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Abstract

We state limit distribution results for random matrices with independent or free
entries, also addressing when we get freeness in the limit and semicircular and circular
limits. The results generalize some already known results about asymptotic freeness of
large random matrices, but our goal is to get a more optimal flavour on these results.
When having matrices with identically distributed entries, we show that freeness in
the limit is typical when we have free entries, but nontypical when the entries are
independent, and restricted to the case of circular limits.

1 Introduction

The theory of limit distributions of random matrices has recently (see [13], [1]) found
applications in the form of free group factors in Von Neumann algebra theory. The
clue to this application is the multimatrix version of Wigners semicircle law ([15],
[16]), discovered by Voiculescu ([13]), which says that independent Gaussian random
matrices in the limit become free semicircular random variables, free from sets of
constant block diagonal matrices.

Although Gaussian random matrices have been sufficient in obtaining the applica-
tions to free group factors, one can ask the question of how general random matrices
one can use in order to obtain the same limit distribution results. This question is
for instance addressed in [2], where an optimal result was obtained for when one gets
a semicircular limit distribution for the eigenvalues of certain random matrices. The
task of this paper is to work towards a similar optimal-flavoured result for conver-
gence in distribution, i.e. that of convergence of moments of the distributions. We
will also consider the multimatrix problem, and we will be especially interested in
how the limit distributions relate: When do we have asymptotic freeness in the limit,
as in the application to free group factors?
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We will start by looking at selfadjoint random matrices with (up to symmetry)
independent entries, and prove a generalized version (theorem 1) of the asymptotic
freeness results for random matrices and constant block diagonal matrices appearing
in [13], [1]. The proof is rather different from that in [13], [1], and hinges on a
characterization of freeness due to Nica and Speicher ([6], [7]). This new proof and
the combinatorics appearing there is an essential part of the paper. In the proof, we
keep at the same time track of how the moments of the entries can be allowed to grow
as n — oo in order to get a limit distribution.

There is a similar result, theorem 2, without the symmetry condition on the
matrices, i.e. all entries are assumed independent. This result is surely also known.
In this direction we also find an ’optimal’ result, theorem 3, for what growth conditions
we can put on the moments of the entries in order to obtain convergence in distribution
for random matrices with identically distributed entries (for what optimal should
mean in this case, see the comments preceding theorem 3).

It will also be clear from this when one obtains free distributions in the limit, and
that the circular limit distributions are what usually appear when this is the case.
This shows that the results in [13], [1] and the matrices considered there are in a
certain way representative for the possibilities in obtaining free limit distributions.
When working towards the ’optimal’ result in theorem 3, we get a whole class of limit
distribution laws, and we will show that the structure of this class is governed by a
set of partitions, called clickable partitions, in the same way free random variables are
governed by the set of noncrossing partitions. We characterize these partitions at the
end of the paper. There is an obstruction for attaining free random variables in the
limit, this is roughly that the set of clickable partitions is somewhat larger than the
set of noncrossing partitions. We also make some comments regarding the ’selfadjoint
version’ of theorem 3 and the possible limit distributions that can be constructed by
using as entries random variables which have infinitely divisible distribution.

If one replaces the word independent with *-free, the situation gets to be different.
There is a similar result, theorem 4, as theorem 3 in this case, but, vaguely speaking,
the obstruction mentioned above that the set of clickable partitions is larger than the
set of noncrossing partitions has disappeared in the calculations. Freeness in the limit
will be a consequence of this. Also, the R-transform of the joint limit *-distribution of
the matrices can be described in terms of properties of the entries in a nice way, and
one can see from this that in the limit we typically get (free) random variables giving
rise to R-diagonal pairs (see definition 6). This is perhaps the most striking result of
the paper. R-diagonal pairs have been studied already in the litterature [7]. For the
limit distribution we obtain a nice interpretation of the cumulants and the noncrossing
partitions in terms of the properties of the entries and matrix multiplication, when
writing out the moments of the matrices as sums of products of the entries. We
also show that we in the selfadjoint version of theorem 4 can get all even, infinitely
divisible probability measures with compact support in the limit.

Random matrices with free entries have also been studied by Shlyakhtenko [9].

The conclusion is that asymptotic freeness of random matrices (at least when one
has identically distributed entries) becomes natural when the entries are *-free, but
is unnatural when the entries are independent and is then in a certain way restricted




to the free circular limit distributions.

2 Combinatorial preliminaries

We will occupy ourselves with certain noncommutative probability spaces. A non-
commutative probability space is a pair (A, ¢) where A is a unital *-algebra and ¢
is a normalized (i.e. ¢(1) = 1) linear functional on A. The elements of A are called
random variables.

An important particular case is the case where A = L = Nij<pcool?(0) with o
some probability measure on a measure space, i.e. the algebra of complex valued
random variables, having bounded moments of all orders. The state on L, given by
integration with respect to o, is denoted E (serving as ¢).

Definition 1. A family of unital x-subalgebras (A;)ier will be called a free family if

aj € A
{ i1 # 19,12 F 13y 000y In1 F In } = ¢(ay---a,) =0. (1)
$(a1) = ¢laz) = -+ = ¢(an) =0

The family ({@11y ..y @1k }y ooy {@n1y ooy Gnkn }) will be called a x-free family if the *-
algebras A; = x — alg(ai, ..., air;) form a free family (we sometimes write free for
x-free if the sets {a;1, ..., aik;} are selfadjoint).

C(X1, ..., Xn) will be the unital algebra of complex polynomials in » noncom-
muting variables. Unital complex linear functionals on C(Xj, ..., X,,) will be called
distributions. The set of all distributions will be denoted X,, (or simply X  for a gen-
eral index set I). If a4, ..., a, are elements in some noncommutative probability space
(A, ¢), their joint distribution g, ..., € Xy is defined by having mixed moments

Bagyan (Xiy + - Xip) = (as, - a;,,).

Definition 2. We will say that random variables (a,(1), an(2),...) C (An,$n) con-
verge in *-distribution (to random variables (a(1),a(2),...) C (4, ¢)) if

7}320 G (an(i1)?® -+ a, (i5)9W) exists (is equal to ¢(a(i1)*M) -+ a(i)?®))  (2)

for all choices of k, 41, ...,% and functions g : {1,...,k} — {-,%}. If this is the case,
and the (a(1),a(2),...) are x-free in (A, ¢), we will say that (an(1), an(2),...)n s an
asymptotically x-free family.

If (an(1),an(2),...) converge in *- distribution as above and there is no mention
of (A,4) and (a(1),a(2),...) in the limit, we will think of a(),a(:)* as the random
variables X;, X* in (C(Xy, X{, X2, X3,...), ) with u the unital linear functional de-
fined by ,u(Xi(l) . 'Xi(k)) = limpoyoo $n (@ (11)9W) - - -a, (3)9(®) (ie. p is the limit
distribution).

Given a sequence {{a, (3, j; k) }1<i,j<n}n of random variables from (A, ¢), (possibly
subject to the symmetry condition a,(7,j;k) = a,(j,%; k)*), we will consider the
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matrices An(k) = }J1¢;i<n @n(i,J5k)en(i, 5) in (Mn(A), ¢n), where en(i, ) is the
canonical system of matrix units, and ¢, is ¢ tensored with the normalized trace on
the n X n-matrices. We will occupy ourselves with the limit distribution of the A, (k),
together with sets of constant block diagonal matrices (this is to be specified). Mostly
we will try to conclude the mere existence of a joint limit *-distribution or asymptotic
*-freeness of such random matrices subject to a freeness or independence condition
on the entries. It turns out that all limit distributions we encounter naturally can be
expressed in terms of cumulants, either the free cumulants or some cumulants coming
from a different setting,.

To be able to express the joint limit *-distributions of our matrices, we will need
the following definitions and results:

2.1 Preliminaries on noncrossing partitions and the R-
transform

The set of all partitions of {1,...,m} will be denoted P(m). A partition 7 will have
block structure {By,..., Bx}, |7| = k will be the number of blocks and |B;| will
denote the number of elements in each block. Also, |7 will be the number of blocks
of cardinality k. We will also write B; = {v;1, ceny Uj) B;l}’ with the v’s written in
increasing order, and write ¢ ~ j when ¢ and j are in the same block (or ¢ ~, j when
we need specify the partition). A partition will be called even if all blocks have even
cardinality, and P(m)even denotes the set of even partitions. The following class of
partitions will be important:

Definition 3. A partition 7 is called noncrossing if whenever we havei < j < k <1
with i ~ k,j ~ 1 we also have it ~ j ~ k ~ [ (i.e. 1,5,k are all in the same block).
The set of all noncrossing partitions is denoted NC(n). We will also write NC(n),
for the noncrossing partitions with all blocks of cardinality two.

The fact that ¢ < j < k£ < [ could actually be taken in the general sense that 1, 7, k
and ! lie in clockwise order (or more precisely, ¢ < j < k < I < %) on the circle when one
identifies {1, ..., n} with points on the circle as one does in the circular representation
of a partition (see section 2.2 for the definition of the circular representation). This
also gives the notion of successors in blocks meaning, by addressing the next element
of the block in the clockwise direction.

NC/(n) becomes a lattice with the refinement order on the set of partitions, i.e.
the partial ordering given by refinement of partitions (the maximal and minimal
elements are denoted 1, and 0,, which are the partitions with 1 block and n blocks,
respectively). We will have use for the complementation map of Kreweras, a lattice
anti-isomorphism NC(n) — NC(n). We denote it by K. It is usually defined in
terms of a circular representation of the partitition ([3], [6]). In this paper we will not
have use for K defined on the set of all noncrossing partitions, but rather on a smaller
set of partitions, for which we will define it through a different circular representation,
see section 2.2.

The multidimensional R-transform, also defined in [4], is an important transform
Yn — O, where ©, denotes the set of all power series with vanishing constant
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term in » noncommuting variables. In referring to the coefficients of a power series
f=Yai,. in% - %, We will write

[ coef (i1, ... im)](f) = iy,errims
and if 7 = {By, ..., Bx} € P(m),

[ coef (i1, ..., im) | Bi](f) = a(i;);ep,

[ coef (i1, ..., im); (f) = [ [[ coef (i1, ..., im)| Bil(£)-
We will define the R-transform in the following way, which is not the way it was
defined first in the litterature (the characterization below can be derived from the
real definition):

Definition 4. If u € X, then R(u) € O, is the unique power series such that

wXa o Xip) = D [ coef (it oo im); T (R(1)). 3)

mENC(m)

for all monomaals X;, -+ X;,,.

One can show (by induction on m in (3), also called the moment-cumulant formula,
the R-transform coefficients are sometimes referred to as cumulants) that (3) provides
a bijection from X,, to O,,.

Note that the odd moments of p, are all zero if and only if all the odd R-transform
coefficients are zero. This is easy to show by induction from the formula (3). Such
random variables a are called even.

Having the R-transform, one can define semicircular and circular random variables
(again, this is not the way these concepts were defined first, but they can be derived
from the real definition):

Definition 5. A random variable a is called

1. (centered) semicircular (of radius r > 0) if it is selfadjoint and its R-transform is
given by R(pg)(2) = %;zz. A semicircular famaly is a family of free semicircular

random variables

2. (centered) circular (of radius r > 0) if the R-transform is given by R(q %) (2, 2*) =
-’4322* + %z*z.

3. a creation operator (on the full Fock space) if its R-transform is given by
R(pq,a*)(2,2%) = 2*z (creation operators should really be defined through the

vacuum expectation on the full Fock space, but we will not have use for this
characterization).

The quantity a = % in the above could also be called variance, since we assume
centeredness (i.e. the first moment is zero). We will also need the following definition
related to the R-transform:




Definition 6. ([7]) {a,b} is called an R-diagonal pair if

oo}

R(ag) (21, 22) = Y (be(m122)" + bu(2021)¥) (4)

k=1

for some sequence of complex numbers {by}. We will say that a random variable a
gives rise to an R-diagonal pair if {a,a*} is an R-diagonal pair. The sequence {b,},
is called the defining sequence (or determining series) of the R-diagonal pair.

The simplest example of a random variable giving rise to an R-diagonal pair is
the circular random variable, as can easily be seen from 2 of definition 5.

The R-series is sometimes used in connection with the moment series of a distri-
bution:

Definition 7. The moment series of the distribution p € %, is the power series
M(p) in ©, given by

M) (21, oy 2m) = D D> Xy Xip)2iy +* Zipy.

m>141,.0im

The Kreweras complementation map enters the picture due to a convolution prod-
uct which is an important tool in recognizing freeness of random variables:

Definition 8. The bozed convolution filg (see [5], [6], [7]) of two power series f and
g 1s the power series defined by

[ coef (iv,ory im)) () = D [ coEf (it woryim); W (F)] cOEf (it -oryim); K (7)) (9),

meENC(m)
(5)

With this definition at hand, we can state the characterization of freeness which
we will use ([6]):

Lemma 9. If ¢ is a trace, the following are equivalent
1. {ay,...,an} and the unital algebra D are free in (A, P)

2. $(aidy---a;di) = [ coef (1, ---,k)](R(l‘ail,~-.,a¢k)E|M(Ud1,m,dk)) for all choices
of k,1<143,..,tx <n and dy,...,dx € D.

This characterization of freeness can be formulated also without referring to the
coefficients of the series (see [7], [8]), but it is the coefficients themselves which will
appear naturally in our calculations.

This says nothing about mutual freeness of the a;. For this we will use the following
'no mixed terms’ characterization of freeness([4]):

Lemma 10. The following are equivalent:

1. ({a1,1, 0 @1 my }y ooy {@ny1y ooy G }) 15 @ free family in (A, ¢)




2. the coefficient of z;, j, * + - Ziy j, 0

R(,u'al,l,...,al,ml,...,an,l,...,an,mn)(Zl,la ey ZLymygy oeoy Rmyly ooey Zn,mn) (6)
vanishes whenever we don’t have i1 = iy = - - - = 1.

When referring to monomials in C(Xj, ..., X,,) we will use the following terminol-
ogy:

Definition 11. The signed partition o of a monomial X;, --- X, s the partition
obtained by saying that j and k are in the same block, say oy, if and only i; =
i = l. o gives rise to the sign map, defined by o(k) = it for k € {1,...,m}. If
= {A1, ..., Ap} < o we will also write 0(A;) =r if o(k) = r for all k € A;.

Note from lemma 10 that *-freeness of (ay, az, ..., ), which is the same as freeness
of ({a1, a3}, {az, a%},...), is the same as having only to sum over 7 < ¢ in (3), i.e.

$@® - af™y = 3 [coef (i1, 9(1)), s (ims 9(m))); TR (Hay 0t a2,03...)

” T€NC(m)<o
(7)

for all m, iy, ..., 4, g(1), ..., g(m) with o the signed partition of the monomial g;, - - - g;
as in definition 11.

Using (7), we will need the following combinatorial descriptions of the distributions
appearing in definitions 5 and 6, as this is the form they will appear in the limit
distributions of our matrices. Roughly speaking, the partitions 7= appear as ways to
identify dependent (or non-free) entries from the matrices when they are multiplied,
while the cumulants appear as (scaled) moments of the individual entries.

m

1. The R-transform of a semicircular family (a;); is (due to lemma 10) 3", ax2?
with oy their variances. This means that due to (7), with o meaning the same,

¢(ai, + -~ aiy,) = Z [ coef (i1, ..., im); T R(Hay,a5,..) = Z H Qs(4;)-

TeENC(m)2<0 TENC(m)2<0 i=1
"—{Al ” ’Ah}

(8)

2. If (a;); is a circular family with variances oy, the R-transform is Yok or(zzp+
Z}zt), and we have

I CARRE A Y [coef ((i1,9(1)), - (im (m))); 7] R(Hay,at az,a3,..) =

meNC(m)<o

> [T ewan- (9)
TENC(m)2<c ]

m={A1,...,Apy={{vi1,vi2}}i
(9(vi1),9(vi2))=(-*) or (%,-)




3. To make the picture complete for definition 5, for *-free creation operators (a;);
we have

™= 3, (10)
TE€NC(m)2<o
m={{vi1,vi2}}i
(9(vi1)g(vi2))=(,")
and it is not difficult to see that only one m can appear in the sum. This formula was
used by Shlyakhtenko in his paper [9].
Finally, if {ax,a}} are free R-diagonal pairs with defining sequences {o,2m }m>1,
then we have due to the alternation of z and z* in their R-series,

1 m
¢(a?1( )... a’f,f; )) = Z H O (A;), Al (11)
TENC(m)even<o &
r={A1,...,Ap}={{vij }; }i
(9(vir),9(viz),--)=
(+%,%,000) OF (%,0%,0,...)

The expression on the right will also come out of our calculations.

2.2 Preliminaries on oriented partitions

We will use the following circular representation of a partition, which is suited for
what we will call oriented partitions. All elements 7 of {1,...,n} will be represented
as edges in the inscribed n-gon of the circle, the labelling of the edges being done
clockwise. Each block of the partition will be the corresponding assemble of edges
in the n-gon, we indicate this by drawing connecting lines between the midpoints of
successive edges in the blocks (the notion of successors in a block giving meaning as
before), see figure 1.

Definition 12. A partition © € P(n) where each block of = has an eguivalence re-
lation (the orientation) with at most two equivalence classes is called an oriented
partition. In the circular representation of the partition, the orientation on each block
will be decribed by a direction for each edge, clockwise or anti-clockwise. The set of
all oriented partitions will be denoted OP(n).

This concept will be important to the combinatorial calculations in our matrix
multiplications.

We view the set of oriented partitions as a partially ordered set by saying that
71 < mq if mp < 72 as ordinary partitions, and any orientation class of 7 is contained
in some orientation class of 72. The cardinalities of the orientation classes B¥, B~ of
a block B will be denoted |B*|,|B~|.

Note that the signed partition o = {0y, ..., 0,} of the x-monomial Xi @, -ansm)
can be viewed as an oriented partition by saying that k € a;' (the positive orientation
class of 0;) if and only if iy = j and g(k) = - (0] defined similarly with g(k) = *
instead). We will follow this convention.







Definition 13. The gquotient graph T of an oriented partition 7 € OP(n) is the
graph that appears when the set of edges {1,...,n} in the circular representation are
tdentified with the other edges in the same block, with directions preserved if and only
if they have the same orientation. The block structure of {1,...,7}, the connecting
vertices between the edges in the circular representation, that appear when we do the
identifications of the edges will produce a partition, denoted K'(r), its blocks consisting
of vertices that are identified (we do not give K'(m) an orientation).

Remark: This representation of a partition was used (implicitly) by Dykema in
his paper [1]. The map K’ is not to be confused with the complementation map of
Kreweras, denoted K. They are denoted by the same letter since they coincide in the
important special case of partitions from NC(n); (given a certain orientation), which
is the class of partitions we will encounter most often. To be more precise, if such a 7
is given with orientation so that the two members of a block always are given opposite
orientation, then K = K’. This is not too hard to inferr from the circular definition of
K (in which {1, ..., n} are vertices on the circle, and {1, ..., 2} are the midpoints on the
circular arcs connecting these vertices, connecting lines drawn as before). Actually, we
will throughout mostly concentrate on (oriented) noncrossing partitions which have
alternating orientations within the blocks (meaning that the successor of an element
in a block always has opposite orientation), and one can also inferr from the circular
representation that K'(7) > K(7) with strict inequality if 7 ¢ NC(n)2 has such an
orientation. Roughly, the explanation for this is that the mapping K’ produce many
more identifications of vertices than the mapping K does. This follows really from the
connection between the two circular representations; When we identify two successive
edges which have opposite orientation, we usually get two identifications of vertices
(for instance identifying the edges 1 and 3 in figure 1 leads to an identification of the
vertices 1 and 2, and also the vertices 3 and 8), while we in the definition of K only
would get one identification (T and 2), this explains why K’ in general produce more
identifications, hence K'(7) > K(x).

Corollary 14 (of definition). The partition K'(m) is the equivalence relation on
{1,...,m} generated by the relations (running through all pairs of edges (i,j) in the
same block):

1~y J with opposite orientation = 1 ~ii(r) I — 13— 1 ~gi(n 7 (12)

i~ j with same orientation =1 —1 ~gi(ry §— 1,5 ~gi(m) §
(here numbers are taken mod n).

The following set of partitions will appear in the combinatorics when we describe
the limit distributions of our random matrices. Note that the number of vertices in
the quotient graph, |K’(r)|, is at most |7| 4 1 ( as |7| is the number of edges in the
graph), and that this can be the case only if the quotient graph is a tree (see also
lemma 21).

Definition 15. An oriented partition m € OP(n), is said to be clickable if the number
of vertices in the quotient graph T (which is |K'(m)|) is |x|+ 1. The set of all such is
denoted C(n).
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The name clickable stems from [1], where a click was defined as a certain iden-
tification of edges, namely two edges lying next to each other being identified with
opposite orientation. The importance of the clickable partitions here is due to the
fact that we will run into calculations where a degree of freedom is assigned to each
vertex in the quotient graph of the partition, and it is only partitions with enough
such degrees of freedom (i.e. the clickable ones) which can give contribution in the
limit in our calculations.

The clickable partitions do not become a lattice under the refinement order. We
will describe the structure of these partitions at the end of the paper. There we
will also prove a fact we will use, namely that C'(n); = NC(n), as partitions. The
corresponding orientation for a block of 1 € NC(n); is given by one in each orientation
class. Actually, we will show that any clickable = has alternating orientation within
it’s blocks (as discussed above), and that all even noncrossing partitions become
clickable with this choice of orientation.

Note that, if we in the index of the summand in (9) (or in (11)) assign the orien-
tation to # € NC(m)z (or m# € NC(m)even) by letting v;; have positive orientation if
g(vij) = - and negative orientation if g(v;;) = *, we get that we sum over all partitions
m € C(m)2 <o (or 7 € C(m) < o).

3 Random matrices with independent entries

We shall need the terminology about oriented partitions when we look at limit distri-
butions of the random matrices A, (1), ..., An(k) as in the introduction. We will first
do the computations for independent selfadjoint random matrices with entries from
L satisfying the following criteria:

1. The entries ay (3, j; k) satisfy E(|an (s, j; k)|?) = 2
2.sup E(lan (s, j; 5)|™) = o(n~1t) for m # 2 and every k (13)
i

3. all {an(,7;k)}k1<i<j<n are independent,

where the condition 3 sometimes is replaced by

3’. all {an (7, j; k) },1<i,j<n are independent,

i.e. the symmetry condition is removed. Here o(n®) denotes any sequence y = {v,}»
such that lim,_e Yan~* = 0. Of course, we have that o(n®)o(nf) = o(n**P), and
also that v is o(n®) = v is o(n®) whenever a < 3. A sequence converges to 0 if and
only if it is o(n®) = o(1). The reasons for the conditions in (13) will become clearer
during the proof of theorem 1 and 3, as & = —1 turns out to be a critical value for
the existence of a limit distribution, and is therefore related to our ’optimal’ results.
We have that n¢, (A, (¢1) - - - An(im)) (or more generally
N (An(i1)9D - -« Ay (3,)90™)) is a sum of terms on the form

E (an(jm,jl; il)an(jl,jﬁ 32) ceQp (jm—Z,jm—l; Z.m—l)aﬂn(j'm—l,jm; 7’m)) ) (14)
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with j1,...,Jm € {1, ...,n}, ik € I.

Definition 16. In a term as (14) we will consider the oriented partition © of {1, ...,m}
given by dependence of the random variables involved, i.e. k ~ I if and only if the
k’th and U’th factor in the above are not independent due to the conditions tmposed
(in particular we must have iy = i due to 3 of (13), i.e. @ < o with o the signed
partition of X;, - X;,.).

The orientation of m is defined by letting k and | have the same orientation if
and only if the corresponding random variables are placed in the same position in the
matrices. Opposite orientation is the case if the two entries are placed symmetrically
about the the diagonal.

One sees from this definition that opposite orientation for ¥ and [/ in some block
B with 1,2,3’ holding (instead of 1,2,3) is possible only if one of them comes from
some A,(¢) with the other coming from the opposite side of the diagonal of A, (2)*.
We give positive orientation to the one coming from A,(:). We then have 7 < o
as oriented partitions for any term giving 7, o the oriented signed partition of the
*-monomial Xi(l) . -Xf’ftm).

In definition 16 we say that the j; give (rise to) 7. Note that the number of vertices
in the quotient graph of 7 is related to the number of choices of j; giving 7 (same
order as nIK'(")l) as the j; can be identified with the vertices in the quotient graph
(the random variables are the edges) due to our definition.

In addition to random matrices as above, consider constant block diagonal matri-
ces (with n a multiple of N)

Dn(t)= Y. dn(Nb+i,Nb+j;t)e(Nb+i, Nb+ j;n),
0<bS R -1
1<i,i<N

for ¢t in some index set T':

Definition 17. We call the set {D,(t)}:eT as above (with n running through multi-
ples of N) a set of constant block diagonal matrices if

1. Dy, (t) has a limit distribution as n — oo for anyt € T
2. sup; ;n |dn(i, 5;t)| < 00 for anyt € T
3. For any t1,ty € T there exists t3 € T such that Dy, (t1)Dy,(t2) = Dy(t3)Vn.

Let us formulate the first theorem. We will go through its proof in detail, and then
discuss the generalizations (theorem 2, 3, 4) which follow.

Theorem 1. Under the conditions of (18) and definition 17 we get that

(An(1), An(2), ..., {Dn(t) }:) is an asymptotically free family as n — oo (through mul-
tiples of N). Moreover, the A, (k) converge in distribution to centered semicircular
random variables of variance ay,.

Proof: Let o be the signed partition of the monomial X, --- X; . We write

¢n(An(il)Dn(t1) ot 'An(iM)Dn(tm)) = (15)
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> Z E(an (i1, k1 i1)dn(k1, 52 1) - - G (s Bmi i) (K 15 8m))
7r€0’P(m)<6 J1yee mev

1yeesfim
giving 7

where the oriented partition 7 is defined by the term involved as in definition 16 (with
the obvious meaning when additional matrix entries d,(k, j;t) are put in between).
If # = {Ay,..., An} = {{wi;};}i and K'(7) = {Bu, ..., Be} = {{vi;};}: we get from
independence that this equals

| Al
Z Z H B ]._.[ a”(J“’-r’ Wir ) "’w:r) dn(klaj2;t1) . 'dn(km,jl;tm).
T€EOP(m)<o iy ,Jm, r=1
gi\"ln’g';r;

(16)

Note that the number of choices of ji, ..., jm, k1, ..., km giving 7 is at most
plK' (™I N2Irl=IK (M) since the j’s and the k’s are attached to the vertices in the
quotient graph: Recall that the d’s are block diagonal, this is where the powers
of N come from; We need not have k., = j,41 to get a nonzero term, but rather
|kr — jr+1] < N as D,(t) is zero outside block diagonals. Using this one sees that
the exponent 2|r| — |K’(7)| comes out by counting in the quotient graph, which is a
graph with |K'(7)| vertices and || edges.

Set d := supreq1,...m},n,i,jldn (%, 3 te) ™, which is < oo from condition 2 of defi-
nition 17. If there are blocks of cardinality # 2, we get from the conditions on the
an (%, 7; k) and the fact that |E(f)| < E(|f]), that the 7-term in (16) is dominated by

o(n~I"=1) Z dn (K1, j2; t1) - - - dn(km, 515 tm) |

.j T 1kr
giving 7

since some factor in (16) in this case is dominated by E(|an(¢,j;k)|"), with r # 2,
which is o(n™!) by our assumptions. The 7-term is then also dominated by

O(n—Ivrl—l)nIK’(vr)INZIrl—IK'(vr)Id = TO(nIK’(W)I—IWI—l) (17)
(with r = N2=IK(MId) which is o(1) since |K’(n)| — || — 1 < 0. Therefore, we
may assume that all blocks have cardinality two, i.e. |r| = ||z, in order to get

contribution in the limit. The estimate (17) shows that for such = the quantity is
dominated by (a constant times) nlX'(MI=I71=1 " this means that 7 must be clickable
(i.e. |[K'(m)]—|m|—1 = 0) in order to get contribution in the limit, so that 7 € NC(m),
with alternating orientation by our analysis of C(m) in the last section. For such
partitions K and K’ coincide, so that we can simply write K for them from now on.
We add to (16) for each 7

|4

h
Z l HE Han(jw"’kwir;iwir) dn(klijﬁtl)"'dn(km’jl;tm)a
r=1

Jlyeerdmy 1=1
1yeesSm
giving any 7' >

(18)
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which is o(1): This follows since at most n!X (™) N2I7'I=IK'(*")| choices of j’s and k’s
can give 7’ as quotient graph exactly as above, so that estimating as in (17) we get
(for some constant r’)

rln|K’(1r’)|n—|1r|—l < r/n|1r'|+1n—|7r|—1 — 7,lnl'rr'|—|7r| < rln~l = 0(1)
since |7'| < |r|. Modulo terms that are o(1), (16) thus gets to be

I3 JAil

Z Z % HE Han(ngr,kw.'r;iwir) dn(klvj2;tl) "'dn(kmajl;tm)-
=1 r=1

ﬂENC(m)zSU jlvﬂvjmv
P
giving any 7'/>m

(19)

Noting that the fact that the j’s and the k’s give rise to any 7’ > 7 is equivalegl}t to

Jr = ks, k. = js whenever r ~ s in 7, and replacing the expectations in (19) by —i=,
we see that this is

h k |Bs
Z n it (H ac’(A-‘)) Z H H d"(kvmj(viﬁl); tuie)
TENC(m)2<0 i=1 Jrokr| i=1t=1

Jr=ks,kr=js if rvs in 7

(20)

where we have split up the product as dictated by the partition K (7). Consider the
term corresponding to some 7. I claim that

j(’U:'t+1) = kvi(t+1)’i= ].,..., k,t= 1,...,|Bz’|( mod |Bz|) (2].)
and that these relations run through the same relations as
Jr=ks, kr = js with r ~ sin 7. (22)

The number of relations is m for both sets of relations as is easily checked. If r ~ s
in 7, then r — 1 = vit, 8 = v;341) and 1 = vj(441), 8 — 1 = vj; for suitable choices
of 4,j,s and t as can easily be seen from the circular representation. j. = k, then
says that jiy,11) = kv‘.(t“), while k, = j, says that kvj(s+1) = J(v;o+1)» Which all are
relations from (21), so that (22)C(21). As all relations from (22) are distinct and the
numbers of relations are the same, we also have equality here so that the relations
are the same.

All this means that the product HLZ'II inside the summand of (20) can be written

|B;|
H d’n (kviﬂ k’U,’(t+1) 3 tvit)’
t=1

and summing over all k,,, gives that this equals

n¢n(Dn(tv;1) ot 'Dn(tv,‘lg“l)) (23)
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so that the entire product Hf=1 Ithll in (20) equals

|Bil

k
nlK H Pn H Dy (tu;,)
=1 t=1

Since |K ()| — |7| — 1 = 0 and since all []; Dn(ty;,) = Dy(t:) have limit distributions
as n — 0o due to 1 of definition 17 (denote the limit variables by D(t;)), we get that
the limit contribution for 7 in (20) exists and is

B k
(H af’(Ae)) (H n (H D(h))) - (24)
i=1 j=1 rEBy

If we first choose all the D, (tx)’s to be the identity (the assumption I € {Dy(t)}teT
is irrelevant), we get by summing over all 7 € NC(m), that the limit of (15) is

h
Jim $(An(in) - An(im)) = D, [[wtan, (25)
TENC(m)z<Lo i=1
7'r=~{A1 ,...,Ah}

from which we see from definition 2 and equation (8) that (A,(1), Ax(2),...) converge
in distribution to a semicircular family (X7, X3, ...) of variances ;.

As [ coef (i1, e im); T R(lay,05,...) equals [ coef (1, ..., m); 7R (pa,,,...a;,,) (this is
shown in [8]), the limit quantity (24) is seen to be

feoef (1, oy m); 7] (R ) ) [€0€ S (1, oy m); K (7)) (M (e, DGem)) - (26)

By the definition of boxed convolution, for general D’s the limit quantity is (by
summing over 7 € NC(m),)

[e0e (1, vsy )] (R(1 ey o Xors B (BD (1), D(0m) ) (27)
which implies asymptotic freeness with ({D,(t) }ter) by Nica and Speichers charac-
terization of freeness in lemma 9. [

This reproves Voiculescus results on limit distributions of random matrices ([11],
[14]), and simplifies Dykemas proof of the same statement in [1] (they had stronger
moment estimates on the entries). Dykema used the trace-0 definition (definition 1)
of freeness directly in order to show asymptotic freeness. This meant that for every
power of a random matrix or constant block diagonal matrix he had to subtract its
trace (times the identity) in order to get centered random variables (before he mul-
tiplied them together to find that the product has trace 0), and many combinatorial
sides had to be resolved in this direction. The boxed convolution characterization of
freeness in lemma 9 is nicer with respect to this since the assumption of zero trace
on the random variables involved is irrelevant; One need not modify (i.e. subtract
the trace times the identity) the random variables to work with them, and this leads
to a more direct proof of the asymptotic freeness result. One can say that freeness
from constant block diagonal matrices comes out when one factors out the trace of
the block diagonal matrices in (24).

Note the following version of theorem 1:

15




Theorem 2. If the matrices (An(1), An(2),...) have entries satisfying 1 and 2 and 3’
of (13), then the statement of theorem 1 holds with semicircular replaced by circular.

Proof: To see this one goes through the proof of theorem 1 again, starting by
replacing (15) by ¢, (An (il)g(l)Dn(tl) e Ap (i)™ Dy (t,)), and ay, (G, ky; 3) by the
(jr, kr)-entry of A, (i,)9("). o is as before, but now it can be thought of as an oriented
partition, as we are dealing with a *-monomial. Summing over 7 < o (in the sense
of oriented partitions) in (16), we get because of the same estimates as before that
clickable = with blocks only of cardinality two are the only ones giving contribution
in the limit. This means that # € NC(m); with alternating orientation in the blocks
due to lemma 21. This says that if 7 = {Ay, ..., Ap} = {{vi1, vi2} }4, then v;; and v;,
have opposite orientation, i.e. (¢(vi1),g(vi2)) = (:, %) or (x,-). All the calculations go
exactly as before, and we get by adding up for different 7 in (24) (modulo terms that
are o(1))

h k
> (H aa(Ae)) [T¢- | IT D@ ) ) (28)
TENC(m)2<0 i=1 j=1 reB;
m={Ay,....,Ap}={{vi1,viz} }i
(9(vi1)g(viz))=(:1%) or (%,)
Choosing the D,(t)’s to be the identity first we arrive at exactly the same expres-
sion as in (9) for the joint limit *-distribution, and this is the same as saying that
(An(1), An(2),...) converge in distribution to *-free circular random variables. Exactly
as in theorem 1 we then also get asymptotic freeness with constant block diagonal
matrices. m

The proof above is actually not far from giving an ’optimal’ result for when one
can hope for a limit distribution in the case of each random matrix consisting of
identically distributed random variables. The ’optimal’ result is not stated in terms
of convergence in distribution itself, for which such a nice characterization may not
exist, but rather in terms of convergence in distribution with the sums (15) kept
absolutely bounded (i.e. keeping > |a,| bounded with a, the terms appearing in
(15), i.e. the terms coming from writing the moments as sums of powers of the
entries).

With this kind of convergence in distribution we will show that we obtain an entire
class of limit distribution laws, and that the clickable partitions play an important
role in the description of these distributions. Freeness of the limit distributions we
get will be very rare. The reason for this is roughly that the clickable and noncrossing
partitions do not coincide: First of all only even partitions arise in the combinatorics
of our calculations, and the set of clickable partitions consists of all the even non-
crossing partitions, plus a large class of partitions having crossings. Only in the case
of partitions with all blocks of cardinality two there is a correspondence between the
clickable and the even noncrossing partitions, and this suggests why the circular limit
distribution should be the only one appearing in the case of freeness in the limit:
Circular random variables have cumulants only of order two.

Theorem 3. Assume the matrices A, (k) consist of independent, identically distributed
entries from L. Then we have convergence in distribution with the sums (15) for the
Jjoint x-distribution kept absolutely bounded if and only if the following conditions hold:
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1. limpye0 nE(lan(, j; k)|*™) emists for all integers k and m > 1

2. limy 00 n"‘E(an(i,j;k)”an(i,j;k);) = 0 for all @« < 1 and all integers k,p, q
(i.e. the expectations are o(n®) for all @ > —1).

Moreover, the joint limit x-distributions we then get are in one to one correspondence

with the sequences of limits
(lim nB(lan(i, 35 B, lim nB(an(i, 35 B, lim nB(an(i,3; R, -k

in such a way that, if (ag2, k4, ...) s the sequence of limits for the random matrices
A, (k), the joint limit x-distribution of the matrices A, (k) is given by

nll)nolo ¢n(An(k1)g(l) o An(km)g(m)) = Z [ coef ((kl, g(l))v veny (k’ma g(m)))’ ﬂ.](a/)1

weC(m)
(29)
where o is the power series without mized terms in the variables (2, 2¥);,
(21,722, 25y ) = D O okam((220)™ + (2526)™) (30)
k m

with [ coef ((k1,9(1)), ey (kmy g(m)))]() the coefficient of zifl) . 'Zi,(nm) in a.

In particular, we get *-free circular limit distributions if and only if og2m = 0
for m # 1. In this case we get also asymptotic freeness with constant block diagonal
matrices.

Proof: We assume first that we have convergence in distribution with absolute
boundedness for the sums (15) in the limit distribution. This means that the quantity
for each 7 in (15) stays bounded as n — co. Put 7 = 1,,,, with orientation of 7 chosen
so that 7 is clickable. The corresponding quantity in (15) coming from 7 for the mixed
moment ¢, (A (k) An(k)* - An(k)An(k)*) is easily seen to be

2K OB (a3, 45 K)[7™) = nE(|an (i, §; k)[2™)

as |K'(m)| = 2 (it is easy to calculate the exact number of j’s giving 7 in this case),
thus the quantities in 1 stay bounded as n — oo (convergence of these quantities will
be proved later).

The fact that the quantities in 2 stay bounded as n — oo is a bit harder. We will
need the following lemma for this.

Lemma 18. For all s > 0, p # q there exists an oriented partition © = {B, ..., Bs}
such that

1. all |Bi|* =p, |Bi|~ = ¢ (so that |Bi|=p+q)

2. |K'(m)| = |r| (i.e. the number of vertices is one from being mazimal).
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Phase 1 Phase 2 Phase 3

Figure 2: Doing the identifications of edges in obtaining the quotient graph of .

Proof: Assume p > ¢. The m we want to construct is in OP(s(p + ¢)). We will
construct 7 so that the orientation of edges in each block is given by (in increasing
order, - meaning positive orientation, * meaning negative orientation)

Ky Ky ey Ky ey (31)

i.e. the first 2¢ elements are given by alternating -’s and #’s till the ¢ *’s (i.e. the
edges having negative orientation) are used up, the rest are -’s.

We will construct the circular representation of 7 by adding edges with orientation,
so that the end product is an oriented partition with quotient graph having one loop
(it is easy to see that this implies |[K'(7)| = |r|). First place m = p + ¢ edges on
the circle, they are to make out the first block B; of 7, and let their orientation be
determined by (31). The first 2¢ + 1 of the edges should be connected (this we call
the largest segment of By), the rest (p — ¢ — 1 edges) should not be connected, as
we will place the remaining (p+ ¢)(s — 1) edges in the p — ¢ intervals we now have.
To see how the rest of the edges (with orientation) should be placed, do first the
identifications in B; so that we obtain the loops in phase 1 of figure 2, each loop
corresponding to one of the p — ¢ mentioned intervals (with clockwise direction in the
circular representation indicated in the figure, the innermost loops appearing first in
the circular representation, the By-block indicated in bold). It is not hard to see from
this how one can add the remaining edges so that the loops actually collapse to one
loop when one does the remaining identifications: The inner loop in the above could
be made up of s — 1 consecutive copies of the largest segment of B; (so that doing
identifications here we arrive at phase two of figure 2, dotted lines drawn to indicate
what edges are identified), the other loops s — 1 consecutive copies of a single edge
with positive orientation, i.e. copies of the other segments of B;. When one does the
identifications from phase two to phase three of figure 2, we obtain in the end one
loop. Obviously, this partition also satisfies the conditions in 1.

For p < q we interchange the roles of - and * in the above argument to come to
the desired conclusion. u

Say that the order -’s and *’s appeared in the above is given by the function
9:{L,..,(p+ q)s} = {-,*}. Then the term coming from the above 7 in (15) is,
for the mixed moment ¢, (A4, (k)?() - .. A, (k)9((?+)s)) (we need only look at the case
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with one matrix), equal to n*~XE(an (i, j; k)?an(s, j; k) )° (as |7| = |K'(x)|) + terms
negligible compared to this (coming from terms added as in (18)). This must stay
bounded as n — 0o, so that n%E(an(i,j; k)Pan (1, 7; k)q) stays bounded as n — oo.
As s was arbitrary we obtain that lim, ., n*E(an(2, 7; k)Par (i, ;3 k)") = 0 for all p, ¢
and @ < 1.

Knowing this, we see that no nonclickable = can give contribution in (15), as
for any such # = {Bj,...,B;} (|K'(7)| < |r| for such =) its contribution would be
dominated by (a constant times)

nl=1 T] B(ani, 5 0) B G g R L
=1

);

which is, after distributing the powers of n among the factors
S
=1 - p-
T2 B(antir s 1) B an i), (32)
=1

which converges to zero from what we have shown.

Convergence of the quantities nE(|ax,(4, j; k)|*™) follows by induction: If this is
shown for m' < m, convergence of the mixed moments of order 2m is equivalent to
convergence of nE(|an (i, j; k)[*™) (as m # 1am, gives convergent quantities in (15) from
induction), and we are through showing that 1 and 2 are fulfilled when we assume
convergence in distribution with such absolute boundedness. The expressions for the
limit distribution is obtained in the same way as in the proof of theorem 1, but we
now have to sum over all clickable partitions. This means that we in (24) sum over
all 7 € C(m) < o with 7 = {Ay, ..., Ap} = {{vi;};}i so that all (g(vi1),g(viz),...)
are alternating sequences of -’s and *’s. Choosing all D, (t) = I we arrive at (after
replacing expectations)

> [T oo ia (33)

m€C(m)<o
7I'={A1 ""7Ah}={{vij}j}.‘
(g('uu )19(”:’(2),...):

It is easy to see that the summand is the same as

[ coef ((i1,9(1); - (imy 9(m))); (DY~ abom (z20)™ + (2526)™)),
k m

where the power series is recognized as the « in (30). Since such a coefficient is zero
unless 7 < o and all (g(vi1), g(vi2), ...) give alternating sequences, we see that the
sum for the limit distribution is the same if we sum over all # € C(m), i.e.

> [coef ((i1,9(1)), vy (im, g(m)) )i 7] (),

T€C(m)

which is what we wanted to show.
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The other way, if 1 and 2 are fulfilled, we see from our arguments above that all
terms from any 7 converge, so that we have convergence in distribution with absolute
boundedness of the sums we are looking at.

The sequences of limits are now easily seen to be in bijection with the possible
limit distributions, just as one shows that the R-transform is a bijection, namely by
determining the cumulants recursively in terms of the moments. Therefore we get a
circular limit distribution if and only if ak2m = 0 for m # 1. These distributions are
free and we get freeness with constant block diagonal matrices since the situation is
the same as the one we have seen before in theorem 2. u

We will not go into special limit distributions we get in theorem 3 (except for the
circular one) (we will go into special limit distributions in the case of free entries),
but make a remark here on how one can use ’nice’ distributions (more precisely,
the infinitely divisible ones) to obtain a large class of limit distributions. We will
consider the ’selfadjoint’ version of theorem 3, in which 1 and 2 are assumed to
hold only for ¢ > j, and where we have a symmetry condition on the entries instad
(an(2,J; k) = an(f,i;k)*). One can then show, similarly to the proof of theorem 1,
that the power series « of (30) for describing the limit distribution as in (29) instead
takes the form Y, 3= o, akom2®™.

More precisely, if v is an even, (classically) infinitely divisible probability measure
with compact support, I claim that we can get as a limit distribution (using entries
with infinitely divisible distribution) in this matrix-like fashion, any distribution with
sequence of limits {ag2,ak4,...} (these could for instance be called the clickable
cumulants) equal to the even (classical) cumulants of v. To see this, note that if v
has (classical) cumulants 0, a3, 0, 04, ... and ¥ = vy * ---* vy, then the cumulants of

vy are 0,22,0,2%,.... If we in the matrices A, p';lt indepe;ldent (up to symmetry)
entries a, (we can assume them to be real valued, for the sake of simplicity) all with

the same distribution v, then

. m . a a
lim né(a2™) = lim n Z [ coef (2m);7r](7222+74z4+...) = agm

n—+00 n—00
w€P(2m)

from the moment-cumulant formula in classical probability (P(n) takes the role of
NC(n) in the free setting), as only # = 13, can give contribution in the limit, due
to the fact that higher powers of n enter for other 7. We see in this way that all
sequences of limits equal to an even cumulant sequence from a *-infinitely divisible
measure appear in the limit.

At present, we can’t say if we for instance get the infinitely divisible distributions
themselves in the limit.

Remark: One can in fact show that the only possibility for free limit distributions
is if all except possibly one of the matrices give circular limit distributions. This is
shown in appendix 1 of the author’s PhD-thesis. The proof is rather combinatorical.
It is only in the case of constant diagonal matrices (N = 1) we can expect a limit
distribution with our matrices, as we are not able to ’factor out traces’ as in (23)
in the general case. Even with N = 1 we can’t expect freeness in the general case,
as summation in (26) goes over all clickable partitions, so that lemma 9 for proving
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freeness does not apply. These things are discussed more precisely in appendix 3 of
the authors PhD-thesis.

Remark: Given two sequences A, (1) and A, (2) of independent random matrices
as in theorem 3, one can find the limit *-distribution of the sum A, (1) + A,(2) of
these two random matrices by

1. adding the two corresponding limit sequences (limy—yoo nE(|an(3,5;k)>™))m
componentwise,

2. putting this new sequence of limits into the power series a in (30),
3. determine the mixed moments of the sum from the formula (29).

This follows because of the no-mixed-terms nature of the power series in (29) for
determining the moments in terms of the sequences of limits: Vaguely speaking, any
transform from distributions to power series defined in a multiplicative-like fashion
(as the R-transform with noncrossing partitions) over some set of partitions which
attains a no-mixed-term power series for the joint distribution p4,,4,, necessarily
must have the linearizing property which the R-transform has, i.e. R(pa,+4,)(2) =
R(pa,)(z) + R(pa;)(z). This is shown in appendix 2 of the authors PhD-thesis.
Remark: Note that, for a sequence k,, the fact that lim, . n%k, = 0 for all
a < 1 needs not imply that lim,,_,o, 1k, exists (the converse is of course true). The

sequence k, = l—nflﬁl provides an example of this.

4 Random matrices with free entries

Versions of theorem 1, 2 and 3 can be stated also for matrices with *-free assembles
of random variables. We will see that the freeness assumption on the entries implies
a certain dominance for the even noncrossing partitions inside the clickable partitions
in our calculations, so that the even noncrossing partitions, instead of the clickable
partitions, govern the structure of the joint limit *-distributions here. This means
that we must get even, free random variables in the limit. We also get that these
give rise to R-diagonal pairs, this is due to the alternating property for the blocks of
a clickable partition, see 3b) of lemma 21.

Theorem 4. Let the {An(k)}r be random matrices with entries in each matriz being
identically distributed and *-free (entries in separate matrices also being free) in (A, @)
(for each n). If
1. opom = limy 0 n9((an (4, j; k)*an (3, j; k))™) and
ﬂk,Zm =limp4e0 n¢((an(iaj; k)an(i')j; k)*)m) ezist for m > 1,
2. limpo0 n®¢([I™, an(3,5;£)9)) = 0 for all o < 1,m and g,
then the joint limit x-distribution of the matrices A, (k) exists. Then we also have

that asymptotic freeness of the random matrices is automatic, and the R-transform
coefficients of the limit distribution of the A, (k) are related to the limits in 1, i.e.

R, x;)(2:2%) = ) oam(2°2)™ + Brom (22%)™. (34)

m=1
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In particular, if ¢ is a trace (= Qrom = Pram. If the entries of An(k) are normal,
¢ is automatically a trace on the *-algebra the entries generate), we get in the limit
random variables giving rise to R-diagonal pairs with the sequences of limits in 1 as
defining sequences.

Freeness holds with sets of constant block diagonal matrices if the limit *-distributions
in the above have cumulants only of order two.

Proof: Look at the situation without constant block diagonal matrices, i.e. the
terms in (15) are instead 1¢(an(jm,J15i1) - +@n(Jm—-1, jm;im)) (for convenience we
drop the adjoints of the matrices in the first part of the calculations). The oriented
partition 7 appearing in (15) should now be defined by replacing independent with
sfree in definition 16. We need only sum over 7 < o due to the freeness condition
for separate matrices (o as in theorem 1). The calculations go as in theorem 1, but
we can’t replace the term above with

B A

;1; H ¢(H @ (Juwir—11 Jwir tuir))

=1 r=1

(with notation for 7 and its blocks as in theorem 1) as in (16) anymore since inde-
pendence has been replaced by freeness, and the expectation E has been replaced
by the unital linear functional ¢. Instead we have to split the mixed moment
¢(an(Gmy J1;91) * + * @n(Jm—1, Jm; im)) into sums of products of the individual moments
using definition 1. For any (oriented) o’ = {o1,...,01} < 7 we get a ’submoment’

mor = [1; #(I1 €0t an(dr-1, r} ir)), and we can write

&(an (Jm, J1; i1) - cn (Jm—1, Im; im)) = Z t(m; U/)ma' (35)

o'<m

for some constants ¢(r; 0’) (depending only on the partitions 7, o', not on the par-
ticular random variables involved. In particular the constants are the same if some
of the random variables are replaced by their adjoints), following notation in [10]. A
result in [10] says that ¢(m,7) # 0 if and only if 7 is noncrossing and that t(mym)=1
for such 7. Any o’ < 7 has more than |r| blocks, so that putting the summands
t(m; 0")m, into (16) we get terms that are negligible for large n, after distributing

powers of 7 as in (32) and using condition 2 (the maximum possible power of 7 is n%'IT
for each factor there, this happens if 7 is clickable), and for 7 which are crossing we
get no terms which contribute in the limit since ¢(r;7) = 0 for crossing 7. Therefore,
in the limit we get only contribution from t(m; 7) with 7 noncrossing, this means that
we instead of (33) get

Y (e or B)o(an,ai (36)
TENC(m)even<o 1
m={A1 .., Ap}={{vij}s}i
(9(vir),g(viz),-..)=
(ORI S N COR IO
(where we choose & or 8 for ¢ depending on whether (g(vi1), g(vi2), o) = (% 0y %y 7y en)
or (-, %, %, ...), respectively) since only the clickable partitions which are noncrossing
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give contribution. If ok 2m = Bk,2m, We get from comparison with (11), in the limit
(free) R-diagonal pairs with the sequences of limits as defining sequences (If the a’s
and the @’s are different, it is not too hard to conclude that the R-transform is as in
(34)).

Freeness with constant block diagonal matrices holds in the case of circular limit
distributions because we end up with the same situation as in theorem 2, as C(m)2 =
NC(m), are the only partitions appearing in this case. If akom # Bk,2m is is not
too hard to convince oneself that one also gets freeness with constant block diagonal
matrices, even if we do not have circular limits in this case. =

We could also have obtained a selfadjoint version of theorem 4, either by replacing
the matrices An (k) with A, (k) 4+ An(k)* (the limit R-transform series of (34) then
instead takes the form Y oo_, (ok,2m + Br,2m)2>™), or replacing 1 and 2 above with
the corresponding conditions suited to a symmetry condition on the entries. The
identically distributed condition on the entries is not really needed in the proof above,
and could be replaced by saying that the sup of the mixed moments of the entries
appearing in condition 2 should be of order o(n®) for any a > -1, with exact values
for the moments in condition 1.

As in theorem 3 it is only in the case of constant diagonal matrices we can say
~ that limit distributions exist with all the matrices in theorem 4. We cannot conclude
freeness with these even if we now have reduced summation to 7 noncrossing, as
K'(r) # K(r) for noncrossing « if # ¢ NC(m)a, so that (26) is still different from
an application of lemma 9 (see also the comments following theorem 5).

In the general situation above, it is only in the limit we retrieve freeness, there
is no reason why we should have a similar result for the finitedimensional matrices.
It is not difficult to construct matrices (with free identically distributed entries) that
are not free. Examples with freeness for the finitedimensional matrices seem to be
limited, but there is an important special case if we choose the ay (3, j; k) to give rise
to R-diagonal pairs. More precisely:

Theorem 5. If the a,(i,5;k) above give rise to R-diagonal pairs with defining se-
quence {a";f"' Ym, then the matrices A, (k) give rise to R-diagonal pairs with defining
sequences {Q 2m tm. Moreover, (An(1), An(2),...) is a *-free family. In particular,
there is no need to take the limit as in theorem 4.

Proof: For an arbitrary product of the matrix entries, we use the moment-
cumulant formula (3) in (35) instead, the result is that we obtain for a mixed moment
with oriented signed partition o

1 E E #(ji giving rise to 7) X
n
m<o  o'<rm
a'eNC(m)
[ coef ((i1,9(1)), -, (imy 9(m))); OTR(Han (i,ji1),an(6.di1)* n(i.di2)an(irii2)* ..
(37)

(when we also bring the adjoints into the picture). Summing over ¢’ first and noting
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that (exactly) nlK'(@")] choices of j’s give rise to any 7 > ¢’ we obtain

T Al
a'eNC(m)<o
[ coef ((41,9(1)); vy (¥my §(M))); OTR(Ban(i,is1)an(isisl) * an(iri2)san(irii2) o) -
(38)

From R-diagonality of the a,’s we see that the R-transform coefficient above is nle’l
times the same coefficient of R(tia(1),a(1)*,a(2),a(2)*,...) With a(k) giving rise to (free) R-
diagonal pairs with defining sequence o 2m (the powers of n enter since the defining
sequences of the a,’s where scaled by %) As R-diagonality implies that only o’ with
alternating orientations within the blocks enter in the sum, the o’ we work with are
clickable (as o' is noncrossing) so that |K'(¢’)| — |o/| — 1 = 0 and the powers of n
cancel. The result is that the matrices A, (k) have the same distribution as the a(k)
above since we have exhibited the cumulants of our distribution. The result follows.
[ |
In particular, all R-diagonal limit distributions arise and in such a way that we
need not take the limit. If we in the above also wanted distributions with sets of
diagonal matrices D, (tx), then we would obtain the quantity
én(An(11)9D Dy (t1) - -+ A (6m)? ™ Dy () simply by replacing nlE'@) in (38) by
dn(j1,91;t1) - * * @ (Jm, Jmitm) and in addition add over j’s giving rise to some 7 > o’
Bringing the powers of n from the R-transform coefficient into play we can add up
for j’s and factor out traces as in (23) to see that our mixed moment equals

Z [ coef ((ih g(]-))7 ceey (ima g(m)))> U,]R(#an(i,j;l),an(i,j;l)"‘,a.n(i,j;2),an(i,j;2)“,...)
) (39)

[ coef (1,...,m); K'(0")]M (4D, (1),...Dn(tm))-

Although we get an exact expression for the joint distribution with diagonal matrices,
we do not obtain freeness with these in general (except in the case with only second
order cumulants), as the partition K’(¢’) appears instead of K (c’), so that we can’t
use lemma 9 to conclude freeness.

If some of the entries a,(, j; k) are non-R-diagonal we see that the proof above
breaks down as we can have o’ without alternating orientation in the blocks then,
hence nonclickable ¢’. But then we can have formula (38) with no possibility of
cancelling powers of n as above for all ¢/. It seems then to be difficult to at all
produce matrices which possesses freeness except in the limit.

4.1 Random matrices with the same kind of entries in the

matrices for all n
Theorem 4 shows how to model many free families by using free assembles of iden-
tically distributed random variables. We were allowed to choose different types of

entries for each n. One can ask what one can model if the entries in all the matrices
have the same -distribution (subject to some normalization condition).
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An example of such matrices is given by Shlyakhtenko [9] who used free creation
operators within the matrices, and obtained also free creation operators for each n
and so also in the limit. Roughly speaking, he showed this by recognizing formula (10)
in the calculations (Shlyakhtenkos example is related to Voiculescus proposition 2.8
of [12] for obtaining the semicircular distribution by putting circular and semicircular
entries into the matrices). The combinatorics in this case is nicer than in the general
case with an arbitrary entry in all the matrices.

We will show that this example is actually close to being exhaustive for the possible
limit distributions in this setting. We will also show that it is close to being the only
example of when the matrices produced give the same distributions for all n.

More precisely, given a random variable a we will consider for each n the corre-
sponding matrices A, with (7, j) entry equal to %, with ({ai;}1<i,j<n) a *-free family
of random variables, all having the same x-distribution as a. We use the normaliza-
tion factor Ln for the matrices, the effect of this is amongst other things that the
Hilbert Schmidt norms of the matrices stay bounded.

Corollary 19. Let A,(3) be random matrices constructed from some random variable
a; as above, the entries of the A, (i) assumed %-free for separate i. Then the matrices
converge in x-distribution if and only if the a; are centered (i.e. ¢(a;) = ¢(af) =0).
In this case the R-transform of the limit x-distribution is given by Y . ¢(ata;)2 2z +
¢(aia})zizy. In particular the higher moments of a; have no influence.

Proof: If the limit distribution exists, a; must be centered, as ¢(4,(¢)?) = ¢(a?)+

(3
(n?—n) ﬂ%ﬁ (here it is easy to calculate the exact number of choices giving 7 = 15 and
* 02 in (16), these give rise to the first and second term, respectively), and this diverges
if ¢(a;) # 0. When q; is centered, it is easy to calculate the *-moments of the entries
% in 1 and 2 of theorem 4. For instance we get lim, n¢((%)*(%)) = ¢(ata;)

and

lim n¢ ((ﬁ-a—z) m) = lim n'""¢((afa;)™) =0

n—00 n\/n T nSoo e -
for m > 1 as a; has moments of all orders. Thus 1 and 2 are fulfilled, so that the limit
distribution exists, and as all limits in the sequence of limits are zero except the first
one, we see that the R-transform of the limit *-distribution is ¢(a}a;) 2} 2+ ¢(a;a}) 22}
(this is circular if and only if ¢(a}a;) = ¢(a;a})). [

We see from this that the only way to reproduce the same distribution in the limit
(as what we started with) is to let R(uq,ar)(2, 2*) = ¢(afas)2*z + ¢(aia})zz*. If this
is the case, one can show, just as Shlyakhtenko did when a; was a creation operator,
that there is no need to take the limit, that is one also obtains the same distribution
(and freeness) for all the finitedimensional matrices.

This follows from theorem 5, because if a; is as above then {%, ;—‘%} has R-
transform %¢(a}‘a;)z*z+ L$(aia})2z* from properties of the R-transform of dilations
of random variables. The entries of the matrices thus have R-transforms with coeffi-
cients scaled by % which makes theorem 5 apply.

With choices of other a; one can actually show that there always is a need to
take the limit, i.e. we have convergence to the limit which doesn’t terminate at a
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finite number of steps. Choices of other a; are also likely, vaguely speaking, to never
produce freeness for all the finitedimensional matrices.

4.2 Infinitely divisible limit distributions

The class of limit distributions we can get for matrices with free entries as above
contains, in the case of selfadjoint matrices, amongst other distributions the class of
even infinitely divisible measures with compact support. To see this, we will for each
such measure v decompose it as vy B- - -Bvi with v1 even and compactly supported,
where we will realize the 1 as distributions of (free)nselfa,djoint n X n-matrices whose
sum is a matrix with distribution v of the form we have been considering already.

More precisely, let a v as above be realized as the distribution of some random
variable A + A* with {A, A*} being an R-diagonal pair (this decomposition is pos-
sible for any even selfadjoint random variable). Let us say that R(u4,4+)(2,2*) =
> m>1 02m ((2%2)™ 4 (22*)™). By theorem 5 we can realize the *-distribution of A as
the x-distribution of a matrix A, having as entries free identically distributed random
variables an (7, 7) with R(pq,(..),an()*) (2, 2") = 251 22((2"2)™ + (22%)™). The
diagonal entries of A, + A% are a,(i,1) + a,(7,%)* and these are selfadjoint, even
random variables with R-transform Zm>1 2—“3‘“22"‘, while the off-diagonal entries
an(i,7) + an(4,7)* have R-transforms

R(Bap(i5)+an(Gi)* an(iv)+an(ig)*) (2, 27) =
R(pan (i ),an(ig)*) (25 2%) + Rlap(ii)* anGi)) (2, 27) =
2a m % m *\M
> n2 ((z"2)™ + (22)™),

m>1

i.e. the diagonal entries are even and selfadjoint while the off-diagonal entries give rise
to free R-diagonal pairs. Let B, = A,+ A} have entries b,(%, j), and let B,(1),1 <1 <
n be defined componentwise by By, (7, j;1) = b, (4, j) if ¢4+ j = Imodn, and 0 otherwise.
The B, (l) are thus selfadjoint permutation matrices with > j-_; B,(l) = By. I claim
that the B, (l) are free and have all the same distribution. This distribution must
then be v1, and we have our realization of v in terms of matrices.

The foTlowing argument for showing that the B, () are free and all have the same
distribution is due to Alexandru Nica, but has not been published before (he dealt
with more general assumptions on the entries). I am indebted to Roland Speicher
for communicating it to me. An odd power of the B,(I) consists of a matrix with n
nonzero entries (due to the permutation nature of our matrices) with an odd power
of the b, (7, ) in each entry, and these have all expectation zero from the assumptions
on even distributions and freeness of the entries, so that odd moments of B, (l) are
also 0. Also, B,(l)? is diagonal with entries of the form by (4, j)b,(4, /)* (or possibly

bn(7,4)?) on the diagonal, and these have all the same moments. Thus we see that
the even moments of the matrices all coincide with the moments of b, (3, 7)b,(3, 7)*,
and this shows that the B, ([) all have the same distribution.

To show that the By (l) are free, we need only take polynomials C; = By, (I;)% —;I,,
from alternating subalgebras (i.e. Iy # ly,l2 # I3,...) all with trace zero, and show
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that C---C,, has expectation zero. But it is easily seen that all entries of the C;
have expectation zero from identical distribution of its entries, and that the nonzero
terms in products of the entries of the C; have expectation zero due to the freeness
assumption on the entries. Adding things up ends the proof.

5 The structure of the clickable partitions

To be able to describe the clickable partitions, we will need a result on the spotting of
loops in the quotient graph. Let 7 be an oriented partition, and let 7 be its quotient
graph.

Lemma 20. If we, after having done some identifications of edges in obtaining the
quotient graph have obtained a loop where one edge in the loop is not in the same
block as any of the other edges in the loop, then this really gives rise to a loop in the
quotient graph when we do the rest of the identifiactions also.

Proof: First do the rest of the identifications inside the loop. This may give us
shorter loops, but the existence of the edge not being identified with any other assures
us that we must end up with at least one loop. Doing the identifications outside the
loop may also give shorter loops, but there is no way to ’break up’ the loop we already
have so that all loops disappear in the end. All in all, the quotient graph must at
least contain one loop. u

This lemma is crucial in obtaining the following properties and the recursive char-
acterization of the clickable partitions:

Lemma 21. The following hold:
1. C(n) =0 if n is odd
2. An oriented partition is clickable iof and only if its quotient graph has no loops,
i.e. it is a tree
3. If = {Bu1,..., Bk} = {{vi;};}i € C(n) with v’s in increasing order, then:
(a) All|B;| are even, that is w 1s an even partition
(b) (Alternating property of clickable partitions) The orientation classes of each
block B; are {vi1, Vi, ..., VyB|-1} and {viz, Vi, ..., v;B,|} (i-e. we have alter-
nating orientation within the blocks)
4. An oriented partition m with alternating orientation within its blocks as in 3b)

is clickable if and only if, for any i, j we have that r|{vi; +1, ..., Vi(j+1)— 1} and
m| Up {viG42r) + 1y ooy Vigi42r41) — 1} are clickable partitions.

Proof: 2): We will not prove this, as it is a well known fact about graphs and
trees (the number of vertices in a graph is at most the number of edges +1, and is so
only if it is a tree).

3): Assume that 7 is clickable. We first show b): If v;; and Vi(k+1) (k+ 1 taken
mod |B;|) have the same orientation, we get by identifying these edges a loop. Since
none of the v, v;; < v < vip41 are in By, this gives us, by lemma 20, a real loop after
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having done all the identifications. So the partition is not clickable by part 2, contra
assumption. Therefore, the v;; must have alternating orientations.

a): If one of the |B;| is odd, then there must be consecutive edges in B; with the
same orientation, which again is contra assumption due to 3b). Therefore a) also
follows. This also implies part 1.

4): Let 7 be oriented with alternating orientation within its blocks. Assume first
that 7 is clickable. First do the identifications within some block B;. This gives us
(many) separate loops, one loop from each collection {v;; +1, ..., Ui(j+1) — 1} of edges,
and each of these loops has to be clickable in order to get no loops in the end, so that
the m|{vij + 1,..., vj(j41) — 1} are clickable. The identifications within B; have lead
to two connected collections of edges, namely Ur{v,,-(j_‘_z,,) + 1, ViGtars1) — 1} and
Ur{vi—142r) 1y -+ Vi(j—142r4+1)— 1} Each of these collections have to be clickable in
order to obtain no loops as is easily inferred from the quotient graph, so that the two
other restrictions of 7 as in the statement also have to be clickable . The other way, it
is not hard to convince oneself by looking at the quotient graph that clickability of all
these segments is enough to secure a quotient graph without loops, i.e. the partition
is clickable. u

The condition 3b) indicates a canonical orientation for any even partition. A
partition from NC(m)eyen, Will automatically be given this orientation.

Note the similarity between the recursive characterization 4 of the clickable par-
titions and the following recursive characterization of noncrossing partitions:

Lemma 22. A partition  is noncrossing if and only if all w|{vij+1, ..., v(j41)—1} are
noncrossing and there are no interidentifications of edges in different such segments.

An easy corollary of this characterization is the following;:

Corollary 23. The following hold:
1. NC(n); and C(n)y coincide
2. NC(n)even C C(n) (this inclusion is strict for n large enough)

Proof: 1 follows from the recursive characterizations of noncrossing and clickable
partitions, as we can have no interidentifications between different segments as in the
proof of 4 above when we have all blocks of cardinality two as all identifications get
used up within each loop.

2 is also easily seen from these characterizations. It is not too hard to see that
the inclusion is strict for n > 8. u

From our characterizations it also follows that clickable partitions with all blocks,
except possibly one, of cardinality two, are noncrossing (do the identifications within
the block of cardinality # 2 first to see that this is the case). In the other direction,
we see that we can find clickable and crossing partitions whenever at least two of the
blocks have cardinality > 2: The partition {{1,2, 5, 6},{3,4,7,8}} (with alternating
orientation within the two blocks) is the easiest example here (do the identifications
of the edges to convince yourself that it is clickable).
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