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Abstract

The slow-drift motions of an offshore structure is modelled by a second order stochastic
differential equation. This equation is transformed into a stochastic Volterra equation,
which is solved by means of stochastic calculus and the Wick product. Special emphasis
is paid to the role of time-dependent wave-drift damping. The solution is used to deduce
probabilistic properties of the slow-drift motions.
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§1. Introduction

Floating and moored offshore structures of large volume, like oil platforms and ships, can
perform oscillatory motions in the surface of a sea. Such motions are determined by the
environmental loads due to wind, waves and currents, by the damping forces, and by the
properties of the moorings. The motions can often be considered as composed of two
parts; one part oscillating with the frequencies of the incoming waves and the wind gusts,
and a second part dominated by oscillations with frequencies being close to the lowest
resonance frequency of the mechanical system consisting of body and moorings.

This resonance frequency is in several cases small compared to the frequencies of the waves
and the wind. The resulting motions of the body are then oscillations with the frequencies
of the waves and the wind gusts superposed on oscillations with frequencies centered
about the relatively much lower resonance frequency of the body/moorings. The latter
part is most often termed slow-drift motions since the force generating this motion has
resemblance with the force causing a steady drift of an unmoored body. Horizontal slow-
drift motions of an offshore structure may in severe sea states have quite large amplitudes.
These motions are important to analyze when designing the structure.

In the present paper we develop a stochastic model for horizontal slow-drift motions of
a floating and moored offshore structure in an irregular sea. Only the effect of waves is
accounted for. The model is applied to find the probabilistic properties of the motion,
and may serve to analyze extreme values of the motion.

One of the purposes of the study is to analyze the effect of time-dependent wave-drift
damping, which appears in the equation for the slow-drift motion. The model is simplified
sufficiently to obtain convenient formulae for the slow-drift motions, without removing the
essence of the problem. Some of the probabilistic properties of the motion may then be
obtained by formulae in explicit form, being easy to interpret.

We assume that the slow-drift motions are in one horizontal direction, which may be
relevant when the sea is longcrested. Let the coordinate of the slow-drift position of the
body be denoted by z(t) and the slow-drift velocity by #(¢), where a dot denotes time
derivative. z(t) and Z(t) are real functions of time ¢. The slow-drift force is quadratic
in the characteristic wave amplitude of the irregular sea, and is a function of the (small)
slow-drift velocity . The slow-drift force may be written

(1.1) F(t) = T(t)a®(t) — at)za’(t)

Here, a(t) denotes the local slowly-varying amplitude of the irregular sea, and T'(t) and
a(t) denote slowly varying functions of time, which depend on the geometry of the body
and the local (slowly-varying) frequency of the incoming waves. Equation (1.1) is based
on the references [F, pp. 155-168], [GP], [M], [N], [NGP] and [S], where also methods are
described how to obtain a(t), T'(t) and a(t).

The first term of (1.1) appears as an excitation force in the equation for the slow-drift
motions. The second term, known as the wave-drift damping, appears as a time-dependent
damping force. We note that the wave-drift damping represents a positive damping force
provided that a(t) > 0, which usually is the case.




One of the interesting features of (1.1) is that the magnitude of the excitation force
and the damping force are correlated, and are competing forces. When the excitation
force is small or moderate, then the damping force is correspondingly small or moderate.
However, when the exciting force is large, leading to motions of large amplitude, then the
damping of the motions is also large. This is a feature which is expected to significantly
limit extreme slow-drift motions. The effect of time-dependent wave-drift damping has
been suggested earlier, see [ES], [G], and [ZF]. Its role is not yet, however, given a clear
interpretation. This is a motivation for the present study.

To further simplify the analysis, we shall approximate T'(t) and «(t) by the positive
constants Ty and «y, respectively. This may be a valid approximation in many examples.
The slow-drift force (1.1) then reads

(1.2) F(t) = Toa®(t) — apia®(£)

Assuming that the moorings are linear, the mooring force is given by —cz(t), where c is
the spring constant. The equation of motion for z(t) then becomes

(1.3) (’mu + m)a: +cx = F(t)

Here, m;; and m denote the added mass and the mass, respectively, of the offshore
structure. If we put

(1.4) ap = a2(t)/(my1 +m), 8% = c/(my; +m)
(1.5) To = T(t)/(m11 + m), ap = a(t)/(m11 + m)

where a bar denotes time average, we obtain
(16) T+ aoii; + 0211; = Toao + (To - Olo.’i?)((]?(t) - az(t))

The term Tyao is constant, and leads to a trivial constant in the solution for z(t), which
hereafter is left out of the analysis. A quadratic damping term due to viscous drag forces,
proportional to Z|%|, should also be included in (1.6). By applying equivalent linearization
this damping term may be approximated by a linear damping term, see [F, pp. 98-100].
The effect of viscous drag is then in principle included in (1.6) by the term aoz.

To find z(t) we may proceed by generating a numerical approximation of a(t), and inte-
grating the differential equation (1.6) by numerical methods.

Here a different approach is followed, as we replace equation (1.6) by a corresponding
second order stochastic differential equation, and consider the solution of this equation.
The first step is to replace the function

(1.7) a*(t) — a2(t)
by
(1.8) nW;

Here, W; denotes singular white noise, see §2, and 7 denotes the ‘amplitude’ of the noise.
The motion z(t) is then governed by the equation

(1.9) i+ ao® + 0%z = (Tp — apz)nW,
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By re-organization we obtain
(110) I+ (ao + Olo?’]Wt)i‘ + 92117 = To'l?Wt

This equation contains white noise both in the excitation force and in a part of the
damping force. The solution of this equation is found and discussed in the subsequent
parts of the paper.

§2. White noise, the Wick product and stochastic
integration

Here we give a short introduction to the white noise theory needed to make precise - and
to solve - the mathematical model presented in §1.

General references for this section are [H], [HKPS], [HQUZ], [HP], [L@U 1-3], [@1], [D2]
and [GHLOUZ].

We start with the construction of the white noise probability space (S', B, u):

Let S = S(R) be the Schwartz space of rapidly decreasing smooth functions on R with the
usual topology and let &' = S'(R) be its dual (the space of tempered distributions). Let
B denote the family of all Borel subsets of S’(R) (equipped with the weak-star topology).
IfwedS and ¢ € S we let

(2.1) w() = (w, 9)
denote the action of w on ¢. (For example, if w is a measure m on R then
(w,6) = [ ¢(z)dm(a)
R
and if w is evaluation at zo € R then

(w, ¢) = B(xo) etc.)
By the Minlos theorem [GV] there exists a probability meaure x on S’ such that

(2.2) /e“‘”’d’)du(w) =il S ges
8/
where
(2.9) 1612 = [ 16(@)Pdo = 1613z
R

p is called the white noise probability measure and (S, B, u) is called the white noise
probability space.




DEFINITION 2.1 The (smoothed) white noise process is the map

W:8xS8 =R
given by

(2.4) W(¢,w) =Wy(w) = (w,¢) ; peS,wes
From Wy we can construct Brownian motion B; as follows:

STEP 1. (The Ito isometry)

(2.5) EJ( ¢l =11¢lI* ;€S

where E, denotes expectation w.r.t. u, so that

Bul( )] = [, ¢)du(w).
Sl
STEP 2. Use Step 1 to define, for arbitrary ¥ € L*(R),

(w,¥) = lim(w, ¢n),
(2.6) where ¢, € S and ¢, — ¢ in L*(R)

STEP 3. Use Step 2 to define

(2.7) Bi(w) == (w, xpo(")) fort>0
by choosing

P(s) = xp,g(s) = {(1) gz Z {g:g

which belongs to L*(R) for all ¢ > 0.

STEP 4. Prove that B; has a continuous modification B, i.e.

P[Bi(-) = B,(")]=1 for allt.

This continuous process B; is a Brownian motion.

From this it follows that the relation between white noise Wy(w) and Brownian motion

Bi(w) is
(2.8) W(w) = / $(t)dB(w) ; p€S
R
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where the integral on the right is the Wiener-It6 integral.

The Wiener-It6 chaos expansion

Define the Hermite polynomials h,(z) by

22 d" 22
(2.9) ho(z) = (—1)%7(%(6-7) S n=0,1,2, -
This gives for example

ho(z) = 1, hi(z) = 7, he(x) = 2° — 1, ha(x) = 2° — 3z
hy(z) = * — 63% + 3, hs(z) = 2° — 1023 + 15z, - - -

Let ex be the k’th Hermite function defined by

(2.10) er(@) =1 (1))} e Th(V2z); k=12,
Then {e;}i>1 constitutes an orthonormal basis for L2(R) and ¢; € S for all k.

Define

(2.11) B (w) = (w, &) = W, (w) = / ex(2)dBa(w)
R

Let J denote the set of all finite multi-indices a = (a4, @s,...,am) (m = 1,2,...) of

non-negative integers o;. If o = (04, -+, ) € J we put
(2.12) Ho(w) = [] ha, (65)
j=1

For example, if & = ¢, = (0,0,---,1) with 1 on k’th place, then

H, (w) = h1(6r) = (w, ex),

while

H3,05(w) = ha(01)ho(02)h2(63) = (6 — 361) - (65 — 1).
The family {H,(:)}oc7 is an orthogonal basis for the Hilbert space

(2.13) L*(p) ={X:S8 = R such that 1X 132 = /X(w)2dp,(w) < o0}.
Sl

In fact, we have




THEOREM 2.2 (The Wiener-Ito chaos expansion theorem I)
For all X € L?(u) there exist (uniquely determined) numbers ¢, € R such that

(2.14) X(w) =) caHa(w).

Moreover, we have

(2.15) 1 X[1320 = alc,

where ol = ajlag! - ap! if o = (a1, g, + - ).
There is an equivalent formulation of this theorem in terms of multiple Ito integrals:

If ¥ (t1, 12, - -, tn) is a real symmetric function in its n (real) variables ¢y,- -, ¢, and
¥ € LA(R™), ie.
(216) ||¢”L2(R”) = [</l;l," l’w(tla laye e ey tn)|2dtldt2 tee dtn]l/z < 00

then its n-tuple Ito integral is defined by

(2.17) /Rn dB®" .= n! /_o:o(/_t;(/_t:l e (/—t; Y(t1,ty, -+, tn)dBy,)dBy, - - )dBy,

where the integral on the right consists of n iterated Ito integrals (note that in each
step the corresponding integrand is adapted because of the upper limits of the preceding
integrals). Applying the Ito isometry n times we see that

(2.18) BI( [, ¥dB®")? = nll¢famey m 21

For n = 0 we adopt the convention that

(2.19) /Ro PdB® =1 = ||| 2oy when 7 is constant

Let L2(R™) denote the set of symmetric real functions (on R™) which are square integrable
with respect to Lebesque measure. Then we have:

THEOREM 2.3 (The Wiener-Ito chaos expansion theorem II)
For all X € L?(u) there exist (uniquely determined) functions f, € L?(R") such that

(220) X@)=Y. [ fudB*(w)

n=0 R»
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Moreover, we have

oo

(2.21) 1X1Z2g = 3 nlll fallZamey

n=|

REMARK The connection between these two expansions in Theorem 2.2 and Theorem
2.3 is given by '

(2.22) fo= ) ca?1Re22Q .- - Re2m ; n=0,1,2,--
jafn
where |a| = a1+t ap ifa= (a1, -, an) € T (m=1,2,---). The functions ey, ey, - - -

are defined in (2.10) and ® and ® denote tensor product and symmetrized tensor product,
respectively. For example, if f and g are real functions on R then

(f ® 9)(z1,22) = f(z1)9(x2)

and

A 1
(f&9)(z1,32) = E[f(xl)g(xZ) + f(z2)g(21)] 5 (1,22) € R,
Analogous to the test functions S(R) and the tempered distributions &'(R) on the real
line R, there is a useful space of stochastic test functions (S) and a space of stochastic
distributions (S)* on the white noise probability space:
DEFINITION 2.4 ([Z])

a) We say that f = Y aoH, € L?(u) belongs to the Hida test function space (S) if
aeJ

(2.23) > a2 {[](25)%}F < oo forall k< oo

aed Jj=1
b) A formal sum F' = Y b,H, belongs to the Hida distribution space (S)* if
aed
(2.24) there exists g < oos.t. Y, ald{JJ(2/)*¥} < o0

aeJ j=1

(S)* is the dual of (S). The action of F = Y b, H, € (S)* on f =Y aqH, € (S) is given
by
(F, f) =) dlasbs

We have the inclusions

(S) € L*(u) € (8)".




EXAMPLE 2.5
a) The smoothed white noise Wy(-) belongs to (S) if ¢ € S, because if ¢ = 3_ c;e; we
J

have

(2.25) Wy =3 ¢;H,
J

so Wy € (S) if and only if (using (2.23))
Y c(2))* < oo forall k,
J

which holds because ¢ € S. (See e.g. [RS]).
b) The singular (pointwise) white noise Wy(-) is defined as follows:

(2.26) Wi(w) = Ekj ex(t)He, (w)

Using (2.24) one can verify that W(-) € (S)* for all ¢. This is the precise definition
of singular/pointwise white noise!

The Wick product

In addition to a canonical vector space structure, the spaces (S) and (S)* also have a
natural multiplication:

DEFINITION 2.6 If X = Y aoH, € (S)*,Y = Y bgHp € (S)* then the Wick product,
i B
X oY, of X and Y is defined by

(227) XoY = ZaabﬂHa_,_ﬂ = Z( z aabﬂ)H,,
B 7 atf=y

Using (2.24) and (2.23) one can now verify the following:

(2.28) X,)Ye(8)=XoY e (S

(2.29) X,Ye(S)= XoY € (S)

(Note, however, that X,Y € L%(u) # X oY € L*(u))




EXAMPLE 2.7

(i) The Wick square of white noise is

(singular case) W2 =3 ex(t)em(t) Heptem

k,m )
(smoothed case) W2 = Z ckCmHete,, i ¢ = Z crer €S
Since

a . _[He Ho ik#m
wten SV HZ —1 ifk=m

we see that
W =Wg - et = Wi - ol
Note, in particular, that W3? is not positive. In fact, E[W$? = 0 by (2.5).
(ii) The Wick exponential of white noise is defined by
21
exp’ Wy =) FW;" ; @ €S.

n=0 """

It can be shown that

1
(2.30) exp® Wy = exp(Wy — 5 [1¢II°)

so exp® W, is positive. Moreover, we have
(2.31) Elexp®Wy] = 1.

Why the Wick product?
We list some reasons that the Wick product is natural to use in stochastic calculus:

1) First, note that if (at least) one of the factors X,Y is deterministic, then

XoY=X'Y

Therefore the two types of products, the Wick product and the ordinary (w-pointwise)
product, coincide in the deterministic calculus. So when one extends a deterministic

model to a stochastic model by introducing noise, it is not obvious which interpreta-

tion to choose for the products involved. The choice should be based on additional

modelling and mathematical considerations.

10




2) The Wick product is the only product which is defined for singular white noise W;.
Pointwise product X - Y does not make sense in (S)*!

3) The Wick product has been used for 40 years already in quantum physics as a
renormalization procedure.

4) Last, but not least: There is a fundamental relation between Ito integrals and Wick
products, given by

(2.32) / Y;(w)dB(w) = / Y; o W,dt

(see [LOU 2], [B]).
Here the integral on the right is interpreted as a Pettis integral with values in (S)*.

In view of (2.32) one could say that the Wick product is the core of Ito integration, hence
it is natural to use in stochastic calculus in general.

Finally we recall the definition of a pair of dual spaces, G and G*, which are useful in our
model. See [PT] and the references therein for more information.

DEFINITION 2.8

a) Let A € R. Then the space Gy consists of all formal expansions

(2.33) x=¥ / f.dB®"
n=0 R~
such that
[e’) n 1
(2.34) 1 X|Ix = [Z_%n!f32A | fallZ2mmy)? < 00

For each A € R the space G, is a Hilbert space with inner product

(2.35)
(X,Y)gy = Y. 0™ (fo, gu)rumy i€ X =3 [ fudB®Y = 3 [ gndBe™

n=0 n=0 m=0

Note that A; < Ay = Gy, C G»,. Define

(2.36) G= () G» with projective limit topology.
AeR
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b) G* is defined to be the dual of G. Hence

(2.37) G* = J G», with inductive limit topology.
AR

REMARK. Note that an element ¥ € G* can be represented as a formal sum

(2.38) v=% [gdB®
n=0 gn

where g, € L2(R™) and ||Y || < oo for some A € R, while an X € G satisfies || X ||, < oo
for all X € R.

If X € G and Y € G* have the representations (2.33), (2.38), respectively, then the action
of Y on X, (Y, X), is given by

(2.39) (¥, X) = 2 nife, g2
where _

(2.40) (for g0)omey = [ F(@)9(a)d
One can show that )

(2.41) (S)c G L*u) cg*c (S

The space G* is not big enough to contain the singular white noise W;. However, we shall
see that it does contain the solution X; of the stochastic differential equation we consider
in this paper. This fact allows us to deduce some useful properties of X; (see Sections 3,
4).

Like (S) and (8)* the spaces G and G* are closed under Wick product ([PT, Theorem
2.7)):

(242) X, Xo0€G=>X10X€§

(2.43) V,Y,€G* =Y 0Y, € G*
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§3. Solution of the stochastic differential equation

We now proceed to solve the equation

(3.1) E(t) + [ag + conWy] o 2(t) + 0%z (t) = TonWs; z(0), ©(0) given

First we will tranform the equation into a stochastic Volterra equation. Then we will use
Wick calculus as in [Z@)] to solve this equation.

First we Wick multiply both sides by the ’integrating factor’
t
(3.3) E(t) == exp®(J(t)), where J(t):= agt+ aon/Wsds = agt + apnB;
0
This gives

(3.4) %(ﬁ(t) o i(t)) = —82E(t) o 5(t) + Ton€ (t) o W,

From this we deduce that

£(t) 0 d(t) = #(0) + / Ton€(s) o Wyds — 62 / £(s) o o(s)ds

(3.5) = #(0) + Z—Z[g(t) —1-ag / £(s)ds] — 62 / £(s) o 2(s)ds

Now Wick multiply by the Wick inverse of £(t),

£(2)°Y = exp?(~J()

and obtain
(3.6) z(t) = b(t) — 6’2/exp°(J(s) — J(t)) o z(s)ds
where

(3.7) b(t) =b(t,w) = 5v(0)<>exp°(—.](t))+z—Z[I—exp"(—J(t))—ao /exp°(J(s)—J(t))ds]

From this we deduce that

(3.8) 2(t) = 2(0) + / b(s)ds + / (=62 / exp®(J(s) — J(r)) o x(s)ds)dr
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Now interchange the order of integration in the last iterated integral and obtain

t

(3.9) z(t) = z(0) + / b(s)ds + / (~6? / exp®(J(s) — J(r))dr) o z(s)ds

s

This is a stochastic Volterra equation of the form

(3.10) z(t) = A(t,w) + /K(t, s,w) ¢ z(s)ds
where

(3.11) A(t,w) =z(0) + /b(s,w)ds

and

(3.12) K(t,s,w) = —6? / exp®(J(s) — J(r))dr

s

In the deterministic case there is a well known solution method for Volterra equations. It
turns out (see [ZQ]) that in the stochastic case one can proceed in a similar way, except
that the Wick product replaces the ordinary product and one must work harder to get
the estimates needed for convergence. We now explain this in detail.

We proceed as in [ZQ, §3]:
Define

(3.13) Ki(t,s) = K(t, s,w)
and inductively
t
(3.14) Kpii(t,8) = /Kn(t, v)o Ki(u,8)du ; mn>1
0

By induction we have (see formula (3.12) in [ZQ)])

(3.15) Kty s) = / . I K (uk, per)du - dup—s

§<un_1 < <uy <¢ 0Sksn—1
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<
where [  denotes the Wick product from £ = 0 to £k = n — 1 and we have put
0<k<n—1
Ug =T, Uy = 8.

Now
K :=K(t,uy) oK(ul,uz) o0 K(up_1,$)
= (—§*)" /exp°(J(u1) J(r1))dr, o/exp°(](u2) J(rq))drs ©
(3.16) RS /-exp"(J(s)—J(rn))drn
= ( ) / /expo(_a'O(Tk - uk)_aon(Brk _Buk))d'rl et drn
g
Therefore

(3.17) E[K?] < 6™ (/.../E[gz]drl...drk). (/.../drl...drn)

uerjSuj_l "'js"‘js"'j-l
1<j<n 1<5<n
where
(3.18) L = exp®(—ao(rx — ug) — aon(By, — Bu,))-
Now by (2.30)
1
(3'19) exp"(—aon(B,k - B“k)) = exp(—aon(B,k - Buk) - ‘0‘0”7 (Tk - uk))

and therefore, by (2.31),

E[£’] = Elexp{—2aon(By, — Buy,) — (cgn* + 2a0)(rx — uz)}]
Elexp®{—200n(B,, — Bu,) + (agn® — 2a0)(r — ux)}]
= exp{(0fn® — 2a0)(rx — uz)}

(3.20)

Hence, by (3.17),

EKY < [ o2 — 2a, " kﬂl(exp{(a — 2a0)(ur-1 — wr)} — 1)

(3.21) 'kl:_[l(uk—l — u)

oz a0 (afn” = 200)t = 9} - [T (s — )
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Substituted in (3.15) this gives

E[K2(t,8)] < [/ / E[ICZ]dul---dun_l]-[/--- / duy -+ - dup_i]

§SUn—1 S-Sur St s<up—1<ur<t
02
< [ = ey X0 l(0’ —200)(0 = )}
(3.22) : / - / TT (s — ) -+ - Aty
s<un—1<Lur <t k=1
(t - S)n_l 62 (t _ S)Zn—

’ n—1! [a(zmz — 24 " exp{(afn® — 2a0)(t — 8)} 77 [(n—1)12

From (3.22) we deduce that

(3.23) H(t,5,0) = 3 Knlt, 5,0)

n=1
converges in L2(u), uniformly for 0 < s, < T.

Therefore, by the same argument as in the proof of Theorem 3.7 in [Z@] we get

THEOREM 3.1

The unique solution z(t) € (S)* of the stochastic Volterra equation

(3.24) 2(t) = A(t,w) + / K(t,5,w) o z(s)ds
0

where A(t,w) and K(t, s,w) are given by (3.11) and (3.12) respectively, is given by

(3.25) o(t) = At,w) + / H(t, s,w) o A(s, w)ds,

where H is given by (3.23).

COROLLARY 3.2

The solution z(t) of (3.24) belongs to G* for all ¢ > 0.
Proof. We know that G* is closed under Wick products. Since H(t,s,-) € L?(u) we have
H(t,s,-) € G*, by (2.41). In fact, by (2.34) we see that H(t,s,) € Gy for all t,s. So by

(3.25) it remains only to prove that there exists A > —oo such that A(t,-) € G, for all t.
But this is straightforward from (3.11) and (3.7). ]
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§4. Probabilistic properties of the motion

A natural question is now: What kind of probabilistic properties does z(t) have? Before
we try to answer this question we emphasize that we have not been able to prove that
z(t) is a classical stochastic process. Corollary 3.2 only guarantees that z(t) exists as
a generalized stochastic process with values in G*. The problem is that even though
A(s,+) and H(t,s,-) both are square integrable random variables for all ¢, s, their Wick
product H (¢, s,w)o A(s,w) need not be, because L%(p) is not closed under Wick products.
However, since z € G, for some A > —oo we know by (2.37) that z(¢) has an orthogonal
expansion (in the Hilbert space G,) of the form (see (2.17) and (2.34))

(4.1) z(t) = fo(t) + / fi(t;8)dBs + -+ + / Falt;s1,- -, 80)dB® + - -
R R

where f,(t;-) € L2(R™) for all n and

[o o
(4.2) 1X[13 =Y nle*™|| full}agmny < 00 for some A > —o0.

n=0

(If T < oo is given we can find A > —oo which works for all ¢ € [0,7].) Since
E[ [ fu(t;s)dB®" = 0 for all n > 1, we may regard fy(t) as a generalized expectation
R”

of z(t). (If z(¢t) happens to be in L?(u), then fo(t) the classical expectation of (%),
fo(t) = E[z(¢)].) In view of the orthogonal expansion (4.1) we could also say that fo(t) is
the best w-constant approzimation to z(t) in G,. Similarly, the sum of the first two terms

(4.3) 2(t,w) = folt) + [ filt, )dB,

may be regarded as the best Gaussian approzimation to z(t) in Gy. It has mean value
fo(t) and by the Ito isometry its variance is given by

(44) BI([ f1(ts 9)dB,Y) = [ £2(t5)ds = 111t ) Py
R R

To find 2(t) we use the argument from the proof of Theorem 3.1 in [HL@UZ]: We consider
the orthogonal expansion of z(t) by the basis {H,(-)} of Gy

(4.5) z(t) = Z ba(t)Ho(w)
Note that ¢o(t) = fo(t). Substituting (4.5) in (3.1) gives
S Ga(t) Ha + [a0 + a0 gj () Ho] 03 o (O H, + 023 da(t)Ha
(4.6) =Ty Y ex(t)H,.
k=1
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Collecting the coefficients of each H, and using that Hz ¢ H, = Hg.,, we get

Pa(t) + aoda(t) + aon( Y. ex(t)dy(t) + 82¢a(t))

e ty=a
(4.7) = Tonex(t) - Xjoj=1; Y& € T
In particular, choosing oo = 0 we get
(4.8) Bo(t) + aodo(t) + 6o (t) = 0.
Together with the initial values
(4.9), $0(0) = E[z(0)], ¢0(0) = E[#(0)]

this determines the generalized ezpectation ¢o(t) = fo(t) for all ¢.
Next, choosing o = €; we get (see the text following (2.12))

(4.10) Ge; (1) + a0de; (8) + 8¢, (£) = 1e;(t) To — cwogo(t)]

which is a second order differential equation in ¢, with constant coefficients and thus
easily solved, since ¢ (t) = fo(t) is already known.

Now the Gaussian random variable z(t,w) is given by

(1) = Bla(t] = 365 0w, = 3 64,0 [ e,(2)dB,
(4.11) = [(% b4 @)es(e)aB, = [ 1t 9)dB,
R J=1 R

and hence the variance of z(t) is

(4.12) E[(=(t) - Ela(®)])?] = | f: b, Des (N = 3 |6, )12

=1
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We have proved
THEOREM 4.1

The best Gaussian approximation in G, of the solution z(¢,-) of (3.1) has mean value
fo(t) = ¢o(t) given by (4.8) - (4.9) and variance given by (4.12), where the ¢ s satisfy
(4.10).

Similarly one may use (4.7) to find higher order approximands of z(¢).

The functions ¢y, ¢; may be obtained on explicit form. Consider the second order
(deterministic) differential equation

(4.13) A(t) + aod(t) + 0%4(t) = f(t), § > 0
Introducing

. é(t) _ 0 1 _ (0
(4:14) ‘I"(é(t)>"4‘<—02 ) M=)

we may write (4.13) as

(4.15) d® = Addt + Mf(t)dt

A

Multiplying by e~4* and integrating, we obtain

t
(4.16) B(t) = e~ 43(0) + / eAt=9) M 7 (1) dt
0
It is then easily found that

(417 é(t) = ém{[(% +i0)$(0) + $(0)]6*} + é[m [ e p(s)ds

where

Diq

2
_ 2_@1 /=.
(4.18) Q=(6"- D)}, o=

and I'm denotes imaginary part. (4.17) — (4.18) is the general solution of (4.13) which is
completely determined when the initial conditions are given.

The solution ¢ will ‘forget’ the initial conditions when ¢ increases, due to the damping
term in (4.13). Thus, for large values of time, ¢ is determined by the last term of (4.17).
This part of the solution is obtained by introducing ¢(0) = 0, ¢(0) = 0 in (4.17). Denote
this special solution by ¢F(t). Hence
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1 [ e
(4.19) oP(t) == [ e 7 )sinQ(t — s)f(s)ds
Q!

We now apply this to equations (4.8) and (4.10) for ¢o(t) and ¢, (t), respectively. In (4.8)
we have that f(¢) = 0. (4.19) then gives that

(4.20) o (t) =0.

Next, in (4.10) we have

(4.21) £(®) = nTole; (1) — ;‘,—;’qso(t)l

(4.19) then gives

t
(422) 6P = %T" [ FDsin s~ s)les(s) — S2do(s)lds, > 1
0
0
Consider the solution ¢5 (¢) for large values of the time ¢. Then we have that the contribu-

tion in (4.22) due to ¢o(s) for small and moderate values of s is damped out by the factor
e~ 7. Furthermore, noting that do(s) ~ ¢f(s) = 0 for large s, it is easy to demonstrate
that the contribution due to ¢ in (4.22) is vanishingly small for large values of ¢. Since
¢e; (t) ~ @S (t) for large t, we obtain

t
4.23 @e. (t) ~ b e~ T gin Q(t — s)e; (s ds, 7> 1 forlarget
J [9) J
0

We have then obtained

COROLLARY 4.2

For large values of time the best Gaussian approximation in G, of the solution z(%,-) of
(3.1) has zero mean value and a variance given by (4.12) and (4.23).

We note that (4.20) and (4.23) do not depend on the value of a. Thus, in order to obtain
the mean value and the variance of z(t) for large ¢ it is sufficient to consider the solution
of (3.1) with o = 0.

COROLLARY 4.3

The time-dependent damping of (3.1) does not contribute to the mean value and the
variance of the solution z(¢) of (3.1) for large t.

We remark that Corollary 4.3 is in agreement with numerical simulations by [G] and [ZF].
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§5. Concluding remarks

A stochastic model for slow-drift motions of offshore structures is developed. One of the
principal aims has been to interpret the role of the time-dependent part of the damping
force, which appears in the equation for the slow-drift motions. It is argued that the
slow-drift motion may be modelled by the second order stochastic differential equation
(1.10). This equation contains white noise both in the excitation force and in a part of
the damping force. Solution of the differential equation is found by means of stochastic
Volterra equations, see equation (3.25). The stochastic properties of the motion is consid-
ered. The mean value and the variance of the motion are obtained on explicit form. We
find that the mean value approaches zero for large value of time. The variance is found
to be proportional to the amplitude of the excitation force divided by the mean value of
the damping. The time-dependent part of the damping is found to have no effect on the
mean value and the variance of the motion for large value of the time. This is in agree-
ment with numerical simulations ([G] and [ZF]). It is believed that the time-dependent
damping is of importance to higher order stochastic properties of the motion than the
mean value and the variance. The present analysis may serve as basis for obtaining higher
order approximands of the stochastic properties of the slow-drift motions.
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