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Abstract

We study the relation between dynamical systems and linear connec-
tions in domains of the complex plane C. Any dynamical system generates
a unique connection without torsion such that the operation of parallel
displacement is compatible with the complex structure and preserves the
direction field of the system. The holonomy group consists of homothetic
transformations. The operation of parallel displacement along each limit
cycle does not depend on the choice of any particular complex structure
and is given by the eigenvalue of the Poincaré map. We give an exam-
ple of the dynamical system whose connection is flat and limit cycles are
structurally stable.

1 Introduction

Let v be a limit cycle of the dynamical system

dz

d
E:P(xay% ﬁ':Q(xay)'

Then the eigenvalue A of the Poincaré map, i.e. the first return map, is given

by
A = exp /(P,; + Qy)dt.
g

Our main goal is to give a differential geometric interpretation of this formula.
In other words, we introduce the operator of parallel displacement

H’Y:TZO(M) - Tzl(M)
along each path

v [07 1] - M7 ’Y(O) = %0, 7(1) = 21,




in the domain
M = R?\ {stationary points of the dynamical system},

such that

e H. is compatible with the complex structure z = z + 4y, 1.e. H, is given
by a matrix of the form
a —b
(5 %)

with respect to the tangent frame 0/0z, 0/0y;
e H, is a linear connection without torsion on the tangent bundle T'(M);
e H., preserves the field of directions Qdz — Pdy = 0.

In Section 3, we prove that for each differential equation

dy _ Q(z,y)
dz — P(z,y)

there exists a unique such connection H,. The holonomy group of H, consists
of homothetic transformations. In Section 4, we show that for each limit cycle
v the holonomy transformation H., is given by the multiplicator A, i.e.

H, =Ml

Thus, we conclude that the operation of parallel displacement along limit cycles
does not depend on the choice of any particular complex structure.

Finally, we study differential equations with a flat connection. Such equa-
tions are generated by meromorphic differential 1-forms. The poles correspond
to the stationary points. The residues contain some information about limit
cycles. A spectacular example is

dz
1+w)—.
1+
This meromorphic differential generates the dynamical system

d d
d—:zxcos¢—ysin¢, ;l%:xsinqﬁ-l—ycosqﬁ,

¢ = vlog/z? + y2.

This system has a unique stationary point of index 1 and has an infinite set of
limit cycles

where

(2k +1
, kL)

22 +y? =ex E=0,41,42,...,




with the multiplicator

)\ = 6271'1/0' o= (_1)k+1.

5

We must emphasize that the idea to study differential equations within the
framework of the theory of connections dates back to Elie Cartan [1]. On the
other hand, we would like to mention a sporadic example of P. Chirokoff [2]
and P. Hendlé [3], which illustrates the relation between differential equations,
complex structures and linear connections. We discuss this example in Section

2.

2 The Chirokoff equation

In 1917, P. Chirokoff [2] raised the following question. Trouver l’intégrale de
Péquation différentielle suivante:

dy
== tan(zy).

In 1918, P. Hendlé [3] proved that the equation can be integrated by quadrature,
with solution

Y 142 g2
/ez( z)cos(:ct)dtzconst.
0

The integration procedure of Hendlé looks like a somewhat enigmatical trick.
An interesting feature of that trick is the use of complex numbers. Keeping
in mind this feature only, we will solve the Shirokoff equation following the
integration strategy of Sophus Lie.

An arbitrary differential equation can be wtitten as

dy = tan(a), a=az,y),

dz
or as a Pfaff equation defined by the 1-form

Q% =sinadz — cos a dy.

According to Lie’s integration strategy, we ought to find a symmetry, .e. a
vector field
V = t@9) 2 + (s, y)
= €T _ e
'Y o mz,y By

such that
d 2 _
Qe (V)

Then the solution of the equation is given by

/ﬂ’_ — const
QO‘(V) = const.

0.




Now, the problem is to find the symmetry V. For this aim, we will identify V'
with the complex valued function

w=2¢ 41

and assume that w holomorphically depends on the complex variable

z =2 +1y,
that is 9
w
A

A direct computation shows that the function w(z) is a symmetry, if and only
if ny = agz€ + ayn, which is equivalent to the condition

dw
I — T =
m(dz r w) 0,

where the coefficient I'* is given by
e =21—.
"9z
In particular, if I'* depends holomorphically on z, then we can construct the
field of “parallel” vectors w(z) such that

Z1
w(z1) = M20,21) w(20), Azo,21) = exp/ I'*dz.

20

For the Chirokoff equation, we have

22
% = ¢, w(z) = w(0) exp 5

Setting w(0) = ¢, we get the Hendlé solution.

3 Real Connections

Consider the differential 1-forms

d d
9= —Z, w=— _ ldz,
w w
where w = £ 4 47 is the complex coordinate of the vector tangent to M C R?
at the point with the complex coordinate z = = + 1y, and I is a complex valued
function of (z,y) € M. Since M is of complex dimension one, the complez

tangent vector

0

Yoz




can be identified with the complez frame of M. Therefore, 9 and w can be
viewed as 1-forms on the bundle of all complex frames over M, which we denote
by F.(M). This bundle is a G-structure. Its structure group is the multiplicative
group C'\ {0}. The 1-form ¥ is nothing else but the canonical differential form
on the G-structure F,(M). Roughly speaking, the value J,(v) is the coordinate
of the complex tangent vector v with respect to the complex frame u. The
1-form w defines a linear connection on the G-structure F.(M). The parallel
displacement along each path v is given by

w—=— at 2o , A(y)w % at z1,

0z

where

A7y)=aly)+eb(y) = exp/ Idz.

~

It is not hard to see that the 1-forms ¥ and w satisfy the structure equation of
Elie Cartan
dd+wAd =0,

which means that the connection w has vanishing torsion. The curvature of w
is given by the exterior derivative

do=K9AD,
where ap

We say that the connection w is flat, if the curvature K vanishes.
Suppose I' = T'® is the function associated to the differential equation 2* = 0
(see Section 2). Then we have '

I'“dz = ida — xda,
where * is the Hodge operator:
*(pdz + qdy) = —qdz +pdy.

Thus, if 7 is a closed path, then the imaginary part of the integral

]iI“’dzzi]ida—I—j{(—*da)

is an integer multiple of 27, and the holonomy transformation H., is given by
the real number

A(y) = exp ﬁ (= + da).




This is why the differential 1-form

w® = d_w —T%dz
w

will be called the real connection associated with the differential equation Q% =
0.

Proposition. There 1s an inirinsic correspondence between differential
equations and real connections.

Actually, the change of variables
z v+ o(2), w @' (2)w

takes back the forms
Qe and w®

to
o' |Q>F and — w* P

respectively, where

B =argy.
This proves that the correspondence between differential equations and real
connections is independent of any particular coordinate system. Moreover, this

correspondence is analogous to the well known relation between Riemannian
metrics and Levi-Civita connections. Let us follow up this analogy.

1. Any Riemannian metric is parallel with respect to the associated Levi-
Civita connection. This is a unique linear connection, which has vanishig
torsion and preserves the Riemannian metric.

Any differential equation is parallel with respect to the associated real con-
nection. This is a unique linear connection on Fo(M), which has vanishig
torsion and preserves the differential equation.

Proof. An arbitrary linear connection on F,(M) is given by

wzd—w—I‘dz—HdE.

w

The structure equation
dd+wAd=TddAdJ, T=wwll,

shows that w has vanishing torsion, if and only if IT = 0. In this case, w
preserves the equation Q% = 0, if and only if I' = I'®.




2. The Levi-Civita connection is flat if and only if the Riemannian metric is
locally Euclidean.

The real connection is flat if and only if the differential equation is locally
holomorphically equivalent to the differential equation of straight lines.

Proof. The curvature K of w® vanishes, if and only if

0%« _0
0207

This means that the angle « is a harmonic function and thereby is the
argument of a local holomorphic map z — ¢(z), which takes back the
equation Q% = 0 to Q° = 0.

3. The holonomy group of the Levi-Civita connection consists of rotations.

The holonomy group of the real connection consists of homothetic trans-
formations.

4. Christoffel’s symbols of the Levi-Civita connection can be expressed in
terms of the Riemannian metric.

Christoffel’s symbols of the real connection can be ezpressed in terms of
the differential equation as follows

I'ldz + T,dy Il dz +Ti,dy *xda do

I'2,dz + I'2,dy I'% dz +T'%,dy —da *xdo

4 Limit Cycles

Each dynamical system on the plane R?

dz

dy
E_P(:E)y)a _CE_Q(a:,y),

defines on the open set
M =R*\{(z,y) | P(z,y) = Q(z,y) = 0}

the field of directions
Qdz—Pdy 0

/P2 + ()2 ’
where the angle « is defined locally by the cocycle

. _PdQ-Qadp
o= P? 4 (2

Qa




Suppose M is supplied with the complez structure z = x +1y. Then, as we have
seen in Section 3, the differential equation 2® = 0 generates on F,(M) a real
connection w®. The holonomy transformations of w* define on the loop space
a real valued functional

y A(v)zexpf

Y

I'*dz = exp f(— * dar).
v

Theorem. If v is a limit cycle of the dynamical system, then A(7y) s the
ergenvalue of the Poincaré map.

Proof. Applying the Hodge star to the cocycle da, we find

_ (PQy — QPy)dz + (QP: — PQ.)dy
- P2 4+ Qz :

Using the time t as a parameter on the limit cycle v, we compute the restriction

— *xda

(— xda)ly = (Ps + Qy)dt 4 dlog

_r
/P2 § ()2 ’
Therefore, we have

o= [0+ 0t
2l
The proof is complete.

Corollary. If v 1s a limit cycle of the dynamical system, then the number
A(7) does not depend on the choice of any particular complex structure.

Remark. This Corollary is analagous to the Gauss—Bonnet theorem, which
states that the integral of the curvature over a compact surface does not depend
on the choice of any particular Riemannian metric, because this integral is the
Eulerian characteristic of the surface multiplied by 2.

Now, suppose the real connection is flat. Then, for any closed path 7,
homotopic in M to a given limit cycle, A(y) is also equal to the eigenvalue
of the Poincaré map. Moreover, in the flat case the functional A(v) defines a
homomorphism

Am (M) — RT

of the fundamental group m (M) to the group of positive real numbers R™.
Consider the induced homomorphism

him(M) — C




such that
h(y) =log A(y) +¢2mn = ]{I‘O‘dz,
¥

where n is an interger equal to the index of the stationary point surrounded by
the generator v € w1 (M), the orientation of + is supposed to be positive. In the
theory of Riemann surfaces, the homomorphism A is called the period homo-
morphism. The problem is to restore the dynamical system with a prescribed
period homomorphism.

Example. Suppose we want the dynamical system to have one stationary
point and a srtucturally stable limit cycle. Then we have

M =C", m(C*) = Z, h(1)=x+1t2r, x #0.

In other words, the index of the stationary point should be equal to one, the
number

A(£1) = etX

is supposed to be the eigenvalue of the Poincaré map. Clearly, the described
homomorphism A can be given by the meromorphic differential

rodz = (1 - z%) %Z-,
where

1
a=argz + ¢, ¢=%logm+const.

The corresponding dynamical system is

dz ;
EZ/)G ¢Z7 p=p(w,y)>0-

In this system the dynamics is oscillatory, that is every trajectory is asymptotic
to a structurally stable periodic orbit

¢>=g+7rk, k=0,+1,+2,....

Finally we note that in the same way one can construct more complicated
systems with oscillatory dynamics. Let M = C'\ {z1,...,2s}. Then each period
homomorphism A can be given by

aq - hj dz
r dz—;%”, z—zj + df(2),




where f(z) is a polynomial, h; = x; +127n;,

a=Y) njag(z—2)+ ¢,
j=1

¢=;—2>%10g ! + Im f(z).

|z — 2]
The corresponding dynandical system is

dZ N —n — - —n
Z = pe (s =) (= ) (= Fe) T (- E) T

We assume here that
ny>0,...,n,>0 and Nrg1 < 0,...,ns <O0.

If ny =1 and x1 # 0, then, in a small neighbourhood of z;, the dynamical
system takes the form

d

EE(Z —z1) = prelPrte)) (5 —

Zl):

where !
¢1 = &log——-— + ¢,
2 ° |z — 7|

and €; — 0 as |z — z1] — 0. This means that the stationary point z; is sur-
rounded by a structurally stable periodic orbit with the multiplicator

A= etxr,
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