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Abstract

We study convergence rates for generalized random variables. These results will be ap-
plied to study a stochastic finite element approach to stochastic partial differential equations.
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§1 Introduction

In recent years there has been a growing interest in stochastic partial differential equations as mod-
els of physical systems perturbed by noise. Pksendal et al. [HL@UZ] proposed a stochastic ver-
sion of the pressure equation for fluid flow in a porous medium. In Walsh, [W] we find a stochastic
partial differential equation describing the behavior of neurons. To solve the nonlinear filtering
problem, the well-known Zakai-equation appears as the model for the (unnormalized) density of
the solution (see e.g. Zakai [Z]).

There exists an extensive literature on how to solve deterministic partial differential equations nu-
merically. For stochastic problems of the same nature, the theory seems to be not so well devel-
oped. However, there exists some references. We want to mention the paper of Hu, [Hu] which
considers the pressure equation model of Oksendal et al. [HL@UZ]. He treats this stochastic
equation by approximating derivatives with finite differences. However, there is a problem of
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calculating a combination of random variables called the Wick product. Germani and Piccioni,
[GP] show how to solve the above mentioned Zakai— equation using finite element methods. A
thorough treatment of numerical methods for ordinary stochastic differential equations can be
found in the monograph by Kloeden and Platen [KP].

The main objective of this paper is to give a general framework to solve elliptic stochastic partial
differential equations based on the finite element method. The class of problems we have in mind
is on the form

V(k(x, w) - Vu(x,w)) = —f(x,w), (x,w)eDxQ
u(x, w) = g(x, w), (x,w) € oD x Q

where D is a bounded domain in R? and () is a probability space. f and g are R-valued functions
onD x Qand k : D x Q — R2*2, The weak formulation of such problems will be considered to
provide numerical schemes. In Vige, [V] elliptic problems have been studied in the framework
of Wick Calculus. We remark that our approach fits every elliptic problem that can be rewritten
in a variational form. See section 5 for a precise statement. We refer to [C] for the finite element
method for R*.

Our approach is a direct application of the Ritz-Galerkin method put in a new setting. Since we
deal with stochastic equations, a new independent variable w comes in addition to the usual space
variable x. w is an event in the probability space Q. Due to this exira variable, new Hilbert spaces
are called for to fit the framework of the Ritz~Galerkin method. Such spaces are introduced in this
paper as the topological sum of a classical Sobolev space and a Hilbert space taking the stochastic
regularity into account. Convergence rates are calculated. In order to achieve numerically treat-
able problems, we need an explicit basis for the Hilbert spaces expressing the stochastic regularity
of a solution. This can found using the standard spaces found in the White Noise Analysis. These
spaces are known under the names Hida and Kondratiev distribution spaces. As indicated by the
names, they contain generalized random variables, i.e. random variables that are not necessarily
square integrable. For more information, we refer to the works of Hida et al. [HKPS] and Kon-
dratiev et al. [KLS]. We note that the Meyer—Watanabe distribution space is included in the Hida
distribution space.

We want our numerical approach to include elliptic stochastic partial differential equations having
singular solutions. The reason for this is that such problems in general have solutions that do not
have finite variance. In fact, they sometimes even fail to be integrable. Examples of such a behav-
jor can be found in [W] and [HL@UZ]. It is hence natural to consider Hilbert spaces containing
generalized random variables. However, elliptic stochastic problems having smooth solutions (in
w) are of course included! Unfortunately, our methods seems to get very computer extensive. We
will in a future paper test out the methods on a computer.

The numerical approach in this paper are taken from the book of Hackbusch [H]. We also base
our presentation on the White Noise Analysis. The interested reader is advised to look into Hida
et al. [HKPS], @ksendal et al. [HUZ] and Kondratiev et al. [KLS].

The paper proceeds as follows: In section 2 we introduce some notation and the Sobolev spaces
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that will be used. A convergence rate estimate for a finite dimensional approximation of gener-
alized random variables is calculated in section 3. We follow up with the Sobolev analogue of
such a result in the next section. Finally, in section 5 we apply our results to elliptic stochastic
problems on a variational form. In an appendix we discuss some computional aspects.

§2 Mathematical Preliminaries

We will in the following fix the parameter dimensiond € N. LetS = § (R¢) be the Schwartz
space of rapidly decreasing smooth functions on R?. The dual S’ = S’(R?), equipped with the
weak-star topology, is the space of tempered distributions. By the Bochner-Minlos theorem there
exists a probability measure . on the Borel subsets B of S’ defined by the characteristic functional

J et dp= eI ; Ve S 1)

where | - | is the norm on L(R%).

Let now J := (NY)., i.e. the set of all sequences & = (o, &z, - - - ) with elements &; € No and
only finitely many o; # 0.
An orthogonal basis for L2(p) is given by {Ha}xes Where Hy(w) is defined as

(x)

Ha(w) = [ | hea ({w, &)

i=1

mal tensor products of the Hermite functions in L2(R). hy, is the Hermite polynomial of order n.

£( o) is the length of the multi-index o and {£;)2, is any orthonormal basis consisting of orthonor-

Let V be any real Hilbert space. Then we define the Hilbert spaces (S)**V (p € [-1,1],k € R)
as the set of formal sums
F=) faHo; fa€V (Va€J)
aed
with finite norm ||F||, x v induced from the inner product

(F,Glpkv =) _ (fo, Ge)v(exl) +o(2N)*
aceT

where
(2N)*= = [ [ (2))*
]
Note that (p > 0) (S)~®~*V is the dual space of (S)P*V, The dual action is defined by

(Ff):=) (Fafalva!

aeJ
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where f € (S)?%V and F € (S)~P V.

When V = H™ or V = HI™, we will use the notation (S)P*™ and (S)3™™ respectively. In the
case when V = R we will use the notation (S)P* and also define the familiar spaces (S)° :=
Mixo(S)P*Y and (8)° i= Ukso(S) 7% ;0 € [0, 1.

More information can be found in [HAUZ] and [HKPS].

§3 Approximation of generalized random variables

Introduce the set of multi-indices
Ani = {a € N§l o #0, o1 ...+ o =1}
where n, k € N. Obviously, « € A, i has length k.
Let ® € (S)~*~% be given as
©=) coHa,

acJ
and for N, K € N define the finite dimensional approximation

N K
OMKi=co+) ) D caHa

n=1 k=1 a€An x
We have the following result on the convergence:

THEOREM 3.1 Letp € R, be given and assume that T :=p — q > 7%, where 1* solves

£ 3

T

FEon

Then for any P € (S)»+V

N+1
T
(@ — @M, )| < 1@]|-p-q * [¥llppv -/ Cr(7) - KT + Cafr) - (m)

where
1

T -1t
Note that r* is approximately 1.53.

Ci(r) and C(r) =2"(r —1)Cy (1)

PROOF:



Let

xXE€EAn Kk
We see that
o0 o0 N K
0- oM T o= 3 e
n=1 k=1 n=1 k=1
N oo ) oo N K
=3 Yt 2 D k=) ) cn
n=1 k=1 n=N+1 k=1 n=1 k=1
=] o
S35 et X Yoew
n=1 k=K+1 n=N+1 k=1
These two sums are the chaos expansion of ® — @K, By the definition of the || - ||, —p v —norm
and orthogonality of H, we have

N oo
o —™ 2, ,v=3 3 3 llealffa)' (2N
n=1 k=K+1 a€An x

+ 3 ) Y llealfla)' PN

n=N+1 k=1 «€An k

oo

N
=Y Y Y leal o)’ PN (2N)
n=1k=K+1 x€An i

+ 3 3 Y el () P(2N) TP (2N)

n=N+1 k=1 a€A, x
N 00 oo o
<0125 v (Z > Y @+ ) ) ) (ZN)‘“’)
n=1 k=K+1 a€An « n=N+1 k=1 a€An x

In the last inequality we have used the obvious relation

llealfy () P2N)" < @12, v (Y€ T)

To estimate the two sums, we rewrite the multi-indices in a convenient way: Every « € A, x can
be written as

& = €iyiz-in

where
€i1ig-in = (O, ,0,1,0,... ,0,1,0,...,0,1)

The 1’s appear on the coordinates i;, 1, etc. Moreover, we use the convention that if i, = 13,
then we get the value 2 in coordinate i,. Equivalently, if iy = i5 = is we get 3 in coordinate
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i4. Hence, the number of repetitions of a coordinate i; yields the value in that coordinate. For
example is €3333 = (0,0,4). Note that & € Ay implies i, = k. Moreover, the ;s are ordered
like

k=ip > i1 2in22...21h > 1

With this notation,

n
(2N)= = (2N)st- = [ (23) 7 =27 7T

j=1
Here, i,, = k. To make the argument below easy to follow, we reorder the i;’s:
1<in<... <=k

Let for the moment M be a natural number. We have

oo oo i in—1

—_ —nr o —T s—T s —T
E E (2N)™ =27" E i} E i E i,
k=M a€An {11=M ix=1 in=1

In order to prove the theorem, we estimate the two sums

N o i in-1
R M= 1y
n=1 i1=K+1 ix=1 in=1
oo o i in—
.__ —nr s =T s —T T
e S S L
n=N+1 =1 ip=1 in=1

The rest of the proof is standard estimations of these two sums:

We show that
1—r

Ink L s
NK=2r(r—1)—r
where + > 7*: First, a standard estimation technique using integration yields

in—I tn_‘
Y i<+ J X dx
1

1 1 1
— (= (™

in=1

Because of our assumptions thatt —1 >71—71*>0 and

i <2< <

we have |
(1= (—)N<1-(;
h-1 1u

1

_)1'—1



The rest of the sums are estimated the same way, ending up with the bound

il n-1
D i Z i < ( +_LT“'(1]1)H))

i=1 in=1

< ( )n—]rn—l
and hence
S (LaeEa)cdpr 5 e
i1=K+1 \iz=1 in=1 i=K+1
r o)
=(1.__ )n—l Z i
i=K+1
Since -

i=K+1

when r > ™ > 1, we have the bound

§ (FuEr) et

11=K+1 \ix=1 in=1

Finally, we obtain the bound

. N
K- T

Ing € == ()

n=1
Kl—r
rr—1)—r

)n

whenever r > 1*. The constant T™* solves

£ 3

=1
(e —1)
which implies that
T
o <

for every T > r*. Solving for r* numerically gives the estimate 1.53.
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Finally we show that

27(r—1) (N

N G = 5 e o

Estimating as above,

i‘ s—T E=, s—T T \n-1
Y i) in < (z=7)

ix=1 in=1

Furthermore,
- :—T 2 s —T (S s—T T o1 = s—T
PRSI AR M oy DD BT
i1=1 ix=1 in=1 =1
1,. CcO
< n-1 -r
"(_r—]) (H—L X dx)
— T n
This yields
Jn < i (ﬁr_—l))n
n=N+1

— 2"(r—1) ( T N+
27(r—=1)—1"27(r—1)

whenever T > 1*. The proof is completed by using the inequality
l<®»¢>l < H‘D”—p,—v.v : “11)||p,p.v
E
REMARK 3.2 The estimates in the theorem are not optimal. It has not been a goal here to find
the best possible bounds.
REMARK 3.3 With obvious modifications, the above theorem can be worked out for smooth
random variables ¢ € (S)*PVY, p € [0,1],p € No.

EXAMPLE 34 Letp = q + 2. Hence r = 2. A calculation of the constants give C;(2) =
3,C2(2) = 2 and 3= = 1/2. This yields the estimate
)N—]}

N —

1 _
L R T

If we choose K = 2NV-! and define
ON = N

we have the estimate

T e
H(D - (DNH-Z—p,—p,V < “(D”%-p,—q,v : (E)N ]



EXAMPLE 3.5 Approximation of the Wick product: Fix a constant § > 1/2andletp = q + 2.
For @,V € (S)~*~%V, we have from a modified version of [HOUZ, proposition 3.3.2] and above
example

|OoY— oMK °WN'K||ip,—(p+5),v <2{¥o (0 - ‘DN’K)I|2—p.—(p+6),v
+2[|@ 0 (¥ —YNN) 2, _pesrv
< ZC“\‘VH-Z—p,—p,V @ - (DN’KHip‘—p,V
+2C®I2, v - 1Y = ¥NNI2, oy

< ATy 1O gy (K7 + (G

| —

where C is a constant independent of @, VY.

§4 The stochastic finite element method in R?

We will now consider the case V = H} (D) where D is an open, bounded domain in R? satisfying
D = u?,T; for some Q € N and

i=1

1. T; (1 €£1< Q) are open triangles.
2. TinTj=@fori;£]'.
3. Fori # j the set T; N T; is either

(a) empty, or
(b) a common side of the elements T; and Tj, or

(c) a common edge of the elements T; and T;.

Note that this implies that D has a polygonal shape.

Let now Vj be the M-dimensional subspace of H} (D) defined by the piecewise linear functions

Vmi={ueC(D):u=0 on 9D;oneachT; (1<i<Q)
the function agrees with a linear function, i.e.,u(x,y) = vi1 +vi2x + visy on T:}

We will by uM denote the projection of an element u € HJ (D) onto V.

O = Z CoHa

x€J

Let ® € (S)™°~%2 be given as
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and for N, K, M € N define the finite element approximation
N K
OVKM =M+ Y N Y clHa
n=1 k=1 a€Anq x

THEOREM 4.1 Suppose h > 0 is the maximum length of the sides of the triangles {T-l}?:I. For
any P € (S)?*! there exists a constant A > 0 such that

(@ — @M M )] <

T N+1
@) K+ Gl () 1@lnmes + ARIDlpz | [l

\

PROOF:

Since
o — (DN,K,M =0 — (DN,K + (DN,K _ (DN,K,M
: N K
= <D—(I)N'K+co—c3‘+zz_ Z (ce —cM)H,
n=1 k=1 x€An x
we have

1Ny P 'K
@ —@NKMZ s =llo — N2, s

N K
+”CO—'CSA+ZZ Z (Ctx—c:l)HaH%—p,—p,l

n=1 k=1 a€An «
< ”(D - (DN’K“%-p,—p,l + Azhzu(pnip,-p,l

where we have used the inequality ([H, Theorem 8.4.4])
llea — il o) < Ahllcalliep) (Yo € J)

REMARK 4.2 The constant A of theorem 4.1 is dependent on the triangles {Ti}?:] . See [H, Page
188] for more information.

§5 Applications to stochastic partial differential equations

Suppose that we are given an elliptic bounded bilinear form a(u, V) on (S)™"~ %! x (S )y !
for some p € [0,1], g € Ny, i.e. there exist constants C}, C2 > 0 such that

()l < CLlwllpan - [Vl-pq1  forue (§)#-%1,v e (8)5%7
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and
la(u, )| > C3llull?,_q; forallue (S)57 %!

We may now pose the boundary value problem in its variational formulation:

Findu € (S )g""“" such that

a(u,v) = (f,v)—p-q; 2)
forallv € (S)y p~a.1 where f € (8§)~* 1.
The existence and uniqueness of this equations follows from the Lax-Milgram theorem. For nu-

merical purposes we are interested in the stochastic Ritz-Galerkin solution uRd“M, ie.,

Find uleM € (Snxm) P! such that
a(uhZ™,v) = (f,v)-p-q,1 3)

forallv € (Snxm) P! where (Snxm) ™! is the subspace of (8)~®~%! consisting of
those @ such that

N K
O=co+Y Y Y caHu ca€V¥ (Va€J)

n=1 k=1 “eAn k

We have the following numerical approximation theorem:

THEOREM 5.1 Suppose that u is the solution of (2) withu € (S)g""“" A (S)~*~%2. Then
the stochastic Ritz-Galerkin solution ufZM given by (3) satisfies for all v € (s)pPa!

(u—upd™™, V) <

. N+ \
C- \/(7Cx (r) - KI=7 + C(7) - (F(?:_ﬂ) Null-p—a1 + Ah“u“—p,—pl) “|vllp.q

for some constant C > 0.

PROOF:
This is [H, Theorem 8.2.1] in connection with theorem 4.1. u

REMARK 5.2 Note that the stochastic Ritz-Galerkin solution is of the form

M N K
uREM =Y (ciobi+ » Y ciabiHa)
i=1 n=1 k=1 a€An x
where {b;}}¥, is any basis of VM. The coefficients ¢ = {c i} are obtained by solving the system
of linear equations given by Lc = g where Lijap = a(b;Hq, bjH,) and gi o = f(biHy). From a
numerical point of view the only remaining obstacle is calculating a numerical value of {Ha}acs-
This will be dealt with in the appendix.
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Appendix: Simulation of H,

In this appendix, we consider the problem of simulating the random basis functions {Hg}ae 7 and
count the number of basis functions required for a specific cutting (i.e. choice of N and K). The
last task is the same as finding the dimension of the finite dimensional subspace where our ap-
proximation lives.

From the section with mathematical preliminaries, we defined H, by
)

Ha(w) = [ [ heu ((w, &)

It follows from (1) that {{w, &;)}; is a family of independent standard Gaussian random variables.
Hence, to simulate H,, we need to compute the product of a finite set of independent standard
Gaussian variables. In order to do this, we must have an algorithm producing normal random
numbers and use the formula

ha(x) = Z(—l)“—-——“i——x"'z“ Q)

to create Hermite polynomials.

To get a feeling of how computer extensive our method will be, we look at the number of basis
functions we get for a certain choice of N and K:

Denote by #<™ the number of basis-functions with £(«) = k and |l < n. For instance, we see
that N N
i . N(N+T1)
’N = ]’1' = = ——
GEDILEDMEE

i=1

since the number of basis-functions with £(«) = 1 and |« < i, #", is seen to be i;
{(M),(2),3),..., (1)}

In general we have the relation
N

#k,N — Z#k—l,i

i=1

which for k > 3 gives
N i k-2
kN Z Z Z .
# ’ frmened PR ‘Lk_]
fi=liz=1  ix—=1

The total number of basis-functions for N and K is

K
k=1
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We add one to the sum on the right hand side since Ho = 1 is part of the basis!

Observe that we need to calculate K independent Gaussian random variables and the coefficients
of {h )], which we get from formula (4).

i=1

Example: From the formula above we see that #(3,3) = 20 and #(4, 4) = 70. So, by just
increasing the length and the volume of the multi-indices by 1, we reach the total of 70 basis-
functions, compared to 20.

Note that we have the relations

#K+1,N)  N+K+1
#K.N)  K+1

and
#K,N+1) __N+K+1

#K,N) — N+1
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