A Remark on the Equivalence between Poisson and
Gaussian Stochastic Partial Differential Equations

Fred Espen Benth'& Jon Gjerde?

Department of Mathematics
University of Oslo
Box 1053 Blindern, N-0316 Oslo
Norway

Abstract

We discuss the connection between Gaussian and Poisson Wick-type stochastic partial
differential equations.
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§1 Introduction

In this paper we look at the connection between Gaussian and Poisson Wick-type stochastic partial
differential equations. We will show that for several cases it is possible to obtain the solution of a
Poisson stochastic partial differential equation through an unitary mapping of the solution of the
corresponding Gaussian equation.

We will make use of the white noise analysis based on the Poisson probability measure recently
developed by Kondratiev et al. [KSWY]. Already in [IK] the existence of a unitary mapping be-
tween the space of square integrable functions with respect to the Poisson measure and the space
of square integrable functions with respect to the Gaussian measure, was shown. From the analy-
sis of Kondratiev et al., it is easily seen that this mapping extends to spaces of generalized random
variables, such as the Kondratiev distribution spaces.
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For applications to Wick-type stochastic partial differential equations, this unitary mapping has
two attractive features: It maps the Gaussian Wick product into the Poisson Wick product and
Gaussian white noise into compensated Poisson noise. It is now clear that if we know the solu-
tion of a Gaussian Wick-type equation, we obtain the solution of the corresponding compensated
Poisson equation by simply applying the unitary mapping on the solution of the Gaussian equa-
tion. Of course, this also works the other way around. We note that this connection seems to hold
only for linear stochastic partial differential equations and Wick-type stochastic partial differen-
tial equations.

Gaussian Wick-type equations have already been treated by several authors. We here mention
some works in this direction: [DP], [GH@UZ], [HLGUZ], [HL@UZ2], [HLZUZ3], [HLOUZA4],
[L@U], [LOU2], [LBU3], [P]. On the other hand, [BS] has considered Burgers equation with
non-Gaussian additive force and [D] has treated Burgers equation with an additive compensated
Poisson noise force.

We organize this paper as follows: In section §2 we give an introduction of basic facts concerning
Poisson and Gaussian analysis, based on results of [KSWY], [U] and [IK]. We apply in section
§3 known results from the Gaussian case to solve two stochastic partial differential equations dis-
turbed by compensated Poisson noise.

82 Gaussian and Poisson analysis

Let S := S(RY) be the Schwartz space of all rapidly decreasing C*°- functions on R?. It is well
known that S is a Fréchet space under the family of seminorms

[1F]In,e := sup (1 + xIN)[@%F(x)]
xeR4

o« . ol
where 0% := 3%, 0F%a

negative integers ;. The space of tempered distributions is the dual 8’ := S'(R?) of S. We
equip S’ with the weak star topology. B := B(S') denotes the Borel o-algebra of S'.

, N > 0is an integer and & = (&g, -, &q) is a multi-index of non-

Consider the probability measures pg and pp on (S’, B) with characteristic functionals

. 1
[ &9 duc(w) = expl—3 lxpart . VO €S
sl

J el ®) dpp(w) = exp{J (e —1)dx}, VpeS
Rd
Sl

respectively. The existence of such measures pg and pp are given by the Bochner-Minlos theorem
((H],IMLIGVD).




DEFINITION 2.1 The triple (S, B, pg) is called the Gaussian white noise probability space
and the triple (S, B, pp) is called the Poisson white noise probability space.

An application of the characteristic functionals for pg and pp gives us the following relations(see
[HKPS],[12]): For ¢ € S,

L [{w, &) du = [ ¢(x)*dx
s Rd

2. ‘J,(U’,@ dug =0

3. [(w,d)2dup = [ d(x)?dx+ ([ d(x)dx)?
S Ré Rd

4. [(w,d)dup = [ d(x)dx
s R¢

Hence, the mappings
§3 ¢+ (w,9) € L*(ng)

and
5560 (w,¢) —J $(x) dx € 1(up)

R4

may be extended to isometries from L?(R?) into [2(ng) and L%(pp) respectively.

DEFINITION 2.2 We define the following processes ((GHL@UZ],[U],[12])

1. The continuous version of the mapping R¢ 3 x = (x1,+++ ,%4) = By(w) € [?(ug)
defined by
By(w) = (w, Z(x1) x - -+ x Z(x4))

is called a d-parameter Brownian motion, where R > s — =(s) € L?(R) is defined by

:\(s) — X(O,s] s € [0,00)
—X(s00 S € (—00,0)

and x is the usual indicator function.

2. The right-continuous integer-valued version of the mapping R > x = (x1,-++ ,%q) =
P.(w) € L?(up) defined by

Px(w) == (w,Z(x1) X - -+ x Z(x4q))

is called the Poisson process.




3. The mapping R? 3> x = (x1,+-+ ,Xq) = Px(w) — ]_[,.‘Ll x; € L2(up) is called the com-
pensated Poisson process.

THEOREM 2.3 (The Wiener-Ité expansion) ([HKPS],[I],[IK])
Every f € L?(ug) has the expansion

@) = | falx) dBE™(w)

where f,, € L@)( ~denotes symmetrization in nd variables) and

112 416 Z“’”anLz Rnd)

n=0

Similarly, every g € L?(up) has the expansion

d
o(@) = Y | st alP= [[0* (@)

i=1
where g, € L@) and
loll2upy = Z 1![|gnl[2(rne)

The integrals on the right hand side are in both cases the multiple Wiener integrals.

There exist equivalent expansions of f € L?(ug)and g € L?(up) in terms of Hermite polynomials
and Charlier polynomials respectively, see ((GHL@UZ],[I]) and below:

Forn=1,2,.-- let £,(x) be the Hermite functions of order n defined by
xZ
8§35 E(x) ;= F(n—1))"2e"Th, 1(V2x); x€R
where h,, is the n’th Hermite polynomial defined by

Xz dn Xz

hn(x) = (—l)“erxn(e_T) x€R, n=0,1,2,---

It is well known that {£,,}%°_, forms an orthonormal basis for L?(R). Therefore the family {e,} of
tensor products
€x i= €ay e 0q = by @ Q &y

forms an orthonormal basis for L?(R%). Now assume that the family of all multi-indices p =
(B1,-+-,Ba) is given a fixed ordering

(B“)) B(Z)) e )ﬁ(n))° ) )




where pK) = ( 2”,--- , Q"), and put e, := egm; N = 1,2,---. For a multi-index o« =
(o1, -+, &) and n € N, define the Hermite polynomial functionals as

: n
Ha(w) i= [ [ hey ({0, 5))
j=1
and the Charlier polynomial functionals as
[-4] [543

.

Ca(w) = Clocl(w;re'h Y e'l‘) v ’Ek> ot ,e{)

We use the convention

0 )y .
Cn(w;n]’ oo )nn) = m e{(w,log(1+):,-=1 win; )~ T Wi [rami(y) du} 0
n X1 n=

The following two equalities hold true:
He(w) = J el 4B (w)

Rnd

and .
Calw) = | e a(P.— [T x)%(w)

Rnd i=1

It follows that any f € L?(pg) also has the representation
flw) = Z axHe(w)
[+ 4

The sum is taken over all multi-indices & of non-negative integers. Moreover, it can be shown
that
2 2
1fllE2que) = D_ ol
x

where ! = ot7! -+ - &, !. Similarly, any g € L2(up) has the representation

g(w) = Z b Culw)

with
||9”%2(pp) = Z “!bi
[ 4

REMARK 2.4 With the above results, it is clear that the mapping I : L?(ug) — L?(pp) defined

by
U(Z coHo) = Z cxCu

is unitary.




DEFINITION 2.5 ((HLQUZ3])Let0 < p < 1.

e The space of Gaussian test functions, (S), consists of all

f= Z CocHoc € LZ(UG)

such that
2. =Y Aa)*P2N)* <0 VkeN
p,k (4
[0 4

where
k

(2N)* = 1_[(2)')"‘j ifoo = (o, 06)e

i=1

e The space of Gaussian distributions, (S);°, consist of all formal expansions
F=) baH«
>4

such that
Z b2 (x!)'P(2N)™™ < 0o for some q € N
[ 4

The Poisson test functions and distributions, denoted by (S)5 and (S)p" respectively, are de-
fined similarly (H, will in this case be replaced by Cy).

We know that (S)g” and (S);” are the topological duals of (S)g and (S)p respectively (when the
latter spaces have the topology given by the seminorms ||-||px). WithF =}~ byHy € (8)5° (G =
2 baCo € (S)p°) and f = 3 cqHy € (S)g (9 =3 caCu € (S)P)

<F’ f) = (G> 9) = Zbacaoc!.

Moreover, it is obvious that we have the inclusions

(S)x C (8)% C L (ux) C (8)° € (8)K' , p €10,1]

where X stands for G or P. In the rest of this section we will consider the larger spaces (S )g‘ and

(S)p".

REMARK 2.6 It is obvious how to extend the mapping U to an isomorphism U : (S)g° —
(8)p° , p € [0,1]. It is also easy to see that the restriction of U to (S) is a unititary mapping
from (8)% to (8)% , p € [0,1].




DEFINITION 2.7 ([HL@UZ3]) The Wick product of two elements in (S)g' given by
F=) asHs, G=) bgHg
o4 B

is defined by
FoG = E cyHy
Y

where

Cy = Z a“bﬁ.

otp=y

The Wick product of two elements in (S)3' is similarly defined.

LEMMA 2.8 ([HL@UZ3],[KLS]) The following holds true (X = G, P)

1. FGe (S)y' = FoG € ()Y
2. f,ge (S)k=>foge (8)k
REMARK 2.9 Note that U preserves the Wick product but not the ordinary product.

DEFINITION 2.10 LetF = 5 b,H, € (S)g'. Then the Hermite transform of F, denoted by

‘HF, is defined to be (whenever convergent)

HcFi= ) baz*
o
where z = (21,22, -+ ) and z* = 27" 237 - - - zp* if o = (g, - -+, Q)+

The Hermite transform Hp for Poisson distributions is defined similarly.
LEMMA 2.11 IfF,G € (S)y', (X=G,P) then

Hx(Fo G)(z) = HxF(z) - HxG(z)
for all z such that HxF(z) and HxG (z) exist.

LEMMA 2.12 Suppose g(z1,22, -+ ) is a bounded analytic function on B4(8) for some
0 > 0,q < oo where

By(6) == {n = (M,m2,---) € G55 ) MPE@N)* < 52}

o#0

Then there exist F € (S)g' and D € (S)3" such that HgF = g = HpD.

7




LEMMA 2.13 ([KLS]) Suppose Z € (S)x' (X = G,P) and that f is an analytic function in
a neighborhood of HxZ(0) in C. Then there exists Q € (8);‘ (X = G, P) such that HxQ =
fo sz

EXAMPLE 2.14 Let us calculate the Wiener-Itd expansions of the d-parameter Brownian mo-

tion B, (w) and the d-parameter compensated Poisson process Py(w) — ]_[,.‘L] X4t
First note that we have the expansion
E(x1) X - X Z(xn) = ) (Elxa) X -+ X Zxn), €)1 ma) ek
k=1
where the convergence is in L?(R¢). From this it follows that
By(w) = (w, Z(x1) X +++ X E(xn))
=) (E(x1) X -+ X Z(xn), &) r2re){w, ex)
k=1
=) (E(x1) x -+ X Z(xn), &) rzme)Hey ()
k=1
where e = (0,---,0,1) with 1 on the k’th place. The convergence is in L?(ug).
Similarly, we obtain
d d
Pe(w) — [ [ % = (@,20a1) x -+ x Z(xn)) = [ [ %
i= i=1
j
= ]11,1110 (;(E(M) X oo X Z(xn), ex)r2ay (W, ex)
j
— [ X (Et) - x Zlxa), euduaerenly) dy
Ra k=1
j
= lim ;(E(Xl) X oo X Z(xn), ez (re) | (w,ex) — J ex(y) dy
= Re

= Z(E(X]) XX E(xn)’ ek)Lz(Rd)Cek(w)

The convergence is in L?(pp).

REMARK 2.15 From the above example it is clear that U (B,) = P, — ]_[d 1 X4

"L=




DEFINITION 2.16 ([GHL@UZ],[U][12]) We define the following generalized processes

1. The d-parameter white noise process W,(w) is defined by the formal expansion

2. The d-parameter compensated Poisson noise, denoted by P, (w) — 1, is defined by the
formal expansion

LEMMA 2.17 ((GHL@UZ],[U],[KSWY]) We have the following relations

1. Wy(w) € (8)c% p€[0,1]
2. Py(w)—1€(S)" pelo,T]
3. =L B, (w) = W,(w)

ax1 --~axd

n d .
4. ax1t-)~-6xd (P"(w) - Hi:l Xi) =Py(w) —1
where differentiation is coefficient-wise.

For the rest of this section we assume that the parameter d is equal to 1. We study stochastic
integration:

DEFINITION 2.18 The process R 5 t — F(t) = )} c(t)xHq«(w) is said to be generalized

Skorohod integrable with respect to the Gaussian measure pg if

J F(1)5B.(w) :=ZJ ca(t) dBy(w) o Ho(w)
R

« YR

exists in (S)g' ((HAUZ)).
Similarly, the process R 3 t = D(t) = ), b(t)«Cqx(w) is said to be generalized Skorohod

integrable with respect to the Poisson measure pp if

| D) 1) = 3 | balt) dlPw) ~1) 0 Calw)

a YR

exists in (S );].




LEMMA 2.19 Let FX* be the o-algebra generated by the stochastic process X;. Suppose that
we are given a Frt-adapted process F(t) and a 7 ¥ *-adapted process D (t) such that

J B [FP(O)]dt< oo ; J E,. [D2(t)] dt < oo.
R R

Then we have existence and equalities of the following integrals:

R
2. [D(t) w) —t) = [D(t) d(Py(w) — t)
R

PROOF:

Statement 1 can be found in [HAUZ] and statement 2 follows by applying the unitary mapping
U on statement 1. ]

The next theorem states a useful connection between the Skorohod integrals and the Wick product
with noise processes.

THEOREM 2.20 We have the following
1. IY 5Bt—fY OWtdt
R

2. [Z(t)8(Pe—1t)=[Y(t)o (Pe—1)dt
R

=

The integrals on the right hand side are understood in the sense of Pettis integrals.

PROOF:

Statement 1 can be found in [HAUZ] and statement 2 follows again by applying the unitary map-
ping U on statement 1. u

83 Stochastic partial differential equations with Gaussian
or Poisson noise

In this section we consider Burgers equation with additive noise and a transport equation with gra-
dient coupled noise. Both equations have been treated in the Gaussian case by several authors.
See [BCL], [HL@UZ2], [HL@UZ4] for a consideration of Burgers equation, and [Ch], [GH@UZ],

10




[P], [DP], [BDP] for a treatment of different types of transport equations with gradient coupled
noise. We also mention the work by [BS] on Burgers equation disturbed by a non-Gaussian ad-
ditive force and [D] on Burgers equation with an additive compensated Poisson noise force.

The main idea we want to illustrate in this section is that on the H-transform level, both Gaussian
and Poisson stochastic equations are identical. That means, after H-transforming a Poisson or
Gaussian stochastic equation, we end up with considering the same deterministic equation. This
since the H-transform in both cases transforms the Wick product into ordinary pointwise multipli-
cation. Moreover Hp-transform of the compensated Poisson noise is equal to the Hg-transform
of white noise.

§3.1 The 1-dimensional Burgers equation with compensated Poisson noise
and Gaussian noise

We consider the Burgers equation

U T UO Uy = VUyx + Wix 1)
u(0,%) = —hy(x) o h(x)°V )

where his a continuous differentiable (S)g'-process. This has asolutionin (S )g‘ (see [HLAUZA4))
given by
u(t,x) = —vd,(t,x) o O(t,x)°"

where

O (t,%) = EMBF o Exply j N(s, bas ds)]
0

and

Ms

~
1l

Jeksy dy)He, (w)
0 %

by is a Brownian motion and « = v/2v. By Hg-transforming, we obtain the deterministic Burgers
equation

O+ e =vlo + ) _ et X)z
k
x) = —h/f

which has solution

Q%) = —v dix(t,x)
D(t,x)

11




Here

B(t,1) = Eh(bu) ¥ - expln L R(s, bes) ds]]

N(s,x) = ZE ex(s,y) dy - z«

X
But if we H;p ' -transform this equation, it is easily seen that

v(t,x) = —v¥W(t,x) o ¥(t,x)°"
where

t
¥(t,1) = ER(BT) o Explos j M(s, bas) ds]]
0

Moreover, v(t, x) is a (S)5"-solution of
Vt+v<>vx=Wxx+(Ptx_]) 3)

We have set

sx=ZJ (s,y)dy)C

k

Hence, we see that the solution in (S ); of (3) is given as
v(t,x) = ’H;]’ng(t,x).

where u is the (S)g' solution of (1).

§3.2 The transport equation with gradient coupled noise

The transport equation with a gradient term disturbed by white noise

1
ut=§wxx+u«<>Wt , v>0

u(0,x) = f(x) € C3(R)

has a solution in (S)° given by ((GHOUZ], [P])

u(t,x,w)=§ﬂl,v—t-J p{—] -y - B.) 2 (x —y) dy

R

12




Taking H -transform, we obtain the partial differential equation
1
Q= Evaxx +1, - ; ex(t)zx

with solution

iy, x;z) =

%%

2
— i ;J s)zx ds)Af(x —y) dy

Invoking the H; 1_transform, we obtain the transport equation with a gradient term disturbed by
compensated Poisson noise

Ve = %Wxx+vx<>(f’t— 1)

v(0,x) = f(x)

with solution in (S)3° given by

Wt 2, @) = 5 [Expl—g v — (Pe— 1~ v)

=

Also in this case we see that the solution of the equation disturbed by compensated Poisson noise
is related to the solution of the equation disturbed by white noise through

v(t, x, w) = Hp Heu(t,x, w)
REMARK 3.1 In [P] it is shown that
u(t,x,-) € L*(pg)
whenever v > 1. Since U is unitary with U(u) = v, we obtain similarly
v(t,x,") € L*(pp)
whenever v > 1.

REMARK 3.2 Note that the unitary mapping U is given as Hp ' Hg.

Acknowledgments: Itis a pleasure to thank Professor Bernt @ksendal for stimulating discussions
and valuable suggestions.
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