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Introduction

Let N7(c) be the standard model of a pseudo-Riemannian space form of cur-
vature ¢ and of signature (s,n —s). If ¢ =0, ¢ > 0 or ¢ < 0, then N}(c) is,
respectively, R?, the quadric S} C R}*! or the quadric H C RIY] (both with
centre in the origin and with some specifications in exceptional cases; see [34], Sect.
2.4). If ¢ # 0, this N(c) can be considered also by its projective model. The
projectivization of R™! gives P™(R) and then the asymptotic cone of the quadric
NT(c) C R**! gives the absolute quadric Qr~! ¢ P*(R), which determines the pro-
jective metric of curvature c¢. Two vectors of R7?*! or RZLI are orthogonal iff the
corresponding points of P*(R) are polar with respect to Q"~!. The m-dimensional
geodesic submanifolds of N'(c) give the m-planes of P"(R): every hyperplane has

its polus with respect to @771,

Let an orbit of a Lie group, acting in NJ}(c) by isometries, be pseudo-
Riemannian (intrinsically). It is symmetric (extrinsically, i.e. with respect to reflec-
tions of N™(c) in its normal subspaces) iff Vh = 0, where h is the second fundamen-
tal form and V is the van der Waerden-Bortolotti connection (see [9] for s = ¢ =0,
[1] for s =0, ¢ # 0 and [2] for s > 0; also [28]). A pseudo-Riemannian submanifold
M™ of N™(c), satisfying Vh = 0 (i.e having parallel h) is called parallel (see [34],
[23] for s = 0 and [2], [24] for s > 0); it is a symmetric orbit or its open part.

A pseudo-Riemannian submanifold M™ of Nj(c), satisfying the integrability
condition Reh = 0 of the system Vh = 0, is called semi-parallel (see [4] - [8] for

s =0), also semi-symmetric (extrinsically, see [12] - [16] for s =0).
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It is shown [14] for the case s = 0 that every of them is a 2nd order envelope
of the symmetric orbits (see also [23]). This result can be easily generalized to
the case of semi—parallel pseudo-Riemannian M™ of N['(c). Intrinsically they are
semi-symmetric pseudo-Riemannian manifolds (in the sense that RoR = 0: the

Riemannian case see [27], Ch.II, §3., the pseudo-Riemannian (Lorentz) case see [11]).

In the last case the following Nomizu problem is known: by which conditions a
semi-symmetric Riemannian space reduces to a symmetric one. The conjecture [25]
that completeness and irreducibility are sufficient for this was refuted in [26] and [31]
by using the semi-symmetric hypersurfaces (see also [33] for the pseudo-Riemannian
case). The first classification of semi-symmetric Riemannian spaces is given in [29],

(30].

All symmetric orbits in the case s = 0, ¢ = 0 are classified by Ferus [9]. They
are standardly imbedded irreducible symmetric R-spaces and their products. This
result is extended to the case s = 0, ¢ # 0 in [32]. By means of the Jordan triple

systems symmetric orbits are investigated in [1] (the case s =0, ¢ # 0).

By s > 0 some special classes of parallel submanifolds in Rf' and Rj are de-
scribed by Magid [21]. The Ferus’s classification of complete parallel submanifolds in
R"™ by means of symmetric R—spaces is generalized to the case of pseudo—Riemanmian
parallel submanifold M in NZ(c), s > 0, by Blomstrom [2] and Naitoh [24].

A complete classification of semi-parallel submanifolds M™ of NJ(c) is not
known yet, even by s = 0. Only the following cases by s = 0 are investigated:
surfaces (m = 2) if ¢ = 0 [4], or if ¢ > 0 [23], three-dimensional submanifolds if
¢ = 0 [15], hypersurfaces (i.e. m =n—1)if ¢ =0 [5] (a special class [22]), or if ¢ # 0
[7], two—codimensional submanifolds (i.e. m = n —2)if ¢ = 0 [12], submanifolds
M™ with flat normal connection if ¢ =0 [16], [18], or if ¢ # 0 [8]. First surveys are
given: [6] (until 1989), [16] (until 1991).

A particular problem is so called modified Nomizu problem: by which conditions
a semi-symmetric submanifold M™ of N'(c), as a 2nd order envelope of symmetric
orbits, reduces to a single symmetric orbit (or its part)? This problem for s = 0.

¢ = 0 and for some special types of symmetric orbits is investigated in [17] - [20].

In the present paper two extreme classes of semi-parallel pseudo-Riemannian

submanifolds M™ of are N*(c) are investigated by arbitrary s and c.
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If ¢ #+ 0, the second fundamental form h of a such M™ has values, normal to
M™ in the tangent space of N(c), but there exists also h* of M™ with respect to
R+ (if ¢ > 0) or R (if ¢ < 0). The vector subspace, spanned on values of A
at a point z € M™, is called the principal normal of M™ at z. The same for A* 1s
called the outer principal normal of M™ at z. Note that if ¢ = 0 it coincides with

the previous one.

The two classes, investigated below, are characterized by the condition that
the principal normals of M™ have extremal non—zero dimension, i.e. either (I)
the minimal dimension 1 or (II) the maximal dimension im(m 4 1), and by some
complementary conditions. One of the latter is that if s # 0 then in the case (I) the
principal normals and in the case (II) the outer principal normals must be non-null
vector subspaces (in the sence that every of them contains a vector with non-zero

scalar square).
For the case (I) the main result is

Theorem A. Let M™, m > 2, be a pseudo-Riemannian submanifold of N e)

whose principal normals are non-null 1-dimensional vector subspaces. Then either

(1) M™ has rank 1 (i.e. its tangent m-planes constitute a 1-dimensional

submanifold (a curve) of the Grassmann manifold of all m-planes), or
(2) M™ is a hypersurface, i.e. lies n @ (m+1)-plane.

In the case (1) a such M™ 1s semi-parallel only if ¢ = 0. Conversaly, every
M™ of NM0) = R?Z, satisfying the assumptions and having rank 1, has flat V and

thus 1s semi-parallel.

In the case (2) and not (1), if the hypersurface M™ s semi-parallel and 1ts
second fundamental tensor h is diagonalizable simultaneously with its metric tensor

g, then either
(2a) m =2 and M? is flat, or

(2b) M™ is parallel; more ezactly, a totally umbilic hypersurface or an eztrinsic
product of a totally umbilic submanifold (1) with a plane (if ¢ = 0, 1.e. a cylhndric
hypersurface), or (ii) with another such submanifold (if ¢ #0), or

(2¢) a rotation hypersurface with o 1-dimensional azis, whose profile curve s

(i) a straight line, intersecting the azis (if c=0, i.e. M™ 1is a rotation hypercone),
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or (1) a heliz—curve in a 2-plane, containing the azis, whose directing point 13 the

polus of the azis (3f ¢ #0).

Here a helix—curve with a directing point ¢ means a such line on N2(c) of R?
(if ¢ > 0) or of R%,, (if ¢ < 0), whose tangent vector 1, such that (t,t) =&(=1 or
= —1) satisfies (t, o) =const, where go is a constant vector, determining the point

q (for the case s =0 see [T7]).

Remarks. 1. In the case s = 0 the matrices of h and g are always simul-
taneously diagonalizable . The part of the Theorem A, concerning hypersurfaces, is
proved for this case in [5] (¢ = 0) and in [7] (¢ # 0). The notion of helix-curve 1s
introduced in [7] for the case s = 0 to describe the profile curve; also the explicit
parametric equations of a helix—curve are given on 5?%(c) and on H?*(c) (separately

for (g,q) > 0 and for (g,q) <0).

2. If s # 0, the matrices h and g can be non—diagonalizable simultaneously.
This case needs a separate study; the first steps for parallel submanifolds by ¢ = 0

are made in [21].

3. The assumptions of the Theorem A yield the flatness of the normal connection
VL of M™. Replacing "1-dimensional" by "2-dimensional" one obtains the same
consequence: V= is flat (see [12] for the case s =0, ¢ = 0; generalization is obvious;
in [12] also a classification is given). Recall that by s = 0 all semi-parallel M™ of
N™(c) with flat V1 are described in [16], [18] (case ¢ = 0) and in [8] (case ¢ #0).

The most part of the present paper deals with the case (II). Then the normal

connection of M™ is surely non—flat.

Theorem B. Let M™, m > 2, be a semiparallel pseudo-Riemannian subman-
ifold of NI'(c), whose

(1) principal normals are %m(m + 1) -dimensional vector subspaces.

(i1) outer principal normals are non-null vector subspaces,

(i11) field of principal normals is parallel with respect to the normal connection.

Then M™ is a parallel submanifold of a %m(m + 3)-plane of NJ(c).

From the proof of this theorem, given below in §5, some geometric and group
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theoretic consequences are made, which show that the considered M™ is an indefinite

version of the well-known Veronese submanifold.

The essential part of the Theorem B in a special case s =0, ¢ = 0 is previously

proved in [13].

Note that some statements follow from (7) and (i) only, e.g. the fact, that a such
M™  m > 3, is intrinsically a pseudo-Riemannian manifold of constant curvature,
also the inequality o(m — o + 1) < s for its signature (o,m — o). Note also that
Theorem B gives a particular solution of the modified Nomizu problem. The most
important role plays here the condition (7). If to remove this condition, the assertion

does not hold, as shows the following theorem.

Theorem C. In NI(c) with n = sm(m + 3) + 1 there exist semi-parallel
but non-parallel pseudo—Riemannian submanifolds M™, m > 2, which satisfy the
conditions (i) and (ii). If m >3 (or m =2 and o such M* has constant Gavssian
curvature), then each such M™ 1s the second order envelope of a 1-parametric family
of mutually congruent parallel submanifolds of the Theorem B; characteristics are
mutually congruent (m — 1)-dimensional parallel submanifolds of the Theorem B (in

particular, plane lines of constant curvature, if m =2).

Every submanifold of this family, as a m-dimensional Veronese submanifold
(indefinite version, in general), lies in its outer osculating space, spanned on the
tangent space and outer principal normal, and has a centre in this space. All these

centres form the central curve of M™.

The proof of the Theorem C, given below in §6, is complemented by a proposition
showing that this central curve has a constant non—zero first curvature and non-zero
second curvature. A special case is indicated, when all curvatures of the central curve

are constants.

Remarks 1. In the classification of semi—parallel surfaces M? of N*(c) (s = 0)
given for ¢ = 0 in [4] and for ¢ # 0 in [23], the most general type is characterized as
an isotropic immersion with nonflat V+ and with ||H||* = 3K — ¢, where H is the
mean curvature vector and A is the Gaussian curvature. Theorem C by m =2 and
K =const gives the existence of non—parallel among such M 2 and also its geometric

construction in the case n = 6; these problems were left open in [4] and [23].
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2. In its turn the present paper leaves open the problem of existence and geomet-
ric description of semi-parallel but non-parallel pseudo-Riemannian M™, m 2> 2,
of N*(c), n > +m(m+3)+1, more general then in the case of the Theorem C. Also

the same problem by m = 2, non-constant K and n = 6 is open yet.

3. Theorem C in a special case s = 0, ¢ = 0 for general m is previously proved

in [17], as well as the proposition, concerning the central curve.

§1. Preliminaries

1.1. Standard models of space forms. Let N}(c) be a n-dimensional real
pseudo-Riemannian manifold of constant curvature c and signature (s,n —s); the

last condition means, that

38 n
ds® = —Zw”@w”—{- Z w’' @ w” (1.1.1)
o=1 v=s+1

with respect to the orthonormal frame bundle O(N{(c)). It is known (see [34],
Theorem 2.4.9) that a complete connected simply connected NP(c) is isometric to

one of the following standard models:
RY, if c¢=0;
S™c)={z eRI: (z,2) = ¢y, if >0
H'c)={z e R} : (z,z)=c""}, i ¢<O0;

except the cases (1) ¢ >0, s=n—1lorc<0,s=1and(2) ¢>0,s=nor
¢ <0, s=0 when S?(¢c) or H(c), respectively. must be replaced (1) by universal
coverings S”_,(¢) or HP(c) and (2) by the component S™(c) of (0,...,0,1) or the
component HZ(c) of (1,0,...,0).

Further N7(c) denotes one of these standard models. In particular, Ry (also
R"”_,), St(c) (also Sn_(c)) and H(c) (also HP_;(c)) are called, respectively,
Minkowski spacetime, de Sitter spacetime of the first kind and de Sitter spacetime of
the second kind [10]; the latter by odd n with standard complex structure is called

also anti—de Sitter spacetime [33].



1.2. Frame bundles and derivation formulae. Let R} be included into
R™*! as a hyperplane z"*! = (0. Then every standard model N}(¢) is determined
by a special submanifold of RI' (s'=sif ¢ 20, s' =s+1if ¢<0).

Let {z;e1,...,€n,€nt1} be a moving frame in R%*!, ie. an element of the

frame bundle L(R%™"). The derivation formulae

dz = eqw?, dey = eng (1.2.1)
(A,B,...=1,...,n+ 1) hold and yield the structural equations
dw? =wB Awg, dwf =w{ AWE; (1.2.2)
moreover,
dgap = gcBwS + JACwE (1.2.3)
hold, where gap = (ea,€B)-
For standard model N™(c), ¢ #0,let z € N(c), eny1 = —/lc| T, gr,n+1 =0
(I,J,...=1,...,n). Then gpt1,n41 = lc|c™! = sgne,
Wt =0, wiil =0 (1.2.4)
whir ==/l with =sgney lclgrw?, (1.2.5)

thus for the subbundle L(N(¢)) of such frames

dr = e[wl, der = ejwjf - ;rcguw‘], (1.2.6)
dw! = w? AW, dwi = wE AW + cgrgw? AwF (1.2.7)
dgry = grwl + grrel (1.2.8)

and (dz,dz) = grjw’ @ w’ has the canonical form (1.1.1).

For the standard model N7(0) = R? C R?"! one must take w"*' = 0,
ent1 =const, grn+1 = 0 in (1.2.1) - (1.2.3) and this leads to the particular case
c=0 of (1.2.6) — (1.2.8). So the last formulae are universal for all N(c).

1.3. Adapted frame bundle of a submanifold. Let M™ be a m-

dimensional submanifold of N7(c) with tangent vector space T, M™ at the point

~
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£ € M™ (considered as the vector subspace of T;N['(c)). The frame bundle
L(R’;,H) can be reduced to the subbundle of frames with z € M™, e; € T,M™

(4,,...=1,....m). Then w¢=0 (g,0,...=m+1,...,n+ 1) and hence
w¢ = h&w (1.3.1)
due to (1.2.2) and Cartan lemma, where hfj = hfi. In particular, for subbundle
L(N(c))
Wit = sgnev/Ielgijw’ ' (1.3.2)
from (1.2.5).

Let M™ be pseudo-Riemannian, i.e. let the inner metric of M™, included in
this subbundle by ds? = g;;w' ® w’, be regular in the sense that det(g;;) # 0. Then
T,M™ has in T;N™(c) the (n — m)-dimensional orthogonal complement T;-M™.
Taking eq € T M™ one get gio =0, det(gag) #0, (o, B,...=m+1,...,n) and

i@l + gapw! =0, Vgi; =0, V¥gas=0 (1.3.3)

where V is the Levi-Civita connection of M™ with gl(m,R)-valued connection form
w=(w!), e Vgij = dgij — grjwF — gikwf, and V-1is the normal connection of M™

with gl(n —m,R)-valued connection form w* = (wh).

For the bundle L,g(M™, N(c)) of frames, adapted to pseudo-Riemannian M™
of NI(c) so that z € M™, e; € T M™, eq € TI'LMm, there hold

dz = ejw', de; = e]-w{ + hf]-wj, (1.3.4)

where
hi; = hij —czgij,  hij = eah;. (1.3.5)

The vector subspace span{h;;} of T;-M™ is the principal normal of the sub-
manifold M™ of N7(c), the span{h;} is called the outer principal normal of M™.
The quadratic form h;;X*X? (or hj;X'X7) on T, M™ with values in this normal is
the second fundamental form of M™ with respect to NJ'(c) (or RZ,H ), denoted by
h (or by h*).

1.4. Covariant differentials and curvature 2-forms. The relations
(1.3.1) yield by exterior differentiation, due to (1.3.2) and (1.3.3),

VA Aw! =0, (1.4.1)
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where

VhE = dh? — — Rk + hiwg (1.4.2)

k]z

are the components of VA (and also of Vh*, because vh?jﬂ = 0 due to (1.3.2) and
(1.3.3)), called the covariant differential of & (and of A*) with respect to the van der

Waerden—Bortolotti connection V = (V,V+) of M™. The last is a connection in

Loa(M™ N2(0)).
Due to the Cartan lemma from (1.4.1) it follows
Vho‘ = h”kw hisk = hikj (1.4.3)
and the next differentiation leads to
VA, Awk = g0 — RSOF + R (1.4.4)

where
Q! = dw! —wFaw], Qf = dwj —wi Aw] (1.4.5)
are the curvature 2-forms of V, the first ones of V and the second ones of V+.

Using (1.2.7) and (1.3.1) - (1.3.3) one obtains

Q! = —R! st AW, Q= —Rj wh Al (1.4.6)

where
R],pq g’ iphae) = g]k(<hilphq]k> + Gilp9qlk)> (1.4.7)
Rg,Pq = gﬂvhz[phq]] (1.4.8)

are the components of the curvature tensors: R of V and R+ of V+.

1.5. Fundamental identities. In(1.4.3) hiy = th - are the components of
the covariant derivative of h, which satisfy Vi hij = V]hazk . the classical Peterson-—
Codazzi 1dentity. If to substitute (1.4.6) into (1.4.4) and then to use Cartan lemma
one obtains Vh”k = Vlhg’jkwl; thus

ViVyhe = R hS + RY (b, — RS by (1.5.1)

It is the Ricci identsty for h; its right hand side gives the components of Roh (see

Introduction).



The relations (1.4.5) yield by exterior differentiation
dQ{zw}“/\Qi—Qf/\wi, ng:wg/\Qg—Qg/\wf, (1.5.2)
the Bianchi identities. Doing the same with Vg;; = 0, V+gas = 0 one obtains

gk]Qic + gikﬂf = O, gyﬁﬂz + gan;- (153)

§2. Parallel (or extrinsically symmetric) submanifolds

A pseudo-Riemannian submanifold M™ of N7(c) is said to be parallel (or ex-

trinsically symmetric) if its second fundamental form h is parallel with respect to

V,ie. if Vh = 0 or, componentwise, if Vh% =0.

Lemma. Let M™ be a pseudo-Riemannian submanifold of N*(c), for ¢ #0
considered as the standard model in R (s' =5 if ¢>0, ss=s+1if c<0)

The following conditions are equivalent:

1) M™ s parallel,

2) M™ 1s parallel as @ submanifold of RZ,H,

3) (Vhij)z € TeM™ at every point z € M™,

4) (Vh%)s € ToM™ at every point z € M™,

where hi; and h}; are given by (1.3.5) and V works as in (1.3.3).

Proof. Equivalence of 1) and 2) follows from the remark by (1.4.2) (cf. [32].
Lemma 1, for the case s = 0). Further, (1.3.5) yield

Vhi; = —erg™ (hij, hipyw” + eﬁh;’j, (2.1)
Vhi = —ergF(hYj, Rl + ea VA, (2.2)

thus 3) and 4) are equivalent to 1). ®
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§3. Semi—parallel (or extrinsically semi—
symmetric) submanifolds

The integrability condition of Vh?j =0 is due to (1.4.3), (1.4.4), (1.5.1)

OF 4+ hGQN — A5 =0 f (3.1)
or
a a a B _ n.
Rf,klhpj + R?,klhpj - Rﬁ,klhij = 0; (3.2)

shortly, Roh = 0.

A pseudo-Riemannian submanifold M™ of N[(c), satisfying this condition, is

said to be semi—parallel (or extrinsically semi-symmetric).

They constitute a subclass of the class of intrinsically semi-symmetric subma-
nifolds, characterized by Ro R = 0 (see [4]), but this subclass, for its part, contains
all M™ with flat V (i.e. R = 0), in particular all lines (m = 1), and all 2-parallel
M™ (i.e. with V'h=VVh =0, due to (1.5.1); see [16]).

If to substitute (1.4.7) and (1.4.8) into (3.1) one can see that semi-parallel
pseudo-Riemannian submanifolds M™ of N](c) are charactrized by the following

system of the algebraic equations of third order on the components of A:

Y g AR hagp, ) + Rl Bitp, hat) — (B gy, ) oGy =

N N (3.3)
= C[hp(igj)q - hq(igj)P}'

Thus the semi-parallelity condition is a pointwise algebraic condition.

§4. Proof of the Theorem A

4.1 Proof of the first assertion. Let span{h;;} be a 1-dimensional non-

null vector subspace of T;-M™. The vector emy1 with (€my1.€my1) =¢ = %1 can
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be taken so that h;; = h$+1em+1, (egyemt1) =0 (0,0,... =m+2,...,n); then
hfj = 0. Since hZH'l = h;’}“, the frame vectors in T, M™ can be taken so that

h?}"’l = A(i)0i; . This yields
Wt = A Hw', wf=0. (4.1.1)
The last relations by exterior differentiation imply /\(i)wi Nwfy =0, thus

Awli = 16w’ (4.1.2)

Let rank(h?;"'l) =1, i.e. among A(;) there exists only one non-zero, say A1),
and Ay =0 (a,b,... =2,...,m). Then wm™tl = 0 and by exterior differentiation
wl A Aqyw! = 0, hence w) = wew!. Now dw! = w! Awl +w? A p,w! shows that

w! = 0 determines a foliation on M™ . For its leaves (1.3.4) give

dr = eqw®, deq = epw! — czgapw’, (4.1.3)

de; = elw} + eqwy — czTg1aw?, (4.1.4)

therefore these leaves are (m — 1)-planes and the tangent m-plane of M™ is the

same at the points of every of them. This gives the case (1).

Let rank(h:?"'l) > 1, i.e. there are two non-zero among A(;), say ;) # 0,
A(2) # 0. Then from (4.1.2) it follows that every wy ., is proportional to w! and to
w?, hence w2, =0. Due to (1.3.4)

— _ J i 7
dz = e;w', de; = ejw] + emp1 A W' — czgijw’,

} +1
demy1 = €iwy, g + Em+1Wmit

and this yields the assertion (2). (Note that (em+1,€m+1)=const is not needed yet.)

4.2. Semi-parallelity in the case (1). Let M™ be as the case (1). Since
among hzﬂ the only non-zero is h;’;“ = A1), the vectors e,. which determine
the generator (m — 1)-plane of M™, are not restricted and can be taken so that
(gap) has the canonical form: g, = Yabab- Among v, only one can be zero, because

det(gi;) # 0, and ej,ez....,em can be chosen so that either

1) gij = €i0ij, & = £1, or
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2) d11 = 9mm = 91p = Gmp =0, gim =1, 9pq :5p5pq»Where b,q,--- =
=2,...,m—1and ¢, = £1.

In the first case (1.4.6), (1.4.7) give, in particular, that Q) = ce,w® Aw'. If now
M™ is semi-parallel then (3.1) by t =1, j =a, a =m+1 yields A(jjcw® Aw! =0,
thus ¢ = 0.

In the second case (1.4.6), (1.4.7) imply Q] = cw™ Aw'. Also, if M™ is semi-
parallel then (3.1) by i = j =1, @ = m + 1 yields Ajyew™ Aw! =0, thus ¢ =0

again.

Conversely, if ¢ = 0, the light calculation shows that Qf =0f =0, thus V is

flat and M™ is semi-parallel.

4.3. Semi—parallelity in the case (2). Let M™ be as in the case (2), 1e. a
hypersurface, and let hg"'l be diagonalizable simultaneously with g¢;;. Then (4.1.1)
can be obtained so that g;; = €:8;;, &; = £1. Now Qf = —(eg; A\ A(j) +cei)w' Aw?.
If M™ is semi-parallel then (3.1) yields

(kj — ki)(kikj + 60) =0

where k; = £;A(;). Here three different values, say k1, k2 and kj, are impossible ,

as is easy to see. So let
ky=...=ky=k, kupi=...=kmn=F,

k=eday #0, k#Fk, kk+ec=0. Now hap = kgap = €akbap, hap = 0, hpy =

= icgpq zspicépq, where a,b,...=1,...,u; p,q,...=u+1,...,m and h;; = h;’;“.
From (1.4.3) it follows that

cabapdk = hapaw® + happ?, | (4.3.1)

ep(k = B)wl = hopp” + hapgw?, (4.3.2)

EpSpqdk = hpgaw® + hpgrw” (4.3.3)

with symmetric h;jk .
The case m = 2, u =1 gives (2a).
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The case u = m > 2 and the case u > 2, m—u > 2 give (2b). Indeed, if v =m,
there is no p,q,... and (4.3.1) by a # b give that only hs., can be non-zero, but by
a = b they give that dk must be proportional to wl, to w? etc.,i.e. dk =0 and M™
is parallel (totally umbilic). If v > 2, m —u > 2, then in the same way dk = s,w?,
dk = ,w® and now kk +ec=0 gives l;xpwp + kixqw® = 0, thus », = >, = 0 and
wP = 0. Hence M™ is parallel (extrinsic product of its submanifolds, determined by

w? =0 and w® = 0; cf. [32]). If ¢ =0, then k = 0.
It remains to consider the cases u =1, m—u>2and u=m -1 2> 2.

If ¢ =0 and thus k& = 0, only the second case gives rank(h;j) > 1. The system
(4.3.1) — (4.3.3) reduces to

dk = xmwm, emkw;" = 5axmw“,

or, equivalently,

we = Aw?, dlnk = —Aw™.

After exterior differentiation one obtains d\ = —A2w™. Thus d(z — A len) = 0,
dw™ =0,
de, = ebe + (kem+1 — <-:m)\em)gabwb.

de,, = Aegw™.

The lines, determined by w?® = 0 on M™, are straight lines. going through a fixed
point, and the orthogonal sections of these lines, determined by w! = 0, are totally

umbilic in parallel m-planes. This gives (2c) for the case ¢ = 0.
Let ¢ # 0; then the both cases above are equivalent each other. Further the first
is considered, when u =1, m —u > 2 and the system (4.3.1) - (4.3.3) reduces to
dk = xlu)l + J»fpu)p,,
ep(k = k! = cispw’ + epmw?.
d];‘ = qul,
but kk +cc = 0 gives by differentiation s, = 0, ki + ksey = 0. Since 0# k — k =
= k=1 (k% 4 ec), this implies

ECs
dk = qw!, WP = mw”. (4.3.4)
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Using here exterior differentiation and Cartan lemma one obtains

Skwr

dx; = ———
! kz—{—ecw

(4.3.5)

and now exterior differentiation gives an identity. Hence a such M™ is determined

by a totally integrable system and does exist with the arbitrariness of constants.

From (1.3.3) and (4.3.4) it follows that w, is proportional to w? and thus dw! =

— 0. At least locally w! = ds, where s is the arc length parameter of a line
determined on M™ by w? =...=w™ = 0. For this line
dz = e1ds, de; =¢e1(kepmyr —cz)ds, demir = —ckeyds,

hence this line lies on a 2-plane of N"*1(c) and k is its curvature with respect to

N (o).
From (4.3.4) it is seen also that »; = k= dk/4s and k depends on s only.

Thus all these lines are congruent and (4.3.5) means that

. 3kk
k =
k? +ec’
or, equivalently
L2
T | =0
(k2 +ec)?
This yields
k2 = a(k* + ec)® (4.3.6)

with @ = const # 0. Here a and k% + ec have the same sign a =|a|-a"'(=1 or

= —1), because a(k* 4+ ec) > 0.

A light calculation shows that the vector

g1
qg=-¢e] + ——=(em+1 +ckz
a(k? + ¢c) " )
is constant for a line above, because dg = 0 if w? = ... = w™ = 0, and thus

determines a fixed point on the 2-plane of this line. Since (g,e;) = 1, this line is a

helix—curve and this point is its directing point.
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Further, for vectors

fi =e1 —cack™'a(k? +ec)z, fo = ems1 —ck Tz

one obtains, after some straightforward calculations,

df, = [—6ack—1\/a(k2 +ec)fi + 51k’f2} w!,
dfy = —ek™(k* + ec) fiw?,

and this shows that fi, f, span a 2-dimensional vector subspace, fixed for M™ ,
which intersects N**!(c) along a fixed geodesic. This geodesic lies on the 2-plane

of every helix—curve and the directing point of the latter is the polus of this geodesic,
because <q7f1> = <qaf2> =0.

" The orthogonal sections of these helix—curves, determined by w! = 0, i.e. by
§ = so, are totally umbilic and for every of them all points of the geodesic above are
fixed. All this gives (2c) and at the same time finishes the proof of Theorem A. W

It can be added to the remarks, given after the formulation of this theorem in
the Introduction, that the first assertion, concerning (1) and (2), follows directly from
the well-known Serge theorem. Its proof was given here as the base for the further

deduction.

Note also that (4.3.6) can be integrated easily; so the results about helix—curves,

by s =0 (see [7]) can be complemented to the case s # 0.

§5. Proof of the Theorem B

9.1. Consequences from the first two conditions (i) and (ii). The
following proposition shows that already the first condition (7)), together with the

initial assumptions of Theorem B, gives a significant consequence.

Proposition 5.1. Let M™, m > 2, be a semi-parallel pseudo-Riemannian
submanifold of NI'(c), whose principal normals are %m(m + 1)-dimensional. Then
the following identity holds for the second fundamental form of M™ :

(hijs hrt) = K(2gijgr + gikgjt + gagix) — cgijgu, (5.1.1)
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where K 18 a function on M™.

Proof. Since (5.1.1) is a relation between tensors it is sufficient to prove it by
gij = €05, g = ¢;6". Then (3.3) reduces to

3" erlhus(hiphqe) + hik(hyphqe) — (hijhigp)hqe) =
k

= cleghp(ibj)g = €pdp(ih)ql-

Let a and b be two different values from {1,...,m}. Taking here i = j = p = q,

g = b one obtains for coeflicients of linearly independent vectors hgq,hab, hpb:

(haaa hab) = O,
(5.1.2)
(haaa haa> + 5a5b[2<haba hab) - 3<haa7 hbb)] = 2c.
Similarily by t =p=a, j=¢=0>
2<haba hab) - <haa7 hbb) = Eq€pC,
thus
25asb<haa’ hbb) = <haa, ha.a.> —C,
45asb(hab, hab> = (haa, haa> + c. (5.1.3)

Since the left part of (5.1.3) is symmetric with respect to a and b, the right part has
the same value, say 4K , for all values of a. If m > 3 and ¢ # a, the same procedure
gives

<haa, hbc> = (haba hac) =0; (514)

if m>4 and a, b, ¢, d are four different values, then
(hab, hed) = 0. (5.1.5)
All this can be summarized as
(hij, hkt) = K [2eiek6i0k1 + i€ (6ikb51 + 61165k)] — ceickijoki, (5.1.6)

equivalent to (5.1.1). W

Corollary 1. If M™ of N}(c) satisfies the assumptions of Proposition 5.1
then
Qf = —Kgirw* Aw? (5.1.7)
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This follows directly from (1.4.6), (1.4.7), (5.1.1), and in its turn implies that a such
M™, m > 3, is intrinsically a manifold of constant curvature K,ie. K = const.
The last assertion is a consequence of Schur theorem (see [34], Sect. 2.2), but can be

obtained also by substituting (5.1.7) into (1.5.2).

Corollary 2. For h};, given by (1.3.5), the identity (5.1.1) yields

(h¥j, hi) = K(2gi591 + gikgjt + gidik)- (5.1.8)
In particular, 2m(m — 1) vectors hj; (i # j) are mutually orthogonal vectors with
scalar squares ¢;¢; K ; all of them are orthogonal to span {hf;.... AL} If K =0.
the outer principal normal is a null-space (i.e. all its vectors have zero scalar square).
If K # 0 (this is the case, when (1) is satisfied), the last span has a definite metric:
positively definite by K > 0 and negatively definite by K < 0. Indeed, a vector
ST h% X' has the scalar square 4K [> (X243 eie; X' X7], where in square brackets
there is a positively definite quadratic form, because its principal minor of order p 1s

27P(p+1) > 0.

Hence, in the situation of the Proposition 5.1 the outer principal normal of M™

either is a null-space (if K = 0) or has regular metric (if K # 0).

Corollary 3. If the initial assumptions and the conditions (%), (42) of Theorem
B are satisfied, i.e. K # 0, and if M™ of N['(c) has signature (o,m — o), then
its outer principal normal has signature (o(m — o), m; —o(m — o)) if A > 0 and
signature (m; — o(m — o),0(m — o)) if K < 0, where m; = sm(m —1). Thus
s'>o(m—-oc+1)if K>0and s >2m; —ag(m—o—1)if K <0, where, recall.
ss=sife>0and s  =s+11if ¢<O0.

5.2. Proof in the case m > 3. In this case the identity (5.1.8) yields
V(h}; ki) = 0, since Vgi; =0 and K = const (see Corollary 1). Due to (2.2) and
(1.4.3) this implies

(Rijp, o) + (hij hiip) = 0,

where hi;, = eqh?  are symmetric with respect to their indices: due to (1.3.5)

@
ijp
symmetric are also hj;.

Thus
(hijp, hi) = —(hrp, B;) = —(hipes hij) = (Riji- By );
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this shows that every index of the first triplet can be exchanged by every index of

the second pair. Hence
<hijp’ h2l> = <hk1pvh:j> = _<hijpa h21>3
SO
(hijp, hE1) = 0; (5.2.1)

this yields
(Vhay, hig) = 0. (5.2.2)

The condition (#i) implies, due to the Erbacher reduction theorem, that every
Vhi; lies in the outer principal normal, i.e. in the span {h};} (this can be deduced
directly from (2.2)). Since the latter has regular metric, from (5.2.1) it can be con-
cluded that Vh;; = 0. This means that M™ is a parallel submanifold.

5.3. Proof in the case m = 2. Since Corollary 1 gives A = const only by
m >3, in the case m = 2 it must be deduced from (i), (1), (1) separately.

In this case (5.1.8) is as follows:
(hi1, k1) = (hag, hoy) = 4K, (h11, hyp) = 26182 K,
(Ry, his) = e1e2K,  (hiy, hip) = (h3g, hy) = 0.

where K # 0 due to (1) and M? lies in a R3, due to (11); the last.is a consequence
of the Erbacher reduction theorem. It follows that

1 * * 1 * * *
§(Elh11+52h22)7 5(51h11—52h22)> hia

are three mutually orthogonal vectors with scalar squares 3K, K, e1e2K . re-
spectively, orthogonal to the tangent vectors e;, e of M?. The frame bundle

L,a(M? ,R3,) can be reduced to a subbundle, consisting of vectors ey, ez

1 * * 1 *
(Elhll _€2h22), €5 = h 9.

1
ea = ————(e1hY, + e2h3y), €4 = 5 =
3 9 3|I\f|( 17411 2 22) 4 2\/1—‘[—{—“ 5 \/l—A.—| 12

which are mutually orthogonal and have scalar squares €1, €2, 17, 1, €127, Tespec-
tively, where n = K|K|~'(= 1 or = —1). For this subbundle the forms w®in (1.2.1)

satisfy

1 2 3 4 3 5 4 _ .5
w2 = —6162(.&)1, w4 = —Wws, Wy = —6152(4)37 Wy = ——Elczu)z,
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w; = “51'77"-’?, wzzi = _51'77"‘);‘1’ w; = —53‘770«'?’
where i,5 € {1,2}, 1 # j. Since
th = €1x(63\/§ + 64), h;z = 62;{(63 3 — 64), h;2 = x€5,

where » = /|K], from (1.2.1) and (1.3.4) it follows that (1.3.1) are now

1 4 1 5 2
wi‘:slx\/gw , W] = E1xw s, Wy = W’

: 2 4 2 5 1
wi = 25V 3w?, Wi = —ggsw?, Wy = w

After exterior differentiation by means of (1.2.2) this system leads to

1 €
—<dlnz—%w§) /\wl—!—% g’/\wzz(),

1
6—1w§ Awt — (dlnx+ —w§> Aw? =0,

V3 V3

(dh’lx - \/§w§> Aw' + e182(2w% — g1w]) Aw?® =0,
(2w? — g1w)) Aw' — (dlnx — \/§w§> Aw? =0,

— <2wf — g — 51\/§w§> Aw! +dlnxAw? =0,
dln = A w! 4+ €182 (2w% — 51w2 —|—61\/§w§) Aw? =0.

Each of the obtained equations gives, due to the Cartan lemma, that the 1-forms
standing by the basic forms w' and w?, can be expressed as the linear combinations

of the latter with the symmetric matrix of coefficients. This yields

1
—Edlnz = Aw! + Bw?,

1
—w; = Aw! — Bw?,

V3
(2w? — g1w}) = e162Bw’ + Aw?.

1
——wg = ey Bw! + g1 Aw?.

V3

The same procedure leads further, after some calculations. to

(S

1 .
dA =Bw? + 5(14515232 —11A%)w! — 5ABL?,

1 ‘
dB = — 165 Aw? — 5ABw' + 5(145152.42 —11B%*)w?.
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After exterior differentiation each of these last two equations gives that wl Aw?

with a coefficient must be zero, thus the both coefficients must be zero:
42
A [sm,? + -QE(AZ + 515232)} =0,
42
B |:61'I]x2 + 2—5‘(A2 + 6162324 =0.

Here either A = B =0 or [...] = 0. In the last case the next differentiation gives
4,2 — B,2 =0, where 2 = |K| # 0, thus again A= B =0. Hence K = const # 0,
so the deduction of 5.2 can be used and finishes the proof of Theorem B. B

Remark. The assertion of Theorem B for the case m = 2 can be obtained also
directly from the equations above if to replace A = B = 0. In the particular case

s =0, when & = ¢2 = n = 1, this proof is given in [13] (assuming ¢ = 0).

For the same case m = 2, s = 0 in [23] a result by Asperti and Mercuri is
announced (to appear with a proof in Boll. Un. Mat. Ital.), which generalizes the
corresponding part of theorem of [13], namely, ¢ = 0 is not assumed. The case
¢ < 0 is handled there in a rather complicated way, avoiding to use the Minkcwski
spacetime. The same generalization is included now by Theorem B (in the case

m = 2); note that the proof in this section 5.3 does not depend directly on c.

5.4. Geometric consequences. The parallel submanifold M™ of Theorem

B has remarkable geometric properties, which follow from the formulae (2.1), (2.2),

where now vh?j =0 and (5.1.6), (5.1.8) are to be used. Hence
Vhl; = —K(2gijers’ + cigjew’ + es9x0°), (5.4.1)
Vhij = VRS + cgijerw”. (5.4.2)

For the mean curvature vectors H = ﬁl—h,—jgij and H* = %hfjgij =H —cx of M™

with respect to N*(c) and RZ*!, respectively, there hold
dH* = ——HH*HZekwk, dH = —HHHzekwk,

where |[H*||?> = (H*,H*) = 2K(m + 1)m~! = const # 0, |H|?> = ||H*||* — ¢ and
n = %m(m +3). (Note that in inequalities of Corollary 3, connecting s’ and o. the

sign " >" is to replace now by ="

21



The point Z of R7! with radius vector z = z + |H*||"*H* is a fixed point
since dz = 0, also ||z — 2| = |H*||~" = const . Thus M™ lies in a hypersphere

NL(|[H*||*) of R™t! with the centre 2.

On the other hand M™ lies in a space from N2(c) which is R}, if ¢ =0, or
in S*(c) if ¢ > 0, or in HY_,(c) if ¢ < 0. The latter hypersurface N2 (||H*|?)

intersects this N7(c) along a (n — 1)-dimensional standardly imbedded space from.

In the last two cases the same intersection can be obtained when S7(c) or HJ;_,(c) to
intersect by a hyperplane RY. of R’;,“. This hyperplane is orthogonal to the vector
between the centre O of S%(c) or HJ_;(c) and the centre 3 of the hypersurface

above, i.e. to the vector z.

A submanifold of a space form is said to be minimal, if its mean curvature vector
with respect this space from is zero (in some cases by s # 0 also the term "extermal"

is used).

Proposition 5.4. A parallel submanifold M™ of the Theorem B us intrinsically
a manifold of constant curvature K # 0, immersed into a (n—1)-dimensional space

from, n = %m(m + 3), as o minimal submanafold.

Proof. The first assertion follows from Corollary 1 (m > 3) and from the result
of Sect. 5.3 (m = 2).

Let ¢ = 0. The mean curvature vector H* = H of M™ with respect to R}, 1s
collinear to z — ¢ and its component, tangent to a hypersurface with radius ||F||™*

and centre %, containing M™, is zero, as needed.

Let ¢ # 0. The mean curvature vector H of M™ with respect to SI(c) or
n_(c) is due to H —cz = |H*||*(z — z), coplanar with z and z — z, thus

orthogonal to the (n — 1)-dimensional standardly imbedded space from, intersected
from S%(c) or HY_,(c) by the hypersphere NZL(||H*||*) with centre z. H

Remark. In the case ¢ = s = 0. when K > 0, this Proposition 5.4 reduces to
a particular (extreme) case of a general result by Ferus [9], concerning all irreducible

parallel submanifolds M™ of R".

5.5. Group theoretic consequences. For the case of the last Remark there
is shown in [9] that every irreducible connected complete parallel submanifold M™ of

R™ is a symmetric orbit, more exactly. a standardly immbedded symmetric R-space.
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If the principal normals of a such orbit have the maximal dimension then this orbit
is a Veronese orbit and n reduces to %m(m + 3). The following proposition shows

that the last result can be generalized to the case s # 0, ¢ #0.

Proposition 5.5 Let M™, m > 2, be a connected complete submanifold of the
Theorem B. Then M™ is a symmetric orbit of a connected Lie group G, acting by
jometries in this (n — 1)-dimensional standardly imbedded space form, n = %m(m-{—
+3), which contains M™ as a minimal submanifold. This G is isomorphic to the
identity component of the %m(m — 1) -parametric group of nner isometries of M™,

considered intrinsically as a pseudo—Riemannian manifold of constant curvature.

Proof. The formulae (1.3.4), with substitution (1.3.5), and (5.4.2), with sub-
stitution (5.4.1), can be used by gi; = €:6;;. Then (5.1.1) shows that all (hij, hxi)
are constants, like all (e, e;). Recall that (z,z) = ¢! = const , (z,e;) = (z,hij) =
= (e;, hjr) = 0. It follows that the frame {z,e;, hjr}, adapted so to M™, moves
in R™ as a rigid system. The results of the previous section show, that every two
positions of this frame can be superposed by an isometry of Rg., leaving invariant

the standardly imbedded (n — 1)-dimensional space form, containing M™. B

Remarks. 1. The submanifold M™ of the Proposition 5.5 is an analogue
of the classical Veronese submanifold (orbit) of Rz™m+3) and by s # 0 is futher
indicated as the indefinite Veronese orbit. A submanifold of the Theorem B isin

general its open part.

2 The formulae (1.3.4) and (5.4.2) by gi; = £;6i; show that the Lie algebra
L(G) of G, as a subalgebra in the Lie algebra of the Lie group of isometries in R,
is determined by the system

K i ok ki (k ¢l kb
w! :w(Jé‘i)’ wi; = w 6j)+w§» 9,

k - k k g ki k
wi; = —K(26;6;jw" + 6w’ + 60" +esiw,

bl

where w’ w;“ are the Maurer—Cartan 1-forms of G.

This representation of £(G) is not a standard one by pseudo-skew—symmetric
matrices, because the frame {z,e;, hjr} is not orthonormal. The formulae of Section

5.3 give by m = 2, for example, the following standard representation of L£(G): it
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consists of matrices

0 w% 61%\/5&)1 51;«0)1 xu.‘z
—-516200% 0 62%\/§w2 —€2xwl xw‘l
—ex/B0! —e/3w? 0 0 0
—£xwl Exw2 0 0 261(.4)%
——62%002 —61xw1 0 —2€2w% 0

Such standard representations for m > 3 are more complicated.

§6. Proof of the Theorem C

6.1. Deduction to the corresponding Pfaff system. In the previous
Theorem B some conditions (3) — (i) are given, wich guarantee that a semi—parallel
pseudo—Riemannian submanifold M™ of N "(c) reduces to a parallel one. Now the
first task is to show that there exists semi—parallel pseudo—Riemannian submanifolds
M™ of N*(¢c), n > im(m + 3), satisfying (1) and (1i) (with (112) removed!), which
are not parallel. Theorem C asserts this existence in a particular case if n = %m(m-{—

+3)+1.

From (i) and (1) it follows for n > tm(m + 3) that a such M™ by m = 3
has a non—zero constant sectional curvature K. Further, in order to include also
surfaces M2, there is supposed that a such M? has constant Gaussian curvature
K , non—zero due to (ii). Then the deduction in the first part of Sect. 5.2 can be
used also for such M?. Note that the problem of existence of a semi-parallel but
non-parallel pseudo-Riemannian surface M 2 of N*(c), n > 5, with non—constant

Gaussian curvature K, satisfying (1) and (u2), is left here open yet.

So let M™ m > 2, be a semi-parallel pseudo-Riemannian submanifold of
N™(e), n > zm(m + 3), satisfying the conditions (3), (i), and, if m = 2, let
K = const . Its frame bundle L,q(M™,N"(c)) can be reduced to a subbundle of
frames {z, e, hjk,e,r}, where in the role of e, are the vectors hji, numbered by
symmetric pair-indices ¢j, and the vectors er (m,0,... = %m(m +3)+1....,n),

while the complementary metric conditions
<6i,6]‘> = gij = £;6ij, <hkj,€1r> =0, <€7\-,6Q> = n,0mp (6.1.1)
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are satisfied, ¢; and ¢5 being 1 or —1. Then (1.3.4) compared with (1.2.6) give

wfj(: wlji) = wj, all other Wik = 0, w =0, . (6.1.3)

12 1

and (2.1) together with (5.1.1) and (5.2.2) yield in the same way

w' = 2w w =w¥ (i#7), all other wf]—lzo. (6.1.4)

11 1)

These relations (6.1.2) — (6.1.4) are the equations of the Pfaff system of the

problem.

6.2. Compatibility of the system by Cartan criterion. First the system
(6.1.2) — (6.1.4) must be closed by taking exterior differentials from both sides of

every equation, using (1.2.6) and the equations of the system itself.

For this the relations are needed which follow from (1.3.3) due to (5.1.1) and
(6.1.1); they are as follows:

oyl oyt — T
gjw; +ew; =0, wyr =0,

wi = gi(c — 4K )", (6.2.1)

Wi =ei(c = 2K)w!, wl =—eKw' (i #j), (6.2.2)
w;-k =0 (4,j,k — three different). (6.2.3)
Exw]; — 2K)é;; Zekw — 2e;Kwi, (6.2.4)

gow? + 5,,(4)2 =0

(here the equations (6.1.3) and (6.1.4) are used already; summing is indicated always
only by >).

If to use now the procedure, described above, by the equations (6.1.2) and by
the two first group of (6.1.3), one obtain identities. The equations w[ = 0 lead in
this way to

WEAW + Y Wl AW =0 (6.2.5)
JFi
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The equations (6.1.4) after some calculations yield

Y whAwy =0 (6.2.6)

for arbitrary symmetric pairs 75 and kl. Multiplaying both sides of (6.2.4) exteriorily

by wf, and summing then by 7 one get

Y el Awi =0 (6.2.7)
due to (6.2.6); the result is equivalent to (6.2.6). Thus adjunction of (6.2.5) and
(6.2.7) to (6.1.1) — (6.1.3) makes the system closed.

In the case of Theorem C the index 7 takes only one value n (equal to %m(m—l—

+3) 4+ 1). Then (6.2.5) yield, due to the Cartan lemma,

wit = oiw' + Z 0ijw’,
J#1
. . v
Wi = 0wt + 05w’ + Y eirw” (i # ),
k#1,5
where p;j) are symmetric with respect to indices 1, j, k, which take mutually different
values. If here p; = ... = pm = 0 then substituting the expressions of w[; into

(6.2.4) one obtaines w} = w!: = 0 and so the case of Theorem B. For the purpose

of Theorem C one can assume that at last one of o1,..., 0, 1s nonzero and so take
01 > 0 by rearranging the vectors ei,...,em, if needed. Then there exist some A,
(u,v,...=2,...,m) so that p14, = Ay01 and thus

w?l = 01 <w1 + Z /\uw"> . (628)
Due to (6.2.7) now
Wi = AuWwit, (6.2.9)
Wit = A AWy (6.2.10)
These equations (6.2.8) — (6.2.10) are to be added to the system (6.1.2) - (6.1.4).

To close the new system the procedure above must be used for the added equa-

tions. After some light calculations it leads to
OANwl + 1P, Aw" =0, (6.2.11)
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U, Awly =0, - (6.2.12)
ATy + A Ty) Awly =0, (6.2.13)

where

O =dlnp — 3\wy,
Uy = dhg — Apw? + A Aow] — wy.

The 1-forms w}, and w* are linearly independent and can be considered as m basic
forms. The 1-forms © and ¥, are m linearly independent secondary forms. Since
(6.2.13) are the consequences of (6.2.12), the first character (i.e. the rank of the polar
system for (6.2.11) and (6.2.12)) is s1 = m and hence the Cartan number @ is m.
From (6.2.11) and (6.2.12) it follows, due to the Cartan lemma, that

0 = mwly + e1puw", (6.2.14)

U, = pywiy- (6.2.15)

Here py and p, are m new independent coefficients. Since the number of the latter
coincides with the Cartan number Q, the Cartan criterion (see [3]) is satisfied. This

proves the first assertion of the Theorem C.

6.3. Second assertion: geometric description. Let M™ be a submanifold
of the Theorem C, if m = 2 then with K = const, so that the formulae of two

previous Sections 6.1 and 6.2 can be used.

u

Let provisionally a point = € M™ be fixed. Then dz = 0 and w! = w* = 0;
due to (6.2.8) - (6.2.10), (6.2.14), (6.2.15) also

n _ n __ n _ _ _
W =wh, =wy, =0="0,=0.

Thus
dln pg = 3\wy, dAy = AWy — Ay Apwy + wlll

and for the non—zero vector 11 + ¢*" Auéy of T,M™ it follows (by a fixed z) that

d(zier +¢"" Auey) = Apwi (€161 + g"" Auey ),
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ie. this vector has an invariant direction. Hence a direction field is determined on
M™ . The frame vector e; can be taken in the direction of this field in every point

2 € M. Then A\y =0 on M™ and thus

Wl = ow', Wiy, =wyy =0, (6.3.1)
doy = o1(mw" +raw®), wy = —vuw’, (6.3.2)

where v; = 01441, Vu = 01fbu- SINCE NOW dw! = w* AWl = w! A vy,w®, the equation
w! = 0 is completely intergrable and thus determines a 1-codimensional foliation of

M™.

For every leaf (integral (m—1)-dimensional submanifold A/™~! ) of this foliation

there hold w! = wl =wy, =0, hence

dz = eqw®, dey = —caw® + eywy + huyw”, (6.3.3)
Vhye = euéu(c —4K)w" + Z eveu(c — 2K )w", (6.3.4)
vF#EU ;

Vhyy = —K(eyepw" + eveqw?) (u # v):;

(here also (6.2.1) — (6.2.3) were used). Due to Lemma of §2 this submanifold M™!
is a parallel one. The result of §5 imply that it is a Veronese orbit (indefinite, in

general) or its part.

The latter is a submanifold not only of M™ but also of a m-dimensional
Veronese orbit (or its part) M™ | determined by the completely integrable system of
equations (6.1.2) - (6.1.4), where 7 = n, and of

n _ ., n _,n __
W11 = Wiu = Wyv = 0>

i.e. of (6.3.1) by o1 = 0. The tangent spaces and the components h;; of h coincide
for M™ and M™ at every point = € M™1 = M™ A M™. This means that M™
is the 2-order envelope of all these M™ (in the sense that for every point = € Mm™
there exists a M™, so that in every direction of T, M™ = T,M™ on M™ and Mm™
through z go lines which have the 2nd order tangency: see [14]). Moreover, the leaves
M™=1 are the caracteristics of the 1-parameter family of M™. Since K = const,
the Veronese orbits, containing these M™ ., are congruent each other. The same is

true for characteristics ML



If m = 2 the index u takes only one value 2 and from (6.3.3), (6.3.4) it follows

that characteristics M! are congruent plane lines of constant curvature

This finishes the proof of Theorem C.

6.4. Central curve. This curve is defined in the Introduction, after the
Theorem C was formulated, and lies in Ry (if ¢ = 0) or in R}*' (if ¢ # 0),
n= —m(m-|—3)+1 As an important geometric object connected with the submanifold

M™ of this theorem it has some remarkable properties.

Proposition 6.4 The first curvature of the central curve of a submanifold M™ ,
described in the second part of the Theorem C, 1s a constant and 1ts second curvature
is non—zero. Among such M™ there exist special submanifolds, whose central curves

are helical, i.e. all their curvatures are constants.

Proof. The centre # of a Veronese orbit M™ is determined by the radius
vector z = z + || H*||"2H* (see Sect. 5.4). For the study of the central curve of M™
the formulae (1.2.6) are needed for the subbundle of L(N™(c)) consisting of frames
{z,ei, h;k,en} whose basic vectors are introduced in Sect. 1.3. The first of these
formulae are (1.3.4), the next are (2. 2), in which e, VA; are now, due to (5.1.8),
(5.2.1) and (6.3. 1), zero, except ea VA, = = epo1w!. Denoting in the decompositions
of dh}; the coefficients before h};, ex by W f]l , W fj one obtains for these 1-forms the
same expressions as in the right sides of (6.1. 4), (6.2.1) - (6.2.3) with only difference,

that in the latter ¢ must be replaced by 0. In the same way instead of (6.2.4) one

. * *
€1 <<€1<—°’31l + E Euw%v> +w’}f} ;
v

E3
0= 21, Kwl¥,

0= -2 o [t + > e+

0= —2e,6, K0 (u#v)

obtain

5n91w1 = -2K

The last three give
0=wlt =(m —l)k_lw“—kmz:sv 0 = (u #v),

thus
EnnE1 1 5 E1€u * 11
n -

1 _ 7
no 2]((m+1)w’ " m
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Now for the central curve the following formulae hold:

dZ = enda', den = €n(—‘€1mh;{1 + Z5vhzv)daa

where
€101 1

do = 1L 1.
T Km+ 1)

(6.4.1)

Here the scalar square of de, : do is, due to (5.1.8), equal 2Km(m + 1) = const .

On the other hand it is the square of the first curvature of the central curve.

The second curvature of this curve is zero iff differential of de, : do is collinear

to e,. But this is not the case, because

d (—slmh’{l + Zavhfm> = —2Km(m + 1)e,do+
‘ (6.4.2)

+ e K(m+1)%07" <K61 + Zevuvhfv> do

due to (2.2) (with eo VA, indicated above). Here K # 0 and this proves the first

assertion.

To prove the second assertion some new formulae are needed. By exterior dif-

ferentiation and Cartan lemma the relations (6.3.2) yield
dvy = Tw! + 1w, (6.4.3)

dvy, = Z vo(wh + vuw?) + (Tu — 11 vy w! + ey Kw™ (6.4.4)

v

Now the vector ), €uluCu is invariant at every fixed point z € M™ since el =

= w* = 0 imply d(>_, cuvueu) = 0. This vector is non—zero, because otherwise
(6.4.3) gives a contradiction with K # 0, and it can be used for a further adaption of
the frame so that e, is collinear to this vector. Then vy = 0: u',v,...=3,.... m.

Denoting v, = k one obtain

dk = (k* + 62 K)w? + (12 — vik)w!,

0= sz, 4w + eu/Kwul
due to (6.4.4).
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Now let a special case 1s considered when v = 0. Then 7 = 7 = 0 due to
(6.4.3) and thus
dlnpy = kw?, wy = —kw!, wl, =0,

dk = (K + 2 K)w?,  hwy + ew Kw® =0.

The previous Pfaff system after enlarging by these new equations gives a closed system

(i.e. exterior differentiation yields identities), hence M™ in this case does exist with

arbitrariness of constants.

Since now d[o] 2(k* + 2K)] =0 and the vector o7' (Kei1+2_, €yVUyh},) In
(6.4.2) has the scalar square €1€2K91_2(k‘2 +e.K), the second curvature of the central

curve is in this case a constant.

A similar direct calculation shows futher that also the next curvatures of the

central curve are constants in this case (cf. [17]). W

Remark. The condition v1 = 0, characterizing the last case, means geomet-
rically that the arc length parameter o of the central curve is proportional to that
of every orthogonal trajectory of the 1-parameter family of characteristic Veronese

submanifolds M™~!. This follows immediately from (6.4.1).
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