other satisfaction metrics.

8.4.4 Online Algorithms

The theoretical problems considered in this thesis (B3M, F-B3M and MCSS ) are
solved for a static setting. While the fast performance of our solutions is suitable
to run them periodically to adapt to the changes in the pub/sub workload, it is
also useful to provide online solutions to our problems, since they guarantee
interruption-free service with a certain quality of results. An online solution
should be able to process individual inputs such as users joining, users leaving,
new subscriptions, unsubscriptions and publication event rate changes and take
appropriate actions. The challenge here is that the actions taken must ensure
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that the quality of the resulting solution must be within certain bounds
compared to the optimal solution or an upper bound.

8.4.5 Building a Complete Pub/Sub System

It would be both a research and engineering challenge to integrate the solutions
presented in this thesis to build a fully functioning pub/sub system.

In particular, the solution for cost-effective resource allocation can be used as
a building block in conjunction with other building blocks to design a complete
pub/sub system. For example, a directory service providing the information about
which server a given topic-subscriber pair is allocated to is essential for routing
incoming publications to the appropriate servers.

Another essential building block is to be able to allocate resources via the APIs
given by the Infrastructure-as-a-Service (IaaS) providers. In addition to that, this
building block is also required to migrate topic-subscriber pairs from one server
to another depending on the outcome of the allocation algorithm. The challenge
here is allocating and migrating swiftly without disrupting the pub/sub service.
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