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ABSTRACT. In this paper we consider Wick products of complex valued random variables. We
prove that Wick products of such variables coincide with the ordinary product in a variety of cases.
Ordinary SDEs are considered in relation to their Wick versions. We present examples where these

notions are equivalent in the complex case.

1. Introduction

The relationship between stochastic integration and complex analysis has been a topic
of several authors. Analytic functions are conformal mappings and they will always map
Brownian paths into new Brownian paths. The area is thus characterized by a number of
phenomena which do not appear in the real case. The basis for many of these issues can

be found from the complex version of the Ito formula, see e.g. [14]:
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(1.1)  df(Zy) =

If f happens to be an analytic function, this simplifies to:
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(1.2) af(zZs) = dZt + =

Usually one only wants to consider processes Z; with some kind of holomorphic structure,
e.g. conformal martingales see [5] or [18]. In these cases the quadratic variation term
dZ:dZ; vanish, and we end up with the ordinary chain rule:
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(1.3) - apen=Zaz

Once we have a chain rule of this form, we are able to solve various problems in stochastic
calculus using simple techniques from classical calculus. The awkward correction terms
from the usual Ito calculus are no longer present, and the basic intuition from ordinary
differential equation applies without change. By contrast, one can achieve more or less
the same effect using Wick products and Wick calculus. For references to the theory of
Wick calculus see [6], [8], [10] or [12]. This way of approach applies already in the real

variable case.

Some notation

Let S(R) be denote the usual Schwartz space of rapidly decreasing smooth (C*) functions
on R with its dual space S’ (R) equipped with the weak star topology, and let S¢ (R) denote
the complexification of S’ (R). On S¢(R) we define a probability measure u as the product
of two white noise measures, see [7]. To be more precise, the complexification of the real

white noise probability space is carried out as follows. Put:

(1.4) Sc(R) = S(R) + i S(R) and: Sc(R) = S'(R) +iS'(R)
By the Bochner-Minlos theorem, define two measures p; and pz on S'(R) with:
(1.5) [, EXP0E{0, PNt () = exp(- ;I lZm), J=1.2

With B the Borel o-algebra on S:C([R), introduce the product measure v = pj X up. Then
the triplet:

(1.6) (Sc(R), B, V)

is called the complex white noise probability space. From the expression (1.5) we get the
familiar isometry E[| < -, ¢ > |?] = Hd)llEZ(R) for all ¢ € S(R) where < w, ¢p >= w(¢p) is
the dual action. Using this isometry, we can define < w, ¢ >:= limg_. < w, ¢ > for all
¢ € L2(R) (¢px is any sequence in S(R) s.t. ¢x — ¢ in L2(R)). This allows us to define:

(1.7) [Rt(w) = (w, 1[0,t)) = (Wreal, 1[O,t)) + i<wimaginury, 1[O,t))

B: is then essentially a Brownian motion in the complex plane in the sense that there
exist a t-continuous version B; of B; such that B; is a Brownian motion in the complex

plane. We let B;; and B,; denote the real and the imaginary components of B;. We also
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need the corresponding white noise processes and indicate these as W, Wi etc. The
familiar constructions of white noise analysis now carry over to the complex. case with

some minor modifications.

Following Hida [7], we introduce the complex Hermite polynomials Hym(z, Z) as:

n+m

(1.8) Hym(2,2) = (—1)"™™ exp(22) = exp(~22)

0znozm
where n, m are non-negative integers. With this definition, we see that our Brownian

motion can be written:

(1.9) B: (w) = Hi0(< w, 1[0, >, < w, 1[0 >)

Denote by (L%) := L2(v), and let Hm) be the subspace spanned by the functions
{Hpm(< w,e; >, < w,e; >)};, where {e;}; is a CONS in L2(R). We will make the as-
sumption that e; € Sc(R) for all i = 1,2,.... From [7], proof of prop. 6.11, we have

the orthogonality relation:

(1 10) JS, ®) Hp,k(< wyw >12—W§)Hnlm(< w,y >,W) dV(w)
* C

=6pnBqmp'a!(y, )Py, »)"

In [7] it is shown that we have a Wiener-Ito-Segal decomposition for every ¢ € (L%):

(1.11) P(w) = > Pnm(w)

where ¢ym € Hmnm). We obtain a Fock space structure, i.e. ¢ is in a one-to-one corre-

spondence with a sequence of functions {f ™™}, ,,,, with ™™ € LZ(R"*™). Moreover:

00

n
(1.12) IpliTyy = > 2 il f ™R ooy

n=lm=1
We introduce the complex Kondratiev spaces of random test functions and distributions.
Our construction follows closely the one found in [1]. Let P := P({e;}) be the space of
polynomials as defined in [7], Ch. 6.3. Every element ¢ € P is expressible in the form:

N =n
(1.13) Pw) =D > Ppm(w)

n=0m=0
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where ¢ m € Hnm)- Let the space (Sc)}, be the completion of P in the norm:

(1.14) 113, = PP (n'mw fmm 2

where | - |2,p,c is the complexification of the norm | - |2, := |A? - |5. A is the harmonic
oscillator. The complex Kondratiev space of random test functions is the projective limit
of the spaces (Sc)l, and is denoted (Sc)!. Its dual, the space of complex Kondratiev dis-
tributions, is denoted (Sc)~1. All elements ® € (Sc)~! is in a one-to-one correspondence

with a sequence of functions {F™™)},, .. with F™™M) ¢ S (R"*™), such that fora p > 0:

o]

n
(1.15) 1112, pci= D, D [F™™|5_ <o

n=0m=0

On the space of complex Kondratiev distributions, we introduce the S-transform: For
® € (S¢)~! and € € Sc(R), let:

(1.16) S®(E) := (B,exp(< -, E> +< -, & > — |EI2))

where (-, -) is the dual pairing between (Sc)~! and (Sc)!. Itis easy to see that for ¢ € (L%)

(1.17) S (E) = js,(m F(@) exp(< W, E > +< @, E> — |E12) dv(w)

From formula A.40 in [7], we have:

(1.18)
exp(< w, &> +< w, &> — [El}) = Z

n,m=0

|§|n+m

Hpm(< w,§ - |§|21 >, <w,&- IE'zl >)

Using the orthogonality relation for the complex Hermite polynomials, we obtain:

t.——-
(1.19) SBe(E) = [El2(1ioe), E - 1EI71) = jo Es) ds

From [1] it is known that the S-transform characterizes the Kondratiev distributions.
Consider a function G : U — C, where ‘U is a neighborhood around zero in Sc(R). If G
is locally bounded on ‘U, and the mapping z — G(& + zn) is analytic in a neighborhood
around zero in C for each pair &, n € ‘U, then there exists a ® € (S¢)~! such that §® = G.
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Opposite, every element in (Sc)~! has a S-transform which is of this type. We refer the
reader to the papers [12] and [1], and the contribution of F. E. Benth in this volume,
for more about the Kondratiev distribution space. The Wick product of two complex
Kondratiev distributions is defined as follows: Let ®,¥ € (S¢)!, then:

(1.20) doV¥=S1(sd-SY)

With this definition, we can easily calculate the S-transform of B; k for a integer k:

£ \K
(1.21) SBK(E) = (L} HO) ds)

A straightforward calculation shows that:

- t___ \*
(1.22) S (Hio(< 0,E>,<w,E>)) (§) = (jo £(s) ds)
Hence, we find:
(1.23) BY*(w) = Hyo(< w,1[0) >, < @, L) >) =< W, L1o,p) >*= Be(w)*

2. Complex Wick multiplication

‘We now let f£(z) = > ,_oanz" be an entire function. If X is a random variable, we define

the Wick version of f(X) by the expression:
00 N
FOX) = anX°™ = lim > anX°"
n=0 N=eo n=0
the limit being taken in (Sc)~!, see [10] or [12]. If X € (S¢)~!, this limit always exists.

With these conventions the following theorem follows trivially from (1.23).

THEOREM 2.1

Let f : C — C be an entire function, and let f°¢ denote the Wick version. Then:

(2.1) S(Bt) = f°(B)
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We have proved that Wick-powers of complex Brownian motion coincide with usual pow-
ers. In the following we want to extend this property to other random variables as well.

We first observe the following lemma:

LEMMA 2.2

(2.2) BS™ o BS™ = B™ - B

PROOF

Assume that t > s, then we have:
BS™ o BY™ = BS™ o (B — Bs + By)°™

n
= B™ o > (7)) (Be — By)°k 0 BY™ Y

k=0
L
= 2. () (B = By)° o Byl
(2.3) k=0
n
= 3. () (B — Bk o By
k=0
L
= 2 () (B —By)* - By k+m
k=0
= B™ - B!

In the fifth equality we have used that B; — B; and B; are strongly independent. In this
case the Wick product always coincide with the ordinary product, see [6].

O
PROPOSITION 2.3
Let p be a polynomial in k complex variables, then:
(2-4) po([Btli [Btzs ey [Btk) = p(IBtly [Btzy ey ‘Btk)
where p© is interpreted in the sense that all powers are Wick powers.
PROOF
Use lemma 1.4 repeatedly to see that:
(2.5) By o B o -+ o Byt = Byt - B - - - By
The general result then follows by linearity.
|
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For easy reference we will call any expression on the form IIx = p (B¢, Bs,,...,Bg) @
B-analytic polynomial. The multiplicative property (2.4) can now be extended to limits
of B-analytic polynomials. A convenient space to work in is then the space (S¢)~! of

Kondratiev distributions, see [10] or [12]. We start out with some definitions:

DEFINITION 2.4
X € (Sc)7! is called B-analytic if there exists a sequence X,, of B-analytic polynomials
such that X,, — X strongly in (S¢) 1.

DEFINITION 2.5
X e (L?), p > 1, is By-analytic if there exists a sequence X, of B-analytic polynomials
such that X,, — X in (L?).

From these definitions, we have:

COROLLARY 2.6
Let X € (L?), p > 1, be By-analytic. Then X is B-analytic.

PROOF

By assumption we have a sequence X, of B-analytic polynomials converging to X in (L?).
But convergence in (L?) implies strong convergence in (Sc)~!, see [12]. Hence, X is B-

analytic.

COROLLARY 2.7

If {X,} is a sequence of B-analytic elements which converges strongly to X in (Sc)™1,

then X is B-analytic.

PROOF

The proof is straightforward: Since X,, converges strongly to X in (Sc)~!, there exists a

p > 0 such that:
(2.6) | Xn — Xll2,-pc = 0

For each n, let {Y"*} be a sequence of B-analytic polynomials converging strongly to Xy,
in (Sc)~1. (Such a sequence exists by definition of B-analyticity). Since Xy, is an element

in (Sc)=;, we have:
(2.7) 1Y = Xnll2~pc =0, m— oo
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This yields that for each n, there exists a natural number Ny, such that:
L . 1
(2.8) 1Y = Xnll2,—p,c < po form = Ny,

Itis then easy to see that the sequence (YN} of B-analytic polynomials converges strongly
in (Sc)~! to X: For a given € > 0, we find a M, such that 1/n < €/2 and:

(2.9) IX — Xull2,-p,c <€/2
for n > M,. Hence, by the triangle inequality:

(2.10) IX = Yoo —p.c < IX = Xullz—p.c + 1 Xn — Y l2-p,c <€

For Bp-analyticity, we have the same result:

COROLLARY 2.8

If {X,} is a sequence of B,-analytic elements which converges to X in (L?), then X is
B,-analytic.

PROPOSITION 2.9
If X,Y are B-analytic, then X ¢ Y is B-analytic.

PROOF

Let {X,} and {Y,} be two sequences of B-analytic polynomials converging strongly in

(Sc)~! to X and Y respectively. That means, for p,q > 0:

(2.11) 1Xn — Xll2,-pc = 0, n— o
and:
(2.12) 1Yy — Y“Z,—q,c -0, n->o

Define, for an o > %:

(2.13) v := &+ max(p,q)
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From the triangle inequality and Corollary 4.22 in [9], we have:

(2.14) IXoY —XnoYullo,—rc <X (Y -Yn)l2-rc+ IYno (X~ Xn)ll2,—r,c

(2.15) < KillXll2,-pcllY = Ynll2,-q,c + K2l Ynll2-g,cll X — Xnll2,—p,c

We see that X, ¢ Y, converges strongly to X ¢ Y, and since X, ¢ Yy is a W-analytic
polynomial, the proposition follows.

THEOREM 2.10

Let p > 1 and q > p. Assume that X € (L) is Bs-analytic and that Y € (LE‘%) is
IB#_%-analytic. Then X - Y € (L?) is By-analytic. Moreover,

(2.16) XoY=X-Y

PROOF

Let X;, and Y, be the B-analytic sequences converging to X and Y respectively. X, - Yy, is
of course again a B-analytic polynomial. Observe that by the Cauchy-Schwartz inequality

we have:

(2.17) If-gllp < 1fllallgll ae.

Hence, by the triangle inequality it vfollows that:

(2.18) Xp - Yn—-X-Y

in (L?). Thus, X - Y is Bp-analytic. Since X, - Yy, is a B-analytic polynomial, we have:
(2.19) Xn - Yn =Xn ¢ Yn.

Since X, and Y,, converge in (L%) and (L%) respectively, we can show that:

(2.20) S(Xn © Yn) (&) — SX () - SY (&)

pointwise, and:

(2.21) [S(Xn © Yn)(E)| <K,

9
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uniformly in n. Here, € is in a neighbourhood around zero in Sc(R). Hence, by Theorem
5 in [12], it follows that:

(2.22) XpnoYp—-XoY
weakly in (Sc)~!. By the corollary above, Xy, - Y, — X - Y strongly in (Sc)~L. Hence:

where lim,, denotes the strong limit in (S¢) L.

Remark

Note if X is B, analytic for some g > 1 and Y is B, -analytic for all 7 < oo, then it is always
possible to find p > 1 s.t. the conditions in theorem 2.9 are satisfied.

We now go on to consider stochastic processes. Here we call a stochastic process X;
B-analytic if X; is B-analytic for every fixed t and similarly for B,-analyticity. We want
to consider certain elementary observations on B-analytic processes and start out with

some observations.

PROPOSITION 2.11

Assume X; is an It6 integrable and that for each t it can be approximated in L2 by adapted
B-analytic polynomials. Then then It6 integral:

T
(2.24) jo X, dB,

is B2-analytic.

PROOF
By definition of the It6 integral:

T
(2.25) | xeas: - lim > X, - (B, ~ By,)

J

where the limit is taken in (L?). By assumption, Xt is Bp-analytic. Since X; is adapted,
we have:
(2.26) E[1X¢,1?|Be;,, — By, 121 = E[1Xt;1%] - E[IByy,, — By, 121,

Hence, we see that X¢; (B¢;,, — Bt;) is Bz-analytic. The Itd integral is then the (L?)-limit of

B,-analytic elements, which imply the proposition.

10
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PROPOSITION 2.12
‘Let {x;(t)}%, be any sequence of L?(R)-functions. Then all the integrals [ x;(t)dBt,

i = 1,2,... are B;-analytic for any g and any combination of Wick powers and Wick
products of these random variables coincide with the corresponding expressions defined

in terms of the ordinary product.

PROOF

It is an easy application of the Burkholder-Gundy inequalities to see that the integrals
[xi(t)dB;, i = 1,2,... are Bg-analytic for any g. The second part follows from theorem
2.10.

PROPOSITION 2.13
Let X; be a B-analytic process where (X;, ¢) is measurable on [0, T] for all ¢ € (S)L.

Assume there exists a p > 0 such that:

T
(2.27) L 1 Xt ll2,~p,cdt < oo
Then the Bochner integral fOT Xidt € (Sc)~! is B-analytic.

PROOF

By Pettis’ Theorem (see e.g. [22]), the measurability of (X;, ¢) implies strong measur-
ability, i.e. the existence of a sequence {X{'}, in (Sc)~! converging strongly to X;. By
inspection of the proof of Pettis’ theorem in [22], this sequence can be chosen in the

following manner:
(2.28) X" =Y;, whens e B,

where {B}‘}ﬁ-\’:l are disjoint measurable sets in [0, T], and Y; = X, for some s; € [0,T].
Hence, by assumption, X{* is B-analytic.
By the condition foT | Xell2,-pdt < o Bochner integrability of X; follows. We have:

T T ©
(2.29) J Xedt = lim JO Xpdt = lim >’ Yem(BD).
0 — 00 —>001=1

The limit is strongly in (S¢)~!. Hence, the Bochner integral is the strong limit of B-analytic

elements, and the proposition follows.
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In the Kondratiev space we have a generalization of It6/Skorohod integration. If X; is an

It6 integrable process, then:
T T
(2.30) J;) Xt © Widt = J;) X:dB:
We have the following result about B-analyticity of this integral:

PROPOSITION 2.14

Let X; be a B-analytic process such that:

i) SX¢(&) is measurable for & € U

ii) |SX¢(E)| < C(t), where C(t) € L'([0,T],dt) for £ € U
Then X; ¢ W; is Bochner integrable, and:

T
(2.31) jo X; o Wedt
is B-analytic.

PROOF
We have:

.1
(2.32) Wi = }tlil‘(l) E(B”h - Be),

where the limit is strong in (Sc)~!. Hence, W; is a B- analytic process. This implies by
proposition (above) that X; © W is B-analytic. By Theorem 6 in [12], we have the Bochner
integrability of X; ¢ W;. Hence, the proposition follows.

3. Applications to SDEs
We now want to compare SDEs of the from:

(3.1) azZy = (X¢ - Zt + Y:)dB: + (Ug - Z; + Ve)dt

(3.2) AZ; = (Xt ¢ Zp + Y1)dB: + (U ¢ Zy + Vy)dt

The equation (3.2) can be solved under very mild conditions on the coefficients. We will
first consider the properties of this equation. If in addition, the coefficients are B-analytic

and sufficiently nice for (3.1) to make sense, we can expect the two solutions to coincide.
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PROPOSITION 3.1
Assume that for every £ € Sc(R), that the S-transforms S(X;) (&), S(Y:)(E), S(Ut) (§) and
S(V;) (§) are locally Lipschitz functions (as functions of t). If (3.2) has a (S¢)~!-valued

solution defined for all £ > 0, this solution is unique.

Remark: We call a function f = f(z) locally Lipschitz if there for every z, exists a constant
C <o s.t. |f(z) = f(zo0)| < Clz — zp| for every z in a neighbourhood of zo.

PROOF
Apply the S-transform to both sides of (3.2) to see that that the S-transform of Z; is
uniquely defined. Since any element in (S¢)~! is uniquely defined in terms of its S-

transform, the proposition follows.

PROPOSITION 3.2
Assume that:
) S(Xt)(€),S(Y:)(E),S(Ut)(E) and S(V¢) (&) are measurable for & € U
ii) 1S(Xe) ()1, IS(Y) (E)1, IS(Ue) (B)1, IS(Ve) (E)| < Cr(t), where eT® e LP([0, T1,dt)
forevery E € U,allp >0and all T < oo
iii) Zy € (S¢)~! then (3.2) has a (S¢)~!-valued solution Z; given by the expression:

t t
Zi =700 Exp[f0 X, dB, + j U, dr]

0

t t t
(3.3) + J Exp[f X, dB, + J Updr] o YsdBs
0 K K
t t t
+ Jo Exp[J X dB, + I U,dr] o Vids

. s s

PROOF

The idea is to use the analogy with the differential equation v’ = f(t)y + g(t). This
equation has the solution y = yeeh f®Mar 1 [l ol f)dr g(s)ds. Formally we write that
f(t) = Xt% + Uy and g(t) = Yt%"'—} + V;. If we insert this in the solution formula and
replace all the ordinary products with Wick products, we get (3.3). From the arguments
of proposition 2.14, we see that all the necessary expressions are Bochner integrable and
“that (3.3) makes sense as an element of (Sc)~!. If we insert this expression in (3.2) all
the operations in (3.2) are well defined. Hence the ordinary chain rule applies and Z; is a

solution.
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As we remarked earlier the interesting question is to compare the equation (3.1) and (3.2).
To make sense out of (3.1) we must put quite strong growth conditions on the coefficients.
We have to work with elements in (L?). The idea is then to apply theorem 2.10 to see

that the Wick products coincide with the ordinary product.

THEOREM 3.3

Assume that:

i) X; = x(t) where x(t) € L?>(R)
ii) Uy = J§ u1(s)dBs + u(t) where ui (t), uz(t) € L%(R)
iii) Y¢,V; are adapted and B,-analytic for some g > 2 and satisfies the conditions in
3.2.
iv) Zo is B,-analytic for some r > 1 (If Z, is non-constant, the meaning of (3.1) is
interpreted in the Hitsuda-Skorohod sense, se [8]).

Then the solutions of (3.1) and (3.2) coincide and are both given by the expression:

t t
(3.4) Z; = Zy - el XrdBr+[sUrar +J oli XrdBr+ [ Urdr |y qR 4 J ot XrdBr+[[ Urdr vy
0 0

Before we turn to the proof of this theorem, we need to prove two technical lemmas.

LEMMA 3.4

If e’X! € (LP) for all p and X is Bp-analytic for all p, then eX is also By-analytic for all p.

PROOF

pPut fy = el - 30,
(L?). Observe that:

%IX |™. By the monotone convergence theorem fy — 0 in every

N
(35) ElleX - > LxmPI=El 3 ZX"PI<El Y IXMPI=EllfylP] 0

n=0 """ n=N+1"7" n=N+1 """

[o] o9}

Hence eX can be approximated as well as we please by Zf;o %X“ in any (L?). Since X is

B,-analytic for every g, clearly each ZILO %X” is Bp-analytic and this proves the lemma.

O
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LEMMA 3.5

elo XrdBr and el Urdr gre adapted and By-analytic for every p.

PROOF

The adaptedness is trivial. Fix ¢ and put X = fot x(s)dB,. By proposition 2.12 X is B;-
analytic for every q. Choose any p. We must prove that eX! € (L?). For simplicity we
will replace x and B by the corresponding real expressions in the rest of the argument.
Since X is gaussian, we then have:

(2n)IE[IX[2] _ (2n)! [ x(s)?ds

2ny —
(3.6) ELXT = —on 2nnl

From this we get using Stirlings formula:

00

n=0 " n=0 "~

(3.7)

1
o @n)! [Ex(s)2ds "
=2 nl 2! <

n=0
Hence X satisfies the hypothesis of the previous lemma and the conclusion follows. The

= t ] . .
proof for the expression el Urdr js similar.

We now turn to the proof of theorem 3.4.

PROOF

We first want to prove that the expression in (3.3) equals the expression in (3.4). Since
f(f X,dB, and fé Uydr are By-analytic for every g, we have:

t t
(3.8) EXp[J X, dB, + J Uydr] = ol XrdBr+f{ Urdr
s S
It then follows by lemma 3.6, theorem 2.10 and proposition 2.11 that:
v t t t t
(3.9) I EXp[J X, dB, + j Uydr] o Yeds = f ol XrdBr+ [ Urdr |y g
0 s s 0

The same arguments works to prove that all the terms in (3.3) and (3.4) are equal. If we
insert the expression (3.4) on the right side of (3.1), we may replace all the the ordinary
products by Wick products. Hence the right side of (3.1) equals dZ; and this completes
the proof of theorem 3.4.
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LEMMA 3.6

Let f be analytic in a neighbourhood of . Then the differential equation:

(3.10) ¥y =f() ¥(20) = o

has a unique solution v = y(z) analytic in a neighbourhood of zo.

PROOF

Local uniqueness follows from the Lipschitz continuity of f at yo. If f(30) = 0, then
y(z) = o is the solution. If on the other hand f(y0) # 0, then f(z) # 0 in a neigh-
bourhood of y, and the function ﬁ is analytic on this neighbourhood. Hence there
exists a neighbourhood of 7y, and an analytic function g(z) on this neighbourhood s.t.
g'(z) = ﬁ Since g’ (z) # 0 it follows from the inverse function theorem, see [16] the-

orem 1.3.7, that g has an inverse function h which is analytic in some neighbourhood of

gd(»o). Put y¥(z) = h(z — 29 + g(y0)). Then y(zo) = Yo and:

¥y =h'(z-2z0+9(y0)) =h'(g(h(z-2z0+ g(30)))

(3.11) _ 1 ) ) i
T g (h(z-2z0+9(y0) F(h(z=20+g(0)) = f(»)

Hence y = y(z) is analytic in a neighbourhood of z, and is a solution of (3.10).

THEOREM 3.7

- Let f be analytic in a neighbourhood D and let zy € D. Then:
(3.12) dZt = fo (Zt)d[Bt Zo =20

has a unique (Sc) !-valued solution Z; defined for all ¢ = 0. Moreover there exists a

stopping time T > 0 s.t. ZtAr is a local solution to:

(3.13) dZt = f(Zt)bﬂBt Zy =20

PROOF

Uniqueness. Choose and fix £ € Sc(R). Then apply the S-transform to both sides of
(3.12) to see that v = S(Z;) (&) is a solution to the ODE:

(3.14) v = fFE®) ¥(0) = zg
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Since (3.14) has a unique solution y and the S-transform uniquely characterizes every

element in (Sc) ™1, the solution Z; of (3.12) is unique.

Existence. First use the previous lemma to find an analytic function y(z) = Yy_, axz*

s.t. y is a solution to the problem:
(3.15) y' =f) ¥(0) = 2o

Since 1y is analytic in a neighbourhood of the origin, there exists two positive constants
M < 0,7 < o s.t. |ax| < Mrk. The expression:

(3.16) Zy = > axBf* = > ayBf
k=0 k=0

then makes sense as an element of (Sc)~!. The ordinary chain rule applies, and hence Z;
is a solution of (3.12). Now let T4 be the first exit time of B; from a small neighbourhood
of the origin. If we put Y; = Ziar, = Dpeo @Bt ,» it follows from the complex Ito
formula that the ordinary chain rule applies. Y; is then a local solution to (3.13) in the
sense that it solves the problem Zipr, = zo + fot”d f(Zs)dBs.
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