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Abstract

Using the set of Lie structures over 1- jet manifold the symmetries structure is

analyzed for Monge-Ampere equations. A method is proposed to determine

invariant solutions with respect to symmetries algebras which preserve a

divergence type. Moreover, an example of the von Karman equation is
considered.
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Chapter 1

Introduction

Physical interest to the stable states of processes generates interest to the
invariant solutions of differential equations.From the mathematical point of
view the theory of invariant solutions is based on the fundamental ideas of
S.Lie [1]. We propose the technique of constructing such solutions for the
Monge-Ampere equations (in Lychagin’s sense). We confine ourself with the
class of divergence type equations as a very important type of equations in
physical applications. Note in particular that equations such kind have the
selected conservation laws. Using the set of Lie structures over 1-jet manifold
we propose conditions on the symmetries algebras under which an equation
preserves its conformal divergence type after the reduction procedure. This
conditions generalize the classical integrating factor theory.

This result allows us to reduce the search of invariant solutions associ-
ated with symmetries algebras which preserve a divergence type for diver-
gence type Monge-Ampere equations to the integration of divergence type
Monge-Ampere equations over a manifold with a smaller number of inde-
pendent variables. In some important cases the last equation reduces to the
l-order ordinary equation. As an example we realize our technique for the
search invariant solutions such kind for the von Karman equation in gas and

hydrodynamics. *

'The research described in this publication was made possible in part by Grant N2F00
from the International Science Foundation



Chapter 2

A set of the Lie structures over
1-jet manifold

Let M be a smooth manifold, dim M = n. Let p, be the ideal of the ring
C>*(M) associated with a point ¢ € M: p, = {f € C®°(M)|f(z) = 0}. A
smooth fiber bundle 7 : J*M — M with a fiber JEM = C°(M)/ptt1C>(M)
over a point ¢ € M is called the k-jets fiber bundle. The image of a function
f € C®(M) in a fiber J*M we denote by j,(f). = [f]¥. Denote by J*(M)
the module of smooth sections of the fiber bundle J*M. By S, sy C J*(M)
we denote the section Sj, (s (m) = jx(f)m,m € M.

Any smooth map F : M; — M, generates a module homomorphism

THE) + JHMy) — T5(My)
[, = [N
where f € C®(M,), mi € My, my € My, my = F(my).
Recall some basic results on the geometric structure on J'M [2].

Proposition 1 There ezists a unique element p; € J'(J'M) such that for
any 0 € J'(M) one has J'(8)(p1) = 0.

The module J (M) is the direct sum of the module of 1-forms A'(M)
and the ring C*°(M) : J' (M) = A'(M) @ C(M). Therefore any element
s € JY M) may be understood as a pair (w, f), w € A'(M), f € C®(M).

Define an operator

D . J\M) — AY(M)
(w, f) = df —w

where d is the de Rham operator.



Proposition 2 The fiber bundle J'M possesses a natural contact structure
defined by the universal Cartan’s 1-form Uy, = Dp;.

Distribution K : @y — Ker U, ,,, =1 € JYM is called the Cartan distri-

bution.
Denote by C®(JM) the set of functions a € C*°(J'M), a # 0 at any
point z; € J'M. We also define Uy = LUy, a € C°(J'M).

Definition 3 Differential ideal C in the algebra A*(J'M) generated by the
form Uy is called the Cartan ideal.

It is obvious that any form U{, a € C2(J'M) is a generator of the
Cartan ideal C as well.

Definition 4 A vector field X on the manifold J' M is called a contact vector
field if it preserves the Cartan ideal: Lx(C) C C.

Here Ly is the Lie derivative along the vector field X.
It is determined a vector field X0y = X(aj1y = Xo [2]. By this reason
one has the following

Proposition 5 Let a € C°(J'M). Any contact vector field X on the man-
ifold J*M is uniquely determined by its generating function f = Uy (X).

For a € C°(J'M) denote by X(sjo) and Lyf|oy a contact vector field with
a generating function f with respect to Uf* and the Lie derivative along X))
respectively.

PI‘OpOSitiOl’l 6 Let a,ﬂ S Cfo(JlM) Then X(fiof) = X(%f]ﬂ)'

Proof. By the Definition we obtain

a (o}
Xy UL = BX(J‘IC\')JU1 =

From the Definition one has following

Lk



Proposition 7 The bracket

[f1, fola = ([X<f1|a) X(lecv)])

determines a Lie algebra structure on C°°(J'M) for any a € C2°(J'M).
Here [X, Y] is the commutator of vector fields X and Y :

[X,Y]=XoY —~YoX.

Proposition 8 Let a, B € C(J'M), f1, f2, f € C*(J'M). Then
1° [fi, fla = §[%f, %f]
2 LUl = [L &f }

Proof. The statement 1° is a consequence of Proposition 6.
From the Definition 4 we obtain

Ly UL = g(H)U] , g(f) € C=(J'M).

Using Proposition 6 and the interior product X5 | we obtain

U7 ([Xuisy Xigim)) = [L%fL =g(f).
As a consequence we obtain
Proposition 9 Let a € C(J'M), fi, f € C(J'M). Then
[f1, folo = Ligjay(f2) — (1, filafo

Proof.  Applying the Lie derivative Ly, o) to the equality

Xy |UT = [
we obtain:

[Xmla)’ X<f2|a>MU1“ + X521 [L<f1|a>U1“] = Lf1a)(f2)-

Using statement 2° of Proposition 8 we obtain



[Xf1|a> X(lea)]JUa = [f1, fla
Lisa)(f2) = X o JUL ALUT) = Ligjay(f2) — [, Ailafa.
Let a, 8 € C°(J*M). Introduce the mapping
NP . C®(J'M) — C=(J'M)
fa = fp= %fa

From statement 1° of Proposition 8 one obtains

Proposition 10 Let a,8 € C*(J'M), fi,fo € C(J'M). The mapping
NP is consistent with Lie algebra structures in C°°(J'M):

(N2, NE(f)] = N2 (s fola)

If qi,...,q, are the local coordinates on the manifold M in a neighbour-
hood of a point z € M and u,py,...,p, are the local coordinates in fibres
JIM over this neighbourhood, then the form U; may be described as

U =du— Zpidq,'.
=1
In these coordinates the mapping f —+ X)) has the form

n 3f d@) def 8 )
X 10y = + : T X .
Vi) 2( opi dg | dg  Op (1)

(a) .
Here LilT = ag% + Xy, t=1,2,...,n
Let Ay, Ay be scalar differential operators in the ring C*(J'M).
For any fi, fo € C*(J*M) denote

(s = | 300 20N,

As a consequence of Proposition 9 we obtain
Proposition 11 Let a € C(J' M), fi, f» € C=°(J'M). Then
8 d©
[f1, fola = —Z Ao (f1, f2) ) + (L1, Ja)l(f1, £2))-

Remark 1 The form U, € Al(JlM) has the next basic property: a section
0 € T (M) is equal to Sj, sy for some f € C(M) if and only if 6*(Uy) = 0.



Chapter 3

Differential forms over 1-jet
manifold: an sl(2,R)-
representation and a divergence

type

Denote by A*(K*) C A*(J*M) the differential forms degenerating along the
vector field X0y, @ € C(JYM).

The contact field X(1jay, o € C°(J'M) defines a decomposition of the
space Ty, (J*M) in a direct sum at any point z; € J'M:

T, (JIM) =K, & RX(HQ%M.

1

This decomposition generates a projection

P, A(J'M) — A(KY)

w — X(1|Q>J(U{1 /\w)
The restriction of the 2-form dUY,, defines a symplectic structure on the
space K.
Define operators
T, : AJ(K*) — ASPAH(K™)
w — dUY ANw
Ly @ AS(K*) — AKX
w — d/U\lajw

Here d/U?f" is a bivector dual to the 2-form dU}" due to the symplectic struc-
ture. Denote by II, a projection on r-homogeneous component of A®(K*)



I, : AY(K*) — AL(KY)
Let II denote the mapping
I AY(K*) — A(KY)
w = i (n — k) w

Proposition 12 [/3],/4],[5]] Let « € C2°(J*M). Then operators T, L, and
II define an sl(2,R)- representation on module A% (K*).

Denote by A;’Q(J ' M) primitive elements of this representation.
Using the structure of sl(2,R) - primitive elements we obtain

Proposition 13 [[3],[4],[5],[6]] Let o € C=(J'M). A k-formw € A*(J'M),
k < n belongs to the module AF (J'M) if and only if

1°. X1}y )w = 0

20, Tr—F+ly = 0.

A form w € AL (J'"M),k < n is called an effective form.
We see at once that primitive elements do not depend upon the generator
a € C°(J*M) modulo C. Denote A2(J'M) = A2 _(J'M)mod C.

As a consequence of the Definition we obtain
Proposition 14 Let a, 8 € CX(J'M), w € AL (J'M).
Then Po(w) € AZF(J'M).

Proof. It is sufficient to prove that (dU{ )" A (X(1|Q,)J[U1°‘ A w]) =0, if
(dUYHHT Aw = 0. Tt is easily seen that
(AU A (X [[UF Aw]) = X (U7 AUF A w)
— (X [AULTH) A U A w.

But it is easy to check that

k+2
[dUSH AU Nw = (é) [dUPTH AUP Aw =0,

a

X(1|Q>JdUi1 — L<1|Q>U{x:0.



Proposition 15 [[6],[7]] Let o € C>(J*M). For any form w € A*(J*M)
the form P,(w) admits a unique Hodge-Lepage decomposition

P (w) = w§ + Towi + T205 + ... .
Here w2 € AFF(J'M).

By analogy with [6] define the operator
dy o AL(K*) — AL(KY)
w —  P,dw
and the Euler operator
Eu + AN (J'M) — AL (J'M)
w = (Lgjay +dyo L, 0dy)w
It is easy to check that following equalities hold:
L°. EaLpje) = Latja)fa
2°. do&, =0
3% Eq0& = Liyjnyéa
15 E(fw) = FEa(w) + L (Flo + d2f A (Lo dow) + d2(X 1)
5. Pu(Lflayw) = FEalw)+d2 [X syl — f Lo d3w]+To (X(f)] Lo diw) .
Here f € C(J'M), w € AZ_(J*M).
Keeping in mind the notion of a divergence type differential operator we
recall the notion of a divergence type form [6].

Definition 16 A form w € A"(J'M) is of a divergence type, if there exists
a form 0 € C such that d(w + 0) = 0.

From Proposition 14 we obtain that a divergence type does not depend
upon generator a.

Proposition 17 [6] Let o € C*(J'M). A form w € AL (J'M) has a di-
vergence type if and only of E,w = 0.



Chapter 4

Monge-Ampere equations:
contact symmetries

Recall basic notions of Monge-Ampere equations geometric theory [6].

Definition 18 Let w € A”(J'M). The Monge-Ampere operator A, associ-

ated with w 1s defined by
A, @ C®(M) — A*(M)
f = ST @

Recall that any point z, € J*M, zo = [f]2, f € C°°(M) defines a plane
L(zs) = Ty, [Sj, (5 (M)] C Ty (J'M) at a point 2y € J'M, = = [f]..

The Monge-Ampere equation associated with a form w € AZ(J'M) is
called a submanifold E, C J*M:

E,={zy € J’M| w|p(s,) = 0}.

Denote by Ct(J*M) a group of (contact) diffeomorphisms preserving an
ideal C. An action of Ct(J'M) on Monge-Ampere operators is defined by

a(AW) = Aa*(w), ac Ct(.]lM)

These transformations preserving the Monge-Ampere equation E, form a
group Symw. A group Sym w is define by

Sym w = {a € Ct(J'M)|a*w — h, -w €C, h, € C™(J'M)}.

It is possible to characterize the group Sym w by its infinitesimal algebra
Ssymuw.

10



Definition 19 The algebra
symw = {f € C°(J'M)|L;(w) — M f)w € C,A(f) € C=(J'M)}

15 called the algebra of contact symmetries of the Monge-Ampere equation
E,.

Proposition 20 Let « € C°(J'M), f € sym w, w € AL (J'M). Then

Liflayw = M Fw + U AMX (1, )1y | @)-

Proof. From Definition 19 we obtain
Lijloyw = A(flw + U NG+ dU ANE, 6 € AT KT), Z2€ ALTHKY).

Since X(1|O,>J OL(fIQ,) _L<f|a')OX(1]a')J = X<[1,f]|a,>J then a,pplying the interior
multiplication Xy |4)] to the last equality one gets 8 = X1 )ja)]w. It is easily
seen that P,Lsyw = A(f)w + dUF* A Z. Multiplying by the form dU7 and

using an effectiveness of w we obtain

MFAAUY Aw + [dUT A E = [dUY]P A E = dUY A PoLfay(w)
= PQ,LUIQ)(CZUIC" A w) = 0.

Therefore = =
A majority of second order differential operators in mathematical physics
is the divergence type Monge-Ampere operators [6].

Definition 21 The Monge-Ampere operator A, (respectively Ay,

Y e C°(J'M)), w € A2(J'M) is called to be of a divergence type (re-
spectively a conformal divergence type), if the form w has a divergence type.
Corresponding equation s called a dwergence type Monge-Ampere equation.

We confine ourself with the representative class of the divergence type
Monge-Ampere equations E,, associated with forms w € A? (J'M), dw =0

for some o € C2°(J'M).

As a consequence of Proposition 20 we obtain

Proposition 22 Let a € C(J'M), w € A, o(J'M), dw = 0, f € sym w.
Then d3[A(f) + (1, fla] Aw = 0.

11



Proof. From Proposition 20 it follows that L sy (U7 A w) = [A(f) +
[1, fla]UY A w. Applying the operator d and using an effectiveness of the
from w we obtain the statement.

Define Monge-Ampere equations ”indivisible” by first order differential
equations. This notion is somewhat similar to absence of intermediate inte-
grals [8].

Definition 23 Let a € CX(J'M). We call a form w € AL (J'M) the

indivisible one if the rank of w s equal to 2n almost everywhere
Denote by AL (J'M) the set of indivisible forms.

Proposition 24 Let a € C*(J'M), w € A? (J'M), dw =0, f € sym w.
Then X(f) + [1, fla = const.

Proof. Using effectiveness of the form w and multiplying the result of
Proposition 22 by L, we obtain that X\(s)4[1,f]ale) /@ = 0. Since rk(w) = 2n
almost everywhere and X(yjo)]w = 0 then A(f) + [1, fla = const.

It is easily seen that if @ € CX(J'M), w € AL (J'M), dw =0, f €
n(l,sym w) then A(f) = const. Here n(1,sym w) is a normalizer of 1 in the

algebra sym w.
Define symow = {f C sym w|A(f) + [1, fla = 0}.

Proposition 25 Let a € O (J' M), w € A”,, dw =0. Then

*,Q07

[sym w,sym w] C sym gqw.

Proof. Using Proposition 24 and the Jacoby identity one gets

([flny]a) = Lisioy[A(f2)] = Ligyjon [A(F1)] =
Loy ([1, fola) + Ligolen (1, f1] ) ==I[L[f1, fola-

Corollary 26 Under the conditions of Proposition 25, sym,w is an ideal of
the algebra sym w.

12



Chapter 5

Invariant solutions

Recall basic facts on invariant solutions [2].

Definition 27 A submanifold j : L — J'M,dim £ = dim M, is called a
solution of the Monge-Ampere equation E,, w € A*(J'M), of

1°. 7*U; = 0

2°. 7w = 0

Let g be some finite dimensional and complete subalgebra of the Lie
algebra symw. Using the Lie algebra g we construct connected Lie group
G C sym w whose Lie algebra coincides with the algebra g.

Denote by G(z1) the G-orbit passing through the point z; € J'M.

Definition 28 A solution L of the equation E,, w € A(J'M) is called
invariant with respect to action of G C symw (G-invariant), of G(L) = L.

Let fi,..., fx € C(J'M) be a basis of the algebra g. It is easy to check

Proposition 29 A solution L of the equation E,, w € A"(J'M), is G-
wnvartant if and only if fi|; =0, 1=1,2,... k.

As a consequence of Proposition 29 we obtain that all G-invariant solu-
tions of equations E, lie on a l-order equation

Ef p={z1€ J'M|f(z)) = ... = fu(z:) = 0}.

Suppose that t : Ey, 7 < J'M is a smooth submanifold in J'M.
Denote by L+ skew orthogonal complement to subspace L C K,,.

13



Definition 30 A subspace L C K,, is called involute if L~ C L. Equation
E C J'M is called involute at the point z; € J'M if subspace T,,(E) N K,,
1s nvolute in K, .

Using this Definition one immediately gets

Proposition 31 An equation Ey, ;. s involute at the point z, € Ey 4,
if and only of [fi, fil(z1) =0 forallt,7 =1,2,... k.

Definition 32 An involute equation E C J'M 1is called reqular at the point
z, € E, if the spaces T, (E) and K, are transversal at the point z; € E.

As a consequence of the fields Xy, ..., X, Definition one obtains

Proposition 33 The equation Ey, ., is involute and regular. The contact
fields Xy, ..., Xy, generate a k-dimensional completely integrable distribu-
tion on an equation E; 4.

Suppose that there exists a submanifold s : S(G) — Ey, _, transversal
to G-orbits and identified with the factor-set Ey, . f . Denote

i=tos:S(G)— J'M.
From Proposition 33 we obtain

Proposition 34 Let o € C°(J'M). There exists a skew orthogonal decom-
position with respect to 2-form dt*U; :

TflEflwnfk = Tﬂ?ls(G) @ Tl‘lG(wl)
= Tx1G<.’B1)

N * o
and, moreover, ker dt*Uj ITIlEflvny.fk

Proof.  From the definition one obtains that the annihilator of T, Ey, 4,
in T J'M is dUp-dual to the distribution Xy ,..., Xj,.

Proposition 35 Leta € C°(J'M). The form1*Uy defines a contact struc-
ture on the manifold S(G).

Proof.  Since the equation Ey, 4, is regular (Proposition 33) and

(see Proposition 34), then the form di*Uy is nondegenerate.

14



Chapter 6

The reduction procedure and a
divergence type

A contact manifold S(G) can locally be regarded as a manifold J'M¢ for
some (n — k)-dimensional manifold Mg. Any G-invariant solution £ of the
equation B, is uniquely determined by a factor set Lo = L/G C S(G) =
J*Mg. This manifold (may be, with singularities) is tangent to the Cartan
distribution on J*Mg. A manifold L¢ is a solution of the (reduced) Monge-
Ampere equation. This equation is the result of the equation E, reduction
with respect to G.

Our purpose is to find conditions guaranteeing preservation of a diver-
gence type of the Monge-Ampere operator after the reduction procedure.

Keeping in mind the reduction procedure we define a k-vector |g| = Xy, A
...\ Xy, on the Lie algebra g.

Definition 36 The reduction of the form V € A"(J'M) with respect to the
group G is called the (reduced) form (V|G) € A"7*S(G), (V|G) = i*(|g|] V).

Note that the reduced form is defined up to an R-multiplication. It is
easy to check

Proposition 37 Let a € CX(J'M), w € A (J'M) and the group G
satisfy the above assumptions, M be a smooth manifold. Then (w|G) €
APZE (T Me).

et o

In spite of R-indeterminacy of the reduced form (w|G), the reduced equa-
tion B, is well-defined.

15



Below we denote by ng(g,sym w) the normalizer of the algebra g in sym w
with respect to the 8-Lie algebra structure, 8 € C2°(J'M). We also use the

natural notation :
adgf @ sym w — sym w

g = (g, fls
g, f € sympgw. For w € A7 ;(J'M),dw = 0 we define a functional

vg : ng(g,symw) — R
f = M)+ flp —trad £

Proposition 38 Let o, 8 € CX(J'M), w € AL 4(J'M), dw = 0, the group
G satisfy the above conditions, 15 € ng(g,symw), v(g) = 0 for any g € g.
Then df(w|G) = 0.

Proof. Let C’Z»’fj’ be the structure constants of the Lie algebra g. Then

(X m]) - X gas]@) = PslLisusy(Xinip] - - Xiisy @)
—Ps Xyl A X1y - Xsisy lw)
= [- trad<f11ﬁ> lg AP X1y ] - - Xialpy] @)

+ Z D'CLPs( Xy X imim] - Xy ) X ()] -+ X(puisy)@)

—P5X<f1|ﬁ>JL<f2|ﬁ>(X<f3w>J o Xy lw)

+Ps X118y X pa18y ) A X g1y ) - - - Xipuppy Jw) =
k

= S (=)= trad (£i8)]s + A(f)]

=1
< Pe(X(s10y] - Xiriipy | X gipnioy] - - Xisisyw)-

We use the following relations:

1°. [Lx,Y]] = Lixy).

2% s Xsll X s ] - s | Xismm ] - Xm0 X0
- Xipiplo = (C5Xgm + LX) Xiam] - Ximm) X))
X X e - Xigis Jw

Here X, Y, X5 are vector fields.
Proposition 39 Let o, € C°(J'M), w € A} 4(J' M), dw = 0, the group

G satisfy the above conditions, v,(g) = 0 for any g € g,(X(1jay]w|G)a = 0.
Then d3(w|G) = 0.

16



Proof. It is easy to check that (w|G) = (P,w|G) 4+ U (X0 |w|G) =
(P,w|@G). Tt is sufficient to prove that ¢*Uy A d(P,w|G) = 0. Since the form
(P.w|G) € A2 (S(G)), it suffices to prove that d(UY A Py(w)|G) = 0. Using

computations similar to the ones from Proposition 38 we obtain

AU} A Pow|G) = d[X (g1 - X (g | (U A Paw)] = {5,
(1) [—trad, f;], + A(f%;) + [ Filad X o) - - Xt ate ) Xy fed ] - -
X (o (U N Paw) + (=1)*(|g]][dUT A Paw — U N dPow]) }-

Since Pow € AZ (J'M) then dUY A P,w = 0.

Using the expression P,w = w — U A X(jj4)]w we obtain

(g [UF NdPyw]) = —i*(|g]|[Uf AdUL AN (X gy |w)]) = =" U Adi* U A
(X(1jay Jw|G) = 0.

Let h(w, g) denote the set n,(g,symw)/g.

Theorem 40 Let a, B € CF(J'M), w € AL4(J'M), dw = 0, the group
G satisfy the above conditions, (Xyq)|w|G) = 0,v4(g) = 0 for any g € g.
Then (hw|G) has a divergence type for some function h € h(w, g) if and only
if vo(h) = 0.

Proof. Below we shall use the notation k& both for the function k &
C®(J'M) and for "k € C*(S(G)). At first using the formula P, L. =
FLgjay + d]‘jX(fla)J + X<f|a>jdg we compute

EalP(w]G)] = [Lapay + d) Lad|[R(w]G)] = Ltjay(h)(«]G) + R L1 o) (@] G)
+hd L, d2(w|G) + 2 Lo(dh A (w]|G)) + d2h A (L.d%(w]G))

= L) (R)(@|G) + PoLpje) (w|G) + hdy Lody (w|G) = Xipja) |4 (w]G)
+doh A (Lado(w]G)).

From Proposition 39 it follows that
Ea(h(w|@)) = "[1, h]a(w|G) + PaLpay(w|G).
Using the computations similar to the ones from Proposition 38 we obtain
Ex(hw|G) = v(h)(w|G).

Note that under Theorem conditions the function h exists if the condition
dim h(w, g) > 1 is valid. Namely,it is possible two cases:

17



1°. The algebra is h(w, g) non-commutative. Then an existence of the
function h is a consequence of Proposition 25:

V([fl, fz]a) =0

for any fi, f2 € h(w, g).
2°. If the condition 1° is not valid, the equation v(h) = 0 determines a

hyperspace in the vector space with the dimension > 1.

Remark 2 Using the reduction procedure to define invariant solutions with
1-symmetry group of the Monge-Ampere equation allows us to reduce the di-
mension by one. If the dimension of a G-orbits is equal to n — 1, then from
the theorem we obtain that the problem of a determination of the divergence
type Monge-Ampere equation G-invariant solutions associated with symme-
tries algebras which preserve a divergence type reduces to the integration of
the set of ordinary differential first order equations. If the dimension of a G-
orbit is smaller than n— 1, then it is necessary to have additional information
about the structure of the reduced equation [[8],[10]].

18



Chapter 7

Example: the von Karman
equation

Apply our results to the equation

dp O % 0%
O 0t 8¢t 8¢3

This equation describes a behaviour of the velocity potential ¢ in the tran-

sonic approximation of gas and hydrodynamics. It also defines a spreading

of rays in a neighbourhood of a caustic in a homogeneous atmosphere [11].
This equation is defined by the effective form w over manifold J'R3:

w = pldpl N Clq2 A dQ3 + dp2 A dql N dq-g, + dp3 A dQQ A Clq1

in canonic coordinates (g1, g2, g3, %, p1, P2, p3). It is easy to check that E,
is the indivisible Monge-Ampere equation: w € A2 (R?). In the following
table all generators of infinite-dimensional contact symmetry group of von
Karman equation are represented [[8],[9]]: '
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N Symmetry f A(f) A contact transformation image of
a point (QI; 92, Q3, u, pi, P2, P3)

1 q2P2 + g3ps + 2u 2 (QI; e Q2, e (J3, €2tu e’ P e'p,, €°'p3)
2q1p1 + 3(p2q2 + p3qs) 2| (e7%qu, e ¥qa, e g3, u, €*'py, €'py, €¥'ps)
q3p2 — @23 0| (g1, g2cost — gssint, gasint + gscost, u, py,
p2 cost — pysint, pysint + ps cost)
4 P1 0] (¢ —t, g2, g3, U, P1, P2, P3)
5 P2 0 (q1, @2 —t, g3, u, p1, P2, P3)
6 P3 0| (q1, g2, g3 —t, u, p1, P2, P3)
7 i ((I2,2 q3) 0 (g1, ¢, g3, v+ tH(q,q3), p1,
T+ 54 =0 P2 +t2(as, G3), P3 + 150 (42, 93))

Our goal is to find invariant solutions decreasing on co. By this reason we
except symmetry H. We obtain a 6-dimensional algebra gs whose structure
in the following table is represented:

|l f2 | fs fa fs fe
0] 0 0 0 —fs | —fe
f210 0 0 | =2f4| =3fs | —3fs
f500] 0 0 0 fe —fs
fal 0| 2f4 0 0 0 0
fs | fs|3fs| —fs| O 0 0
fe | fo | 3fe | [5 0 0 0

It is easy to see that gg 1s a solvable algebra: it contains a commutative
ideal g3 = (f4, f5, fo) and factor-algebra g3 = gs/g3 is commutative.

Keeping in mind invariant solution construction we find 2-dimensional
subalgebras of the algebra ge:

1°.2-dimensional subalgebras of the algebra gs. These algebras correspond
to trivial invariant solutions.

2°.2-dimensional subalgebras of the algebra g3

3°.2-dimensional subalgebras spanned by (e, e3), e1 € gs, €2 € g3. We
except symmetries f5, fs,because of the decreasing condition on co. Therefore
these algebras have the form (afy + g1, 92), @ € R; g1, g2 € g5

For example we consider the spiral rotation algebra g,. This algebra is
commutative and generated by

fr = p+algpr — ¢2p3)
fir = @p2 + q3ps + 2u.
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An easy computation shows that this algebra satisfies the conditions of The-
orem with 8 =1 and a = (¢ + ¢3)~%. By this reason this algebra preserves
a divergence type. The submanifold S(Gs) is described by

92 = 73, P2= [za’u_l_pl]/a)

— Do | =

q3 = 5, p3 = [2(“‘ —Pl]/a-
with the contact form
Kk TTO 1
Uy = §(du — pidg).

The function h is equal to py, the reduced form is

1
(hw|Gy) = d[—2au® + %p‘? — %pf] mod C
and the reduced equation is
a[60]° 1 [80]° 2al? — C
TIZE 22 L9402 =
6 | Oqu 2a | Oqy ’

where the function ¥ is the reduction of the solution ¢ onto the manifold
S(G3), C = const.

Finally we obtain Ga-invariant solutions in the form

_ 1 q
o(d) = (& + &) ' (q1 L arctan _2) |

q3
where
1 1 C
—[—p 3 —p 2 Y 1/2
X(m) [12 (m) 4042 (m) 2(1] Y

the function P(m) is defined from the equation
C[o(P(m) —a )]+ a (P(m) —a™?) +8/3m = 0
in which

('=p, plv(z)) =2

and g 1s the Wierstrass function with invariants

go = 1247 g3 =8a™® + 24Ca™".

21



Bibliography

[1]

2]

[10]

Lie S. Zur allgemeinen Theorie der partiellen Differentialgleichungen be-

liebeger Ordnung,Leipz.Berich.,1 (1895),53-128.

Lychagin V. The local classification of Nonlinear Differential Equation
in First Order Partial Derivatives, Russian Math. Surveys,vol.30 (1975),
105-175.

Serre J.P. Algebress de Lie semi-simples complexes, W. A. Benjamin,

Inc., Reading, Mass.(1966).

Weil A. Introduction a1’ etude des varietes kehlerieness, Hermann, Paris

(1958).

Wells R.O. Differential analysis on complex manifolds, Prentice-

Hall,Inc.,Englewood Cliffs,N.J.(1973).

Lychagin V. Contact Geometry and Nonlinear second order Differential
Equations, Russian Math. Surveys,vol.34 (1979), 149-180.

Lepage Th.N. Sur certaines congruences de formes alternaes, Bull. Soc.

Roy. Sci., Liege,vol.15 (1946) 21-31.

Zilbergleit L. Model Solutions of Nonlinear Differential Equations of
Second Order, Uspehi Mat. Nauk,vol.36 (1981), 207-208.

Zilbergleit L. Geometric invariants of Monge-Ampere equations: sym-
metries and conservation laws, Functional spaces and equations of math-
ematical physics, Voronez, (1988), 11-17.

Zilbergleit L. Symmetries and conservation laws of the Minkowski and
Aleksandrov problems, Soviet Math. Dokl.,vol.31, No.2 (1985),291-295.

22



[11] Karman T.von. The similarity law of transonic flow, Journal Math.
Phys., vol.24 (1947), 182-190.



