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1. Introduction.
Let P(M) be the space of smooth pseudoisotopies of a differentiable manifold

M. In [I1], Igusa constructed an exact sequence

(11) Kg(Z[ﬂ'lM]) ﬁ) Whj-(ﬂ'lM,Z/z@ﬂ'zM) — WoP(M) i\-) Wh2(7l'1M) —0

in order to analyze the kernel of Hatcher and Wagoner’s obstruction A. He also
gave examples to show that  is nonzero in general, thus disproving Hatcher’s claim
that moP(M) is a direct sum of Why(m;) and Whi (m1 M;Z /26 my M).

However, for pseudoisotopy, the important question is how much of the Whi"-
term actually survives to moP(M) — in other words: what is the cokernel of x?

It is clear that in general the cokernel can be very large. A simple but striking
example is when m M = Z. Then K;3(Z[m M) ~ Z /48 ® Z /2, and Wh{ (Z;Z/2) is
infinitely generated. Therefore moP(M) will also be infinitely generated!

But it is hard to say anything in the general case. In particular, it would be
interesting to know the answer to the following:

Question 1.2. Is myP(M) nontrivial if 7; M is nontrivial?

(Note that Why (71 M;Z /2@ me M) # 0 if w1 M # 0, so this would follow imme-
diately if x were trivial.)

Igusa constructed the sequence (1.1) as an extension of Hatcher and Wagoner’s
work ([HW], especially part II, correcting the mistakes). Today, the natural ap-
proach to pseudoisotopy is through Waldhausen’s A-theory and Igusa’s stabiity
theorem. Then computing moP(M) is essentially the same as computing m3 A(M),
and (1.1) is the analogue of the fibration sequence one gets by comparing A(M) to
K(Z[m M)).

In section 2 we set up Igusa’s sequence from this point of view. In fact, it turns
out that we almost for free get an extension of (1.1) one step to the left as follows:

(1.2) W]P(M) — Wh3(7l‘1M) -5)
— Whil-(ﬂ'lM;Z/Z@ﬂ‘zM) — WoP(M) — Wh2(7l'1M) — 0.

(Whs(m) is a certain quotient of K3(Z[r]), see definition 2.6.) Hence the kernel
of x tells us something about m;P(M). (1.2) was also constructed by Igusa, but
only when m, M = 0, and by completely different methods (see [I3]).
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For the proof we need Theorem 2.4, which says that the “monomial” homomor-
phism 75 (Bw;) — K2(Z[n]) is (split) injective. This result is certainly known to
other people, but since it appears hard to find in the literature, a proof is given in
section 3.

The map Wh (w1 M;Z/2® myM) — myP(M) comes essentially from the inclu-
sion of ‘1x1-matrices’ into GL(Q(M)). It turns out that a large part of its image
can be detected using Bokstedt’s trace map A(M) — THH(M) ~ Q®°S*°(AM,).
This is the theme of the rest of the paper. The basic constructions and proofs are
given in section 4, and the application to meP(M) is in section 5. It follows, for
example, that Question 1.2 has an affirmative answer whenever (M) is finitely
generated abelian and has elements of either infinite or even order (Theorem 5.3).

I would like to thank Marcel Bgkstedt for many discussions about the material
in section 4, during our very enjoyable stay at the Mittag-Lefler institute during
the spring of 1994.

2. Waldhausen’s results and Igusa’s sequence.
If Y is a topological space, we let Y be Y with an extra basepoint added. Set

Q(Y) = 0°S®(Y) and Q(Y) = Q(Y4). If X is a connected space, the definition
of Waldhausen’s algebraic K-theory of X that we shall use is

A(X) = 0B(] | BGL.(Q(6X)))

(‘group completion with respect to direct sum of matrices’), where GX is a topo-
logical group model for the loop space QX ([W1]).
One of the main results of the theory is that

(2.1) A(X) = WHY™ (X) x Q(X),

where WhP™ (X) is a space, functorial in X, such that if X is a manifold, then
Tep 2 WhPE (X) ~ m(P(X x I')) for I large. The map from Q(X) to A(X) is
given by inclusion of the permutation matrices with entries in GX C Q(GX) into
éf(Q(X )), and then using the Barratt-Priddy-Quillen-Segal theorem:

Q(X) ~ 9B(] [ B(3,16X) - aB(] | BGLA(Q(GX))) = A(X)

From now on, we set 7 = mX. Let K(R) = QB(][,, BGLn(R)) be the (free
module) K-theory space of a ring R, and denote by F be the homotopy fiber of
the “linearization” map A(X) — K(Z[r]). Then there is a composed mapping
Q(Bw) — A(Br) — K(Z[r]), and we have a map of fibrations up to homotopy

Q(Br/X) —— QX) —— Q(Br)

(2.2) ' lm l¢ lqb
F — A(X) —— K(ZI[n]),
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where Bw/X is the homotopy cofibre of X — Bm.

Recall that Why(7) = coker (75 (Bm4) — K3(Z[n]), and define (for the moment)
Ws(w) = coker (75 (Bm4) — K3(Z[n])). Then we have the following commutative
diagram, with the two leftmost columns and all rows exact:

0 — 75(Xy) —— mAX) —— mWRPF(X) —— 0
7n3(Bry) —— K3(Z[r]) ——  Wi(x) —— 0
6 6
75 (Br/X) P, F coker (¢rei)
[+ o
0 —— 7w (Xy) ¢, mA(X) —— 'WgWhDEF(X) — 0
¥ B A
w$(Bry) —2 Ky(Z[r]) ——  Why(r) —— 0

0 0 0
(The surjectivity of B follows from [W1], Prop. 1.1.) We shall refer to this as
the “main diagram”.

The group w3 F may be determined by [W1, Prop. 1.2.]. Let Q:(GX) C Q(GX)
denote the component of the map S™ = S" A1y C S™ A (GX;). Q:1(GX)is a
submonoid of @El(Q(GX )), and we obtain an induced map BQ;(GX) — A(X)
which clearly lifts to a map BQ:(GX) — F. A simple calculation with the Atiyah-
Hirzebruch spectral sequence gives

mBQ1(GX) ~ i (GXy) ~ Hi(GX;75) @ Ho(GX;77) = (m X)[n] ® (Z/2)[).

This has an obvious action of 7 induced by conjugation on itself and the standard

action on mX.
Waldhausen’s result can then be formulated as

' mF ~ mBQ1(GX)/(xz — zz) where ¢ € 77 (GX4), z € Z[n]
~ Ho(m; (me X © Z/2)[r]).

Lemma 2.3. 75 (Bn/X) ~ Ho(m;mX), and ¢re; is the inclusion of the summand
Hy(m; (w2 X [1])).

Proof. Brr/X is 2-connected, hence we have isomorphisms

73 (Bn/X) ~ H3(Br/X) ~ Hs(Br, X),




4 BJORN JAHREN

and by the Hurewicz theorem the last group is isomorphic to the quotient of
w3(Bm,X) by the action of mX = m, i.e. Ho(m;m3(Bm,X)). But m3(Bm, X) ~
7I'2X .

To prove the statement about ¢,e; we consider the diagram

GoX ——  Qu(GX)

e I

GX —S— GLi(Q(GX))

! !

r —=—  GLi(Z[x])

where Go X is the component of the trivial loop; i.e. GoX ~ 0X. Taking classifying
spaces, this maps into diagram (2.2). But then we see that both m,QQ(B7/X) and
the~‘1’—component of my F are identified with the same quotient of 7, BGoX =
mX ~mX. O

The following theorem ought to be well known, but seems hard to find in the
literature. Since the result has independent interest, a proof is given in section 3.
Theorem 2.4. ¢, : w5 (Bry) — Ko(Z[r]) is split injective.

By standard diagram chasing (or, consider the main diagram as a short exact
sequence of complexes and take homology) we then get

Corollary 2.5. All three columns in the main diagram are ezact, and

coker (@ret) ~ Ho(m; (72 X @ Z/2)[r])/ Ho(m; w2 X)

However, we can do slightly better than this by observing that since the main
diagram is functorial, the diagram for X = one point sits inside as a direct summand.
In myF this is Ho(1;Z/2[1]) ~ Z/2, and § : K3(Z) — Z/2 is surjective (See e.g.
[W3], Cor. 3.7. + remark). Hence it induces an isomorphism é : W3(1) — Z/2.
Definition 2.6.

(1) Wh(n) = Ka(Z[x])/(Ks(Z) + im$(Br.,))

(2) Whi (mX;2/2@ m2.X) = Ho(m; (r2 X & Z,/2)[x])/ Ho(m; (m: X © Z/2)[1))

Corollary 2.7 (Igusa’s exact sequence). There is a functorial ezact sequence

WaWhD]FF(X) — Wh3(7r1X) ﬁ)
— Whi(mX;2/2® mX) — mWhPF (X) - Why(m X) — 0.
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3. Proof of theorem 2.4.
Let K.(Z[r]) = ker(K.(Z[r]) — K.(Z)) be reduced K-theory. Since Ty
K5(Z), it suffices to prove that n3 (Bw) — K3(Z[r]) is a split injection.

We first compute 5 (B).

Lemma 3.1. For connected X there is a natural, split ezact sequence

(3.1.1) 0— Hy(X;Z/2)— 75 (X) - Ha(X) — 0

Proof. Consider the Atiyah—Hirzebruch spectral sequence for 75(X). The part of
the E2-term involved in 73 (X) is

ro(X;rf) =0

Ho(X;nf)=0  Hi(X;n)

Ho(X;n§)=0  H(X;n§)  Hy(X;n§)  Ha(X;wd)
The only possible nonzero differential here is

dy = d¥ : Hy(X) = H3(X;73) —» Hi(X;75) = Hi(X;Z/2),
which sits in an exact sequence
(3.1.2) 75(X) D Hy(X) B Hy(X;Z/2) — w5 (X) — Ha(X) — .

First observe that 7 is surjective. This follows from the fact that 75 (X4 ) ~ of (x),
since Hj is representable by orientable manifolds, and all orientable 3-manifolds are
parallelizable. Hence d2 must be trivial.

We therefore have the exact sequence in (3.1.1), and it remains to prove that it
splits.

For this, we use naturality of the sequence. Recall that H1(X;Z/2) ~ Hi(n;Z/2)
~ /[, 7] ® Z /2, which we shall denote by 7/2. Observe also that for 7 = Z /2 the
exact sequence reduces to an isomorphism H;(Z/2;Z/2) ~ w5 (B(Z/2)).

By naturality we then get a commutative diagram

0o —— H(X;Z/2) —— 75 (X) — Hy(X) —— 0

| ! !

0 —— Hy(mZ/2) ——  m5(Bn) —— Hy(wr) —— 0

|me. |mse. |

0 —— I4H (Z/22/2) —=— M4n$(B(Z/2)) —— O

where the product is over all homomorphisms ¢ : # — Z/2. Each such ¢ factors
through ¢' : w/2 — Z/2, which may be identified with ¢, via the natural isomor-
phisms H;(m;Z/2) = n/2 and H,(Z;Z/2) ~ Z/2. Hence ¢, is surjective when ¢
is nontrivial. It then follows that the bottom isomorphism identifies the images of
¢, and IIB¢,. Since Il¢, is injective, we obtain a canonical splitting. O

It is now easy to extend to the unreduced theory and arbitrary X, and we record
for later use:
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Theorem 3.2. We have a natural isomorphism

3 (X4) = Hy(X575) © Hy(X;77) © Ho(X;73)
~ Hay(X;2)® Hi(X;2/2)® Ho(X;5Z/2).

Terminology. Observe that the map 75 (X) — Hz(X) in (3.1.1) can be thought of
as evaluation on a fundamental class. For convenience we shall generally use the
name Hurewicz homomorphism for such homomorphisms. The main examples are
maps like m(X) — 7% (X4) — He(X).

Next we want to compare the mapsin (3.1.1) with K-theory. First we study the
composition ¢ o ¢ : Hy(m;Z/2) ~ /2 = w5 (Br) — Ko(Z[x)):
Lemma 3.3. ¢ o injects onto a direct summand.

Proof. Again we exploit the functoriality. Just as in the proof of the splitting in
Lemma 3.1, let ¢ : # — Z/2 be a homomorphism, and consider the commutative
diagram 5

" 7/2 —— 75(Br) —— Ky(Z[r))

¢ | |
@/2) —=— =5(BZ/2) — Ro(2iz/2).

75(B(Z/2)) — K;(Z[Z/2)) is an isomorphism by [D], so taking product over all ¢
and arguing as in lemma 3.1, we again get a (natural) splitting. O

To complete the proof of theorem 2.4, we use the Dennis trace map. Recall
that this is a homomorphism D : K,(R) — HH,(R, R) for every n, where HH,
is Hochschild homology. If R is a group ring Z[r|, we have a homomorphism
HH,(Z[r],Z[r])) » HH,(Z[r],Z) = Hp(Br), induced by the augmentation. (Note
that this is not the usual map — in particular it does not commute with the cyclic
action. However, we also have HH,(Z[r],Z[r]) ~ H,(ABw), where ABw is the -
free loop space on Bw, and the augmentation corresponds to the map to H,(B)
induced by evaluation in a basepoint in S!. We could, in fact, also have used the
usual map in the following, but I find it more convenient to use the augmentation.)

Lemma 3.4. The composition
75(Bry) %5 Kn(Z[r]) 3 HH,(Z[x],Z[r]) > Hn(Br)

18 the Hurewicz homomorphism.

Remark. In [W2], appendix, Waldhausen states a similar result as the K-theory
analogy of the splitting of the map Q(X) — A(X). He uses a different map, but
the equivalence between the two approaches follows from [DM]. The following proof
is much more direct and explicit.

Proof of Lemma $.4. If Y is a simplicial space, let ZY be the simplicial abelian
group generated by Y. Then ZY ~ QB([[Y?/%,) and Q(B~) ~ QB([] B(X417)),

and the Hurewicz homomorphism is determined by the natural maps

¥ : B(Eg1m) = EXy xg, (Br)? — (Bw)!/%,




IGUSA’S EXACT SEQUENCE AND THE BOKSTEDT TRACE. 7

In fact, ¢ extends to a homomorphism Zv : ZB(X,1 7) — ZBw such that the
Hurewicz homomorphism 72 (Bmy) — H,(B) for g large factors as

wS(Bry) & m(Q(BT)) — Ha(Q(Br)) % Ha(B(Zq 1m)) % Ho(Br).

We write the elements in X417 as o - g, where o € ¥, and g = (g1,...,9,4) € 7.
Then g0 =007 (9) = 0 (go(1)s+++9o(g))- From the explicit identification of
B(Z, 1 7) with EXy x5, (Bm)? in [M], p.278, we then see that

¢(01 ) gl’ ce ’Uk ) gk) = Z(gclﬂ...a"(i)’ cee 795;(15)19'?)'
i ,

¢ is induced by the homomorphism X, | 1 — BGL4(Z[r]) taking o - g to the
permutation matrix og with

g;j ifi=o(j)
0 if ¢ # o(j)
D is given by the Hurewicz homomorphism K,(Z[r]) — Hn(GL(Z[r]) followed

by the homomorphism given on generators for the chain complex for Hy(GLy(Z[r])
by

(3.4.1) (09)ij = {

(GG = Y (GG G™)Y ®GL , @ ®GL ;€ Z[x)®""

to,...,i,,

in the Hochschild complex C.(Z[r], Z[r]).

The last map H H,(Z[r],Z[r]) » HHy(Z[r],Z) ~ Hy(B) can be thought of as
being induced by the projection 7"*! — 7™ onto the last n factors.

The commutative diagram

Tn(B(Zq 1 7)) —— mn(BGLy(Z[n])*)

L !

Hn(Zg1m) —— n(GLqg(Z[n]))
now shows that what we need to do is to identify the composition
Hy(Zq17) — Hn(GLg(Z[r])) — Hn(Br)

with the homomorphism Z1, defined above.
The composition D o ¢, is given on k-simplexes by

(0'1 ) glr .o )ak 'gk) = Z(algl T a'kgk ;Z:,}il ® (algl)ilgiz Q@ ® (akgk)ik,io

The conditions (3.4.1) now imply that these terms vanish unless i = (i) and
i; = 0(tj41) for 1 < j <k — 1. Therefore the result can be written

Z(algl T o'kgk ,-_,51,1...01:(,') ® gc1r2~-a’¢(i) - ® g:k_(li) ® g?-
1
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To see what these terms are mapped to in Ck(Z[r],Z), we have to analyze
(olgt-- -‘a'kgk);:;lma,,(i). It is clear that Il = o'g!--. o*g* is a permutation that
can be written as 0102 . .- 0*h = oh, with h € 7™. But then Hi—’;(i) = (oh ™) o(s), =
k' € m. Hence the image in C(Z[r],Z) is Eigcl,,ma,,(i) R ® g:,,_(li) ® gk.

But this is precisely the formula for the Hurewicz homomorphism above.

O

Proof of Theorem 2.4. Let p be a left inverse of ¢ o ¢ as provided by Lemma 3.3.
then A : w5 (B7w) — Ha(w) has a splitting (right inverse) f which is well defined by

the formula f(y) = § — tpd(y), where h(7) = y.
Let D' be the homomorphism K;(Z[r]) — H2(r) from Lemma 3.4. Then we

can define a left inverse g of ¢ by
9(z) = ¢p(2) + fD'(2).
If z = ¢(z), we can chose ﬁ(?) = z by Lemma 3.4. Therefore

9(¢(z)) = pd(z) + & — 1pp(z) =z. O

Remark. Lemma 3.4 can obviously be used to construct nontrivial elements of
K.(Z[r]). For example, the surjectivity of 7§ (Bw;) — H3(w) implies:

Corollary 3.5. The homomorphism D' : K3(Z[r]) — Hs(w) is surjective. O

Take for example 7 = Z /n. Then it follows that there is a surjective homomor-

phism
K3(Z[Z/n]) — Z/n.

(The analogous theorem for K is also true, but (2.4) is stronger).

A similar application of Lemma 3.4 to higher K-theory is to a result of Dennis,
saying that if 7 is a group with vanishing homology below dimension n, then D' :
K.(Z[r]) — H,(Br) is surjective ([I1]). (For n = 3, this is a special case of
Corollary 3.5.) Dennis’ result follows because m5(Bmy) — Hy(Bm) in that case
will be surjective by the Atiyah-Hirzebruch spectral sequence.

4. Bgkstedt’s trace on mF.
From the formulation of Waldhausen’s calculation of w2 F section 2, it follows
that we can think of the homomorphism 7, F — w3 A(X) as induced by the inclusion

BQ1(GX) - BGL(Q(GX)) — A(X).

Using the group completion model for A(X), it is natural to think of this as lying
in the 1-component 4;(X). )

Recall now that Bokstedt has defined a generalization of Hochschild homology
and the Dennis trace which in the case of A(X) gives an infinite loop map

T: A(X) - Q(AX),
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where AX is the free loop space Map(S?, X) of X. (See [B], [BHM].) In this section
we shall compute the composition

WQBQl(GX) i 7l'2A1(X) — 7I'2Q1(AX).

(Q1(AX) is the component of S™ = S™A(*4) C S"A(AX.), where the basepoint
in AX is the trivial loop at the basepoint of X.)

From now on we adjust the notation slightly, and write G = GX, X ~ BG.
Then Bokstedt’s trace is induced by composition of maps of the homotopy type of

BGL.(QG) “ ABGL.(QG) ™5 Q(ABG)

where ¢ as before is the inclusion of the constant loops. 7, is a more complicated
construction, involving Morita equivalence (for n > 1) and replacing (stably) com-
positions with smash products. Taking restriction to BQ:G C B@Tl(QG)), we see
that the maps we need to compute are

BQ:1G -5 ABQ:G T Q1 (ABG).

Hence Morita equivalence does not enter, and it turns out that the crucial property
of 7{ for our computation is that it is equivariant with respect to the natural Si-
actions. Thus we have a diagram

S! x Q1@ S! x @1G

~
1 ]
S XT1

S! x ABQ:G —=7 S! x Q,(ABG)

1',

ABQ:G —2  Qi(ABG)

(The top maps are induced by the natural inclusions @:G C RB@Q1G C ABQ:1G
and G C QBG C ABG.) In fact, both actions leave the basepoints fixed, so we
have

St AQiG SLAQ:G

(4.1) lu lﬂ

ABQ:G —2— Qi(ABG)

We now calculate the homomorphisms induced by g on m;. Observe that for any
monoid Y we have a diagram like (4.1) with Q1 G replaced by Y.
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Lemma 4.2. Let Y be a connected monoid, and let I[m Y] be the augmentation
ideal in Z[m Y], with its additive structure. Then there are isomorphisms

(4.2.1) m(SEAY) = mY & I[mY]
(4.2.2) Tn(ABY) m 1Y @ mp1Y forn>1

and p induces the obvious homomorphism for n = 2 (note that mY is abelian).

Proof. Since S} AY = S! x Y/S! x % ~ S x Y U D? X , it is not hard to see

that the universal covering S} AY is weakly equivalent to S' x Y U D? x p~ (%),
where p: Y — Y is the universal covering space of Y. (4.2.1) then follows from the
Hurewicz isomorphism 73 (S} AY) = Hy(S} AY).

The inclusion of the summand 7,Y is induced by the inclusion ¥ C S} AY, and
ImY] — m(SL AY) is the restriction of the (additive) homomorphism v from
Z[m Y] taking the free generator g : S — Y to the composition

g :8? St AST S SLAY,

(Note that S1 A S can be identified with S? with two points identified.)

(4.2.2) is standard, and comes from homotopy sequence of the fibration 2BY —
ABY % BY where p is evaluation in 1 € S! and the section ¢ defined above (taking
z € BY to the constant path in z). Here is an explicit description of the projection
mn(ABY) - m,Y:

Let f : S® — ABY represent an element in 7,(ABY). f has an adjoint map
S}l_ A S™ — BY, which may be composed with S"*! — S}{_ A S™ to produce an
element in 7,41 BY ~ 7, Y.

Let v : 3Y — BY be the adjoint of Y ~ QBY (or inclusion of ‘1-skeleton’). In
order to calculate p, we use the diagram

Y ———-)S_ﬁ_/\Y——-)EY

ok

QBY —— ABY —2 . BY

which is easily seen to be commutative. It follows that p o p o g’ is equal to the
composition

s? % sl AY - TY % BY,

which corresponds precisely to g via the isomorphism m; BY ~ m Y.

It remains to prove that the 7Y -component of u.[g] is trivial for every [g] € m Y.
Think of g as a map S! — QBY. By the description above, the component of u.[g]
in mY =~ w3 BY is given by the composition

8,t,w)—w(st
S* —» 8L AS? > Sy ASLAS! ﬂsiAsiAﬂBY(L»)BK
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This is easily seen to factor through the composition
(4.2.3) $* - SL AS? Sy ASLAS' - SLASY

where the last map is the suspension of the product map S! x S} — S}. But this
composition is null homotopic; the product map is equivalent to projection to one
factor, and then (4.2.3) is the inclusion of one wedge summand and projection to
another in S}|_/\S}|_/\S1 ~ S3V52VS}|_/\SI. a

Let now a € 3 BQ; G be represented by & € m1Q1G. By lemma 4.2 we may write
ts(@) = pey(B — 1), where B € Q1 G, and hence 7(a) = B«y(B — 1) = gy(B)-
We therefore need to calculate the composition

Z[m@1G] > m(SL A Q1G) B3 my(Q1(ABQ1Q)).
Note that j is the composition
1 ; 1 Q1(p)
SEAQiIG — Q1(S1 AG) "= @i(ABG),

where the first map is defined by (¢, f : S™ — S*A(G4)) — (f : S™ = S*A(t X G)+).
(This makes sense if the basepoint in @1G is the ‘identity’, represented by maps
S™ = S™ A (1), where 1 is the basepoint (unit) in G.) Therefore .y = Q(1)+7',
where 7' is the map Zm @Q1G — 1rzS_1{_ A@Q1G — mQ1 (S},_ AG.

For any space, mQ1Y = 75(Y;). For i = 2 this was computed in Proposition
3.2, and it is also easy to see that 75(Yy) ~ Hy(Y;n§) @ Ho(Y;77).

Our computation of 7, can now be formulated in the following theorem:

Theorem 4.3. 7, : mBQ:1G — mQ1(ABQG) is the vertical composition in the
following diagram:
1I'2BQ1G
mQ1G  —=— H\(G;Z) & Ho(G;Z/2)
‘Y’ l‘yl

mQ1(SL AG) —=— Hy(S4 AGZ)® Hi(S% AG;Z/2)® Ho(Sy AG;Z/2)

Qux l“*
mQi1(ABG) —=—  H,(ABG;Z)® Hi(ABG;Z/2)® Ho(ABG;Z/2)

' is given by cross product with the fundamental glass of S*.

Proof. The only statement that needs proof, is the identification of 4'. The simplest
way to see this, is to use the isomorphisms m;Q,Y ~ Qf "(Y). Then 4’ corresponds
to the map 2{"(G) — Qf"(SL AG) given by (f : M — G) — (S! x f: 8! x M —
S},_ A M). But this corresponds precisely to the cross product in homology. O
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Remark. Tt follows that 4’ is a homomorphism, even though it involves the lifting
(g € m@Q1G) — (1-g € Z[m1Q1G]), which is certainly not a homomorphism!

Here are some explicit computations. First we consider the case where G is a
discrete group. Let <G> be the set of representatives of the conjugacy classes of
G, and let C(g) be the centralizer of the group element g. Then there is a well
known homotopy equivalence

(5.1) ABG~ [[ BCl(g).
geELG>

Hence myBQ1G ~ Ho(G;Z/2) ~ Z/2[G] (additively), and according to Theorem
4.3, 7, maps into H;(ABG;Z/2) = ®ge<a>C(9)/2.

Lemma 4.4. The resulting 7, : Z/2[G] — @ge<c>C(9)/2 maps the generator 1-h
to [g] € C(9)/2, if h is in the conjugacy class of g €E<G>.

Proof. Choose representatives § € QBG C ABG for all g €<G>, and let A;BG C
ABG be the component of § (with g as basepoint). Then p : A;BG — BG is
equivalent to BC(g) — BG, inducing the inclusion on ;.

The homomorphism 4’ in Theorem 4.3 takes h € G C QBG to the homology
class of the map A’ : S' — ABG defined by h'(s)(t) = h(st). If h is conjugate to g,
then [h'] = [g] in H1(ABG;Z/2). The result now follows from the diagram

m(A;BG) —=— C(g)

! !

Hi(A¢BG;Z/2) —=— C(g)/2
O

Remark. Since T, factors through moF, we already knew that it has to be constant
on conjugacy classes in G.

Examples. If G is abelian, we get
Ty : L/2[G] = ®gecG/2.

This is nontrivial if G has elements of even order or is infinite of finite rank. We
note two special cases:

(1) G = Z/2 (or more generally, a direct sum of Z/2’s). Then 7, is ‘almost
injective’; the kernel is the summand corresponding to the identity element.

(2) G =7Z. Then C(n) = G = Z for all n € Z, so the map is n — n mod 2.
Hence 74 (n) # 0 if and only if n is odd. Thus 6, in this case only detects
about “half” of moF, since we know that ker & =im y is finite.

For a general G, 7, is nontrivial if and only if there is at least one g # 1 such that
C(g)/2 is nontrivial. For finite groups of even order, a simple transfer argument
shows that this holds e.g. if G has a normal, cyclic 2-Sylow subgroup. Other
simple examples include symmetric groups, fundamentalgroups of 2-manifolds, free
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products of nontrivial groups etc. On the other hand, for finite groups of odd order,
we detect nothing.

Now let G = QX for a connected space X. Then we have mG ~ m X, and
m1(G,g) = m1QyX ~ m X, where ;X denotes the component of g € 71 X. Hence

Hl(G;Z) = @leﬂl(QgX) ~ @-leﬂ‘2X .

AX has one connected component Ay X for each conjugacy class <g> in m X, and
7. maps H;(24X) to Hy(AyX).

Instead of computing H3(AgX) in general, we offer the following observation,
which is sufficient for many applications. The evaluation map p : AX — X splits
into a sum of components pg : AjX — X, and we may consider the composition

Om xmX ~ Hi(G;Z) I H)(AX :Z) Liad B<mx>H2(X;Z).

Then it is straightforward to check that the following is true:
Lemma 4.5. This composition 13 the Hurewicz homomorphism on each summand.

Hence elements mapped nontrivially by the Hurewicz homomorphism h; give
rise to elements mapped nontriviallly by a : mpF — w3 A(X). Note that the kernel
of the hy(X) is determined precisely by the first k-invariant k;(X) of X:

Let m4X = Ho(m X;mX), i.e. mX divided by the action of m; X. Then the
Hurewicz homomorphism factors through A’ : 74X — H,(X), and there is an exact
sequence

Hy(X) 25 Hy(BmX) 2% mx *2 gy(X) 25 Hy(BmX) — 0

(From the Atiyah-Hirzebruch spectral sequence for the fibration X—>X2%BmXx J)
This should be compared to Igusa’s counterexamples [I1], which depended on the
non-vanishing of the first k-invariant in an essential way.

5. Applications to mP(M).

Before we can apply these results to detect elements in moP(M), we need

Lemma 5.1. The composition Q(M) LA A(M) 5 Q(AM) is Q(i), where v : M C
AM is the “trivial loop’ embedding.

Proof. We know that 7 and ¢ are infinite loop maps. Hence 7 o ¢ is determined by
its restriction to M C Q(M). But in the group completion model for Q(M), this
subset corresponds to 1 X 1-matrices with entries in GM. The result now follows
from the description of 7 in 4 above. O
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Corollary 5.2. The Bikstedt trace induces « map T : WAPE (M) - Q(AM/M),

and the composed homomorphism
Whi(mM;Z/20 moM) — moWhPE (M) — x5 (AM/M)
can be computed by Theorem 4.8 (with M = BG).

In fact, we do not loose any information passing to 75 (AM /M), since we already
divided out everything that mapped to w5 (M5 ). Hence, for example, the calcu-
lations in the previous section immediately give results about the homomorphism
Whi(mM;Z/20 moM) — mP(M).

In particular, we obtain the following partial answers to Question 1.2:

Theorem 5.3.

(1) If 71 M has an element g # 1 such that H1(C(g);Z/2) = C(g)/2 is nontriv-
ial, then moP(M) is nontrivial. (For ezamples, see section 4.)

(2) If M # (1) and the Hurewicz homomorphism in degree two is nontrivial,
then myP(M) is nontrivial.
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