LOW-DIMENSIONAL PSEUDO-RIEMANNIAN HOMOGENEOUS
SPACES

BORIS DOUBROV AND BORIS KOMRAKOV

1. INTRODUCTION

The aim of this paper is to describe all pseudo-Riemannian homogeneous spaces in
dimensions 2 and 3. The case of Riemannian homogeneous spaces is well-known (see
[1, 2, 3]). We divide the solution of this problem into two parts: local and global.
The local classification of pseudo-Riemannian homogeneous spaces is equivalent to
the description of effective pairs of of Lie algebras supplied with an invariant non-
degenerate symmetric bilinear form on the isotropy module. This classification for
two- and three-dimensional homogeneous spaces is completed in section 2. Then in
sections 3 and 4 we construct all global pseudo-Riemannian homogeneous spaces in
dimensions 2 and 3 respectively. In the three-dimensional case we restrict ourselves
to the case of a non-trivial stationary subgroup. All other pseudo-Riemannian ho-
mogeneous spaces in this dimension are just Lie groups with a left-invariant metric.

Definition 1. A pseudo-Riemannian homogeneous spaceis a triple (G, M, g), where
@G is a connected Lie group, M is a connected smooth manifold supplied with a
transitive action of G, and g is an invariant pseudo-Riemannian metric on M. The
dimension of (G, M,g) is the dimension of M.

We assume that G acts on M effectively (i.e. the identity is the only element that
acts trivially on M). This allows us to identify G with a subgroup of the Lie group
Aut(M, g).

Example 1.1. Let us describe all one-dimensional pseudo-Riemannian homoge-
neous spaces (G, M,g). If dim M = m, then dim Aut(M,g) < m(m + 1)/2. So,
in our case dim @ < 1, and since G is transitive on M, we have dim G = 1. Hence,
G =Ror G = S*. In both cases G is abelian and acts on M effectively. This follows
that M = G, the action of G on M is simply the left action of G on itself, and g is a
left-invariant metric on G. So, we see that all one-dimensional pseudo-Riemannian
homogeneous spaces have the form:
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(1) G=M =R, g = adz?, where a # 0;

(2) G=M =5, g =ad¢?, where a # 0.

In both cases these pseudo-Riemannian homogeneous spaces are maximal. It is
easy to see that up to the isomorphism of pseudo-Riemannian manifolds we can
assume in case (1) that a = +1, while in case (2) all pseudo-Riemannian manifolds
are non-isomorphic. It follows from the following fact: all automorphisms of the Lie
group R have the form z — Az, X # 0, while the only automorphisms of S are

¢ — Lo

2. SIMPLY CONNECTED AND LOCAL PSEUDO-RIEMANNIAN HOMOGENEOUS
SPACES

Let (G, M,g) be a pseudo-Riemannian homogeneous space. We fix an arbitrary
point a € M and let G = G, be the stationary subgroup at the point a. The isotropy
action of G on T,(M) is a linear action defined by g.v = dog(v) for g € G, v € T, M.
It supplies the tangent space T, M with a G-module structure. Let g be the algebra
of the Lie group G, and g the subalgebra of g corresponding to the subgroup G.
Since the action of G on M is effective, the pair (§,g) has the following property:
subalgebra g contains no non-zero ideals of §. We shall call these pairs of Lie algebras
effective too.

The manifold M can be identified with the set G/G of left cosets, and the action
of G on M becomes simply the left action on G/G:

9.(RG) = (gh)G, g,k €G.

Moreover, the tangent space T, M can be identified with the quotient space §/g and
the isotropy action of G on T,M with the adjoint action of G on §/g:

g.(z+g)=(Adg)(z)+9, 9g€G, zEB.

Invariant pseudo-Riemannian metrics g on M are in the one-to-one correspondence
with invariant symmetric non-degenerate bilinear forms B on the G-module g/g.
The g-module §/g corresponding to the isotropy action of G on §/g has the form:

z.(y+9)=[z,y]+g, =z,y€4,

and the bilinear form B is also an invariant bilinear form on the g -module /g, i.e. .

B(z.v1,v2) + B(vi,z.v2) =0 forall z € g, v1,v; € §/g.

Moreover, if G is connected, then the converse is also true.

Summarizing all this, we see that to each pseudo-Riemannian homogeneous space
(G, M, g) there corresponds a triple (§,g,B), where (g,g) is an effective pair of
Lie algebras and B is an invariant symmetric non-degenerate bilinear form on the g-
module §/g. We shall call these triples local pseudo-Riemannian homogeneous spaces.
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(The reason for this notation is that, locally, a triple (g, g, B) uniquely determines
the corresponding pseudo-Riemannian homogeneous space.)

Let us describe all pseudo-Riemannian homogeneous spaces corresponding to a
given local pseudo-Riemannian homogeneous space (g, g, B).

Theorem 1. Let (§,9,B) be a local pseudo-Riemannian homogeneous space such
that codimzg < 4. Then there ezists a unique (up to the equivalence) pseudo-
Riemannian homogeneous space (G, M*,g*), corresponding to (8,9, B), such that
M* is simply connected and the stationary subgroup G* is connected.

Proof. It follows from [5] that there exists a unique (up to the equivalence) effective
homogeneous space (G, M*) such that M* is simply connected and the stationary
subgroup G* is connected. Let us show that this homogeneous space admits a unique
invariant pseudo-Riemannian metric g* corresponding to the bilinear form B. Let
m = eG* € M*, where e is the identity element of @". Then for the existence of
g*, it is sufficient for B to be invariant with respect to the isotropy action of G*
on Ty, M* = §/g. But this condition is satisfied, since G* is connected and B is an
invariant bilinear form on the g-module g/g. d

Remark 1. This result is no longer true when codimg g > 5. The simplest counterex-
ample (see [5]) has the following form. Let
z € R} ,

g =s5u(2) x su(2), and g = { ((zg _(iw) , (u(x)z _?aw))

where o is an arbitrary irrational number. Since § is compact, there exists an
invariant positive bilinear form B on the g-module §/g, and hence (g,g, B) is a
local pseudo-Riemannian homogeneous space. But the corresponding virtual sub-
group G C SU(2) x SU(2) is not closed, and, therefore, there are no global pseudo-
Riemannian homogeneous spaces corresponding to (g, g, B).

Let N = Norm(G*)/G*. Then N is a Lie group, and we can define the action of

N on M* in the following way:
(nG@*).(h.a) = (hn).a forall nG* € N, h€ G .

Lemma 1. The action of N on M* is well-defined and has the following properties:

(1) st is effective and free;

(2) it commutes with the action of G on M*;

(3) the mapping N — M*, nG* — n.a is injective and its image is the set of all

points in M* whose stationary subgroups are equal to G*.

Proof. If hy.a = hy.a for by, hy € G, then hy = hyg for a certain g € G* and

(han).a = (hign).a = (hin)(n"'gn).a = (hin).q,
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since n~'gn € G*. This means that the action of N to M* is well-defined.

If (hn).a = h.a for some h € G, then n = h™'(hn) € G*, and hence nG* is the
identity element in N. So, we see that the action of N on M* is effective and free.
The proof of (2) and (3) is similar. O

Consider the subgroup Ny of N that consists of all elements leaving the metrics
g* stable. It follows from Lemma 1 that we can identify N with the subset of M*
consisting of all points whose stationary subgroups are equal to G*. If ¢ € M* is
any of these points, then we can identify the tangent space T, M* with §/g, and it
is easy to show that Ny can be identified with the following subset in M™:

No={ze M |G =G, g, = B}.

Let D be any discrete subgroup in No. Then we can consider the manifold M =
M*|D and the canonical projection w: M* — M. From item (3) of Lemma 1 it
follows that we can define the action of G on M and the pseudo-Riemannian metric
g on M that will be invariant under this action:

(1) g.7(z) = w(h.z), gra) = dm.(g}), 9EG ,zEM"

Notice that the action of G on M is not necessarily effective. Let H be the
subgroup in G* consisting of all elements that act identically on M. Then H is a
normal discrete subgroup. Moreover, it is pos51ble to show that H = DN Z (G )s
where Z(@") is the center of G*, and both G and D are considered as subgroups
in Aut(M*,g*). We can c0n81der instead of G, the group G = G /H and the
induced action of G on M. So, by means of the dlscrete subgroup D C N, we have
constructed a new pseudo-Riemannian homogeneous space (G, M, g) which is locally
equivalent to (G, M*,g*).

Theorem 2. The procedure described below gives a one-to-one correspondence be-
tween discrete subgroups D C Ny and all pseudo-Riemannian homogeneous spaces
corresponding to (8,9, B).

Proof. Let (G, M,g) be an arbitrary pseudo-Riemannian homogeneous space cor-
responding to (g g,B) It follows from [5] that the homogeneous space (G, M) is
equivalent to (G /(Z(G") N D), M*/D), where D is a certain discrete subgroup in
N. Let n: M* — M be the canonical projection, m* = eG*, and m = w(m*).
The projection 7 induces the identical transformation of the tangent spaces Tr«M*
and T,,M, which are both identified with §/g. Therefore, it is compatible with
the pseudo-Riemannian structures on M* and M. This implies that the discrete
transformation group D must preserve the metric g* on M*, and hence D lies in

Np. O
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Theorems 1 and 2 allow us to divide the classification of all pseudo-Riemannian
homogeneous spaces in dimensions 2 and 3 into the following parts:

(1) The classification of all local pseudo-Riemannian homogeneous spaces (g, g, B)
such that codimgg = 2,3.

(2) For each triple (§,g, B), the construction of the corresponding simply con-
nected pseudo-Riemannian homogeneous space (G, M*,g*).

(3) Description of all discrete subgroups D C No.

3. LOCAL CLASSIFICATION

3.1. Two-dimensional case.

Theorem 3. Let (§,9,B) be a local pseudo-Riemannian homogeneous space such
that codim g = 2. Then it is equivalent to one and only one of the following triples:

1.1 g=R? g={0}:

Uy U2
(751 0 0 y B = + (é (]).) It
U 0 0
1.2 g=R? g={0}:
Uy Uy
—_— 1 0
Uu1 0 0 ’ B = (0 _1),
Uy 0 0

2.1 g=RAKR, g={0}:

Y U2 a 0
Uq 0 U , B=(0 ), (1750;

Ug | —U7L 0

2.2 g=RAR, g={0}:

Uy U2
up | 0wy, B=(8 0) a#0;

Uy | —u; O

2.3 g=RAR, g={0}:

| Uy Uz
Uy 0 u , B = (2 (]i))

Ug | —UL 0
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3.1 §=s0(1,1) AR? g=s0(1,1),

€1 U1 U

e 0 wus —uy . 1 0).
U1 | —Us 0 0o’ B=+ (0 1)’
Ug | —U7 0 0

4.1 g=s50(2) AR? g=s50(2),

€1 U1 Uz

€1 0 Uy —Uz _ 01 .
U | —U1 0 0o’ B—i(l 0))

U9 U2 0

51 g=sl(2,R), g= { (z -O‘”)

e 0 2u;  —2u, _ [0 a
u | —2u; O e1r '’ B = (a 0) a#0,
Uy | 2us —eg 0

_ w 0
6-1 g= 511(2), g= { (0 —iw)

| €1 Uy U2

€1 0 U9 —U1 _ a 0 .
up | —ug O er ' B= (O a) a#0;
Ug Ul —€1 0

7.1 g=sl(2,R), g= { (2 —ow)

| €1 Ui Ug
€1 0 Uy —Up B= a 0 0
) = a#0.
Up | —U2 0 —€1
Ug U1 €1 0

Proof. The local classification of all two-dimensional homogeneous spaces was pro-
vided by S. Lie [7]. To extend this classification to the case of local pseudo-Riemannian
homogeneous spaces one needs

(1) to choose those pairs (g, g) from Lie’s classification for which the g-module §/g
admits an invariant symmetric non-degenerate bilinear form B;
(2) to describe all these forms B up to the induced action of Aut(g, g).
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The first item was completed in [6].

The second part is trivial in most cases except the following: § = R AR, g =
{0}. Let {us,us} be a basis of §, such that [u1,us] = us. In this basis, the group
Aut(g,g) = Aut(g) has the following form:

o

This group induces the following transformations on the set of all symmetric bi-
linear forms on g:

mER*,yGR}.

_f[a b az? z(ay + b)
B = (b c) — (:c(ay+b) ay? +2by+c/’
We see that if a # 0, then the bilinear form B can be transformed to one of the

forms given in items 2.1 and 2.2 of the theorem. If a = 0, then b # 0 (otherwise, the
form B would be degenerate), and the form B is given in item 2.3 of the theorem. [J

3.2. Three-dimensional case.
Here we restrict our attention to the case of a non-trivial stationary subalgebra.

Theorem 4. Let (§,9,B) be a local pseudo-Riemannian homogeneous space such
that g = 3 and g # {0}. Then it is equivalent to one and only one of the following
triples:

1.1§ = (s0(1,1) AR?) x R, g = 50(2):

€1 U U2 U

€1 0 ur —U2 0 01 0
w|—us 0 0 O, B=|10 o]|;
us | ug O 0 0 0 0 %1
uz| O 0 0 0

0) ' zz,yGR}:

1.25=a AR?% g=s50(1,1) C a, where a = {(

o8
<

l €1 (751 U Uus
€1 0 Up —Up 0
uy | —uy O 0 0, B=
U U9 0 0 Uy '
ug| O 0 —uy O

o~ o
oo
e © O
)
N
o
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1.33 =5l(2,R) xR, g =s0(1,1):

€1 (5% U9 us
(A1 0 2u1 —2u2 0 0 a 0
up | —2u; O e1r 0, _ B=|a 0 0 a#0;
Ug 271,2 —e1 0 0 0 0 £1/

1.4 3 =a Ans, g=aqa, where n3 is the three dimensional Heisenberg algebra with

z 0 O
basis {uy,uz,us}, [u1,us) = us, and a = 0 —z 0f|zeR
0 0 O
€1 (751 Uy us
€1 0 u1 —U2 0 010
Uy | —Up 0 us 0, B=|1 00 (1750,
Uy | w9 —usz 0 0 0 0 a
_ z 0
1.5g=5[(2,R)xR,g={((0 _w),:c) wGR}:
€1 uy Ug us
€1 0 (751 —Us 0 0 a O
Uy | —up 0 er+us 0, B=]a 0 0 ab #0;
U Uy —€1 — U3 0 0 00 b
ug| O 0 0 0
2.13=(50(2) AR?) xR, g=150(2):
€1 Uq Uy U3
€1 0 —Us Uy 0 €1 0 O
Uq U 0 0 0 ; B=]|0 ¢« 0 €1,€3 = :I:].,
Uy | —u; O 0 O 0 0 e
uz| 0 0 0 O
225=aAR? g=s0(2)Ca, wherea:{(fy z) w,yeR}:
| €1 U Uy Ug
€1 0 — U2 Uy 0 e 00
Uy | ug 0 0 1w, B=|0 € 0 e==x1,a+#0;
us | —u; O 0  us 0 0 a

us 0 —U1 —Ug 0
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235 =sl(2,R) xR, g={((_0m g)w) wER}:
|

€1 U1 Uz Us
€1 0 —Us U1 0 a
U1 U 0 €1 + usg 0 , B=1]0
Uy | —U3 —e; — Us 0 0 0
uz | 0 0 0 0
_ iz O
2.49:511(2)><R,g={((0 _z.w),m) mGR}:
l €1 Uy U us
€1 0 —U2 UuUq 0 a
Uy | Uy 0 —er+uz 0, B=1]0
Uy | —U1 €1 — U3 0 0 0
2.55=sl(2,R) xR, g=s50(2):
€1 (751 Us U3
e1| 0 —uy wg O a
U1 Ug 0 €1 0 ; B=]0
Ug | —U1 —€1 0 0 0
us 0 0 0 0
2.6g=su(2) xR, g=s50(2) = { (z(';c _gw) ceR }
l €1 Uy Ug Uus
eg| 0 —uy wu; O a
U1 | Us 0 —e 0, B=|0
Ug | —U7 €1 0 0 0
uz | O 0 0 0

o &

Q

o e

o Q

0

0| ab#0;
b

0

0| ab#0;
b

0

0 a#0;
+1

0

0 a#0;
+1
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2.75=aAns, g=a, where ng is the three dimensional Heisenberg algebra with

0 =z O
basis {p,q,h}, [p,q] =h, and a = —z 0 O|l|zeR
‘ , 0 0O
| €1 (5} Uy Uz
e1r |0 —uz uw; O e 00
w, |ug 0 wuz 0, B=1]0 € 0 e==+1,a+#0;
—Uq | Uy —Usz 0 0 0 0 a
0z O
315=aAR% g=a, wherea=4 [0 0 z[|z€R
0 0O
l €1 Uy Uz Ug
€1 0 0 U1 U 0 0 1
| O 0O 0 0, B=4+|0 -1 0},
s | —u; 0 0 O 1 0 O
us|—uz 0 0 O
_ 0 =z
3.29:5[(2,R)XR,9={<(0 0),:1:) wER}:
| €1 Uy Uy Us
eq| O 0 U1 Us 0 0 a
up | O 0 w U, B=|0 —a O a#0, e==%1,0;
Uy | —u; —u3 0 us a 0 €

Uz | —Uy —Uz —U3 0

3.3 =aAns, g=RqC ns, where ng is the three dimensional Heisenberg algebra with

z z O
basis {p,q,h}, [p,ql =h, anda = 0z O0f||lzeR
0 0 2z
€1 Uu1 U Uus
e 0 0 Uy Uy 0 0 1
U1 0 0 0 211;1 ; B=4|0 -1 0
Ug | —UL 0 0 21&2 — €1 1 0 0
Uz | — U2 —2’11,1 —211/2 + e 0

(here e; = g, w1 = h, up = p + ¢; us is a non-zero element in a);
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3.43=aAns g=R(p+q) C ns, where ng is the three dimensional Heisenberg

z O 0
algebra with basis {p,q,h}, [p,q| =h, and a = 0 azx 0 zeER}, —-1<a<l:
' 0 0 (14+a)
(4] Uy U2 us
€1 0 0 U1 Uy
u | 0 0 0 (a4 1)uy )
Uy | —Uq 0 0 —ae; + (a4 1)u,
ug | —uz —(a+1u; aey — (a+1)uy 0
(here ey = p+q, u1 = h, uz = p + ag; us is a non-zero element in a),
0 0 1
B=+|0 -1 0];
\1 0 O

3.55=0aAns, g=RpC ns, where ny is the three dimensional Heisenberg
‘ ar = O

algebra with basis {p,q,h}, [p,q] =h, and a = —z az O zeR} 0<ar
0 0 2az
€1 (751 Uy us
€1 0 0 (751 Uy
| O 0 0 2a ,
Ug | —Up 0 0 —(a? + 1)eg + 2au,
us | —uy —2au; (a®+ 1)ey — 2au, 0

here e; = p, uy = h, ug = ap — q; uz is a non-zero element in a
) ] J )

0 0 1
B=+|0 -1 0f;
1 0 0
z y O
4.1g=aAR3 g=a, wherea= 00 y||lz,yeR
0 0 —=z

€1 €y U1 U2 Us

€1 0 ()] (5% 0 —Us 0 0 1
alze o pw e
! ! 1 0 0
0
0

0

0 O
Uy 0 —Uq 0 0
Uus us —Ug 0 0
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4.28=>s5l(2,R) x st(2,R), g = {(z,z) | = € st(2,R), where st(2,R) is the subalgebra
of sl(2,R) consisting of all upper trangular matices:

€1 €2 U1 U2 U3
e;| O € Uy 0 —us 0 0 a
cz)—e2 0 0 w1 U B=+|0 —a 0| a#0
Uy | —Up 0 0 U1 Ug
a 0 O
| 0 —uy —u; O U3
us Uus —Us —Ugy —U3 0
5.13=150(2,1) AR3, g=s0(2,1):
) €1 €9 €3 U1 U Uus
e;r| O es —e3 u; 0 —us
€y | —€g 0 €1 0 us U 0 0 1
es| es —e; 0 uy uz 0 B=+]|0 -1 0},
Uy | —Up 0 —Us 0 0 0 1 0 0
uy| 0 —u; —us 0 O 0
us us —U2 0 0 0 0
5.2 8 =s50(2,2) 2sl(2,R) x sl(2,R), g=s0(2,1) =sl(2,R):
€1 €9 €3 UuUq Uy Uus
€1 0 €9 —€3 Uq 0 —Us
€y | —€2o 0 €1 0 Uy (%) 0 0 a
€3 €3 —e€é1 0 Ug U3 0 ’ B=4]|0 —a 0 a 7é 0,
| —uy 0 —uy 0 e —e a 0 O
Uy 0 —U; —U3 —€3 0 —€3
us Uus —Us 0 €1 €3 0
5.3 =s50(3,1) =5((2,C)r, g=-50(2,1) =sl(2,R):
€1 €9 €3 Uy Uy us
€1 0 €9 —€3 Uy 0 —Ug
es | —ea 0 e 0 Uy Us 0 0 a
es| e3 —e O Uy  Ug 0 B=4+]|0 —a O a#0;
Uy | —U1 0 —Usy 0 —€s €1 a 0 0
us| 0 —uy —us ey 0 es
Uus us —Ug 0 —€e1 —€3 0
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6.1 =s50(3) AR3, g=-s50(3):

€1 €2 €3 U1 Uy Ug
€1 0 €3 —€3 —Usg 0 (751
€9 | —€3 0 €1 —U2 (751 0
€3 €9 —€1 0 0 —Uug Uz,
(751 Uus U 0 0 0 0
Ug 0 —U1 Uus 0 0 0
Uz | —uU1 0 —U2 0 0 0

6.2 3 = s0(4) = su(2) x su(2), g

= 50(3)’ &~ su(2):

€1 €9 €3 u1 Uy U3
€1 0 €3 —€3 —Ug 0 (751
‘€ | —€3 0 €1 —Us U1 0
€3 €2 —e1 0 0 —us Uz ,
(751 us U2 0 0 €9 €1
U2 0 —U1 Uus —€g 0 €3
ug | —u; 0 —uy; —e; —ez 0
6.33 =50(3,1) 2 5((2,C)r, g=s50(3) = su(2):
€1 € €3 (751 U us
e1r| O es —esz —ugz 0 Uy
€y | —€3 0 €1 —U2 Uq 0
€3 €2 —eé1 0 0 —U3z Uz ,
(751 Uus U9 0 0 —€y —€1
Ug 0 —U1 Uus €a 0 —€s3
U3 | —U1 0 —U2 €1 €3 0

(=Y

o 8

[==R S}

13

0

ol;

1

0

0| a#0;
a

0

0] a#0;
a

Proof. Since each invariant pseudo-Riemannian metric defines an invariant affine
connection, the g-module §/g is faithful. All these pairs for codimg g where classified
in [8]. The rest of the proof is similar to the two-dimensional case.

4. GLOBAL CLASSIFICATION. TWO-DIMENSIONAL CASE.

In this section for each triple (g, g, B) from Theorem 3 we describe:

O

(1) the corresponding pseudo-Riemannian homogeneous space (G", M*,g*) such
that M* is simply connected and the stationary subgroup G* = G, at an

arbitrary point a € M™* is connected;
(2) the subgroup No C Norm(G*)/G* and its action on M*;




14 BORIS DOUBROV AND BORIS KOMRAKOV

(3) all discrete subgroups in No (up to the group Aut(G", M*,g*)) and the corre-
sponding pseudo-Riemannian homogeneous spaces.
This gives us a complete description of all pseudo-Riemannian homogeneous spaces
in dimensions 2 and 3.

1.1. Here G" = M* = R?, @ acts on M* as the group of all parallel translations,
and in the standard coordinates (z1,z3) on M*, we have g* = +(dxz? + dz}). Since
the stationary subgroup G* is trivial at each point of M*, we obtain that No=G",
and its action on M* coincides with the action of G*. We identify N, with the vector
space R? considered as an abelian group. Each discrete subgroup D in Ny has one
of the following forms:

(1) D ={0};

(2) D =Ze, e € R? e # 0;

(3) D = Zey ® Ze,, where {ey, e} is a basis in R
The group Aut(G", M*,g*) is equal to O(2) AR?, and its action on N is equivalent
to the natural action of O(2) on R% So, up to the equivalence, we can assume in (2)
that e = (a,0), @ > 0. In (3), two discrete subgroups D; and D, are equivalent if
and only if they can be transformed to each other by means of the elements of O(2).

The corresponding homogeneous spaces have the form G = M = G'/D. Topo-
logically, M is homeomorphic to R? R x S, and S* x S in cases (1), (2), and (3)
respectively.

1.2. This case is similar to the previous one. The only difference is that g* =
dz? — dz2, and the group Aut(G", M*,g*) is equal to O(1,1) X R% So, up to the
equivalence, we can assume in (3) that e = (a,0) or e = (a,a), where @ > 0. In
case (3), two discrete subgroups D; and D, are equivalent if and only if they can be
transformed to each other by means of the elements of O(2).

2.1-2.3. Here G* = M* = R?, where the multiplication in G~ has the form:

(z1,2) - (y1,%2) = (z1 + y1, 2 + €™'Y2),

and the action of G on M* is the left action of G on itself. The pseudo-Riemannian
metric has the form:

2.1 g* = a(dz? + e~ ?**1dz3);

2.2 g* = a(dz? — e~ ?™1dzl);

2.3 g* = e "tde1de,.
In all these cases Ny = R, and p.(z1,23) = (21 + p, z2) for all p € N, (z1,22) € M.
All non-trivial discrete subgroups of Ny have the form D = pZ, (p > 0), and the
corresponding homogeneous spaces M = G /D are cylinders.
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3.1. In this case M* = R? and G = SO(2) K R? is the group of all Eucledian
transformations of the plane preserving orientation. In the standart coordinates on
R? the metric g*is equal to 4(dz? + dz3). Moreover, it is trivial to check that the
origin is the only point on M* with stationary subgroup SO(2) x {0}. So, from
Lemma 1 it follows that Ny is trivial and there are no other pseudo-Riemannian
spaces locally equivalent to (G, M*,g*).

4.1. In this case, M* = R? and G = SO(1,1)o X R? is the connected component
of the unit in the group of all pseudo-Euclidian transformations of the plane. The
metric g* has the form dz? — dz3. As in the previous case we obtain no other
pseudo-Riemannian homogeneous spaces, locally equivalent to (G, M*,g¥).

5.1. In this case G = S M) is the simply connected covering group of SL(2,R).
It can be described, for example, as follows (see [6]):. SZ@,/R) = R} x R?, where the
projection 7: Sﬂﬁ) - SL(2,R) has the form: ’
7 (2,9,2) > (m“l/z —y::/‘:/z) . ( cos 2 sin z) ,
0 z —sinz cosz

and the multiplication in SL(2,R)is given by

(wnyh Z1) : (l’z,yz,zz) =
(X(w2’y2,zl)w1) Y(m% y2azl) + X(mZay%:‘zl)yl: z2 + Z(w2ay27z1))7

where

z cos z + ysin z)% + sin® 2

X(w’y, z) = ( T ) )
x cos z + ysin z)(—z sin z + y cos z) + sin z cos z

Yion) o casin ) |
z zdt

Z =/ .

(2,9,2) o (zcost+ysint)? +sin’t

Let G* = {(=,0,0) | ¢ € R%} be the connected subgroup of @". Then the manifold
M* = G"/G* can be identified with the plane and the action of G on M* can be
written as: ‘

(w,y,z).(p, Q) = (Y(w7 yaq) + X(:c,y,q)p, z+ Z(“’) y,q))-
The subgroup Ny, in this case, is isomorphic to Z and acts on M* in the following
way: n.(p,q) = ((=1)"p,q + 7n/2). Every non-trivial subgroup D of No has one of
the following forms:
(1) 2nZ;
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(i) (2n + 1)2,
where n € N. The corresponding manifolds M = M*/D are cylinder and Mdobius
strip respectively.

In the cases D = 2Z and D = Z, these homogeneous spaces can be described in
classical terms. Namely, let G = PSL(2,R) be the group of all projective transfor-
mations of RP!. Then we can consider the following action of G on RP! x RP:

X'(p17p2) = (X'ph tX_l-pZ)a X € a; D1,DP2 € RPI

It is easy to see that this action has two orbits:

(1) O = {([z1 : z2], [¥1 : 92]) | T1y1 + 22y2 = 0 };
(2) 0, = (RP' x RPO)\O,.

Moreover, the orbit O, is open, and the mapping

([21: 22, [91: 92]) = (2 = @1 /22,y = Y1/Y2)

introduces a local coordinate system on O,. There exists an invariant pseudo-
Riemannian metric g on Oy, given in these local coordinates as

dzdy

8= U+

The triple (G, Oa,g) is exactly the pseudo-Riemannian homogeneous homogeneous
space corresponding to the case D = 2Z.
Consider the action of the group Z, on O, generated by the mapping

¢: ([z1: 2], [y1,92]) = ([y2 : —za], [~y1 2 7)),

or, in the introduced local coordinates,

¢: (w’y) = (_1/% —1/:1:).

It is easy to check that this action is free and commutes with the action of G. Tt fol-
lows that we can construct the quotient manifold O,/Z, and introduce a well-defined
action of the group G on it. Thus we obtain the homogeneous space (G, M = 0,/Z,).
Moreover, the transformation ¢ preserves the form g. This allows to introduce a well-
defined pseudo-Riemannian metric on M, and the constructed pseudo-Riemannian
homogeneous space corresponds exactly to the case D = Z.

6.1. In this case G = SO(3), M* = S?. We assume that S? is imbedded into R®
as the set of all vectors of length 1. Then G acts on M* by rotations in space.
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The metric g* is the restriction of the metric +(dz? + dz% + dz3) in R® to S2. Let
a=1(0,0,1). Then

cosa —sina 0
G =G,=1{ |sina cosa 0||acR
0 0 1

It is easy to check that Ny = Z, and that Ny acts on S? in the following way:
(£1).v = +v, v e S

So, in the case D = Np we obtain a new pseudo-Riemannian homogeneous space
(G, M,g), where G = SO(3) and M = M*/D = RP?. In a certain local coordinate
system (z1,%,) on M, the metric g has the form
dz? + dz?

=47
8T Ut ad ol

7.1. In this case the corresponding homogeneous space (@*, M*,g*) is Lobachevsky
plane:

G = PSL(2,R) = SL(2,R)/{£E;}, M*={z€C|Imz> 0}
the action of G on M* has the form:
a by az+b
(C d) 2=2H
and in local coordinates (z,y) € R % R%, z = = + iy the metric g* is equal to
+y~2(dz? + dz2). Fix the point @ = i in M*. Straightforward computations shows

that Ny is trivial. So, in this case we have no other pseudo-Riemannian homogeneous
spaces.

5. GLOBAL CLASSIFICATION. THREE-DIMENSIONAL CASE.

Here we give a global description of pseudo-Riemannian homogeneous spaces cor-
responding to the pairs listed in Theorem 4.

1.1, 1.3, 2.1, 2.5, 2.6 (extension of two-dimensional spaces). Let (G, M*,g*)
be a two-dimensional pseudo-Riemannian homogeneous space such that M* = [elyles
is simply connected and G* is connected. We consider the manifold M* X R and in-
troduce the pseudo-Riemannian metric on it equal to g*+dt*. (Here t is a coordinate
on R.) The group G x R acts transitively and effectively on M* x R:

(g,a).(m,t) = (g.m,t+4a), g€G,ateR,me M.

The stationary subgroup of this action is G*, which is a connected subgroup.
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The simply connected pseudo-Riemannian homogeneous spaces corresponding to
the pairs 1.1, 1.3, 2.1, 2.5, and 2.6 of Theorem 4 can be derived in this way from the
spaces 3.1, 5.1, 4.1, 7.1, and 6.1, respectively, of the two-dimensional case. Those
homogeneous spaces which are not simply connected are considered in much the
same way as in the two-dimensional case.

1.2, 2.2. Let CO(1,1) be the Lie group of all linear transformations of R? preserv-
ing (up to a constant) a pseudo-scalar product, and let COg(1,1) be its identity

component:
0
C0o(1,1) =1 [ yERY, ¢.

Similarly, define CO(2) as the group of all linear transformations of R? preserving
(up to a constant) a scalar product, and let C'Oo(2) be its identity component.

The simply connected pseudo-Riemannian homogeneous spaces correspondmg to
the pairs 1.2 and 2.2 of Theorem 4 can be described as follows. The group G s
equal to H A R? where H is equal to COg(1,1) for the palr 1.2, and to CO¢(2) for
2.2. The manifold M* is equal to R3, and the action of @ to M* has the form:

(A,v).(w,z3) = (Aw + v, 3+ In det(4))
Ac Hyv,w=(5)€cR? zy,z5,2z3 €R.

The metric g* equals e~*di; dz,+adz? for the pair 1.2, and +e~*(dz} +dz3)+adz} for
2.2. In both cases the group Nj is trivial and we have no other pseudo-Riemannian
homogeneous spaces.

The homogeneous space (@, M*) can also be described in the following way. The
group G acts transitively on R? as a subgroup of the affine group. Consider the
natural prolongation of this action to the one-dimensional vector bundle A*(T*R?)
over R?,. Then M* can be considered as an open orbit of this action given by an
arbitrary orientation of RZ

1.4, 2.7. Let N; be a simply connected Lie group whose Lie algebra is isomorphic to
the three-dimensional Heisenberg algebra ng. Then we can identify N3 with ng = R®
(as vector spaces), multiplication being defined by the Campbell-Hausdorft formula:

(@1, T2, 23) - (Y1, Yo, ys) = (@1 +y1, 22 + y2, 23 + Y3 + (z1y2 — ©211)/2).
Then the group G can be identified with the semidirect product A £ N, where
A is the following subgroup of Aut(Ns):
z 0 0
1.4 0 1/z 0] |z €eRY p
0 0 1
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cosz sinz O
2.7 —sinz cosz O||zeR
0 0 1

The manifold M* can also be identified with N3, and the action of @ on M* has
the form: (a,9).z = g-a(z), 9,z € N3, a € A. In our coordinates on M*, the metric
g" is:equa,l to

1.4 dzidzq + a(dzs + (z2dzy — z1des)/2)?;
2.7 £(dz? + dz3) + a(des + (z2dzy — z1dzs)/2)2.

The group Np in this case is equal to R and acts on M* by shifts of the third
coordinate:

t.(z1,22,3) = (@1, 2, T3 + t), t € No, (21,2, T3) € N3.

All non-trivial discrete subgroups in Ny are equivalent to Z, and the corresponding
homogeneous space 1is diffeomorphic to RZ x S*.

3.3, 3.4, 3.5. In these cases the manifold M* is equal to R3, the Lie group [EART
diffeomorphic to R* and can be defined as a following transformation group on M™:

{(z1, T3, 23) > (z1+a, 22+ f(z1t+0), 23+g(z1+a)+ f'(z1+a)(y+1/2f(z1+a))),
a€R,feV,geW,}

where V and W are the following subspaces in C*(R):

3.3 V= (e, ze”), W = (e*);
3.4 V= (e,e*), W = (ela+V)=);
35 V = (e®sinz,e**cosz), W = (e**).

The metric g* is equal to

3.3 £(2deidzs + (e — 4ws)da] — dz3);
3.4 +(2dzides + (a2l — 20(a + 1)es)dz] — dz3);
3.5 +(2dzides + ((207 + 1)ef — 4axs)dz? — dx}).

In the cases 3.3, 3.4, the group N is isomorphic to R and acts on M* as shifts of
the third coordinate. In the case 3.5, the group N is isomorpohic to R x Z and acts
on M* in the following way:

(y,n).(z1, T2, z3) = (21 + ™, (—1)"e* ™z, ™).

The analysis of discrete subgroups in No is trivial.




20 BORIS DOUBROV AND BORIS KOMRAKOV

1.5, 2.3, 2.4, 3.2, 4.2, 5.3, 6.3. Let G be a simple three-dimensional simply
connected Lie group (i.e., G is isomorphic either to SU(2) or to the simply connected
covering of SL(2,R)), H the following closed subgroup in G:

G =SU(2)
sam={(5 5)|eer}
62 H=G

G =SL(2,R)

Here we use the description of SL(2,R) given in the previous section and denote
by 7 the natural surjection SL(2,R) — SL(2,R).

15 H = 77(500(1,1)) = {(=,0,0) | z € R3};
2.3 H =771(50(2)) = {(1,0,2) | z € R};

32 H=n"1 ({ ((1) ’1“) z eR}) ={(1,9,0) |y € R};

42 H = 77}(ST(2,R)) = {(=,3,0) | = € R}, y € R};
52 H =G.

Consider the following action of G x H on G: (g,h).z = gzh™', g,z € G, h € H.
It is not necessarily effective, and the element (g, k) acts trivially on G if and only if
g = h and g belongs to the center of G Denote by Z the set of all such elements in
G x H. Then we can put M* = G, @ = (G x H)/Z, and the action of G on M*
can be derived from that on G X H

The metric g* on M* is just a left-invariant metric on the Lie group G uniquely
determined by its value at the identity. In the cases 4.2, 5.2, and 6.2 this is a bi-
invariant metric on G uniquely determined (up to a constant factor) by the Killing
form on 5[(2,R) or su(2). Notice that in the other cases the metric g* is not right-
invariant in general.

The subgroup Np in the all cases is equal to the centralizer Zg(H) of H in G and
acts on M* by means of right shifts. In the cases 4.2, 5.2, and 6.2, it c01nc1des with

the center Z(G) of G and is isomorphic to Z, for G = SU(2) and Z for G = SL(2 R).
In the other cases it is equal to HZ(G) which is isomorphic to S* for 2.4, to R for
2.3, and to R x Z for 1.5 and 3.2. The analysis of discrete subgroups in No is trivial
in all these cases.
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As an example consider the case 2.4. Then all non-trivial discete subgroups in Np

have the form
e21rik/n 0
D n = { ( 0 eZm’k/n

The corresponding manifolds M = M*/Dy are linse spaces L‘E’n).

kzO,...,n—l}, n> 2.

6.1. In this case the simply connected pseudo-Riemannian homogeneous space is
the usual three-dimensional Euclidean plane: @ = SO(3) A R3, M* = R?, g* =
+(dz?+dz2+dz3). The group Ny is trivial, and we have no other pseudo-Riemannian
homogeneous spaces corresponding to this pair.

3.1, 4.1, 5.1. The simply connected pseudo-Riemannian homogeneous space cor-
responding to the pair 5.1 is the usual pseudo-Euclidean plane: G = 500(2,1) L
RS, M* = R3 We choose a coordinate system (1,22, 2s) on R®in such a way that
g* = +(2de dzs — dzl). The simply connected pseudo-Riemannian homogeneous
spaces corresponding to the pairs 3.1 and 4.1 can be realized as restrictions of the
action of G on M* to a subgroup H A R3, where

1y y?/2
31 H= 01 y yer
00 1
r zy zy?/2
41 H = 0 1 Ui zeRL,yer
0 0 1/=

In the cases 4.1 and 5.1, the group Np is trivial and we have no other pseudo-
Riemannian homogeneous spaces corresponding to these pairs. In the case 3.1, the
group Np is isomorphic to R and acts on R® as t.(z1, T3, 23) = (21, T2, 23 +1), t € No.
All non-trivial discrete subgroups in Np are equivalent to Z.

5.3, 6.3. Consider the natural action of the group SO(3,1) on R* We choose
coordinates (2,2, 2s,24) on R* in such a way that the group SO(3, 1) preserves
the form 2 + z2 4+ z2 — z2. Then this action leaves stable quadrics the Q@+ =
{2+ 22 + 22 — 22 = +1}. Put G = SO(3,1)o, the identity component of SO(3,1),
and let M* = Q. in the case 5.3, and M* = {(z1, 22,23, 24) € Q_ | 4 > 0} in the
case 6.3. It is easy to see that these manifolds are homogeneous with respect to the
action of G, and diffeomorphic to S? x R and R® respectively. The metric g~ is
equal to the restriction of the metric +(dz? + do} + dzj — de}) on R* to M™.

In the case 6.3, the group Ny is trivial. In the case 5.3, the group N is equal to
Z and acts on M* in the following way:

(:I:].)(:Bl, T2,T3, :134) = (:':9.71, :i::l?z, :l:ws, :l:134)
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The corresponding manifold M*/Np is diffeomorphic to the canonical vector bundle
over RP3.
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