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Abstract

In this paper we look at two models for pollution given by the equations

ou 1

prie 2n2Au+W¢x oVu—kpxou+g(t,x) (t,x)€[0,T]xR"
u(0,x) = f(x) x € R"
and
ou 1 2 -
3t = 3" Au+Wy, oVu—Kix outg(t,x) (t,x) €[0,T]xD
u(0,x) = ¢(x) xeD
u(t,x) = h(t,x) (t,x) € [0,T]x oD

where T and 1 are constants, D is a bounded domain, chx, K(t,x)» T» ®, hand g are elements in
the space (S)~! of generalized white noise distributions. With suitable conditions on k, f, , h
and g, we show that both equations have unique solutions given by explicit solution formulas.
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§1 Introduction

‘We will consider two stochastic models based on the PDE

0 1

au(t, x) = znzAu(t, x) — V- Vu(t, x) — ou(t,x) + &(t, x) (1)
where %nz is the dispersion coefficient, V is the water velocity, o is the leakage rate, &(t, x) is the rate
of increase of the chemical concentration at (t,x) and u(t, x) is the chemical concentration at time t




on location x. This work is motivated from the paper of G. Kallianpur et al. [KAL] where the £(t, x)
was supposed to be random. We will in addition consider the case where the drift vector V is modeled
as an n-dimensional white noise, consisting of independent components. We will work in the space
(8)~7 of generalized white noise distributions, since this space will allow explicit solutions formulas
for a wide range of possible choices for random &’s and because the methods are particularly simple.

The methods used to solve the stochastic versions of (1) are the same as those used by Holden et al. in
[HL@UZ3] and several other SPDE’s are solved in a similarly fashion:

e The transport equation ([GjHIUZ)).

e The pressure equation for fluid flow ((HL@UZ3]).

e The Dirichlet equation ([Gj2]).

e The Burgers equation ((HL@UZ2]).

e The Schrodinger equation ((HLGUZ]).

For more examples and background on white noise, please read [BA3].

§2 Preliminaries on multidimensional white noise

There are many problems of physical nature where the need for several independent white noise sources
arises. For example, given m independent positive white noise sources in a domain D, one wants to
calculate the effect of these on a particle traveling in D. The result should intuitively be given by

m (.
Z Exp{Wd: h
i=1
where {Exp{Wg‘ )}}‘i‘;] are one dimensional independent positive white noise sources.
We will now give a short introduction of definitions and results from multidimensional Wick calculus,
taken mostly from [Gj], [HL@UZ3], [HKPS] and [KLS].

In the following we will fix the parameter dimension 1 and space dimension m.

Let .
N =T]s®rY)
i=1

where S(R™) is the Schwartz space of rapidly decreasing C*°-functions on R", and

N =(]s®) ~]s'®Y)
i=1

i=1

where S’(R™) is the space of tempered distributions.




Let B := B(N*) denote the Borel o-algebra on /* equipped with the weak star topology and set

H = écZ(R“)

i=1

where @ denotes orthogonal sum.

Since N is a countably Hilbert nuclear space (cf. eg.[Gj]) we get, using Minlos’ theorem, a unique

probability measure v on (N*, B) such that

J eHO®) gy (w) = ezl Vp eN

where ”d)”%i = Zr;] ”d’i”il(Rn)-
Note that if m = 1 then v is usually denoted by p.

THEOREM 2.1 [Gj] We have the following

1. ®B(S'(R")) = B([TR, S'(RY))
2. v=x1;u

DEFINITION 2.2 [Gj] The triple
m
(JIs'®"),8,v)

i=1

is called the (m-dimensional) (n-parameter) white noise probability space.

Fork=0,1,2,... and x € Rlet

ha(x) = (15T = (%)

dk
TR e

be the Hermite polynomials and
x2
E(x) = F (k=1))7Te T i1 (V2X) 5 k2 1

the Hermite functions.

It is well known that the family {€,} C S(R™) of tensor products
é“:= E'O‘-'l ®"°®£“n

forms an orthonormal basis for £2(R").

Give the family of all multi-indecies = ({3, ... ,(n) a fixed ordering

(cM,c®,... ¢,y where (¥ = (¢{,..., ¢

3

)




and define & := &;(x).

Let {ex}>; be the orthonormal basis of H we get from the collection

i—1 m—i . .
{(0,-.,0,,0,....00eH T<i<m1<j<oo)

and lety : N — N be a function such that

ex = (0,.. . )O)éc(v(k]))ov oo ,0).
Finally , let (3,82, ... 8% .. ) with (¥ = (ng),... ,8%)) be a sequence
such that B(¥) = ¢(v(k)),

If « = (a1,...,ak) is a multi-index of non-negative integers we put

k
He(w) i= ] [ o ({0, €1)).

i=1
From theorem 2.1 in [HLGUZ] We know that the collection
(Ho(); € N§;k=0,1,...}

forms an orthogonal basis for £2(A™*, B,v) with |Hu||z2(v) = &! where a! = T, ol

This implies that any f € £2(v) has the unique representation

flw) = Z CaHuo(w)
04
where ¢, € R for each multi-index o« and
122y = 2_ odicse
&
DEFINITION 2.3 [Gj] The m-dimensional white noise map is a map

W ﬁS(R") X ﬁS’(R") — R™

i=1 i=1

given by _
W (h,w) = wi(di) 1<i<m

PROPOSITION 2.4 [Gj] The m-dimensional white noise map W satisfies the following

1. (wi(¢,) T, is a family of independent normal random variables.
2. Wi(p,) € £L2(v)for1 <i<m.




DEFINITION 2.5 [HLGUZ3]Let0 < p < 1.
o Let (S5*)°, the space of generalized white noise test functions, consist of all

f=) HqeL2v)

such that

I1fl3x =D c&(a)"*P2N)™* <00 Vk €N
[+ 4

o Let (ST')P, the space of generalized white noise distributions, consist of all formal expan-

sions
F=) buHy
24
such that
Zb‘i(oc!)]"p(ZN)_“q < oo for some q € N
[+
where .
@N)* =[] @8 - )™ if o = (ar, ... , o).
i=1

)

We know that (S7*)° is the dual of (ST*)P (when the later space has the topology given by the semi-
norms || - |[px) and if F =3 baHy € (ST)Pand f = Y cqHy € (SV)P then

(Ff) =) bacaal.
24

It is obvious that we have the inclusions
(ST c(STP c (S (S pelo,1]
and in the remaining of this paper we will consider the larger space (S™)~.

DEFINITION 2.6 [HL@UZ3] The Wick product of two elements in (S™)~! given by

F=) auHe, G=) bgHg
« B

is defined by
FoG=) c,Hy
Y
where
Cy = Z aabp
o+p=y




LEMMA 2.7 [HL@UZ3] We have the following

1. FGe(SM '=FoGe (SM)!
2. f,ge (M) = foge (S

DEFINITION 2.8 [HL@AUZ3] Let F = }_ byH be given. Then the Hermite transform of F,denoted
by HF, is defined to be (whenever convergent)

HF:=) bez®
(29

where z = (z1,22,-+-) and z%* = z{" 25?2 - -

g ifoa=(a,...,0%).
LEMMA 2.9 [HL@UZ3]IfF,G € (S)~! then

H(Fo G)(z) = HF(z) - HG(z)
for all z such that HF(z) and HG(z) exists.

LEMMA 2.10 [HL@UZ3] Suppose g(z1,22, -+ ) is a bounded analytic function on B4(8) for some
6 > 0,q < oo where

Bq(8) :=1{C=(L1,L2,-++) € CH; D ICXP(2N)* < &2,
oF#0

Then there exists X € (SI*)~! such that HX = g.

LEMMA 2.11 [HL@UZ3] Suppose X € (SI*)~! and that f is an analytic function in a neighborhood
of HX(0) in C. Then there exists Y € (S™)~ such that HY = f o HX.

THEOREM 2.12 [KLS] Let (T, £, T) be a measure space and let @ : T — (S™)~! be such that there
exists q < 00,6 > 0 such that

1. H®4(z) : T — Cis measurable for all z € B4(5)

2. there exists C € £1(T, ) such that [H®+(z)| < C(t) for all z € B4(5) and for T-almost all t.

Then [ @ d(t) exists as a Bochner integral in (ST*)~". In particular,
<IT (Dt d’t(t)) (b) = IT(q)t> Cb) dT(t) ) d) € (S‘Rl)1'

EXAMPLE 2.13 Define the x-shift of ¢, denoted by ¢y, by dx(y) := d(y — x).Then
Exp{Wg”l} e ™M1 1<i<mVxeR"

which is an immediate consequence of proposition 2.4 and lemma 2.11.




§3 The pollution model in R™

We will in this and the next section assume that (bgt’x)(w), Ptx) is a Brownian motion starting at lo-
cation x € R™ at time t, and use the notation

o Etxis expectation w.r.t. the measure prx,

e C2(R™) are the functions in R™ with continuous derivatives up to order 2.

o C3(R™) are the functions in R™ with compact support and continuous derivatives up to order 2.

THEOREM 3.1 Let T > O be given and assume furthermore that we are given functions R" 3 x —
f(x) € (S)71, [0, TIXR™ 3 (t,x) — g(t,x) € (SF)~Vand [0, TIXR™ 5 (t,x) - k(t,x) € (SF)~!
such that

e 3(qf € N, 8¢ > 0,K¢ > 0) such that

1. Supycgn 2eB., (5¢) [Hf(x,z)| < K.
2. x — Hf(x,z) € C5(R™) whenever z € B, (5¢).

e 3(dg € N84 > 0,Kg > 0) such that

L. SUD(; )eto,TIxR™ zeBa (54) ITEO(H %, 2)l < K.
2. x = Hg(t,x,z) € C5(R™) whenever t € [0,T],z € By, (5g).
3. I(ee(z) > 0Vz € Bg, (64)) suchthat (t,x) — Hg(t,x, z) is Holder continuous (exponent
a(z)) in x € R™, uniformly int € [0, T].
e 3(qc € N,8¢ > 0,K, > 0) such that

L. SUD(; y)elo,TIxR™ zeBq . (6¢) [Hk(t,%,2z)| < K.
2. x = Hk(t,x,z) € C3(R™) whenever t € [0,T],z € Bg, (5«).

3. 3(B(z) > 0Vz € By, (8«)) such that (t,x) — Hk(t,x, z) is uniformly Holder continuous
(exponent 3(z)) in (t, x) on compact subsets of [0, T] x R™.

4. ‘Hk(t,x,z) > 0 whenever z € Bg, (6«) N RY.

Then
.
u(t,x) = ET-4¥[f(br) o Expl— J «(T — 8, be) 6} o J 1]
T-t
T s
+ BTt J g(T —s,bs) o Exp{— J k(T —0,bg) d6}ds o J;. 1]
' T—t Tt
where
n T n T
Ji1 = EXP{Z] n! J [val]ymbs dby — % Zn_z J M$3]§=nbs ds} @
i= T-t i=1 T—t




is the unique (S7)~"-valued process which solves

aa:L ;TIZAu+W¢x<>Vu— k(t,x)ou+g(t,x) (t,x)€[0,T]xR"
(O,X)—f( ) XGR“'

where £ and J - ds are Bochner integrals in gt

REMARK 3.2 If u(t,x) € (81’1‘)‘] and A(Hu(t,x)) € Ap(Bg(8)) for some g € N6 > 0, where
Ap(Bg(8)) is the space of all bounded analytic functions on B4(8) and A := znzA W¢ oV,
we will use the convention that Au(t, x) := H~TA(Hu(t, x)).

PROOF:
We must find § € Nand 8 > 0 such that @i(t, x, z) := H(u(t,x))(z) € Ap(Bg (8)) solves the equation

2)2: ;“ZA“* We, 0 VE—R(t,x) 0T+ §(t,%) (£,%) € [0, T]x R* 3)
~(0,X)=f( ) xeR‘n (4)
when z € B4(8).

LEMMA 3.3 3(5 > 0,4 € N) such that z — i(t, x,z) € Ap(B4(8)) V(t,x) € [0, T] x R™.

PROOF:
By taking absolute values, we get

[t x, z)| < KeeT™ e + TKgeT¥x

whenever z € Bq(ﬁ) where § > max{qy, qq,q«}and 0 < 3 < min{s;, dg, 8¢}, since, by using [BJ,
Corollary 8.23],

T .
BTt Z 1) = ET t"‘[exp{Zn“J RIW ) ly=np, dbt ——Zn‘ZJ RIWGZ_p, ds)

i=1
=1.
[ |
LEMMA 3.4 The Bochner integrals in the expression for u(x) are well-defined.
PROOF:
This is obvious from the estimates in lemma 3.3 u




LEMMA 3.5 Au(t, x) is well-defined as an element in (S7)~' V(t,x) € [0, T] x R™.
PROOF:

Since

it follows from lemma 3.3 that
JATL(t, X, 2)| < K (Kee™ 8 + TKge™x) + K,
when z € By (8), i.e. the claim follows. n
LEMMA 3.6 i(t,x,z) is the unique function which solves equation (3) when z € Bq 8).
PROOF:
Equation (3) may be written as
g—‘t‘ﬂu ARL4+§ (t,x) € [0, TIXR® (5)
(0,x) =T x € R" (6)

where A% is the second order differential operator given by
n n
1 a - (1) 0
A =3 e S WO

Assume now that £ € Ba ) NRY.

The operator A? is clearly uniformly elliptic with drift term which satisfies the linear growth condition

WS~ Wl(8) —|Z(¢x Py, ex)Exd

k=0
< Z' d)y)ek ||£.k|
k=0
MY | lextlaxiend) -y
k—oRn

where

— 0
M= e {sup 1 <o
It follows by standard results that the stochastic process

Xt =W, e (E)dt+dby ; Xg=x

exists with A% as generator.




The solution of (5) is given by the Feynman-Kac formula [KS, Theorem 5.7.6]

T

altx,£) = €T expl— | =(T—0,XE) doy
T—t
T s
n ﬁT—t,x[J §(T —s, XE)] exp{_J k(T—8, Xf;) de}ds]
T—t T—t
and by a change of measure this may be written as
T
altx,£) = €T (br) expl~ | K(T —8,ba) B} Me]
' T—t
T s
+ ﬁT—t’*[J §(T — s, b2)] exp{—J &(T — 0, X5) d6} dsMq.1]
T—t T—t
where
n T
M= exp{z 1! J [Vvdo)]y—nbs db - Z -2 J d:s); y=nb, ds}.
i=1 T_ 1—1

This expression is easily seen to have an analytic extension to all z € Bq(ﬁ) and by applying the
generator of by on both the real and imaginary part of ii(t, x, z) we see that equation (3) also holds in
this case. ]

The theorem now follows from the previous lemmas. ]

84 The pollution model in a bounded domain

THEOREM 4.1 Let T > O be given and suppose D C R" is a bounded domain such that every
point on the boundary of 8D has the exterior sphere property; i.e. there exists a ball B 3 x such that
BND =0,BN&D = {x}.

Assume furthermore that we are given functions [0, T]x9D > (t,x) — h(t,x) € (STTL‘)_], 0,TIxD >
(t,x) = g(t,x) € (SF)", D3 x - d(x) € (57)7 and [0, TIx D 3 (t,x) — k(t,x) € (5)~"
such that
e J(qn € N, 6y, > 0, Ky, > 0) such that
1. SUP (¢ )c[0,T)x 0D 2€Bqy, (53) [FER(E %, Z)| < K.
2. x = Hh(t,x,z) € C2([0,T] x D) whenever t € [0,T],z€ Bg, (on).
¢ 3(qp €N, 84 > 0,Ky > 0) such that
1. squeD,zeB%(&d,) [Hd(x,z)] < Kg.
2. x = Hp(x,z) € C%(D) whenever z € Bg, (84).
e 3(dg € N85 > 0,Kg > 0) such that

10




L SUP (¢ x)c[0,TI1xD zeBy (5,) (%, 2)| < K.
2. x — Hg(t,x,z) € C3([0,T] x D) whenever t € [0,T],z€ By, (8g).
3. d((z) > 0Vz € By, (8g)) such that (t,x) — Hg(t,x, z) is Holder continuous (exponent
a(z)) inx € D, uniformly in t € [0, T].
e J(qx € N, 8¢ > 0,K, > 0) such that

1. SUP (¢ )0, T1xD,2€Bq, (54) Hk(t,x,z)| < K.

2. x — Hk(t,x,z) € C%(D) whenever t € [0,T],z € Bg. (k).

3. 3(B(z) > 0Vz € Bq, (6«)) such that (t,x) — Hk(t,x, z) is uniformly Holder continuous
(exponent 3(z)) in (t,x) in compact subsets of [0, T] x D.

4. Hk(t,x,z) > 0 whenever z € Bq, (6<) N ]R§.

e h(0,x) = ¢(x) Vx € 0D
Then

u(t,x) = ET*h(be, T — 1) o Exp{— j «(T — 5, bs) dslxeer © Je1]

T—t

+ BT p(br) o Bxpl— | (T —s,b.) dsher o 2]

T-t
T s

+ET-t¥ J g(bs, T —s) o exp{— J k(T —A,ba) dA}ds o Ji. 7]
T—t T—t
where J¢ T is given by (2) and T is first time A € [t, T] that X, leaves D if such atime exists and T:=T
otherwise, is the unique (87)~1-valued process which solves

aa—t: = %nzAu+W¢x<>Vu— k(t,x)ou+g(t,x) (t,x)€[0,T]xD
u(0,x) = Pp(x) x€D
u(t,x) = h(t,x) (t,x) € [0,T] x 6D

where £ and [ - ds are Bochner integrals in (S7)~".

PROOF:

This follows, since T < T, as in the proof of theorem 3.1, but instead of using the Feynman-Kac for-
mula, we use [Fri, Theorem 5.2]. n
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