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Abstract

In this paper we will prove existence and uniqueness theorems for the stochastic differential
equations

ou Au+W¢“‘x) oVu+g(t,x)
i Exp{We . .} ¢ Au+g(t,x) (t,x) € [0, T] x R™
VAExp{Wg,, ,,} o Vul +g(t,x)

with initial conditions u(0,x) = f(x) Vx € R™ where Wmm) is a white noise vector,

Exp{Ws, ,,} is positive white noise, Exp{W§, " x)} is a positive white noise matrix and f, g are
real functions. We will show that these equations have solutions in the space (S)~ of generalized
white noise distributions in a strong differentiation sense.
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§1 Introduction

We will in this paper apply white noise analysis to obtain existence and uniqueness theorems for some
stochastic partial differential equations. Within the white noise analysis, there are several choices of
possible solution spaces, but we will only work in the space of generalized white noise distributions,
known as the Kondratiev distribution space. This space is used in [VAGE] to obtain Hilbert space
methods for solving several classes of stochastic partial differential equations, including time-
independent versions of the equations we are going to solve. Other interesting stochastic partial dif-
ferential equations, mostly which are possible to solve explicitly, are

e The transport equation ([GjHGUZ]).
e The pressure equation for fluid flow ([HL@UZ3])).




where S(R™) is the Schwartz space of rapidly decreasing C*°-functions on R™, and
m m
No=(]s®) = ]8R
i=1 i=1

where S/(IR™) is the space of tempered distributions.

Let B := B(N*) denote the Borel o-algebra on A'* equipped with the weak star topology and set

H = écz(w)

i=1

where @ denotes orthogonal sum.

Since M is a countably Hilbert nuclear space (cf. eg.[Gj]) we get, using Minlos’ theorem, a unique
probability measure v on (M*, B) such that

J {0 gy (w) = e~ zlol3 Vo eN

where [|§l13, = S 1% l|bil22 g
Note that if m = 1 then v is usually denoted by p.

THEOREM 2.1 [Gj] We have the following

1. QL

i=1

(8'(R™)) = B(TTZ; S'(R™))
2. v=xTu

DEFINITION 2.2 [Gj] The triple
m
(J[s'®),8,v)

i=1

is called the (m-dimensional) (n-parameter) white noise probability space.

Fork =0,1,2,... andx € Rlet

a2

hi(x) 1= (15 p(e7F)

be the Hermite polynomials and
elx) = H (k= ) F e This (V) 5 k> 1
the Hermite functions.
It is well known that the family {€,} C S(R™) of tensor products
ai =8 ® B &y,
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1. {(w®(¢, )}, is a family of independent normal random variables.
2. Wil(,-) € L2(v) for1 <i<m.
DEFINITION 2.5 [HL@UZ3] Let0 < p < 1.
e Let (ST)°, the space of generalized white noise test functions, consist of all

f=) caHy € L3(V)
[+

such that

1113 5 = Z A (a)"P(2N)* < 00 Vk €N
[» 4

e Let (S')~°, the space of generalized white noise distributions, consist of all formal expan-

sions
F=) baHa
o
such that
Z b (a!)'7P(2N)~4 < oo for some q € N
o
where y
@N)* =@ - ey if o= (a1, ... , o).
i=1

We know that (S7*)° is the dual of (S7*)P (when the later space has the topology given by the semi-
norms || - |[px) and if F =} baHy € (S) P and f =~ coHy € (STH)P then

<F, f) = Z baCa“!.
>4

It is obvious that we have the inclusions
(ST c(SMPc(sM™ s pelo,]
and in the remaining of this paper we will consider the larger space (S,T)_‘ .

DEFINITION 2.6 [HL@UZ3] The Wick product of two elements in (SI*)~! given by

F=) asHs, G=) bgHg
« B

is defined by
FoG=) c/Hy
Y
where
cy= ) Gabp
o+p=y




EXAMPLE 2.14 Define the x-shift of ¢, denoted by ¢, by dx(y) := d(y — x).Then
ExpW} e (M) 1<i<mVxeR
which is an immediate consequence of proposition 2.4 and lemma 2.11.

EXAMPLE 2.15 Let a symmetric u X u-matrix W*(¢, -) be given by

w(u+1)

W2)5(,-) := WD (p,.) € (8 7 )7

where .
6(i5) = oj—u+i(u—1)) when i<j
V=1 66,1) when i>j

‘-f-(l‘z"'—]) elements. We are now able, using

u(u+1)
lemma 2.11, to construct the white noise exponential matrix, with components in (S, * )71, as the

matrix

and o is an arbitrary element in the permutation group of

Exp{W*}:= Z iGN
k=0

where the Wick-exponents are in ordinary matrix multiplication sense.

§3 Some parabolic partial differential equations
The following notation will be used in this and the following sections:

o C%*([0,T] x R™) are the bounded functions on [0, T] x R™ which are Holder continuous with
exponent « in x € R™, uniformly in t € [0, T].

o C%‘*“(]R“) are the functions on R™ with bounded partial derivatives up to 2’nd order which are
Holder continuous with exponent «.

DEFINITION 3.1 We say that a function Bq(5) N RY 3 A — i(A) is in C@(Bq(8) N RY) if the
restriction of Hu on the set B4(8) N R‘?‘ is real analytic Vn € N and 3(M > 0,7 > 0) (independent
of n) such that |[3P](0)| < MIB|!r—Bl VB € ZF ¥n e N.

LEMMA 3.2 Suppose there exists ¢ € Nand 6 > 0 such that A — ¥(A) is in C} (B4(8 ﬂ]RgI ). Then
there exists § € N, § > 0 and an analytic function ¥ € Ab(Bg (8)) such that v(?\) = V¢(A) whenever
A€EBg(8)N Bq(ﬁ) NRY.

PROOF:

It follows from [Fritz, page 65] that there exists M > 0 and r > 0 such that

[2B51(0)] < MIB|r 1Bl VB ezl VieN
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where ey is the k’th unit vector in R™, exists together with the other derivatives. This is, because of
lemma 2.12, equivalent with the existence of 8 > 0, q € N such that

lim Hu(t,x + eey, z) — Hu(t,x,z) _ KB

t) )
€0 € anHu( * Z)

pointwise, uniformly bounded, whenever z € B(3).

PROOF:

We will find q € N,§ > 0 and a function [0, T] x R™ 3 (t,x) — ¥(t,x) € Ap(Bq(8)), the space of
~ all bounded analytic functions on B4(8), which solves the equation

~

ov SR - =

pri AV+ Wy, - VI+AF+We, - VE+g(t,x)  (t,%) € (0,T] % R" 3)
$0,x) =0 xeR" (4

when z € Bg(8). Our solution will then be u(t, x) : = H~9(t,x,z)+f(x). Since we will use existence

and uniqueness results based on real-valued functions, we will solve equation (3) forallA € By (5)n]Ro

(for suitable q € N, 5 > 0) and then show that we may apply lemma 3.2 below. The proof consists of
several lemmas:

LEMMA 3.5 Let g € N and 6 > 0 be arbitrary. Then

1. |Wf;’t (VP < 8%|$|[2 whenever A € Bq(8) N RS-

2. ‘g’()t x) (d)%g )’ (1)) ifA= (A]f" )Ak) with 1 S k.

PROOF:

We have
W (w)= 3 (60, e eff)
k=0
which gives the second result and

o0
(1) 2 _ {) 2 () 2 2
le,(t )(7\)| _’Z(d’(l 7" <Z ::x)’ek ZP"

k=0 k=0
< llol? 3 A%(2N)* < 87|12
a#0

which gives the first result. n

LEMMA 3.6 Letq € N, > 0and 0 < o < 1 be given. Then JA > 0, independent of (t,x) €
[0, T x R™,A € Bq(6) NRY and & € (0, 1], such that for all t € [0, T],x,x° € R and 1 <i<n

Wi,

%) L0
e N =W, o A< Al —x7]




It is not hard, by using induction and the results of [Fri, page 14-16], to show that

ColY _A*x—g)?
A . < 0M1 (4 oc———l (=)
I(LZ)5(x, t; &, 7)| < Fva) (t—1) )
and that each (LZ)} is C! in the parameter with
A*|x—E|2
2 (2,1, 1) < 0L (e dTe R (vie ) ®

(2 I'(ve)
where Cp, C; and A* are constants independent of A, based on estimates of Z (which is independent of
A) and upper bounds of {Wd: ) 1—1 It is now clear that the series (6) and the series

Za?\ LZ))(x, t;E,1) (VieN) )

v=1 t

converges uniformly in A for each fixed (t, x; &, T) which proves the A-differentiability of @M. 1t fol-
lows from [Fri, page 14-16] that

A*|x—£|2
@ 66,7 S Colt =) 2T (e N)
i

where C; is a constant, which proves the A-differentiability of I'*. Finally, we are able to show that
| 0
oA
where Cj is a constant, which proves the A-differentiability of ¥. By using uniqueness ([Fri, theorem
16, page 29)), it is easy to show that

A*x—E)2
M(x,t;&,7)| < C3(t—1) ™2 &=  (VieN)

t

o _ A w9 g
a7\iv(t,x,?\) = J J M(x,t; &, 7)( Z N ¢(t 0 —¥)d&dr (V1 €N)
0 RM
which is clearly A-differentiable. The result now follows by an induction argument. ]

LEMMA 3.8 JK; > 0 such that the solution ¥ of (3) satisfies an inequality of the type

max{sup [¥(t,x,A)|, sup I—-v(t x,A)|} < K sup |Af(t,x) +Wq>(t o+ V%) +9(t,%)|
t,%,A %A1 t,%,A (10)

where K; is independent of (t,x) and A € B4(3).

PROOF:

This follows immediately from the estimates (see [Fri, page 28])

A*x—E|2

M (x, t;€,7)] < Ry (t—1)"Ze™ &0

and
0 A _n+l _A*Ix—ilz
|ar (X)t; E,,T)' < KZ(t_T) 2 e 4t

where the constants Ky and R, are independent of A, based on the estimates of Z (independent of A)
and estimates of @ (independent of A as in the proof of lemma 3.7). m
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LEMMA 3.10 The strong derivatives in equation (1) exist.

PROOF:

Let 5 > 0 and q € N be given from lemma 3.2 and put

P(t,x + eex, z) — V(t, x,2)
€

U (t,x,2z) =

where ey is the k’th unit vector in R™, then

- 1 0%U(t,x + eey,0) — 0%U(t,x,0
e(t,x,z)__:Z ( ( ke) ( )

)z%.

Now, by using the mean-value theorem and an obvious modification of lemma 3.9, we obtain the in-
equality

< Kalot(nKa|d2)™¥ Ve >0

| 0%9(t, x + eeyx,0) — 0%9(t, x,0) ‘
€

so by using the dominated convergence theorem

~

ov
. e _ o
!‘E%vk(t; X, Z) an (t) X, Z)
which is, because of remark 3.4, what we wanted to prove. The other derivatives are proven to exist
in a similar manner. u
Theorem 3.3 now finally follows by combining lemma 3.7 and lemma 3.9 with lemma 3.2. [

EXAMPLE 3.11 (Singular white noise) The m-dimensional singular white noise is defined as
1
Wen(w) i= (WD), -, Win(w))
where
oo
Ze,(()(tx e(w) (1<i<m)
=1

and
k-1
e(k):=(0,---,0,1) is a multi-index.
We now from [HP, 21.3.3] that ||ex|lcc = O(n~72) so there exists a constant C such that llexlloo <

C Vk € N. From this, using definition 2.5, it is easy to show that W(I) € (S )_1 (1<i<m).
Letnow P € S(R™1) with [ dtdx =1 and |||y < K be given. Deﬁne lbk(t x) i= k" ((k+
1)(t,x)), then Y¥(t,x) = 8 in S’(R™+1) by [RAUCH, propositon 2.2.3]. We have

oo
W @ =3 (@) ela = Y (@wa=Westad (1<i<m)
* 1=1 1=1

and

W |<Z|w(m etz

(tx

<KCsY (N~ F A7)
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We will only prove the first inequality, the second follows similarly. It is enough, by the triangle in-
equality, to find constants A and A;, independent of (t,x) € [0, T] x R™ and A € B4(8) N RY such
that we have the inequalities

Iexp{Wd,(t,x)}—— exp{VVq,(t’xo)}I <Ailx— XOI“ Vvt e [0,T] (20)

and
|exp{“/¢(t‘xo)} - exp{Wq,(to’xo)}l <AJt—107 wxl e R, (1)
but this is immediate from an obvious modification of the proof of lemma 3.6. n

LEMMA 3.14 The Cauchy equation given by (18) has an unique solution ¥(t, x,A) for each
A e Bg(8)N RY. Moreover, the function A — ¥(t,x,A) is C* in every parameter A for each fixed
(t,x) € [0,T] x R™.

PROOF:
Equation (18) has an unique solution given by

t
ex,8) == | | Pt 8T expWe ) - A, ) +(x, £)) dE
0

where ' is the fundamental solution given by (5), but with Z(x, t; £,T) := Z*(x, t; £,7) where
_ 1. _n 1 _ ~
220, 8, = 2V expl— 5 Wy, M — 7% explg (6 — 1) expl—Woy o Jix — £}

and ®?(x, t; &, T) is as in (6) but with
Z(x,t&,1) Z[er)(t x) — W¢(T,£)]a_z.z7\(x’ t; &, 7).
i=1 axiz

Each (LZ)} satisfies, with possible different constants Co and C, the bound given in (7). It follows
that the series (6) converges (uniformly) in A for each fixed (t, x; &, T). Now,

0 1 _ -
A eXP{—Z (t— 1) exp{—-We,, , }Ix — £}
2
< 05 axpl (= 1) expl- Wy, 1 — &)

where C; is a constant, so by the trick given in [Fri, 3.2 page 7], we obtain that there exist a constant
such that both |LZ| and IB—%:LZI satisfies the same bound as in (8) (with v = 0). We may now use
induction to obtain similar bounds on aim (LZ)2 as in (8) and from this it follows that the series given
in (9) converges uniformly in A which proves the A-differentiability of ®*(x, t; £, T) and by an bound-
edness argument also the A-differentiability of U(t, x, A). The final result now follows by an induction
argument. [

15




By further differentiation we obtain the formula

orv P P
| == < ( >||¢||“K3e“¢"5|
oA} 2 k

k=1

oK)y
|+ ||d)||pellcl>llf’](3

(p—k)

oA

which, by an easy induction argument in connection with [LSU], gives us the estimate

Py
5w < Kae!I3((2 + Kael#1) o)1
1

and by an symmetry argument we obtain the wanted inequality
09| < K3el®18((2 + K3ell®l1%)]| ||| ot
[ |

Theorem 3.12 now finally follows by combining lemma 3.14 and lemma 3.16 with lemma 3.2. ]

§3.3 SPDE #3

THEOREM 3.17 Let T > 0 be given and suppose we are given functions g € C*([0, T] x R*) and
f € CZ**(R"). Then the stochastic Cauchy problem :

&=V (B, Yo Vot ) (53 € (O, TIXE"
u(0,x) = f(x) x € R"
n(n+1)
has an unique solution [0, T] x R™ 3 (t,x) — u(t,x) € (S, 7 )"

PROOF: We will find ¢ € N,6 > 0 and a function [0, T] x R™ > (t,x) — ¥(t,x) € Ap(Bq(5))
which solves the equation

%% — V- % Vo + V70 . Vi g(tx) (Bx) € (O, TIXRY  (23)
u(0,x) =0 x €R" (24)

when z € B4(5). Our solution will then be u(t, x) := H19(t, x)+f(x). The proof consists of several
lemmas:

LEMMA 3.18 JK; > 0 such that the solution ¥ of (23) satisfies an inequality of the type

0 02
max{sup [V(t,x,A)], sup |—V(t,x,A)|, sup |——V(t,x,A
{sup [0t A, sup [0t ), s [=oit, % A))
Ws
<Kk (sup V- fe ‘°<t»x)-Vf}+g|) 25)
t,%,A

where Kj is independent of (t,x) € [0, T] x R™ and A € B4(8) NRY.

PROOF:
As in lemma 3.15. m
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by lemma 3.18. Let

Kz if n2A1 >1
Ks:= 221 i 2
Kon™ A] if nfA;1<1.
By applying the differential operator % on equation (23) we obtain

2,00
ot oA

and from lemma 3.18 and lemma 3.20 we obtain the estimate

. v W*;( x) . E’. . i W;(t.x). V] . ——a— W‘i’(t»x) .
)=V -{e P00 V(Zm )+ V- {55 VI V- {55e Vi}

1_|<1<3( n2A;A; + 2n?A1A5)K;s + 3K3n2A4A,.

By further differentiation we obtain the formula

a7\p| < Z ( )K3(2+k 2A1A2| I+K3n 2A,AB(2 +p)
1

which, by an easy induction argument, gives us the estimate

ay\v’ < n?K3A1((A1n*Kz + 6)A2)Pp!

and by an symmetry argument we obtain the wanted inequality
9791 < n?K3A1 ((An?Ks + 6)A2) ot
[ |

Theorem 3.17 now follows by combining a modified version of lemma 3.14 with lemma 3.21 and
lemma 3.2. ||
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