GLOBAL MATRIC MASSEY PRODUCTS AND
THE COMPACTIFIED JACOBIAN OF THE E-SINGULARITY
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Abstract.

In this paper we compute the compactified Jacobian of the singularity Eg. By [6]
this singularity has only a finite number of isomorphism classes of rank 1 torsionfree
modules. Using the theory of Matric Massey products [10] we compute the local
formal moduli with its local versal family for each local module, and we study
the degeneracy of each local module. We give a proof of how the local theory
connects to the global theory, i.e. we prove that the morphism from the local
formal moduli of a local module to the local ring at the point corresponding to the
module on the compactified Jacobian is a smooth morphism. In the case where
M = E, that is the normalization, this morphism is an isomorphism. Thus the
degeneracy (stratification) diagram for the compactified Jacobian can be found from
the degeneracy of the normalization in the local case.

Introduction. '

Let M be a quasi-coherent Ox-module over a k-scheme X, k a field. When
dimy, Ext’ (M, M) < co, Schlessingers theorem [13] tells us that there exists a hull
H q of Def oy - a complete k-algebra - which we shall call the formal moduli of M,
and a smooth morphism Mor(H a, —) — Def o( such that

Mor(ﬁM, k[z]/(z*)) — Def m(k[z]/(z?))

is a bijection, and there exists a formal versal family. By Laudal [9] (4.2.4), there
exists a morphism of complete local k-algebras

0:T? = Symyp((Ext (M, M)*T— Symy((Extx (M, M)*T
determined by a system of generalized Massey products, such that
ﬁ ME T! ®T2 k.
In fact Ha is isomorphic to k[[u1,...,ud]]/(f1, ..., f) Where ext!(M, M) = d, and
r < ext?(M, M). The coeflicients of these power series f; are constructed from the
Massey products < a,n > for sequences o = a1, ..., ag of elements in Ext’, (M, M)

and some d-tuples n € N%. Letting {y1,...,yr} be a dual basis for Ext% (M, M),
{21,...,24} a dual basis for Ext' (M, M), we then have

-E[M = k[[ul, ...,’U,d]]/(fl, ...,fr)

where

fi =Y yi(<zn >)u™
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The Massey products < a,n >€ Ext% (M, M) turns out to be ”ordinary”
Massey products in the differential graded k-algebra

DU, Hom(L.,L.))

and the computation of the formal moduli reduces to computing these Massey
products. This enable us to develop an algorithm for computing the formal moduli,
and the formal versal family.

Let X be a k-scheme and U = Spec(4) — X an open affine subscheme. If
M is a quasi coherent Ox-module and M = H°(U, M), we have a restriction

morphism of functors Def x4 2, Def M from the global to the local deformation
functor. From the universal properties of the formal moduli there exists a k-algebra
homomorphism
q§ : ff M — ﬁ M.

For curves X, ¢ turns out to be a smooth morphism. This result is known to
be untrue when X is of higher dimension, see R.M.Roig [12], where she proves
that there exists moduli spaces of invertible sheaves on projective spaces, that have
singular points.

The smoothness of the morphism from the local formal moduli to the global
formal moduli is then used to confirm and extend some results of Rego[11] and
Cook [2]. In the paper ” Compactified Jacobians and Curves with simple singulari-
ties” [2], Cook study the compactified Jacobian P for integral projective curves X
over an algebraically closed field k.

P is the moduli space of degree 0, rank 1 torsion free sheaves on X, and it is
proved to be a projective scheme containing Jo(X), the generalised Jacobian of
degree 0 invertible sheaves on X, as an open subscheme, D‘Souza [3]. When X is
contained in a smooth surface, P is irreducible and Jo(X) = P. Thus it makes
sense to talk about boundary points of Jo(X).

D‘Souza describes this boundary when X has only nodes and simple cusps. This
is possible because at any singular point, the stalk of any rank 1 torsion free sheaf
is either free or isomorphic to the maximal ideal m.

In the Gorenstein case, Greuel and Knorrer [6] proves that the simple singulari- -
ties (i.e. of type ADE) has only a finite number of isomorphism classes of torsion
free rank 1 modules. Thus a natural problem is to describe the compactified Jaco-
bians of curves with simple singularities. This is the aim of Cook's paper [2].

Thus Cook gives us the stratification diagrams, implying among other things,
the number of irreducible components of the boundary of the generalised Jacobian.
This is Rego‘s result [11].

Let X be a projective curve with only one simple singularity
zo € U = Spec(4) C X.
When M = Oyx, the normalization of X, and M = A = H°(U, M), we have an

isomorphism
O?’ M= Hy.




This follows because the dimension of the fibre of the global to local morphism
Hy, — Hy is hl(SndX(OX)) = pa(X) = 0, because X is rational. Thus the
local to global map is an isomorphism.

We stratify Hjps, an algebraization of H M, using the stratum

where M denotes the versal family and M,, are the different isomorphism classes of
modules over the singularity. A result of Greuel and Pfister [7], states that the only
closed stratum is the stratum of the normalization. Thus the stratification diagram
for Hyy gives the stratification diagram for P . We then prove that the boundary
of the compactified Jacobian is given by the local discriminant

A={pe€ Hy|dimV < d},

where d = dim H and V is the kernel of the Kodaira Spencer morphism.

We give an example in the case where A = Eg, computing the formal local moduli
and the local versal family explicitly, with its degeneracy diagram, confirming and
extending the results of Rego [11] and Cook [2].

1. THE STRUCTURE THEOREM

In this chapter we will use the notation and results in Schlessinger[13]. The
connection between moduli-theory and deformation-theory is well known and can
be found in this reference. We will give a slightly different proof of the structure
theorem (4.2.4) in [9].

Let F : £ — sets be a functor with a prorepresenting hull (hull for short) H.
Put A! = F(k[e]) and assume there is a finite-dimentional k-vectorspace A? such
that for any surjection 7 : R — S in £ with ker 7 - mp = 0 and for Mg € F(S5),
there is an element o(7, Ms) € A% ® ker m such that

o(m,Ms) = 0 & Ms can be lifted to R via 7 .

We call this o the obstruction for lifting Mg via 7. Assume furthermore that o
satisfy the following property : Given a commutative diagram of small morphisms

ﬂ'l
Sz — R3

Lo

!
.
51 (—2R2

If My € F(S1) and M; € F(S;) is a lifting of My, then x(o(Mz,73)) = o(My, ),
where
k: A% @i kermy — A% ®j ker .

is the obvious morphism.
Assuming this, we are going to actually compute the prorepresenting hull of F.

E_J
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Choose bases {z1, ..., z4} for A {y1,...,y,} for A",
Let {z},...,z}} respectively {y7,...,y5} denote the corresponding dual bases.
From Nakayama's Lemma, we then have that

H/m’ = k[zq, ..., zd] /m

where m = (z1, ..., Z4)-
Put
S1 = kluz, ..., ual/m® = k[u/m?, Ry = k[u]/m?,

and let X4 € F(S1) correspond to ¢; : H— ﬁ/_@z,gbl(xi) =u;. faCRyisa
least ideal such that X4, can be lifted to Ry/a = S5, then Ry/a = H/m?.
Consider the diagram

Ry = k[u]/m®
B~ S = klu]/m?

We now pick a monomial basis for S; of the form {u},c5,,
B; = {n e N%: |n| < 1}, and we let {ul}nemy, B, = {n € N¢ : |n| = 2} be a
basis for ker 7). Then we have that

O(X(ﬁuﬂ-é) € A* @ kerﬂ-é = 0(X¢1a7ré) = Z aﬂ@y_}l: Ey:® fzz(y'.)

Definition 1.1.
P71 is called a defining system for the Massey products

<z¥in >=an,n € B,.
Notice that with this notation we have

A=Y yi(<zln>u™

n€EB),
It is then clear that
H/m® = Ro/(ff, -, f7) = Blul/(® + (1, -, f7)) = S
Now consider the diagram

Ry = k[u]/m* + m(f},..., )

/
- |

1::‘{;452_) 52

\ y

S
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Since o(X,,m2) = £0(X¢,,75) = 2 yF ® fZ(u) =0, we can lift X4, to S;. Thus
we can find ¢2 : H —s S, as above. And if a C Rs is a least ideal such that
X4, € F(S2) can be lifted to R3/a, then it is clear that H/m* = Rs/a.

Pick a monomial basis for ker mo = m?/m3 + (fZ, ..., f2) of the form

{.@E}I}.G Bz

put . .
B, = B; U B,.

Then B, is a basis for S; implying that for every n with |n| < 2 we have a unique
relation in Sy:
= Z B, mu™.
meB;
Because of later needs, we notice the following

Corollary 1.2.
*. J—
Zy_eBg Bnm <25n>=0

Proof.
This is simply because o(X4,,m) = 0.

Write
kermy = m® + (f2,... f2)/m* + m(fF, ..., f£) =

(L Pl fE s f7) © ¥ [ (m* + m® O f7, ., 7))
=ad Ig.

Let {u%}nep, be a monomial basis for I3 where we may assume that for n € B} we

have that u® = uru™ for some m € B;. Put B3 =B, U B3 Note that for every n
with |n| < 3, we have a unique relation in R3, namely

Z By mlt +Zﬁn,1f2

QGB

With the condition on o we have that

X¢277T3 Zy] ZCYJ ®f2 + Z (1 ® ul,

nEB;

with Ko(Xspm5) = D97 8 (Do © 1) = Ty 8 f2 = Yoy © f2 = frmodm?
implying that

o(X¢,,73) Ey,®f,+2an®u— zy;f@ff,

nEB]
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definition 1.3.
Any map &2 1s called a defining system for the Massey products

< £¥;n >=am,n € B;.
Notice that with this notation we have

=Y y<zhn>ut+ >y <zln>ul
neEB) nEBy

Put
Ss = Ra/(f1,- f}) = klu]/m* + (ff, -, 7)-

Then H /m* = S;. Let w3 be the natural morphism S;3 — S Pick, _as before, a
monomial basis {u%}reB, for ker 73 such that B; C B; and put B3 = By U B;. For
every n with |n| < 3 we then have a unique relation in Sj,

u™ = Z ﬁﬁ,mﬂﬁa

n€Bs

and for later needs again , we state the following

Corollary 1.4.
>ies > neB; Prm < 2Xn >=0.

Proof.
The same reason as before: o(Xg4,,m3) = 0.

Again we have a morphism ¢3 : H — S; and we continue by induction. For
any k > 1, assume we have found Soqt = k[u]/m2+*+! 4 (f21% . f2+F) such that

T /o 2+Hk+1 ~
H/m_++ = Sotks

and consider the diagram

Rotrt1 = k[u]/m2Tk+? +.77_’L(f12+k7 oy FEYE)
77/2+k+1l
LRy Sy = Rlul/mP AR (fEFE L f2HE)

\ l

We write as before

ker 77;+k+1 =( 2+k f2+k)/ ( 2+k ’f3+k)
& mP (4 () a6 I,




We then pick a monomial basis for Ipy1 of the form {u%},c Bl where we

may assume that for n € Bz+k+1> we have u = uzu® for some m € Boyy. Put

— — . . .
By ty1 = Batx UBj ;. Then we have a unique relation in Rp441 for every n

such that [n| <2+ &k + 1

With the condition on o we have that
O(X¢2+k ) 7T§+Ic+1 Z Y; ® f2+k + 2

"eBz+k+1

with f2+k f2 mod m( 24k=1 L f2HED) that s

O(X¢2+k ) 7Té+k+1 Z ¥ ® f2+k + Z an QU u™ = Z y; ® f2+k+1

n€EB; kg

Definition 1.5.
Any map ¢oyr 15 called a defining system for the Massey products

<z¥n>=az,n€B) ;..

Notice that with this notation we have

2+k+1
= 3 Ny <atin > ut
1=0 1'&632_H
Then as before we have H /m?T%+2 = Sy 1 = k[u]/m2HF24(fFHFH1 L, f2HR+1),

We set
Totk+1 : S24k+1 — S2+k;

and we pick a monomial basis {u2}neB, 241 10T Ker okt such that
Botr+1 C Bz+k 1, and then we put B2+k+1 = Boy1 U Bayrt1- Again we get a
unique relation for |n| <2+ k+1)=0:

= = Z ﬁ ﬂ,ﬂlﬂ)

n€B2 k41

and because o(Xg,,, , T2+k+1) = 0, we have the usual corollary

Now ,by induction, we have proved the following:

ﬁc—i%@Sz-l-k:k[[y]]/(fla ,fr)

where f; = lim f?"'k . That is
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Theorem 1.6.(Structure theorem of Laudal).
There exists a morphism of complete local k-algebras

0:T? = symk(Az*)“—> T = symk(Al*)"

such that H & T! @2 k. Furthermore, for any small morphism m: R — S, in the
diagram

A CmpCT? —2 T —2 4 R

|

The obstruction for lifting X4 to R is the restriction of oo é to A%,

Proof.

Just put o(y;) = ;.
Remark 1.7.

The good thing about this theorem is that the prorepresenting hull is computed
using only the obstruction theory of the functor F.Very soon we are going to see
that this enables us to define some “ordinary” Massey products which completely
determine the hull.

Warning.

Do not believe that the Massey products are defined by the obstructions. In fact
a Massey product is defined as soon as we have a defining system in a differential
graded algebra, defined by the rules above. The obstruction theory shows that defin-
ing systems ezists in the relevant differential graded algebras. We may therefore
forget the obstruction calculus in the computation of prorepresenting hull, and just
be interested in the Massey products.

In [10] Laudal writes up the representation of the Matric Massey products in
ExtY (M, M) when A is a k-algebra and M an A-module. In the next chapter we
will do the same in the case where X is a k-scheme and M is a quasi-coherent
O x-module.

2. GLOBAL MATRIC MASSEY PRODUCTS

2.1. Resolving functors for lim.

The following results and definitions are given by Laudal in [9].

Let c be any small category and denote by Ab®’ the category of abelian functors
on c°. We define the standard resolving complex

C: Ab¢ —» Compl.ab.gr.

by
C*G) = I[I Gl

cg—>C1—>...—>C
Y1 Y2 ¢pp




with differential d? : C?(G) — C?*1(G) given by:
(dp(é))(d)l ) °"7"/)p+1) = G(¢1)(£(¢27 ceey ¢p+1))
P
D (=11, ey i 0 i1, oy pra) + (Z1)PTHE (1, s %)

=1

The basic properties of C are the following:
(i) C(c°,—) is an exact functor
(i) H(C(e°,-)) = lim™ for n.> 0.

EO
Let F be an abelian functor on the category more, for which the objects are the
morphisms of ¢, and a morphism (¢1, $2) between 6; : ¢c; — ¢],02 : cg —> 5, is a
commutative diagram

o —2 i

b

¢ — ¢
82

We define the functor
D : Ab®*¢ — Compl.ab.gr.

by
DIF)=Dc,F)= [ F(ro-- o)

Co—C1—>...—>Cp
Y1 Y2 Yp

and we let d? : D?(F) — DP*1(F) be defined by
(dp(f))("/’l’ ) ¢P+1) = F(d’h 1cp+1)(£(¢27 ) ¢p+1))3
P
S (€, 0 Bt s 1) + (— PP (L, ) (€, )

=1

Then the functor D' = D(c, —) has the following properties:
(i) D(c,—) is exact
(it) H*(D(c,—)) = lim ™ for n > 0.
morc
2.2. The complex DU, Hom(L.,L.)) and the Ext-groups.

Let X be any scheme, and let U be any open affine covering. We are going to
consider this covering as a category, the morphisms being inclusions. Then if F,G
are two sheaves of Ox -modules, we can consider the functor
Hom(F,G) : Mor;, — Ab given by

Hom(F,G)(U < V) = Hom(F |v,ix(G |v)).
We always have Hom(F |v, (G |v)) & Hom(F,G)(U) so that
DU, Hom(F,G)) = C(U,Hom(F,G)),
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and if F and G are quasi-coherent we have
Hom(F,G)(U — V) = Homop (v)(F(V),G(U))

as Ox(V)-modules.

We denote by D(U, Hom(L., L.)) the double complex, and by D(U, Hom/(L., L.))
the associated total complex. An open affine cover U of X is called good if any inter-
section in U is covered by affines in U, contained in the intersection. Notice that in
this case, D is an exact functor and that H4(D(Hom(F,G))) = HY(X, Hom(F,G)).
This is just the fact that D' is a resolving functor for lim, see Laudal[9].

Let X be a scheme (over some not necessarily algebraically closed field k). Let
F , G be two quasi-coherent sheaves of Ox-modules and let
C : mody, — Compl.ab.gr. be an exact functor such that H?(C(H)) = H?(X,H)
for any quasi-coherent O x-module H. (for example the Godement-functor or the
Cech-functor when we assume X noetherian and separated).

Choose injective resolutions of the O x-modules

0 —F —Zr, 0 — G —1Ig,
and choose locally free resolutions of the O x-modules
L. —F—0,£9% —G¢—0.

Consider the double complex C(Hom(F,Zg)) and let K7 be the associated total
complex. Then we have 'EF? = H?(X;Ezt!(F,G)) and H*(K1) = Ext™(F,G)
(Godement|[5] ,p.264).

We have mappings between regularly filtered double complexes

C(Homoy (L., L£9.)) —— C(Homox (LT .,Ig))

I

C(Homox (fa Ig))

Thus between the associated simple filtered complexes. But these are isomor-
phisms on 'E%? Hartshorne [8],p.234, and therefore isomorphisms in cohomology.
This means

Lemma 2.1.

Let F, G be two quasi-coherent sheaves on X and C : mody, — compl.ab.gr an
ezact functor such that HP(C(H)) = H?(X,H) for any quasi-coherent O x-module
H. Let LT. — F — 0,L£9. — G — 0 be locally free resolutions, and consider
the associated total complex C of the double complez C(Hom(LF.,L£9.)). Then

Extl.(F,G) = HI(C).
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2.3. The Deformation functor Defr and liftings.
Let X be a scheme/k and F an O x-module. We are studying the moduli functor
Sch/k — Sets, given by

G(Y) = {]'-Y S mOdXxkyl]:Y isY —ﬂat}/ &,

This functor is very rarely representable. Nevertheless it has many applications, as
we will see later.

Recall that £ denotes the category of local artinian k-algebras with residue field &,
the morphisms being local k-algebra homomorphisms. Also recall that a surjective
morphism ¢ : R — S in £ is called small if ker ¢ - mp = 0.

Let the fibre functor of G at F be the functor Defx : £ — sets given by

0
Defx(S) = {(Fs,0)|F € modx g, Fs is S-flat and Fs(*) = F}/ =.

Notice that a subfunctor G’ C G defined by imposing conditions on the fibres
of the objects such as for Hilb, ), constant rank, reflexivity, without torsion etc.
has the same fibre functor. Thus it is interesting to compute the prorepresenting
hull H of Defr when it exists. This will then be the local ring at F of the fine
moduli-space if this last one exists.

In the section ( 2.5 ) we are going to show that this hull can be computed using
generalized Massey products in the differential graded k-algebra D(U, Hom(L., L.)).

Let 0 — I — R —+ S —» 0 be a small morphism in £ If Fr € Def#(R) is
mapped to Fs € Def z(S), we get the exact sequence 0 — I ® g Fr — Fr —
Fs — 0. But

IQrFr=1Qk(k®rFr)=1Q:F,
such that we get an exact sequence
0 —=I@rF—Fr— Fs—0.
Conversely, suppose given an exact sequence as above. Now Fs is S-flat implies

Fr is R-flat and the sequence (I ®x F)®r S — FrRO®r S — Fs®@r S — 0 is
exact. We know that the image of

(I®k.7:)®RS=(f®kI)®RS

in Fr ®r S is zero and that
Fs®rS=Fs@rR/I =Fs,

so this tells us that Fg is a lifting of Fs to R. Thus we have proved the following
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Lemma 2.2.
Let 0 — I — R — S — 0 be a small morphism wn £, and let
Fs € Def £(S). Then

{ liftings Fr of Fs toR}—E{O——%I@k}——)fR—)fs—)O}/N.

We have that F € Def£(k), and that 0 — (¢) — k[e] — k& — 0 is a small
morphism in £. Furthermore, every element in Def 7(k[e]) is a lifting of F such that
the lemma gives

Def £(k[e]) = {0 — F — F' — F — 0}/~ = Eztk(F, F).

Corollary 2.3.

TDef}. = Extk(f,f)

In the following we are only studying the cases where the dimension of the above
vector space is finite, even if the full case can be treated. A main point in the
computation of the formal moduli is then to find a basis for the tangent space.
Thus the first problem is to compute the Exty (F,F).

2.4. Obstruction theory for Def .
Let X be a scheme, i = {U,;}icr an open affine cover such that for all ¢,5 €
there is a subset I; ; C I with . U Ux=U;NTU;. Iwil call this a good cover of X

i
(when X is separated, U can be any open affine cover U, including all intersections).
Let F € mody, and consider the deformation functor Def 7 : £ —> sets defined by

;
Defz(S) = {(F,6)|Fs € modo, , ,Fs is S-flat, Fs(x) £ F}/ =.

Suppose given Fs € Def #(S) with locally free resolution £ s, and assume that U
and L_s is choosen so that £ s|u;gs is free for ¢ € I (If X is quasi-projective over
some algebraically closed field k, then X xj S is quasi-projective over S, such that
we have a resolution and U can be any good cover. In fact, for Fs to have such a
resolution, it will be enough for F to have one). Then £ s®sk = L. s(x) := L. is
a locally free O x-resolution of F, and £, s(U; @k S) = L,(U;) ®& S Vp. So in this

case what we have is

Lemma 2.4.
Given Fs € Def £(S). Then there ezists a locally free resolution

L —F—0
together with morphisms:
YU; = Uj, ¢(U; = U;) : L.(U;) @ S — L.(U;) @k S,

VUi,d(Ui) : ,C.(U,') Qr S — ,C.(Ui)(—-l) Rk S,
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such that the following conditions holds for all,3,k:
(1) IfUp, — U; = U; then ¢(U]‘ — Ui)gﬁ(Uk — Uj) = ¢(Uk — Ui) and
o(U; =U;) =1d.
()
d(Us)
L(U)®kS ——= L(U;)(-1) @ S
qb(U;h)Uj)l ¢(UiHUj)l
' d(U;
LU @S 2 £ (U)(-1) &k S

Commutes.

(8) (d(U:))* =o.

Remark 2.5.
Let X be a scheme, U a good cover of X. Then to give a sheaf F on X s
equivalent to give for each U € U an object F(U) together with morphisms

p(U=V): F(V)— F()

for every U — V € mory, subject to conditions (1) and (2) above. For ezample,
when we start with an open affine cover and include all possible intersections, we
may look at the sheaves CP(U; F) — CPHL(U; F) which obviously is a complex of
sheaves with the given restriction maps. But then H°(C(U;F)) is a sheaf on X
with the given restriction maps. If we have any good cover of X, we have to use

Laudal‘s C(U,F), the sheafyfied version of his C.

Now this last remark makes the lemma of course trivial, it is just the same as
saying that Fs has a locally Oxx,s-free resolution. What is not trivial, and in
fact what we will need in the following, is lemma 2.7, which we will state after
simplifying the proof with the following

Corollary 2.6.
Given Fs € Def £(S). Then there ezists a locally free resolution L. — F — 0
and a morphism of double complezes C(U,L. @ S) — C(U,L.) such that

Fs='H("Ho(CU, L. ®+ S)).

Proof.

Given Fs there exists mappings ¢(U < V) as above. In fact these are the only
restriction maps used to define the complex C(U ®k S, L. @ S) together with the
d‘s. So this is indeed a double complex, lifting from C(U, L.) by construction. Also
by construction " Ho(C(U ®k S, L. @k S)) = C(U @ S, Fs) so that

"HO(" Ho (CU ®% S, L. ®% S))) =' H(CU ®% S, Fs)) = Fs.
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Lemma 2.7.
Given a good covering U of X and a locally free resolution L. — F — 0.

Suppose given maps
HUSV): L(V)QrS— L(U)®: S
for each U — V € mory, subject to condition (1) above, and maps
(V) L(V)®r S — L(V)(-1) ® S
for all V € U subject to condition (2) and (8) above, and such that the diagram

Lvyers 290 £v)(-1) @k S

! !

cwv)y 2 Ly

is commutative. Then there ezists a lifting of double complezes
CURKS,L.®rS)— CU,L.),

and Fs =" H("Ho(C(U ®k S, L. ® S))) € Def£(S).

Proof.

By a lifting of double complexes is just meant the obvious, namely a commutative
diagram

CU Q1 S,Lo @k S) +—— CURLS,L1®kS) +—— CURLS,L2®S) +—— -+~

! ! !

C(Z/[,ﬁo) — CU, L) — C(Z/[,,Cz) — ...

where the mappings are understood to be mappings of complexes. But in the case
with mappings respecting the usual restriction properties, it is obvious that we have
such a lifting. So let‘s assume such a lifting is given. We are going to prove the
condition of the lemma by induction on n where mg = 0.
if n=1then S =k and 'H°("Ho(C(U,L.))) = F is indeed an element in Def z(k).
So let us assume the condition true for n—1, n > 2. Then we have a small morphism
in £:
0 —mi!— 8§ — S/mi ' —0

giving us the following liftings:

0 0 0

l l

0 & C(Fs ®% ﬂg_l) — (Lo ®kﬂ;—1) e (L1 ®% ﬂ;—l) e

|

0 +——— "HO(C(L.®% S)) +— C(Lo ®x S) ———r (L1 ®x S) — ..

l

0 ———— C(Fs/m2") e C(Lo @k 5/m% ") ——— C(£1 8% S/m37") = ---

| | |

0 0 0
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Where the bottom row is exact by induction, the top row is exact by flatness of m2 ™"

over k, and the commutativity is given by functoriality. Now looking downwards
at this diagram, we write up the long-exact sequence

- — THi(C(L. @k m2 ™)) —' 'Hi(C(L. @k §)) —' 'Hi(C(L. ®k S/mz™))

—' "Hi—1(C(L.@rm5 ")) —' 'Hi-1(C(L.®1S)) —' "Hi—1(C(L.@S/m5™")) —
- —" "Ho(C(L.®rmE™Y)) —' "Ho(C(L.®%S)) —' 'Ho(C(L.®rS/ma™")) — 0.
This gives "H;(C(L. ®% S)) = 0 for i > 0 which shows that C(L. ®k S) is a

resolution of complexes in the second variable, and that we have a short exact
sequence of complexes

0 — C(Fs @r m2 ™) —' "Ho(C(L. @k S)) —' "Ho(C(L. ®r S/m2™")) — 0.
The long exact sequence of this short exact sequence gives
0 — FRrmz ' —' HY("Ho(C(L.®rS)) —' H°("Ho(C(L. ®% S/m%™)) — 0,

with zero on the right because F @) mg  is a sheaf and then C(F) a resolution.
Then by the induction hypothesis 'H®(" Ho(C(£. ®& S/m%™")) is a lifting of F to
S/m2%™!, and from lemma 2.1 (page 86) we have that

'HO(”HQ(C(,C. Rk S))) € Def:;:(S)

which proves the lemma.

Notice that the proof works because C is a resolution when we have the right
restriction maps.

Proposition 2.8.
For X,U,L. — F — 0 as above, the following are equivalent:
(1) To give a lifting Fs of F to S.
(2) To give morphisms ¢,d subject to the conditions above.

(3) To give a lifting of double complezes C(U @ S, L. @ S) — C(U, L.).

Now we are going to use this proposition to make an obstruction theory for Def £,
taking into account that it also should be fitted to an obstruction calculus leading
to generalized Massey products at the end. So on with it:

Let 0 — I — R — S — 0 be a small morphism in £, and assume
Fs € Def#(S) is represented by morphisms ¢,d as above. Then because (by
assumption) £.(U) ®x S is Ox(U) @ S -free, we may always lift the mappings ¢, d
to ¢',d' on L. ®; R. Thus we have a mapping of doubly graded sheaves

C(U Rk R, L. Qk R) — C(U ® S, L. Bk S),
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where we do not know wether or not the first doubly graded sheaf is a double
complex. Denoting the induced twisted maps as in the diagram

CP(U @1 R,L, @k R) —= CP(U®x R, Ly ®k R)

® iy | i |

/dl
CP(U ®k R, L4—1 @ R) —— C?(U @i R,Ly—1 B R)

We have that the three expressions ('d%)?%, (("dg)("'dg) — ("'dR)('dR)), ("dR)?
gives an element in
Ezt% (F,F®xI) = Ext% (F,F)®x I, given by the class of the expressions in d’,¢'.
Now, if this element, say o(F,¢) = 0, then there is an element
£ € DY U, Hom(L, L ® I)) such that dé = —o. Put { = ¢’ + ¢ and then

U =V)=¢(U=sV)+EU=V)

and

dU) =d'(U) + ¢"(U)

and they will define a double differential on C(U ®x R, L. ®x R) and thus a lifting.
Now, to get explicit formulas for the obstruction calculus, I will describe

o(F,d) € Exti(F,F) QI

So let X be a scheme with the good covering U = {U;}icr. Let F € mody, and
Fs € Def 7(S), given by the maps

6s(U = V): LV) @ S — L.(U) ®% S, dis(zf)  Li(U) @k S — Lia(U) @k S

forall U € Y and U — V € mor;,. Notice in the following that we are assuming
L.|u to be free. This may not be true in all cases, but the statements will be true
for L.|u projective, so we may assume it is free without loss of generality. Let

0—I—R-25-—0
be a small morphism in £. Then we may always lift the maps ¢s and ds to
¢/R(U ~V):L(V)®r R — L.(U)®k R, d;R(U) :L;(U)®r R — Li—1(U)®kR.

Thus we get the obviously defined maps on C(U @ R, £.®k R), and we compute the
obstructions where we, as before, name the maps as in the diagram (1). It is well
known and easy to compute, is that these maps define the structure of a double

complex on C(U ®i R,L. ®r R) , i.e. a lifting, if and only if the element

¢ (Ur = Usz)p'r(Uo = Ur) — ¢'r(Uo — Us)
Odg(U1)¢r(Uo = Ur) — ¢x(Uo — U1)dx(Uo) & (dr(Uo))?
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€ DU, Hom(L.,L. ®k I)) is zero. Anyway this element is a cocycle n whose class
7 =o(Fs,¢) € Ezti (F,F) @ I
is called the obstruction for lifting Fs by ¢. If o(Fs,$) = 0 then there exist a
£ e DU, Hom (L., L. @ I))
such that d¢ = —n. Put
¢r(Uo = U1) = ¢r(Uo = U1) + &(Uo — U1), dr(Uo) = dp(Uo) + &(Uh).

Then straight forward computation proves that we have
(1) ¢r(U1 — U2)édr(Uo — Uy) — ¢r(Uo = U2) =0
(11) dR(U])QSR(Uo — Ul) — QSR(UO — Ul)dR(Uo) =0
(iii) (dr(Uo))* =0

What we have then is the following

Proposition 2.9.

Let 0 — I — R 2.8 — 0 be a small morphism in £ .Then for each
Fs € Def 7(S) there ezist an element

o(¢,Fs) € Bzt (F,F)

such that Fs can be lifted to R if and only if o(¢, Fs) = 0. Furthermore, if this is
true, then Def £(R) is a torsor (principal homogeneus space) over Ezt (F,F).

2.5. Massey products and formal moduli for Defr.

Now we have at hand a nice obstruction theory for Def 7, given entirely in terms
of the locally free resolution L. and its liftings. Using this, we are going to apply
the constructions of chapter 1 and compute the Massey products < z*,n > for
n € By, It will turn out from this that the < z*,n >‘s of chapter 1 are
some generalized ”ordinary” Massey products of the differential graded algebra
DU, Hom(L.,L.)).

So to start, we let as before X be a scheme, F a coherent sheaf of Ox-modules
with a locally free resolution (locally projective)

L. —F—0

which we now fix. Assume that & = {U;} is a good covering of X and that we may
choose bases

{z}, ...,z } € Emt}((}', F), {v1,--Yr} € Bzt (F,F)

( take away the star for the corresponding dual bases). Now put S1 = k[uy, ..., ual/(v1, ..., uqa)? =

k[u]/m?, Ry = k[u]/m® and consider the diagram

T! L).Rz

|
H -3
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where pg;(z;) = ui(modm?),m = (u1, ..., uq). Let Fg, correspond to ¢ in
mor(H,S1) — Def 7(S51).
Then the Massey products for |n| = 2 is given in terms of the obstruction
o(Fs,,n) € Ext%(F,F) @ I

(I =ker~ is a finite-dimentional k-vectorspace so this is true). Thus we would like
to have a purely cohomological expression for this one. Fg, corresponds to

¢5,(U=V): L(V)®k S1 — L.(U) ® S1,Y(U = V)
and
ds, (U) : L(U) ® S1 — L.(U)(-1) ®% S1,VU.

(Recall that we are assuming the restriction maps of an Ox-module to respect
linearity). Then ¢g, (U — V) is uniquely defined by the maps
am(U = V): L(V) — L.(U),|m| < 2 given by

(1) $5, (U= Vlewea = Y, omU = V)@u®
|m|<2

ds, (U) is uniquely defined by the maps am(U) : £L.(U) — L.(U)(—1) given by

(2) ds,(U)lc.e1 = Z am(U) ® u™
lm|<2

Thus Fgs,, or ¢1, or the defining system for the Massey products < z*,n >,|n| < 2
corresponds to a family {am }|m|<2 Of cochains in D' (U, Hom(L., L.)). Writing up
the fact that this family defines the lifting Fg,, we have:

(i)
VUO — U1 — Uz :
és, (Ul — U2)¢S1 (UO — Ul) - ¢51 (Uo — UZ) =0
(x
V|m| < 2 ( > am, (U1 = Uz)am, (Uo = U1)) = apm(Uo < Us)) = 0.

m,+m,=m,|m;|<2
(ii)
\V/Uo — U]_ :
ds, (U1)¢s,(Uo = Uz) — ¢5,(Uo = Ur)ds, (Uo) =0
)
V|m| < 2; > (am, (U1)am,([Uo < Ut) — am, (Uo = Ur)am,(Uo)) = 0.

m,+my=m, |ﬂ| <2
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(iii)
VUQ :
d51 (Uo)dsl (UO) =0

)
V|m| < 2; > am, (Uo)etm, (Uo) = 0.

my+m,=m,|m|<2

Defining the liftings ¢%,, d, to Rz by simply extending the expressions (1) and
(2) to Rz, we find that the Massey products < z*;m >, for |m| = 2 is represented
by

> ({om, (U1 = Uz)am, (Uo = U1)}uomsty —Us,

my;+my,=m, Iﬂl <2
(2.5.1)
{am, (U1)am,(Uo = Ur) — am, (Uo = Ur)am, (Uo) }vowsts s {0tm, (Uo)am, (Uo) }us)

In fact, what is just stated is that

<gin>=d( Y O, O, )

my+m,=m,|m|<2

with the product in D(U, Hom(L.,L.)) defined by the above expression, giving us
some ”ordinary” generalized Massey products.

Proposition 2.10.
Given a sequence of p cohomology classes a1,...,ap € Ezty(F,F). Then a
defining system for the Massey products

< O1y...,0p;1 >, |ﬁ| <N,

if it ezists, correspond to a family {am}|m|<n of 1-cochains of DU, Hom(L.,L.))
such that ap = (¢,d) where ¢,d is the restriction map and the differential of L.
respectively, and such that o, = o; for 1 = 1,...;¢ = p. Furthermore this family
satisfies for each m with |m| < N the equality

(2.5.2) > amom, = ] em(lUo = Uz) =0

my+my=m,|m;|<N Up—Uy —Us

Moreover, given a family {am} as above, satisfying (2.5.2), then there ezists a
defining system for the Massey products < ai,...,ap;n > for all |n| < N, and in
fact < ai,...,ap;n > is represented by the cocycle

Y(n)= Z Om, OCm,

my+my,=mn, |ﬂi [<|n]
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with the product defined as in (2.5.1).
Proof.

Just extend the computations for |n| = 2 to the general case, noticing that a
defining system {am }{m|<n defines a lifting to Sy—1 = k[u]/ m”, thus a morphism
¢N—1 by the smoothness of the map Mor(H,.) — Def .

So now we continue from the case N = 2. Put f7 =3, ,,_, y;(< 251 >)u™ and
look at the diagram

T2 —° , 1 %2, R

e

Pick a monomial basis {u%},ep, for Si. ie. B; = {n € N?¢: |n| < 1} and pick a
monomial basis {u%}nep, for kerms. Put By = By U B;. For every n with |n| < 2
we then have a unique relation in S,

We get the relation Z] =2 Br,m < z¥;n >=0 for every m € B,, translating into;

for all m € B, Z Bn,mY (n) is a coboundary.

|n|=2

Thus we may find, for all m € Bs, a l-cochain o, € D' (U, Hom(L.,L.)) such that
dam = =3 e B Bn,mY (n). Consider the family {am},,c5, and define the maps
bs,,ds, the usual way. Then we have that (¢s,,ds,) satisfies the conditions for
defining a lifting. (This is just the observation that

o(F1,m2) = Z ( Z BrmY (1)) ® u™),

mEB2 meB)

so that d{am}mep, = —o(F,m2)). Therefore we may find maps ¢; and $2 such
that ¢, corresponds to this lifting, say F2. Write
kermy = m® + (f}, ., f7)/m* + m(f7, ... f7)
= (s Pl s f) & [ (m + m° O m(f7 o £7))-
Pick a monomial basis for I3 = m?®/(m*+m* Nm(fZ, ..., f2)) on the form {u%},¢p:,

where we may assume that for n € Bj, u® is of the form uzu™ for some m € Bs.
Put F; = B, U B}. For every n with |n| < 3 we have a unique relation in Rs:

2
ut= Z _Immy-m + Z ﬁln,jfj :
J

meB,




Define the maps ¢'_,dx, by

g, (Uo = Ur) = Z am(Uo — Up) ® u™ and
meB>

Re = Z am(Uo) ® u™.
meB,

Then, by computation, o(Fz, ) is given by the following element in
Ezt% (F,F) ® I:

> A > Bm,n@m, (U1 = Uz)am,(Uo = Ur)}voes Uy U,

n€By |m|<3m, +m,=m,m;EB;

m,m;

{ Z Z : ,ﬂ(aml (Ul)amz(UO — Up)—

|m|<3 m,+m,=m,m; €B,

SRLLS

am, (Uo = Ur)am, (Vo)) tue—stn
{2 > Bm,nm, (Uo)om, (Vo) }u,) ® u™+

|m|<3 m, +m,=m,m;EB>

21

Z({ z z ﬂ:'nyjaﬂ1(U1 — Uz)aﬂz(Uo = Ul)}UoHUl‘-*Uza

=1 |m|<3 my,+my,=m,m; €B,

{ Z Z Bm,i(am, (U1)em, (Vo = U1)

|m|<8 m, +m,=m,m;EB;

—am, (Uo = Ur)am, (Vo)) }uo—us

{> > B n0m, (Uo)atm, (Uo)}vo) ® fi-

|m|<3 m, +m,=m,m;EB-

Then we have proved the following:

Proposition 2.11.
Given a defining system {am.}me§2 for the Massey products

<z*;n>,n € By,

< z*;n > 1s represented by the cocycle
= Z Z ﬂ_:ll_,ﬂa’—'%aﬂz

Im|<3 m,+m,=m,m;€B>

with the product in DU, Hom(L.,L.)) as defined in proposition 2.10.
Next we put
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we put Sz = Rs/(f}, ... f2) = klul/(m* + (fF, -, 7)),
Ry = k[u]/(m® + m(f3, ..., f2)) and we consider the diagram:

T2 % 4,1 %, R,

L

HL}S,’;

ﬂsl

S2

Then by construction, o(F,73) = 0, allowing us to find maps ¢3, &3 with ¢3 corre-
sponding to F3 in the correspondence Mor(H, S3) — Def #(Ss). Pick a monomial
basis {u%} e B, for kerms such that Bs C Bj. Put Bs = By U Bs. Then {u?} 5,
is a monomial basis for S3, and such, for every n with |n| < N + 1 we therefore
have a unique relation in S3:

ut = z ﬂ_q,p_z_.@m~

Then o(F,,73) = 0 translates into: For every m € Bs, the 2-cochain

Brn= Pam¥ (@) + Y BamY(n) € D*U, Hom(L.,L.))

nEB, n€B;
is a coboundary. For each m € Bj, pick an a € D' (U, Hom/(L.,L.)) such that

dom = —Bm,

and consider the family {om},, 5, Just as before, this family is seen to correspond

to a defining system for the Massey products < z*;n >,n € Bj, and we find
representatives for the higher order Massey products, relations and bases, and we
may copy the preceding procedure. We end up with the following:

Proposition 2.12.
Given a defining system {O‘ﬂ}m€§2+k_1 for the Massey products
<z*n>n€ By . Then <z*jn > is represented by the 2-cocycle

Y= ), > B, nm, Oms

|m|<2+k m) +m,=m,m;EB24r-1

the product in DU, Hom(L.,L.)) being defined the right way. Moreover, the poly-

nomials .
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Jj=1,...,7 =r induce the tdentity

k
Z Z Br,m < z5n >=0,

=0 EGB£+1

such that if we for every m € Bay pick a cochain am € DY (U, Hom(L.,L.)) with

k
dom = — E Z Bn,mY (1),

1=0 QeBé_H

then the family {am} is a defining system for the Massey products

mEBatk
* !
<z5n>n€ By .

We sum up the content of this paragraph as follows:

Theorem 2.13. R
Given F € mody ., the formal moduli H of Defr is determined by the Massey

products of Ext%(F,F). In fact
'E[ = k[[xla <0y wd]]/(fla'"af?)
where fj =312 > nep; ¥i (< 25 >)z™.

3. THE CONNECTION BETWEEN GLOBAL AND LOCAL MASSEY PRODUCTS

3.1 Definition of the local to global map.

Consider a curve X containing a singularity zg € U = Spec A C X. Then for M
a coherent O x-module, we denote the prorepresenting hull of Def ¢ by H=Hpm.
When restricting M to U, we get an A-module My, = H°(U, M|y). We denote
the prorepresenting hull of Def s, by Hy=H M,- By definition of prorepresenting
hulls, we have smooth morphisms of functors, bijections on the tangent spaces;

Mor(H,—) — Def o« and Mor(Hy,—) — Defay, -
By restricting global modules, we have a morphism of functors
Def pq — Defyy, -
Filling in H, we have the morphisms

Mor(H, H) Mor(Ho, H)

!

Defpg(H) ——— Defy,(H)
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Where the vertical arrows are surjections by the smoothness. Thus the proversal
family of Def o¢ induces a morphism

(3.1) Hy 25 H.

If Def ¢ and Defpy, are prorepresentable, and if it can be proved that
Def oy — Defyy, is smooth, then we understand that the diagram

Mor(H,—) —— Mor(Ho, )

«| |=

Defpy ———  Defypy,

smooth

gives Mor(I-:T ,—) — Mor(Ho, —) smooth, which again implies the smoothness of
@.

Now Def oy — Def s, is smooth for curves, this is the main point to prove, but
not in general for higher dimension. Nor are the functors prorepresentable. Thus
there are no obvious reasons why the map ¢ is smooth.

3.2. Smoothness of the local to global map.

In this section, X is a plane projective curve over k with only one isolated sin-
gularity zo. F is a torsionfree O x-module of finite rank with locally free resolution
L — F—0.

The condition of F is crucial: A finitely generated module over a Dedekind
domain is locally free. This fact will be used frequently.

In this subsection , we will assume that X can be covered by two open affines
Uo and U; such that zo € Up but zo ¢ U;.

In the next section, the results of this section will be generalised.

We have a good covering U of X counsisting of Up, U; together with their inter-
section. Then U is a good covering of X such that zo € Up but not in any other
‘open U # Uy € U. We fix this covering for the rest of the chapter. We also fix the
notation :

L.= HO(U(),[:.), M = HO(Uo,J:), Uo = Spec(A).

Then M is the affine” A-module, and L. = H%(Uy, £.) is the "affine” free resolution
of M (in any case, this resolution is projective and that is enough).
Consider the morphism of differential graded k-algebras

o: DU, Hom(L.,L.)) — Hom(L.,L.)

which is just the projection to the component in Up.

Lemma 3.1.

There 1s a basis for Exzty (F,F) represented by 1-cocycles

T*1, ..., a% 5 € DY U, Hom(L.,L.)) such that &t = o(c*1),...,x5 = o(c*4) repre-
sents a k-basis for

Eztl (M, M) and such that
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0'(27~*d_|_1), ceey O‘(.’Z;*J) =0

Proof.
Because X is covered by two open affines, D*(U,Hom(L.,L.)) = 0. Let z €
Hom!(L.,L.) be a cocycle and include it (by the inclusion morphism) in

DY (U, Homi(L., L.)) = D°(U, Hom* (L., L.)) & D' (U, Hom® (L., L.)),
let us say ¢ = z @ 0. Then
d(z) =' d(z) +''d(z) =' d(z) € D* (U, Hom' (L., L.)),
and 'd(z) is by definition of complexes a cocycle. But
HY(DY(U,Hom®(L.,L.))) = D' (U, Ext (F,F)) =0,

because F is free on each intersection (which is nonsingular since zo ¢ U NV),
so there is an element § € D*(U, Hom®(L.,L.)) such that ""d(8) = —'d(z). Put
=z @B € D'(U,Hom(L.,L.)). Then

d(z*) ='"d(z) &' d(z) +''d(B) = 0.
So z* is a cocycle with the property o(z*) = z. This shows that the map
o: HY(DU,Hom (L., L.))) — H'(Hom(L.,L.))
is surjective, so that we can represent a basis for Ezty (F,F) by T*y, ..., T* 7 with
{2} = o(a*)) ?:1

representatives for a basis for Exty (M, M) and {o(z*;)}¢_,,, all coboundaries.
For any y € DY(U,Hom(L.,L.)) such that o(y) is a coboundary, we can write
y=a® B with o € D°(U,Hom?(L.,L.)) a coboundary. That is to say there exist
ay € D°(U,Hom®(L.,L.)) such that "d(y) = a. Then of course

cl(y) = clla ® B + (="d(v)) &' d(v)) = cl(0& B +" d(7)).

Soify’ = 0@ 8+'d(y) then cl(y) = ¢l(y') and o(y') = 0. Using this on £*g41, ..., T*;
we may find representatives for a basis as proposed in the lemma.

If we try to do this for Ext% (F,F) we find something even better, namely
X g

Lemma 3.2. i )
There is a basis for Ext (F,F) represented by 2-cocycles y*y,...,y*,, such that
y* = o(y*,),...yr = o(y*,) represents a k-basis for Ext% (M, M).

Proof.

Exactly as in the proof of lemma 3.1, we can lift any 2-cocycle of Hom(L., L.)
to a 2-cocycle in D*(U,Hom/(L.,L.)). Let y = y1 ® y2 € D*(U, Hom(L.,L.)) be a
cocycle such that o(y) is a coboundary. Then there is an a € D°(U, Hom! (L., L.))
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such that "’d(«) = y1. Now look at 'd(—a) +yo € DY (U, Hom* (L., L.)). This is a
cocycle simply because d? = 0; but again

HY (D' (U, Hom!(L., L.))) = D (U, Extl (F, F)) =0,
so there is a 8 € DY (U, Hom®(L., L.)) such that ""d(8) =' d(—a)+yz. Thus we find
a® B € DO(U, Hom (L., L.)) ® D (U, Hom® (L., L.)) = D' (U, Hom(L., L.)),
and
da® B) = ("d(a)) & ('d(e) +''d(8)) = y1 &' d(a) +' d(~0a) +y2 = y1 D y2.
Thus y is a coboundary. We have proved that
o+ H*(DU, Hom(L., L.))) — H2(Hom(L.,L.))

is an isomorphism, and we are through.

Now we can use the explicit computation of prorepresenting hulls given by

Massey products to say something about the morphism Hy %, H. For the different
monomial bases, we are going to denote the global case by for instance {u®}

and take away the tilda for the affine case. What is needed is the following

Eeﬁz

Lemma 3.3.
For any k > 0:
a) The defining systems {am}m€§ ,, can be choosen to satisfy
- m 2

m e —.é_z.pk -—§2+k - O'(Cl-ﬁ) =0

b)

*

n€ By = o(< z5n>) =<z%n>

) —

)

n€ By~ By = o(Y(n) = 0.

Proof.
The reason why this is not obvious after the lemmas, is the fact that the com-

putation of the Massey products involves some relations (Bm,n,Bm n), and some
choices of defining systems, constructed by induction. The lemma should therefore
be proved by induction on |z| > 2. First of all, choose bases of Ezts (F,F) as in
lemma 3.1 and 3.2. Then for |n| = 2,n € B} the Massey products < z*;n > is
represented by the cocycle

Y(n)= Z Qm, O, -

my+my,=n
m;€B

By the choices of basis, b) and c) follows. a) is obvious for |n| = 2.
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Assume the conditions of the lemma true for |n| < 2+k—1. Pick a basis §2+ k=1,
and we may put

§2+k—1 = §2+k—1 N {Q € N% . Ngy1 =" =Ng= O}

because there are no mixed relations. Now the defining systems are constructed as
follows:

is a coboundary, and we pick for each m € By, an Q. mapping to by, (notice that
Bg +1 and Bg 47 can be constructed as above because there are no mixed relations).

Ifm € Bogg—1 — Byk-1, then the only relations between the u™ are ”in there”
and so the Y(n)‘s in the sum are all with

o l4 !
n€ By 1— Boyga

But in this case o(Y(n)) = 0 = 0(b) = 0, say by = 0@ by,. Then we may
put am = 0 @ o, where ay € D'(U, Hom® (L., L.)) satisfies "d(op) = —bl,. Such
an o, exists (as before) because by, is a cocycle and H' (D (U, Hom(L., L. ) = 0.
Then we find d(apm) = 0@ —b;, = —bp, and o(am) = 0, which was what we wanted.
Again since there are no mixed relations and because of the choices of polynomial
bases and defining systems, we have conditions b) and c) satisfied.

Proposition 3.4.
Let X be a curve with only one singularity, F a torsionfree sheaf on X of finite
rank. Let exty (F,F) = d and eth(}_ F)=r. Let zg € U = SpecA be the

singular point and M = H°(U,F). If H, is the formal moduli of Defpy and H is
the prorepresenting hull of Def z, then there ezists power series fi,..., fr such that

ﬁo = k[[mh e zd]]/(fla ~“>f7')'

H 2 E[[z1, 00y Tdy Cat1s ooy g}/ (f1sees fr)-

Proof.
n—2
Z 2 gi(< z¥n >)z™ = f;
1=0 nEBz+z
Corollary 3.5.
The natural map
¢:Hy — H

is (formally) smooth
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Proof.
Because H is a formal power series ring over Hp, in a finite number of variables.

Assume we have defined an obstruction theory for O x-modules M on a scheme
X and an obstruction theory for Ox ;-modules M such that for any small morphism
7 : R — S and any lifting Mg of M to S

o(Ms)z;m) = 0o(Ms;)s.
If we know that the localization morphism
Extk (M, M) — Exto, (Mg, My)

1s surjective,

Ext} (M, M) — Extd__(Ma, My)

injective, then we can prove the smoothness by abstract nonsense, without involving
Massey products:

Alternative proof of corollary 3.5.
In the diagram

Defpy  —2—  Defa,

SmoothT TSmooth,

Mor(H p, —) 2, Mor(H p,, —)
if we can prove that p is smooth, it is well known that ¢ is smooth, which again

gives the corollary.
The global and local obstruction theory are clearly defined such that the above
assumption holds. The statements of the localization morphisms also holds for

curves.
Using the fact that Defa((R) is a torsor (principal homogeneus space) over

Ext}((M,M) together with the surjectivity, respectively injectivity of

Ext’ (M, M) — Extp,  (Ms, Ms),t = 1,2, putting ] = ker 7, a simple diagram

chasing in the diagram

Ext'(M,M ® I) —— Ext'(My;, M, ®1I)

L !

Def m(R) — Def a1, (R)

! !

DefM (S) _— Defo (S)
proves the smoothness of p.

This proof anyway, does not suggest anything but smoothness. The stringent
proof in the next section gives the morphism explicitly, in particular the smoothness,
and also suggest a generalization of the smoothness.
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3.3. Generalizations by use of spectral sequences.
In this section, we use the notation

D =DU,Hom(L.,L.))

for simplicity. Also F denotes the first filtration of D" and its cohomology. See
Bredon[1] for generalities on spectral sequences.
Let X be any scheme, F any coherent Ox-module. Pick a basis for

Ezty(F,F)= H (D)2 H'(D)/F*H' (D)@ F'H' (D) =' B} &' E.)
on the form {z¥}¢_; U {t;};?:dﬂ such that {e(z¥)} is a basis for 'EQ;! and {t}} C
F1HY(D). Then we have

Lemma 3.6. )
Assume H?(F'D) = 0. Then if n € N? has n; # 0 for some | > d, then

< g*t*;n >€ F'H*(D) C H*(D) = Ext%(F, F).

Proof.
We do the proof by induction on k, n € By, ;. First, because

t* € F*HY(D) = Im(H*(F'D) — H'(D)), we may represent t; = 0 @ 8. Then
for k = 0, we have < z*t*;n >= Y (n) with

Y(n) = Z Qm, A, -
m,+m,=n
m;€By
if n is a mixing, then every product in the sum is on the form 0@ 4’ @', and thus
Y (n) also. This gives

< z*t;n >=Y (n) € F*H*(D),

and so proves the conditon for & = 0. Assume the lemma true upto k. Then the
k + 1¢ th order defining systems are constructed as follows: For each m € By, by, is
a coboundary. Because there are no earlier mixings, we have that when m is a mix,
bm € F*H?(D). In fact by € F1D?, 50 by, is a coboundary in F' D?, allowing us to
pick an oy, € F! D! — D! mapping to b,,. Then again because there are no earlier
mixed relations, the terms in the sum < z*t*;n >€ F'H?(D) whenn € B} is
a mixing. This proves the lemma.

Let U = Spec A € U be any open affine in the good covering Y. Put (as before)
M = H°(U,F),L. = H°(U, L.) and consider the composition

D — D/F'D —s Hom(L.,L.).
Let Z denote the kernel complex so that we obtain a short exact sequence
(2.8.2) 0— Z— D -2 Hom(L.,L.) — 0
where o factors trough D/F!D. Now look at
HY(D) -+ H'(D/F'D) — H'(Hom(L.,L.)).
This composition is a surjection by the assumption o surjective, i.e. H2(F'D) = 0,

so we may assume that {z}}%, C H'(D) maps to a basis for Ezty (M, M),

{5}l 41 © Im(H'(Z) — H'(D)). With this notation we have the following:
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Lemma 3.7.
Assume H*(F'D) = 0. Then if n € N? has n; # 0 for some | > d', then

<z't"in >€ Im(H*(Z) — H*(D)) C H*(D) = Batx(F, F).

Proof.
We copy the procedure of the previous lemma: For 1 > d',

¥ € Im(H(Z) — HY(D)),

so we may represent £* = a @ 8 with py(a) = 0 where py : D" — Hom/(L.,L.)
is the projection. Then because the products are taken componentwise in D°!, we
have Y (n) = o' & B’ with py(a’) = 0 when n has n; # 0 for some [ > d’. Thus

< z*;n >€ Im(H?*(Z) — H*(D))

in this case. If there are no earlier mixings, b, € Z? maps to a coboundary in D?.
Looking at the long exact sequence of the short exact sequence 2.8.2, we have

.+« — HY(D) — H'(Hom(L.,L.)) — H*(Z) £+ H*(D) — -

so that by assumption, p is injective. Thus b,, € Z? is a boundary, and we may
choose a, € Z' when m is a mix. Again because there are no earlier mixings,
< z*t*;n >€ H*(Z) when n € N n; # 0 for some [ > d'. Then the lemma is
proved by induction.

Of course the proof of both lemmas require that we know the exact relations in
So+k, Rotk at each step. To restrict the mass of the proofs of the two next propo-
sitions, I have decided to treat this separately. Thus the two following propositions
both holds at each step in their respective lemmas.

Proposition 3.8.
Let X be any scheme, F any coherent Ox-module. Pick any basis of

Bty (F,F) = H'(D) = H'(D)/F* H'(D) @ F*H'(D) =' E% &' ELY
on the form {zf};?:lu{t;‘}g:dﬂ where {z¥}_, maps to a basis of H*(D)/F'H (D)
and .
{t/}eas1 S F HY(D).
Also pick any basis of
Ezt%(F,F)= H*(D) & H?*(D)/F*H*(D) & F'H*(D)/F*H*(D) @ F*H*(D) =
IEO,Z @l El,l @/ EZ,O

on the form {yf}ieq U {zf YL, 41 U {uf}t oy where {yF}_; maps to a basis for
'EQ2, {zF}il, 41 to a basis for 'EXL {uf}_ .., to a basis for 'EZ.
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Assume H?(F'D) = 0. Then
with §; € k[[z]]

Proof.
From lemma 2.9 it follows that < z*t*;n >€ F*H(D) when n is a mix. Thus

gi=Y . Y. w(<z'thn>)(zt)™ € kfz]).
k=0 neB, Tk
Now, consider the morphism of differential graded k-algebras
o0:D — Hom(L.,L.).

This morphism sends defining systems to defining systems and Massey products to
Massey products whenever this makes sense, giving rise to the following:

. Proposition 3.9.

With the notations and conditions of proposz'tion 2.7, let U = Spec A € U be any
open affine in the good coverzng U. Assume {z}}% | € H' (D) maps to a basis for
Ext} (M, M), and that z} € ker(H' (D) — Exty (M, M)) fori>d'.

Then the mapping from the global to the local hull is a smooth morphism followed
by a closed imersion; in fact

‘gM = k([z1, s zar]]/ (G, oy ) — k[[£7ﬂ]/(gl7 oo Urty Yri 415 o--,?jr) = ﬁf

Proof. We have
H*(F'D) — H*(D) — H*(D)/F*H*(D) — 0
exact and
H*(F'D) — H?*(D) — H*(D/F'D)
exact, so that
H*(D) — H*(D)/F'H*(D) < H?(D/F'D) — Ezt’} (M, M)

with the first and the second map surjective. Thus we may assume that {y}}i_;
maps to a partial basis for Ezt? (M M) {yfYiepy1 © H*(Z). Then from the
lemmas, we have that for : = 1,.

Z > wil< z'tn >)(at)® Z Z yi(< 2% n >)(zt)™

k=0neB; k=0neC;,

where C) , = {n € Bz{k :ny=0for [ >d'}.
Thus

Z Z yi(< ¥t n >)(zt)® Z Z o(yi)(o(< 't n >))(zt)*
k=0 nEC.H_k k=0 nGCz_'_k

which is the local power series. The remaining local power series will then be zero,
because there are no other y ‘ s in the Massey products.

-
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Theorem 3.10.
Let X be a curve with only isolated singularities {pi,...,ps}, F a coherent tor-
sionfree Ox- module. Then

Hr = (®3_1H7,,) ®kl[tat1, - t4]l.

Proof.
We have that 'E; >? —' E' —' E2° and
(2.8.3) 'EDt =" HP("HY(D)) = H?(X, Ext% (F, F))
so ‘tha,t
'E;?? = B} =0=' E3! =’ Ey' = H(X, Ext (F,F)) =
Biq E:ct}ox’ri (Feir Fei)-
Also

HY(D/F'D)=''"H (D% =""HY(D°(U,Hom (L., L.))) = ®f=1E:ct}9X’¢_ (Fois Fui)
so that the diagram
HY(D) —— HY(D)/F'H'(D) —— &L,Baty,  (Foir Fu:)

! U

Hl (D-/FID-) _E_* @;?=1E$t:(lt)x’ri (f:z:,')fzi)

implies o surjective, and that we may choose the basis {z¥}% ; so that {x;‘}?;l

maps to a basis for
E:ct%gx)cl (FoyyFz1)res {xf}?;zd_l_l_l maps to a basis for Ezt}ox,% (Fz,, Fsz, ). Fur-

thermore, we find
! Eic,)l ! Egéo =0

giving us that
H*(D) &' EY? =' By = @1, Eatp, | (Fair Fas).

At last, it should be mentioned that for curves, it is easy to see that H2(F'D) =

0. Indeed, the exact sequence
0— F'D— D-— D/F'D—0
gives the section of the long exact sequence
HY(D) -% HY(D/F'D) % H*(F'D) £ H2(D) X+ H2(D/F' D).

From the above statements, follows that ¢ is surjective and ¢ an isomorphism.

Thus
H*(F'D) =kerf =Ima = 0.

Thus the corollary follows from the proposition.

The smoothness of the local to global morphism then follows as a particular case
of this corollary:
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Theorem 3.11.
Let X be a curve with only one isolated singularity, F a coherent torsionfree
Ox-module. Then

Hr 2 k(21,0 Ta, Tag1s ooy )/ (Fiy oor Fr) — Kl[21, s 2]}/ (Fi, s fr) = H,,

i.e. the morphism from the local to the global formal moduli 1s smooth.

4. THE LOCAL FORMAL MODULI OF TORSIONFREE MODULES OVER FEjg
THE AFFINE CASE

Let B be the singularity E, that is B = k[[z,y]]/(z* + y*). Then the torsionfree
B-modules of rank 1 are given by the list of Greuel and knorrer in [6].
Eisenbud [4] tells us that every torsionfree module can be given by a matrix fac-
torisation. Thus it is easy to write up the torsionfree modules:

Lemma 4.1.

Let M be the family of indecomposable, finitely generated mazimal Cohen-Macaulay
modules of rank 1 over B. Then M consists of the B-modules given by the following
free resolutions (matriz factorizations):

4 3
0 My +— B B8 g ...

or
0+— My =B+—0+—0---

2 (:133 y2)
B> L

Bt e— ..

’—\
@ 8

|
Hwtd

0— M; «— B? '7 —
0 +— M, +— B? —

0 +— M3 +— B? ¥

y —z2 0 y? 3 —yz?
z 0 —y —z2  zy —yz
0 z

- — —y2 —
0 +— M, +— B® & Tfipe ra
In this chapter I shall give the complete list of formal moduli, refering (for the
case B = Eg ) to the list of Lemma 4.1.
In [10] Laudal gives the theory. In [16], the author gives a Singular program
computing the following k-algebras. Some detailed hand computations can be found

in [15].
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Mp.

and of course MO(O,O) = M.

—y? +uy — u?
23+t 2z +1% )

3
4

M.
Hy = k[t, ul/(t* + u%), M (£, u) = coker (Zli
M,.
Hy = k[t ul/(t* +u®), My (t,u) = B, (t,u) # (0,0)
M;.
H3 = k[tl, ...,t4]/(p, q),Mg,(tl, ...,t4) = Coker (f; 1’3)1)
where
2 3 2 3 2 1 4 3 2,2 3 2,4 3,3
q = —2t1t3 + 3tity — 3 + t1t] + Stotats + taty,
o =z +t; +taz + 132 4+ 13y — 2yt2 — tat],
B = —y? +toy + tazy — 12 — gtex — 1112 — tatiz,
d= Yy + t2 + t4$,
v =2% —t; —t32.
My.
Hy = k[t1,...,t6]/(f1, f2, f3)
where

3
fi1 = 2t1tatsts + titsts — tatatl + §tzt§t6 + dtgtytsts + 2tststs +t; + 2t5te

1 3
+ 3t242 4 2485 + §tg — t2ts — Stotaty — Statsts + 3,

e 3
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fo = —2titste — tots — dtatsts — 2t2te — 2gts — ts + 21ty + tats,
fa = —tyt? — gt — 225 — ts5t2 + 13 4+ t1t3 — 2tots — tote + 3,

_ 011 12 013
M4(t1, ..,te) = Coker 021 Q22 023
03,1 G332 33

where

o110 =y -+t +ts 012 = —2% + ate + yts — tats — t3 — tats — ta,
a3 =12, 021 =2+ 14 + 1,
og o = 2tste — t2, 02,3 = =y + 3,
Q31 = —ts, @32 = —t2 —y +t1,

a3 3 = —z + t4.

COMPUTATION OF THE BOUNDARY OF THE COMPACTIFIED JACOBIAN

5.1 Properties of the global to local morphism.

Let X be a projective curve. When X has only isolated singularities, we may
assume that Sing(X) C U = Spec(A4) C X. For simplicity, we will assume that
Sing(X) = {zo}.

Let M be any reflexive quasi coherent rank 1 Ox-module. Then there is a

morphism
Def pm(—) — Def pqp, (=) = Defar, (—),

where My = H°(U, M), inducing a morphism
f{Mo — ffM

This last morphism is proved to bee smooth (theorem 3.11. ), i.e Hp is smooth

over Hyy,.
If C is a coarse moduli for a family of modules, then by definition there exists a

morphism H ,, — C in which 0 is sendt to M. This induces a morphism
@c, M — ﬁ M-

: G .
From the geometric invariant theory, it follows that H 4 = Oc m, where G is a
quotient of Autx (M), implying that G is a discrete group. It can be proved, Laudal
~ G ~
[9], that if H ,, is algebraisable, then so is H ,, , the algebraizations giving open
affines (up to étale isomorphism).
In our case, there is no problem because P is a fine moduli, thus O pm = Hu.

When H Mo — H 4 is smooth, the same is true for the algebraizations:
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Hpg, < Ha is smooth (and injective).
Now look at the morphism

H (= Spec Hpmq -—;—) Spec Hpyr, = Hyy, -
Then M € H j, maps to Mo € H,, . Rego [11] proves that if two global modules,

say P,Q maps to the same module locally, then P = Q ® £ for some £ € Pic® X.
Thus the fiber of ¢ over My is

M -Pic® X = o(M) C H .
Because H My — Haq is smooth, Haq is just a formal power series over H Mo

and the number of indeterminates is h' (€nd x (M)), which is easily seen writing up
the tangent spaces. Thus the dimension of the fiber is h!(End(M)).

Lemma 5.1.

h'(€ndx(Ox)) = pa(X),
thus H'(Endx(Ox)) is minimal among the fibers .

Proof.
The exact sequence

0— Ox —0x — 0x/Ox — 0
gives the long exact sequence
0 — H°(X,0x) — H°(X,0x) — H°(Ox/0x) — H'(X,0x) — H'(X,0x)
implying that
pa(X) = h1(X, 0x) = b(X, Dx) + h°(X, 0%/Ox) = pa(X) + 4(X).
On the other hand, there is also a short exact sequence
0 — Ox — Endx(0x) — Ox/0x — 0

implying the exact sequence

0 — H°(X,0x) — H°(X,£ndx(0x)) — H°(Ox/Ox) —
H'(X,0x) — HY(X,Endx(0Ox)) — 0
giving that
h!'(X,Endx(0x)) = pa(X).
Looking at reflexive modules as fractional ideals, gives the minimality, see Cook [2].

Thus in this case with p,(X) = 0 (i.e. X is rational) it follows that we have an

isomorphism X )
Hpy = Hyy,.

Now the local study of P can be reduced; because of the smoothness, we know
that Oz p,m 1s a formal power series ring over H Mo, implying that Op »( is a poly-
nomial ring over Ha4,, upto some choice of étale sheet. Thus the local study on P
reduces to the affine case.

— 0
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5.2. Stratification of the miniversal family.

By a stratification of H,; = Spec(H), we understand a family of locally closed
subsets {Sy}ver of H;, such that [[ .S, = Hj,. We put an ordering on the strata
by defining

v<v &5,28,andv# 0.

Now we put M = A and use the stratification
S, ={te HIM(t) = M,}.

Theorem 5.2.(Greuel and Pfister).
For any M, the only closed stratum is S,,, the stratum of the normalization.

Proof. Greuel and Pfister [7]

Th_is means in paricular that S,, must be a spezialization of all other strata
=—> A deforms to every other reflexive A-module of rank 1. Also it implies that

every stratum meets H 3.

Now put M = Ox. Then from the theorem of Greuel and Pfister, it is enough
to study the corresponding boundary points of H,;, M = A. The closure of the
strata of the not locally free sheaves then gives the components of the boundary.

5.3. The Kodaira Spencer Map.
The notation now is that M is an A-module. Then the exact sequence

11

<_
0—I/I? = (AQA)/I* —A—0
(-.

i2
gives the possibility of defining ’
(M) =41, M — i3, M € Exty (M, M ®4 Q4).
Put H = Hjs and let M be the miniversal family. Then we want to define
g : Dery(H) — Ext%I@kA(]\Zf,]\Zf).

Consider the diagram

Dery(H) —— Dery(H ® A) —— Extyg, (M, M)

o] |7

i,

Dery(H, k(1)) s Bt (M(2), M(2))
From the versality of Hps(s), we know there is a surjection

Mor(H, Hy(y)/my) - Defpriey(Hpr(n /mr)
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which is a bijection on the tangent space level. Thus there is a unique
tg, : Deri(H, k(1)) — THp (0 -
To define g such that the diagram commutes for all ¢, it is enough to define
G : Dery(A) — ExtY (M, M)

in general:
§ € Derg(A) = Homy (4, A), gives a morphism

b, : Extl (M, M ®4 Q4) — Extl (M, M ®4 A) = Extly (M, M),

and so we may define
§(8) = dx(c(M)).
Consider the strata on H = H 5. Then

Ts,,+ C Derg(H,k(t)) = Ta,:-

We understand that if Tg, ; is of maximal rank dim H, then the point ¢ repre-
sents a locally free (=projective) A-module. Thus the points corresponding to the
boundary of the compactified Jacobian, is the points where Ts, ; has not maximal
rank.
It can be proved that
Im=v,

where V is the kernel of g and Im means the image of the tangent spaces on the
stratification components.

Definition 5.3.
The discriminant is defined as § = detV = /\?{V, d=dimH.

Now ¢ is a H-module of rank 1 and gives rise to a divisor .

Corollary 5.4. (of the smoothness of global to local theorem).
The boundary of the compactified Jacobian is given by the local discriminant

d={pe€ H|dimV < d}.

5.4. The results of Cook and Rego.

In the Gorenstein case, Greuel und Knorrer [6] proves that the simple singulari-
ties (i.e. of type ADE) has only a finite number of isomorhism classes of torsion free
rank 1 modules. Thus a natural problem is to describe the compactified Jacobians
of curves with simple singularities. This is the aim of Cook‘s paper Cook|2].

Cook stratisfies M(X) in the following way: Let M denote a collection of rank
1 torsionfree modules, one M, for each singular point z € X. Write

(M) =) i(M,)

T
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where 1(M;) = dimi(End(M;)/O.), and let Uy be the subset of M(X) of sheaves
F st. Fp = M, for each singular point z € X. Note that Uy is not empty,
Rego[11].

Cook shows that Uy is a smooth irreducible locally closed subvariety of M(X)
and dimUy = g(X) —«(M).

He also computes the number of Upss of given codimension. This determines the
stratification diagrams for the singularities A, , D45 and Eg (in the other cases
the theory of local parabolic models is needed). For example, Eg has the following

stratification diagram:

Here each vertex corresponds to a locally closed subvariety Uz, for some torsion
free rank 1 module M. Two vertices are joined if and only if the closure of the
component on the left contains the component on the right. The leftmost vertex
corresponds to Up = J(X). The codimension of a given stratum is the distance
from this vertex in the diagram. In each case the total length of the diagram is
equal to §(X) = dimy(O/O, O) denotes the normalization of O.

Thus Cook give us the stratification diagrams, implying among other things,
the number of irreducible components of the boundary of the generalised Jacobian.
This is Rego‘s result.

5.5. Example.
When X = Es, then we computed (see chapter 1) Hy for all reflexive M. For

M, = A the result is

Hy = klt1, ..., t6]/(f1, f2, f3)

where

3
fi = 2titytste + t1tsts — tatats + 5tztgt6 + dtstatste + 2tatsts + t3 + 2t5te

1 3
+ 3t2t2 4 2,13 + Etg — t2t5 — 3totaty — 5 tatste + t3
fo = —2t1tste — totl — Atgtsts — 2ite — 24t — 13 + b1ty + tats,

fa = —t1t2 — 2t3t2 — 23ts — tstl + 13 + t1t3 — 2oty — tate + 13,

. 11 Q12 013
M4(t1, ..,ts) = Coker Q1 OG22 Q33
Q31 Q32 Q33

where
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Q11 =y +t +ts, a1 = —12% + zts + yts — ltsts — 113 — ltate — 12,
a13 =1ta, @21 =2+t + 1,
ag,2 = 2tstg — ltg, a3 = —1ly +13,
a3 = —1t5, az 2 = —lt% — 1y + ¢4,

033 = -1z + 4.

To find the degeneration properties of the versal family, we would like to compute
the kernel of the Kodaira-Spencer morphism. The method for doing this is easy:
First compute

d
Qu = @ Hdui/(dfi)iz;-

Then compute Dery(H) = Homp(Q, H) as Ezt)(Q, H). It is sad, but true, that
with todays computers, this is to big to compute, and we just have to leave it for
the moment.

We are left with one possibility: Make some qualified guesses on points on H,
then compute the Ext-dimention of the versal deformation in the actual points and
prove that these are the different modules on Es.

Point Ext!-dimention
(0,1,0,0,0,0) 0
(0,0,0,0,1,0) 2
(1,0,0,0,1,0) 2

(1,0,-1,1,1,0) 4

=

Now the isomorphismclass of the first point has to be the one and only free
module. Checking out the two points of Ext'-dimention 2, that is filling the point
into the versal family, we find that the module corresponding to the point

(0,0,0,0,1,0) is the cokernel of

2?2 +y* zy
ry+z zl4y
and that the module corresponding to the point
(1,0,0,0,1,0) is the cokernel of
2 +y? zy+z
Ty 2?4y )

—zr2 —
These two modules are isomorphic to M = ( :cyz+:v2 ’ y) and N =

2
—zy —z° —y .
(—:cz S —gy— a:) respectiveley, and we find that

MN = NM = fI.
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This proves that the two modules are nonisomorphic (look at the given matrix
factorisations of M; and M>) and so they are toghether M; and M. The last point
has to be Mj, and so the stratification diagram looks like:

Yy

Where each vertex corresponds to a locally closed subvariety Uy, for some torsion
free rank 1 module M.Two vertices are joined if and only if the closure of the
component below contains the component above. The lowermost vertex corresponds
to Up = J(X). The codimension of a given stratum is the distance from this vertex
in the diagram. The boundary is given by S,, US,, which is closed and irreducible.
Thus in this case we have two components.

This gives the number of components and the properties of deforming. But using
the local theory like this, we can do more: We can describe the boundary (locally)
completely.
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