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Abstract

We modify slightly Voiculescu’s definition of approximation en-
tropy of automorphisms of finite von Neumann algebras and compare
it with the entropy of Connes and Stgrmer. For this the notion of a
generator is relevant, as its existence implies that the entropies coin-
cide. Special emphasis is put on binary shifts. Examples of automor-
phisms without generators are also considered.

1 Introduction

At the present time there are several approaches to the study of entropy of
C*-dynamical systems, and in particular of finite von Neumann algebras, see
e.g. [CS, CNT, ST, AF, V]. We shall in the present paper study the latter
case, where we are given an automorphism « of a von Neumann algebra R
with a faithful normal invariant tracial state 7, and we shall mainly consider
the relationship between the entropy H () from [CS] with the approximation
entropy ha,(a) from [V]. These entropies have some basic differences, namely
the one of Connes and Stgrmer in closely related to relative entropy of states
and is quite abelian in its nature, c.f. the definition in [CNT], while the one
of Voiculescu is a mean entropy.

*This work is partially supported by Norges Forskningsrad




We shall impose a slight modification of Voiculescu's approximation en-
tropy ha,(a) by replacing in its definition log rank 4 of a finite dimensional
algebra A by its entropy, and denote the modified version by H a-(a). It
should be noted that a similar change has been made by Choda [Ch2]. It is
immediate from the definition that Ha,(a) < ha,() and that equality rep-
resents a weak form of a Shannon, Breiman, McMillan Theorem. Voiculescu
also introduced a “lower approximation entropy” lha,(a). in which a lim-

sup in the definition of ha,(a) is replaced by liminf. If we make the same \

modification of lha, as for ha, we get an entropy [Ha,. and we have the
inequalities H(a) < (Ha,(a) < Ha,(a). In section 2 we give necessary and
sufficient conditions for equalities in these inequalities.

Having done this, and keeping in mind the related results in [HS] it is
natural to introduce the concept of a generator. In analogy with the classical
abelian situation a generator as defined in section 3 is a finite dimensional

von Neumann subalgebra N of R such that (1), R = v o*(N) and such
that N\ satisfies two additional requirements, namely (ET if m < n then
\r} o'(N) is finite dimensional, and(3), which will take different forms,
that H (a) or H(N,a) in the notation of [CS] equals the mean entropy
lim sup %H(?\_}; o*(N)) or lim inf. We then obtain results like H(a) = Ha,(a)

or H(a) = |Ha,(a). After preliminary studies of generators we consider spe-
cific cases, namely shifts on Temperley Lieb algebras and noncommutative
Bernoulli shifts as defined in [CS].

In section 4 we consider binary shifts arising from nonperiodic bitstreams.
It turns out that [Ha.(a) = %log 2, and if H(a) = 1log?2 then we have a
generator in the sense of liminf above, and the generator is in the sense of
limsup if moreover the center sequence (c,) grows like O(n). We also have
generators if the set X corresponding to the set of 1's in the bitstream is
either contained in the even or in the odd integers. If (cn) grows faster
than O(n) then the mean entropy can take any value in (% log 2,10g 2]. (see
Remark 4.13).

Finally, in section 5 we consider dynamical systems without generators.
The first example was exhibited in [NST] as a binarv shift with entropv
H(a) = 0. The existence of an uncountable number of nonconjugate ex-
amples was noted in [GS, Remark 6.4]. We shall present systems for which
0 < H(a) < (Ha,(a).
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2 Voiculescu’s approximation entropies

In [V] Voiculescu introduced several candidates for dynamical entropy of
automorphisms. Technically they may be viewed as refined versions of mean
entropy. The values are greater than those of the entropy H(a) defined
in [CS]. We use the notation of [V]. Let R be a separable, hyperfinite von
Neumann algebra with a faithful normal tracial state 7, and let ||z|; =
7(z*z)"/? be the associated 2-norm. Let Pf(R) denote the finite subsets of
R. If we Pf(R) and X C R we write w C® X if for each a € w there is
z € X with ||z — al]s < 6. Let F(R) denote the set of finite dimensional
C*-subalgebras of R containing the identity 1 of R. If A € F(M), dim A
is the dimension of A and rank A its rank, i.e. the dimension of a maximal
abelian C*-subalgebra of A. Crucial in Voiculescu’s defnition is the §-rank
of w defined by \

r-(w;8) = inf{rank A: A € F(R),w C°® A}.

For our purposes we find it more natural to replace rank by entropy. We
therefore put

e-(w;6) = inf{exp H(A): A € F(R),w C°® A}.
/
Since 7 will be fixed throughout our discussion. we shall from now on drop
the subscript 7, and we imitate Voiculescu’s definition of the approximation
entropy ha(a) (= ha,(a)) for a 7-invariant automorphism « as follows:

n—1
Ha(a,w,6) = limsupi-loge< U &/ (w); (5)
7=0

— lim sup % inf {H(A): Ae F(R),

Ha(o,w) = sup Ha(a,w, 6)
§>0

Ha(a) = sup{Ha(a,w):w € Pf(R)}.
Since H(A) < logrank A it is clear that
Ha(a) < ha(a) .

We remark that Choda [Ch2] has also made a similar modification of ha(a).
Voiculescu also introduced, [V. Remark 1.6] the “lower approximation
entropy” lha(a) (= lha-(a)) of @ by replacing limsup in the definition of




ha(o,w,é) by liminf. We shall do the same and define

n—1

[Ha(a,w.8) = liminf %e( U a’(w);é) .
7=0
lHa(a.w) = suplHa(a,w, §)

6>0

|Ha(a) = sup{lHa(a,w):w € Pf(F)}

An inspection of the proofs in section 1 in [V] shows that most of them
go through for Ha and [Ha. More specifically we have

- 2.1. If k € Z then Ha(a*) = |k|Ha(c), and similarly for [Ha.

22. fw; e Pf(R), j € N, w; Cwy C ---aresuch that J U a™(wy)
JEN neZ

generates R as a von Neumann algebra, then

Ha(a) = sup Ha(a, wj),
jeN

and similarly for [Ha.
23. H(a) <!Ha(a) < Ha(a)
24. Let R=R1® Ry, T=T1 Q@ T, 01 ® ag,then
Ha(a; ® as) < Ha(ay) + Halaw).
For [Ha we can only prove the following.
2.5. lHa(a® a) < 2lHa(a).

Proof of 2.5. Let w € Pf(R) with ||z|| <1 for z € w. Assume also that
l €w. Let § > 0. Then we have:
n-1
inf{H(A): A€ F(R®R), |J(e®a)(wdw) C’ A}
0

< inf{H(A): A€ F(R® R), (UaJ >®(nolaj(w)) <!

< 1nf{H(Al ® Agi‘ZAi S F(R) U aj(w) C6/2 Azl = 12}
0

n—1 ”
= inf{H (A1) + H A;): 4; € F(R), |J o/ (w) C¥? A;,i = 1,2}
0
n—1
= 2inf{H(A): A€ F(R), | &/ () C*? 4},
0




where the last equality follows since the inf over 4; and A, is obtained for
the same A. It follows from the above that

[Ha(a® a,w ®@w,d) < 2lHa(a,w,8/2),

which proves the assertion by 2.2, since sets of the form o’ ® o (w ® w) with
1 € w generate R as a von Neumann algebra.

By [SV, Lemma 3.4] the entropy H satisfies the inequality H(a; ® ay) >
H(ay)+ H (), thus the following proposition is immediate from 2.3, 2.4 and
2.5.

Proposition 2.6 (i) With the above notation, if H(a) = [Ha(c) then
Ha®a) =2H(a).

(i) FR=Ri®Ry, T=71® T2, @ =01 ® g and furthermore H(;) =
Ha(a;). 1= 1,2, then H(oy ® az) = H(a;) + H(ay).

For the rest of the section we shall discuss the situation when we have
equality in 2.3. For this purpose we introduce two concepts which measure
- the deviation of H(«) from being a mean entropy.

Definition 2.7 Let A € F(R), a be a 7-invariant automorphism of R, w4
be the set of matrix units in A. If § > 0 let
d(a, A.5) '

=limsup%infﬂH(A,...,a”‘l(A)) H(B)|:B € F(R U (wa) C° B}.

Note that 0 < ¢’ < § implies d(a, A4, 6) < d(a, A,8). Put
d(a, A) = supd(a, A, 6) ,

6>0

S = {(A)ien: Ai € F(R), Ay C Ay C -+, ( U A,) _ R},

and put
d(a) = ¥ 1nf llggfd(a A)
We put
ld(a, A, (5)
= liminf = 1nf{|H( ..,a"Y(A))~H(B)|:B € F(R)) U o (wy) C® BY,
=0

ld(a. A) = supld(a, 4,6),ld(a) = inf liminfd(a, 4;).

6>0 (A)es 1—oo




Theorem 2.8 With a and R as before we have
(i) d(a) =0 if and only if H(a) = Ha(a).
(ii) ld(e) =0 if and only if H(a) = (Ha(a).

Proof. We first show d(a: = 0 implies H(a) = Ha(a).
Let € > 0 and choose (4;) € S such that

(1) liminfd(a, A;) < €.

1—00

By the Kolmogoroff-Sinai Theorem [CS, Thm. 2] there exists jo € N such
that j > jo implies
(2) H(Aj o) - H(a)| <e,

where H(Aj, a) = lirrlniHﬁAj,a(Aj),...,a"’l(Aj)), see [CS]. For each j let
n; € N be such that n > n; implies ‘

(3) EH(AJ R ,an_l(Aj)) — H(AJ a) <e.

Choose by (1) j > jo such thajt,
d(a, 4;) < 2.
Let 6 > 0. Then for the above/j ,
(4) d(a, A, 8) < 2¢ .
Thus by definition of d(a. 4;,8) there is m; > n; such that if n > m; then
there exists B, € F(R) with nL;Jl af(wy,) C° By such that

(5) %]H(A;....,a"‘l(Aj)) _ H(B,)| < 3¢

Choose n > m; such that

n—1
Ha(a,wa,, 6) < s—%inf{H(B): Be F(R), | a*(4,) c B}
k=0

Then in particular this ho.ds for B,, so we have from (5), (3) and (2)
1
Ha(a,wA:.ﬁ) < €+ EH(Bn)

1 R
(6) < EH(Aj,...,an—l(Aj)) + 4e
< H(Aj,a)+5€
< H(a) +6¢
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Since this \};olds for all 6
\ Ha(a,wy,) < H(a) + 6¢ .
Since this hoi\ds for all Aj, 7 > jo, by 2.2
Ha(a) < H(a) + 6¢ .

Since ¢ is arbitrary Ha(a) < H(a), so they are equal by 2.3.

The proof that ld(a) = 0 implies H(a) = [Ha(a) is similar but simpler
than the proof above, and is omitted.

We next show H(a) = Ha(a) implies d(a) = 0.

Let € > 0 and (4;) € S. Choose by 2.2 and [CS, Thm. 2] j, such that
J > jo implies N

Ha(a) < Ha(a,wy,) +¢
H(a) < H(Aj,a) +=.

Fix j > jo-and let by [CS, Thm. 1] § > 0 be such that if P,N € F(R),
dim P = dim A; and the unit ball P; of P satisfies P, C° N, then H(P|N) <
€, where the latter is the relative entropy as defined in [CS, Property F]. Let
0 < n < é be so small that wa; C" N implies Aj; c? Ny, and therefore also
that of(wy,) C7 N implies o*(A;); C° Ny

Let ng € N be so large that n > ng implies

N

—H(AJ .. .,a"_l(Aj)) > H(Aj,a) —£. A

n

Now we have

n—1
Ha(a.wyy,n) = limsup—leinf{H(B):B € F(R), ak(wAj) C" B}.
n k=0

Therefore there exists na > ny such that n > n, implies the existence of

n—1
B, € F(R) such that | o*(ws,) C" B, and
k=0

1
EH(B") < Ha(a,wa,,n) + <.

For n > n, we have, using [CS, Property F],
H(a) < H(Aj,a.)—#a
1
< ;H(Aj, e O THA)) + 26

7
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\\\ N
1 1'n‘—1 v
< _H(Bn) + = Z H(Ol (AJ)IBn) + 2
n n k=0

1.
< ﬁH(B") + 3¢
< Ha(o,wa,,n) +4¢
< Ha(a) + 4¢
= H(a) + 4¢

Thus L|H(4;,...,a" 1 (A;)) — H(Bx)| < 4¢, proving that d(a, A;,0) < 4e,
and therefore that d(a) = 0.

The proof that H(a) = [Ha(a) implies ld(a) = 0 is similar but easier
than the one above and is omitted. O

Remark 2.9 If H(a) = Ha(a) then d(a) = liminfd(a, A;) = 0 for every
sequence (A;) € S and similarly if H(a) = [Ha(c). This is immediate, since
we started with an arbitrary sequence (4;) € S to show d(a) = 0.

3 Generators

In classical ergodic theory a generator is a partition which together with all its
translates by the ergodic transformation generates the o-algebra in question.
We shall extend this concept to the noncommutative case by replacing the
partition by a finite dimensional C*:subalgebra of R which together with its
translates under the automorphism generates R and for which the entropy
function H(N,...,a™(N)), see [CS], behaves almost like mean entropy.

Definition 3.1 Let R, T, be as before and let N € F(R). Wesay N is a
generator (resp. lower generator) for o, if

i) V ai(N) = R.
ieZ

(ii) v o*(N) € F(R) whenever m <n, m,n € Z.

i=m

(iif) H(N,a)=limsup %H(n\z a'(N))

(resp. H(N,a) = liminf %H(n\__/; a'(N))).

N is called a mean generator (resp. lower mean generator) if (i) and (ii)
hold and

(iv) H(a)=limsup LH(VIZ) @i (V)
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(resp. H(a) = liminf - H(Viy oi(N))).

n—1 .
Note that since H(N,...,a" }(N)) < H(V o'(N)) we have

1=0
1 n—1 1 n—-1
H(N,a) < H(a) < limninfﬁH( \/ o(N)) < limsup EH(\/ a'(N))
i=0 " i=0

for all N € F(R), satisfying (i) and (ii), see Lemma 3.2 below, hence in
particular every generator is a lower generator, and similarly for mean gen-
erators. Note also that if N is a generator then

Hmmpﬁg#ﬁvﬁwn

~
0

and similarly for mean generators. Furthermore, if N is generator (resp.
a lower generator) then H(N,a) = H(a), so in particular N is a mean
generator (resp. lower mean generator).

Lemma 3.2 Suppose N € F(R) satisfies (i) and (ii) of Definition 3.1. Then

n—1

IHa(a) < lim inf %H( V o(V).

Proof. Let w € Pf(R) and § > 0. Choose j < k in Z such that w C?°
‘\k/.a“(N). Put M = \l?ai(N) and let € > 0. Then there exists no € N such
;leat n > ng implies ’

1 -l

[Ha(a,w, ) < EH(V (M) +¢

0

= -H( Vo) +e

n 0

k+n—1—7 1 n-l-j

= H YN 3
ol e+

This holds for all n > ng, hence

1 n—1 )
IHa(a,w,6) < lim inf EH( V & (N)) +e,
0

from which the conclusion of the lemma follows. O




Proposition 3.3 Let N € F(R). Then we have:

(i) If N is a mean generator (resp. lower mean generator) then H(a) =
Ha(a) (resp. H(a) = lHa(a)).

(ii) If N is a generator (resp. lower generator) and M € F(R) satisfies
N CM and V of(M) € F(R) for m <n in Z then M is a generator (resp.

lower generator).

n—1
Proof. (i) If N is a mean generator 1H('\ o'(N)) converges, thus in
0

k+n—1—j

the notation of the proof of Lemma 3.2 lim sup k—_ml_—HH ( V o(N)=
n 0

n—

1
lim1H('V o'(N)), hence it follows as in the proof of the lemma that
n 0

n—1
Ha(o) < lim %H( \ of(N)) = H(a) .
0

By 2.3 H(a) < Ha(a), hence they are equal. Similarly, if N is a lower mean
generator then by Lemma 3.2 [Ha(a) < H(a), and again [Ha(a) = H(a).

(ii) To show (ii) note that the assumption implies that M satisfies (i)
and (ii) of Definition 3.1. (iii) follows since N C M implies H(N,a) <
H(M,a) < H(a). / O

" Remark 3.4 It follows from Proposition 3.3 and 2.4 that if o; and a, are

automorphisms of R; and R, respectively with mean generators then H (o ®
ag) = H(a1) + H(az). If o € Aut R has a lower mean generator then by 2.5
H(a® a)=2H(a).

Remark 3.5 In order to get the tensor product formula for two automor-
phisms as in Remark 3.4 one can weaken the definition of generators to the

case when (i) of Definition 3.1 does not hold, as follows. We say an increasing
sequence (Ni)gen in F(R) is a family of generators for a if

(i) U Ny is weakly dense in R.
k

(ii) Vi o'(Ny) € F(R) whenever m < n in Z.

i=m

n—1
(ili) H(Ng, ) =limsup2H( V of(Ne)), k € N.
n =0

As before the following relations hold.
Ha(a) = H(a)
H(a;1 ® ag) = H(e) + H(aw)
H(a) = liIICnH(Nk,a) ,
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where the last statement is the Kolmogoroff-Sinai Theorem [CV, Th,. 2]

Lemma 3.6 Let D be an abelian von Neumann subalgebra of R. Suppose

N € F(R) satisfies (i) and (ii) of Definition 3.1. Suppose there is a sequence

(nj);eN in N such that DN \} o'(N) is maximal abelian in \7ai(N) for all
=0 0

j € N, and such that

DAV (N)=\/DNai(N), jeN.
0 0

Then N is a lower generator.

Proof. The assumptions on D imply that

H(N,...,a™(N)) =H(Dﬂ\(:/ai(N)) = H(\Zai(N)),

see [CS] or [CNT]. Thus

H = li N,...,a™(N
(N.0) = Jim ——ZH(N, .0 (N)
1 mo
— : H 1 "\_,T
lm - H(Y (V)
ln—l )
> liminf —(\/ &/(N})
> H(N,a),
proving the lemma. O

As an immediate consequence of the above proof we have,

Corollary 3.7 If we in addition to the assumptions of Lemma 3.6 assume

n—1
lim1H(V o'(N)) exists, then N is a generator.
n 0
Example 3.8 Temperley-Lieb algebras
Let (e;);cz be a sequence of projections with the properties
(a) eieirie; = Ae; for some X € (0, 1] U {3sec?Z:m > 3}
(b) €65 = €5€; for |Z —]] Z 2.

(c) T(we;) = AT(w), if wis a word in 1 and e;. j < 1.

11
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As is well-known [J] the von Neumann algebra R generated by the e; is
the hyperfinite II;-factor. The shift automorphism 6, of R determined by
fx(e;) = ejy1 has been studied by several authors [Pi, Po, Y, Ch, N|. Let
Alm,n] = C*(e;zm < i < n). Then A[m,n] is finite dimensional. and the
entropy of ) is given by the formula

H(6)) = lim 2n1+ H(A[-n, 7))

@) +n(1=1t) for A
N —%log)\ for-i-

where n(t) = —tlogt. In particular

2n
H(8),) = hrlzn T 1]'-I(i\z/OH/\(zﬁlo))

m—1

= lim AV #(40),

) ko E+1
where Ay = C*(eo), because H(V65(Ao)) < H(V 0i(Ag)), k € N and
0 0
2n )
lim -%%JH (\0/ 64 (Ao)) exis/ts. It follows that Ay is a mean generator.

Example 3.9 Non commutative Bernoulli shifts
d

Following [CS] let A\; > 0, j = 1,...,d, satisfy > A; = 1, where d > 2. Let
1

My = My(C), and let ¢ be the state on My defined by ¢o(z) = Tr(hoz),
where hg is the diagonal operator

Al 0
h0= '.‘ .
0 Ad

Let M; = My, ¢; = ¢o, and M be the factor obtained in the GNS-representa-
tion of @ M; with respect to the product state 0 = ® ¢;. The shift ¢ on

—0oQ0

M is ¢-invariant, hence so is its restriction « to the centralizer R = M.
Let 7 = ¢|R. Then 7 is a trace, and R is the hyperfinite II;-factor [CS].
Let Dy denote the diagonal in My, so Dy = {ho}” in My. Let D; = Dy,
1€Z,D=QD;, M(m,n) = @ M;, D(m,n) = @ D;, all considered as

=m

subalgebras of M. If h; = hy is considered on an ;})erator in M; then the
centralizer in My(m,n) of ¢|M(m,n) satisfies

My(m,n) = My M(m,n) = M(m,n) N {h,® - Qh,}.

12




and D(m,n} = DN M(m,n) is maximal abelian in M (m,n) for all m < n.

In particular, it follows as in the proof of Lemma 3.6 that the sequence

(Mg(—n,n)) is a family of generators for o in the sense of Remark 3.5.
Suppose we have found ng € N such that

n

(*) y)ai(M¢(0, Tlo)) = Md,(O, n —+ ’no), neN.

Then by translation of the indices, (i) and (ii) in Definition 3.1 hold. Since
then furthermore

Dn M¢,(0, n -+ no) = \/ Dn a"(M¢(O, Tto))
0

AN

is maximal abelian in M(0. n+ny) it follows from Corollary 3.7 that M4(0, no)
is a generator. We shall show (*) for the case d = 2, ng = 1, hence that
My(0,1) is a generator. Note that since the shift 6 of the Temperley Lieb
algebra is a Bernoulli shift for A < 3 [PIPO] this shows the stronger result
than 3.8 that #) has a generator for /\ < 1

From now on d = 2. Denote by em, i ] = 1 2, the matrix umts in My, so
that Dy is the algebra generated by e). Put ef; = o¥(e);), k € Z, and let

,

' N = C*(€, J] eojejl-i:i,j =1,2)
We shall show that N = M,(0,1), and that N is a generator for . From >
the above remarks it remains to show axiom (i) in Definition 3.1. For this -
see also [PiPo, 5.5].

A straightforward computation shows that e’ e ;1 commutes with hg ®
hy, hence it belongs to M,(0,1). Thus N C M (O 1). Since dim N = 6,
and a trivial computation shows My(0,1) = 6, .V = My(0,1). A similar
computation shows efef; € M, for all p # ¢, hence products of such operators
belong to AL,.

We claim that el.ed; also belongs to \/ o'(NN). Use induction, and assume

‘LJ ]l
ieZ
it holds for p — ¢q| < N. Then
0 N+1.N N _N _N+1 AT
eloeni e, = ehedietsen € \/az(f\)

N+1.N _ N_N+1.0 N i
el B tle = ededtledyen) € Va'(N),

hence
612EN+1 = eDyed (el +ed)) € \/QZ(NL

13
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completing the induction. _
Thus in order to show My = Vo'(N) it suffices to show that Mj is

generated by the operators ef; and ef;el;, i # j, i,/ = 1,2, p.q € Z.

Let f{ =1, f§ = Aoed; — M\i€3,. Then f? and €}, i # j, i,j = 1,2 form
an orthogonal basis for My with respect to the inner product corresponding
to ¢|Mo = ¢o. Similarly ff = o?(f?) and ef; = aP(e);) form an orthog-
onal basis for M,. These operators are all eigenoperators for the modular
automorphism, hence the operators of the form

o SRRl el
where the p;’s are all distinct, the g;’s are all distinct, and p; # g; for all , j,
form an orthogonal basis B for L?(M, ¢) consisting of eigenoperators for the
modular automorphism. Furthermore, since e};el, € M, for all p # g, the
operators of the form

\

1 Pk { 91 q2 dn—-1 _QGn
oL IR (eiljlejlil) . (ei%j% ej%i.%)

-

for n even form an orthogonal set C' contained in M.

We assert that C' is an orthogonal basis for L?(M,, ¢) as a subspace of
L*(M, ¢). Indeed, let z € M, and let y € B, y & My. Since y is an eigenop-
erator for the modular automorphism an easy computation shows that the
Fourier coefficient for = corresponding to y is zero. Thus the orthogonal se-
ries for x with respect to B contains only members with Fourier coefficients
corresponding to elements in BN M,. Thus BN My is an orthogonal basis for
L?(My, ). But the only elements in B which are invariant under the modu-
lar automorphism are those in C, thus C' = BN M, is a basis for L?(My, ¢).
Since C' C V o*(N), My =\ a’(N), and the proof is complete.

4 Binary shifts

If X C N we denote by A(X) the C*-algebra generated by a sequence (s,),cz
of symmetries satisfying the commutation relations

SiSj = (—1)g(ti—j|)8j8i s Z,] € 7 s

where g is the characteristic function of X considered as a subset of Z. The
canonical trace on A(X) is the one which takes the value zero on all products
Siy---Si,, wWhere 1y < 19 < -+ < 4,, and 7(1) = 1. Let 7 be the GNS-
representation of 7, and put R = n(A(X))”. Then R is hyperfinite, and if
—XU{0}UX is a nonperiodic subset of Z then R is the hyperfinite II;-factor

14




[PP]. In this case we say for simpliciéy that X is nonperiodic. We denote by
« the automorphism determined by a(s;) = s;41. Let A, = C*(sq,...,8,_1)
for n € N, so that

n—1

A, =\ a'(C*(s0)).
0
We list some properties of A, and A(X) which will be used in the sequel, see

[E, PP]. Denote by Z, the center of A,

4.1) There are ¢,,d, € NU{0} such that n = 2d, + c,,
An = Mgdn ((C) ® Zna
and if Z, = Z, then Z, = C*([] Z3).
i=1

4.2) 1If e is a minimal projection in Z, then 7(e) = 27,

4.3) If X is nonperiodic there is a sequence (m;) in N such that (c,)
consists of the concatenation of the strings (1,2,...,m; — 1, m;,
m;—1,...,1,0). In particular by 4.1 it follows that if A, is a factor
then n is even. :

Note that by 4.1 and 4.2 all minimal projections in A, have the

same trace 2-% . Hence
4.4) H(A,)=logrank A = (¢, +d,)log2.

If X is nonperiodic it follows from 4.3 that ¢, = 0 for an infinite number of
n’s. Hence by 4.1

lim inf %H(An) = liminf %(Cn +dn)log2 < 1log2.
However d, < 3n, so (dn + ¢,) > 3. Thus we have

4.5)  liminf LH(A,) = Jlog2.

Lemma 4.6 With a as above and X nonperiodic
IHa(a) = 3log?2.

Proof.  Let wy; denote the set of matrix units in A;, and let § > 0. By 4.5
we have

n—1

IHa(a.wy;,6) = limninf%inf{H(A):A € F(R), | o*(wa,) C* A}
k=0
< limjnf %H(AjJrn_l)
. . .J+n—1 1
= lim inf P (Ajtn-1)

= 1log2.
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It follows that VlH ala) < % log 2. However, it is well-known that H(a ® o) =
log 2, hence by 2.3 and 2.5

log2 < lHa(a® a) < 2lHa(a) ,
proving equality. O

Lemma 4.7 ¢, = 0(n) if and only if lim 1H(A,) = ;log2.

Proof.\ If & — 0 then % — §, hence by 4.4 - H(A,) — $log2. Conversely,

if lim 1 H(A,) = 1log2 then by 4.4 +(c, + dn) — 1, hence by 4.1, = — 0.
' g

Proposition 4.8 a) If H(a) = ;log2 then A, is a lower mean generator.

b) If moreover ¢, = 0(n) then A; is a mean generator.

Proof. Clearly axioms (i) and (ii) of Definition 3.1 hold for A;. Axiom (iv)
holds by 4.5). Thus a) holds. .
Part b) follows from Lemma 4.7. a

If as before ha(a) denotes Voiculescu’s approximation entropy then by
4.4 Ha(a) < ha) < limsup 2H(A,), as is easily shown by the methods of
the proof of Lemma 4.6. Thus it follows from Lemma 4.7 that if ¢, = 0(n)
then ha(e) = Ha(a) = jlog2. In the special case when a is a rational
shift then (c,) is bounded, so we recover the result in [N] that ha(a) =
1log?2. Furthermore, for rational shifts, H(a) = 1log2 [Pr], so that by
Proposition 4.8 b), if « is a rational shift, then H(a) = ligniH (A,). This
result was shown in [GS] when X or N\ X is finite.

It was shown in [GS] that if either X is contained in the even or odd
numbers then H(a) = 3log2. We next improve this result. We still assume
X is nonperiodic.

Proposition 4.9 a) Suppose X is contained in the even numbers. Then
A, is a lower generator.

b) Suppose X is contained in the odd numbers. Then A, is a lower generator.

Proof. a) It is clear that Ay = C*(so, s1) satisfies i) and ii) of Definition 3.1.
It remains to show (iii).

Let D = C*(s9i82:41:% € Z). Then D is abelian, as is easily computed
using that X C 2N. Let D, = C*(s282i41:¢ = 0,...,n — 1). Then D, is an
abelian subalgebra of D N Ag,. Furthermore, dim D, = 2", and dim A4y, =
227 If A, is a factor then A is of type Ign, hence D, is maximal abelian in
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Aj,.~ By 4.3 there exists a sequence (nJ)]EN in N such that Ay, is a factor
for each j. Note that we have

Dn \/a2i(A2) = \/D N a2i(A2) = Dnj .
0 0

Since (i ) and (ii) of Definition 3.1 hold for A, with respect to the automor-
phism o?, it follows from Lemma 3.6 that A, is a lower generator for a2. We
therefore have

1
k H(AQ,O!(AQ),. .. ,a2k(A2))
1
Z 2]{7 H(A27 (Ag),...,a%(Ag))
k—o0 %H(A2, )

=—hmmf 1H \/ a¥(A,))
=0

1
= liminf — H(Ay, ’
im inf (Agn) /
=%log2,

using 4.5 and the fact that A is a factor only for even k, see 4.3. By 2.3 and
Lemma 4.6 we have

H(Ay, @) < H(a) < [Ha(e) = +1og 2,

hence

n—1

H(As, @) = 3log2 =liminf H(\/ o'(4s)),
0

- proving that A, is a lower generator.

b) Axioms i) and ii) of Definition 3.1 clearly hold for A;. As above it
suffices to show H (A1, a) > 1log2.

Since X is contained in the odd numbers, s5,82m = SomS2, for all
m,n € Z. Thus the restriction

a? | C*(sgn:m € Z)
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is the 2-shift, hence has entropy log2. In particular H(a) = 1H (042) =

%log 2. Furthermore, we have for n € N

1 o N
2n n lH(Al,a(Al),. L, Q (A]_))

1
>
—2n+1
1
T o+l

n—_—;z%log&

H(Al, 012(A1), e ,aQ"(Al))

log 2™

proving that H(A;,a) > 1log2. 0

Corollary 4.10 Suppose ¢, = 0(n).
a) If X is contained in the even numbers then A is a generator.
b) If X is contained in the odd numbers then A; is a generator.

. n—-1
Proof. By Lemma 4.7 lim2H(V of(A;)) = $log2, hence
1=0

n—1
lim2H(V of(A2)) = 3log2, hence the conclusion follows from the proof of
™ i=0

PropositiBn 4.9. / O

Remark 4.11 By a proof analogous to that of a) in Proposition 4.9 one can
show that A; ® A; is a lower generator for a ® « for every binary shift « for
which X is nonperiodic.

Remark 4.12 If X is nonperiodic and contains the odd numbers then N =
C*(s1, s2) is a lower generator. Indeed, let ¢; = s3j_159;, j € Z. Then the ti's
all commute, and o? acts as the 2-shift on C*(¢;: j € Z). Since t; € a?U~U(N)
it follows as in the proof of b) in Proposition 4.9 that N is a lower generator.

Remark 4.13 If (c,) is a sequence in N U {0} satisfying the conditions
of 4.3, then (c,) is the center sequence for a binary shift [PP, Thm. 6.6].
One can therefore find X C 2N such that the center sequence (c,) satisfies
limsup € > 0, hence by Lemma 4.7 limsup 2 H(A4,) > 3log2. Since we can
choose (c,) such that limsup = H(A,) can take any value ¢ € (3 log2.log 2],

we can therefore by Proposition 4.9 find a binary shift a with a lower gener-
ator such that limsup 2H(A,) = t.
n

18
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5 Automorphisms without generators

In [NST] there was exhibited an example of a binary shift a for which
H(a) = 0, hence o has no generator, and in [GS] we pointed out how to find
an uncountable number of nonconjugate examples. We shall in the present
section obtain larger classes of dynamical systems with no generators, and
in particular find automorphisms « for which {Ha(a) > H(a) > 0.

We shall follow the approach to entropy of Sauvageot and Thouvenot
[ST], which is done for C*-algebras. However, by [CNT], since our invariant
state is a trace and the C*-algebra A is nuclear, the entropy will by the same
as H(a) when we represent A in its GNS-representation and take its weak
closure R. We shall therefore move freely back and forth between A and R
and « and its extension to R.

Let the notation be as in section 4. A = A(X) is the C*-algebra generated
by symmetries (s,), & the corresponding binary shift, and 7 the canonical
trace. By [NST] we can choose X such that H(a) = 0. Let C' = C*(Z%).
Then C is an abelian C*-algebra, and D = A & C is an AF-algebra. We
denote by # the right shift on C and u the product measure which is the
product of the same measure on Z,, and which takes the value p at {0}
and ¢ = 1 —p at {1}. Then pof = p. We identify y and 6 with the
corresponding state and automorphism on C. From the theory of Bernoulli
shifts H(0) = n(p) + 1(q), where n(t) = —tlogt, t > 0, 7(0) = 0. We give D
the trace v = 7 ® p and the automorphism v =a® 6. Then vo~y = v.

Proposition 5.1 With the above notation H(v: = H(8) = n(p) + 1(q).

Proof. Let B be an abelian C*-algebra, p a state on B, and 3 a p-invariant
automorphism of B, Let A be a state on D ® B such that A\(d ® 1) = v(d),
d € D, AM(18b) = p(b), be B. If P is a finite partition of B and p; is an
atom in P consider the state on D

' Vi(d) = p(pi)_lwi(d)’ d< D,
where w;(d) = A(d ® p;). We then have the decomposition

v=>_ ppvs
The “mutual information” (D, P) is defined by
(1) ex(D, P) =3 p(p:)S(v, 1),

where S(v,v;) is the quantum relative entropy for the states v and v;, see
[CNT] or [OP, §5]. Following the notation of [ST let

(2) K(P,A)=H,(P|P")—H\P|D),
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where P~ = 0\7 B~(P), H;\\(P | D) = H,(P)—ex(D, P). By [ST, Lemma 3.2
i=1

and Prop. 4.1] -
(3) H(y)= H,(y) =suph (P, )),

where the sup is taken over all finite partitions P of B and over all commu-
tative dynamical systems (B. p, 3). Similarly :

(4) he(P | M) = H,(P | P7) — H), (P | C),

where Hy, (P | C) = H,(P) —2,(C, P) and X, is a state on C ® B such that
Mec®1) =ule), ce C, \(1®b) =p(b), b€ B. Again we have

H(8) = H,(6) = sup hy(P, \),

where the sup is taken as above.

If \ is as above then by [NST, Lemma 2.2] A has the form A = 7 ® ),
where ), is a state on C®B such that A\y(18®b) = p(b), b € B, Aa(c®1) = p(c),
c € C. It follows that : N

e

vi(d) = p(pi) ™' @ Xo(d ® pi), deD.

If ¢1, ¢, P3 are states on finite dimensional C*-algebras, then it is a con-
sequence of the definition of relative entropy that

S(h1 € b2, 01 ® ¢p3) = S(¢pa, B3). h

By approximation this formula continues to hold for AF-algebras by [OP,‘
Thm. 5.29]. Thus we have

S(V) Vi) = S(/-‘L’ pi)7
where p;(c) = p(p:) "1 A2(c ® p;), c € C. Hence, by (1)
EA{:D, P) = 8)\2(0,})).

Thus by (2) and (4)
h;(P) /\) = h/B(Pa /\2)

for all A as above. Hence by (3) H,(y) < H,(6). But (C, p. ) is a subsystem
of (D,v,7), so that H,(f) < H,(v), and we have equality. O

Theorem 5.2 With the above notation the automorphism ~ of D" satisfies

IHa(y) > 3log2+ H(6) > H(y).
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Proof. By Proposition 5.1 H,(y) = H,(6). By [V Prop 1.7 1Ha,(8) =
H,(6), and IHa(c) = log2 by Lemma 4.6. Thus by 2.3 and 2.5

© He(v®7) <1Hae(y®7) < 2Ha,(v).
However, by [SV, Lemma 3.4] and [GS, Corollary 2.2]

Hygu(v® v) = HT@#@T@#(Q RIQa®0)
Z H7-®7—(a & a) "}“H#@“(e X 9)
= log2+2H,(6).

Thus

20Ha,(7) > log2 + 2H,(8) > 2H,(8) = 2H,(v). a

It follows from Theorem 5.2 that + cannot have generators in any of the
senses described in section 3, i.e. genérator, lower generator, mean generator,
lower mean generator nor a family of generators.

-
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