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ABSTRACT. Let O4 be the Cuntz algebra on generators Si,...,5¢,2 < d < o0,
and let Dy C Oy be the abelian subalgebra generated by monomials S, S% =

Say *Say Sy Sa, Wwhere a = (a1...ap) ranges over all multi-indices
formed from {1,...,d}. In any representation of Oy, Dy may be simulta-
neously diagonalized. Using S; (S,5%) = (S;,5%,) S;» we show that the oper-

ators S; from a general representation of Oy may be expressed directly in terms
of the spectral representation of Dy. We use this in describing a class of type
ITT representations of Oy and corresponding endomorphisms, and the heart
of the paper is a description of an associated family of AF-algebras arising
as the fixed-point algebras of the associated modular automorphism groups.
Chapters 5-18 are devoted to finding effective methods to decide isomorphism
and non-isomorphism in this class of AF-algebras.
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Preface

The present paper consists of two parts. The first part encompasses Chapters
1-4, and is concerned with the description of a class of representations of the Cuntz
algebra Oy, starting out with a very general description of such representations.
The second part encompasses Chapters 4-18 and is a description of a class of AF-
algebras with constant incidence matrices J of the special form (6.1). The two parts
are thus connected by Chapter 4, where it is explained how these AF-algebras
arise as the fixed-point algebras of modular automorphism groups associated to
certain states on (4. Readers who are not interested in representation theory can
therefore read the paper from Chapter 5. Since the special examples we study can
be understood very concretely, we hope that the paper may serve as an invitation for
graduate students who want to study isomorphism and invariants in more general
settings.

Oslo, Iowa City and Kiev, 24 June 1999
Ola Bratteli Palle E.T. Jorgensen Vasyl” Ostrovs’kyi




Introduction

During the sixties and seventies it was established that there is a one-to-one
canonical correspondence between the following three sets [38, 25, 4, 29, 27, 28]

(i) the isomorphism classes of AF-algebras,

(ii) the isomorphism classes of certain ordered abelian groups, called dimension
groups,

and finally.

(iii) the equivalence classes of certain combinatorial objects, called Bratteli dia-
grams.

In more recent times, this has led to an undercurrent of misunderstanding that
AF-algebras, which are complex objects, are classified by dimension groups, which
are easy objects, and that this is the end of the story. However, as anyone who has
worked with these matters knows, although for special subsets it may be easier to
work with one of the three sets mentioned above rather than another, in general
~ the computation of isomorphism classes in any of the three categories is equally
difficult. Although dimension groups are easy objects, their isomorphism classes in
general are not! One may even be tempted to flip the coin around and say that
dimension groups are classified by AF-algebras. If one thinks about isomorphism
classes, this is logically true, but the only completely general method to decide
isomorphism classes in all the cases is to resort to the computation of the equivalence
relation for the associated Bratteli diagrams. This problem is not only hard in
general, it is even undecidable: There is no general recursive algorithm to decide if
two effective presentations of Bratteli diagrams yield equivalent diagrams [53]. In
this paper, we will encounter this problem in a very special situation, and try to
resolve it in a modest way by introducing various numerical invariants which are
easily computable from the diagram. In the situation that the AF-embeddings are
given by a constant primitive nonsingular matrix, the classification problem may
be decidable [10, 9].

Recall that an AF-algebra is a separable C*-algebra with the property that for
any € > 0, any finite subset of the algebra can be approximated with elements of
some finite-dimensional *-subalgebra with the precision given by €. An AF-algebra
is stable if it is isomorphic to its tensor product with the compact operators on a
separable Hilbert space. A dimension group is a countable abelian group with an
order satisfying the Riesz interpolation property and which is unperforated. The
Bratteli diagram is described in [4], [24], and [33], and the equivalence relation is
also described in detail in [3] and in Remark 5.6. (All these concepts will be treated
in some detail in Chapter 5, where it is also explained that the stability assumption
on the AF-algebra can be removed by putting more structure on the group and the
diagram.)

vi




INTRODUCTION vii

Recently there has been a fruitful interaction between the theory of dynamical
systems, analytic number theory, and C*-algebras. In [2], the authors show how
[-KMS states may be used in understanding the Riemann zeta function, and vice
versa. In [70], [16], [32], [40], [34], [43], [45], and [49], certain dynamical systems
are used to generate new simple C*-algebras from the Cuntz algebras, and to better
understand the corresponding isomorphism classes of C*-algebras. The results in
Chapter 4 should be contrasted with results of Izumi [44] and Watatani [73] which
deal with crossed product constructions built from the Cuntz algebras Oq4. Here
we study the AF-subalgebras of O, formed from the one-parameter automorphism
groups of Chapter 3.

It follows from the definition of the Oy-relations that they are well adapted to
d-multiresolutions of the kind used in wavelets and fractal analysis. The number
d represents the scaling factor of the wavelet. This viewpoint was exploited in re-
cent papers [11], [6], [7], and [23]. While the representations for these applications
are type I, the focus in the present paper is type III representations of O4, and
a family of associated AF-C*-algebras 2y (C Oy for some d). These representa-
tions arise from a modified version of the technique which we used in generating
wavelet representations. This starting point in fact yields a general decomposition
result for representations of Q4 which seems to be of independent interest. To un-
derstand better the resulting decomposition structure, we will establish that the
centralizers of these states are simple AF-algebras, and that the Bratteli diagrams
have stationary incidence matrices J of a special form given in (7.2). Clearly the
rank of the corresponding dimension group is an invariant, but it appeared at first
sight that different matrices J and J' would yield non-isomorphic AF-algebras 2y
and 2. This turns out not to be the case, however, and the bulk of the paper
concerns numerical AF-invariants. It is not easy to get invariants that discriminate
the most natural cases of algebras 20 that arise from this seemingly easy family of
AF-algebras. There is a connection to subshifts in dynamical systems, but if sub-
shifts are constructed, from J and J', say, we note that strong shift equivalence in
the sense of Krieger is equivalent to J = J', while isomorphism of the AF-algebras
2A; and Ay turns out to be a much more delicate problem; see also [10]. While
we do not have a complete set of numerical AF-invariants for our algebras 2, we
do find interesting subfamilies of 2 ;’s which do in fact admit a concrete isomor-
phism labeling, and Part B of the paper concentrates on these cases. In contrast,
we mention that [10] does have general criteria for C*-isomorphism of the algebras
27, but those conditions are rather abstract in comparison with the explicit and
numerical invariants which are the focus of the present paper.

Let us go into more detail. The Cuntz algebra O, with generators s; and
relations sjs; = d;;1, Z?zl s;87 = 1 contains a natural abelian subalgebra Dy =
C([1° Za), Zg = {1,...,d} (see [21]). We relate general representations of Oy with
the spectral resolution of the restriction of the representation to Dg4. From this, we
read off cocycle formulations of the factor property, irreducibility, and of equivalence
of representations. We then specialize to the representations associated with the
GNS construction from states w = wy, on Oy indexed by p; > 0, Zle p; =1, given
by

* * _
w (SOq PR Saks')’! . 'S’Yl) = 6/0160(1’)'1 .o .6ak,ykpa1 .o .pak

where o and v are multi-indices formed from Zg4. The cyclic space H,,,, for (p;)
fixed, is shown in Chapter 2 to have a bundle structure over the set of all Z g-multi-
indices with fiber £2 (S4) where Sy is the free semigroup on d generators.
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Let L = (L1,...,Lq) € R%, and consider the one-parameter group o of *-au-
tomorphisms of Oy defined by

ol (s5) = exp (itL;) s;.

It can be shown ([30], or Proposition 3.1) that o* admits a oZ-KMS state, at some
value B, if and only if all L;’s are nonzero and have the same sign. This value 3 is
then unique and is defined as the solution of

d
k=1

and the (cF,3)-KMS state is then also unique, and is the state defined in the
previous paragraph with p;, = e#L*. Note that the group o’ is periodic if and
only if any pair L;, Ly is rationally dependent. In that case, let %Az be the fixed-
point subalgebra in @y under the action o*. We show in Chapter 4 that 2, is an
AF-algebra ([4], [27]) if and only if all L’s have the same sign, and furthermore
the 2’s are then simple with a unique trace state (namely the restriction of the
state in the previous paragraph to 20;). We compute the Bratteli diagrams of
the 2 in this case, and show (using a result from [20]) that the endomorphism
p(a) = Z‘::l s;as} restricts to a shift (in the sense of Powers [64]) on each of the
algebras Ay, i.e., Nie, p* () = CL.

While the dimension group D (1), described in [4], [29] [27], and [24] in
principle is a complete AF-invariant, we have mentioned that its structure is not
immediately transparent. For the present AF-algebras 2y, the classification is
facilitated by the display of specific numerical invariants, derived from D (2(), but

at the same time computable directly in terms of the given data (L1,..., Lg4). These
invariants are described in Chapters 617 where their connection to Ext is partially
explained.

Let us give a short road map to the various invariants introduced and where it
proved that they are invariants (sometimes in restricted settings): Ko (1) in (5.6),
(5.19); 7 (Ko () in (5.22); D (2Ar) = (Ko (Az) , Ko (A1), [1]) in (5.30); ker 7 in
(5.31); Q[)] together with the prime factors of A before (6.1); N, D, Prim (my),
Prim (Qn_p), Prim (Rp) in Theorem 7.8; Ko (A1) ®2z%Z,, and ker 7®z7Z,, in Chapter
8, M in (8.26); rank Ly in Corollary 9.5; class in Ext (7 (Ko (21z)) ,ker 7) in Chapter
10; Dy (Ko (1)) in (11.57)—(11.58); I (J) in (17.12) and Corollary 17.6. In general
it is very hard to find complete invariants apart from D (2(1), even for special sub-
classes; but if the Perron—Frobenius eigenvalue A of J is rational (and thus integral)
and N = 2 and Prim (\) = Prim (m2/}), then Prim (}) is a complete invariant by
Proposition 13.3. The same is true if the condition Prim (\) = Prim (mz/)) is
replaced by Prim (A + %) C Prim () by Proposition 13.4.

In Chapter 16 we give a complete classification of the class A =2, N = 2,3,4.
This class contains 28 specimens, and it turns out that all of them are non-
isomorphic except for a subset consisting of the three specimens in Figure 19.

The most striking classification result for a restricted, but infinite, class of
examples in this paper is that if A = my, then (N,Prim A, I (J)) is a complete
invariant. This is proved in Theorem 17.18.

In addition to these formal invariants there are very efficient methods to decide
non-isomorphism when X is rational based on a quantity 7 (v) = {a|v) defined in
(11.3)—(11.4); see Theorem 11.10, Remark 11.11, Corollaries 11.12-11.13, Scholium
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11.24. In fact I (J) = ANV~ (a|v) = AV~! times the inner product of the right and
left Perron—Frobenius eigenvectors «, v of J, normalized so that a; = v; = 1.

In forthcoming joint work with K.H. Kim and F. Roush it will be proved that
the ideal generated by (a |v) in the ring Z [}] is an invariant for stable isomorphism
under some general circumstances.
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Representation Theory







CHAPTER 1

General representations of O; on a separable
Hilbert space

Representations of the Cuntz algebras O4 play a role in several recent papers;
see, e.g., [32], [11], [16], [17], [18], [26], [73], [44]. Since Oy is purely infinite, there
are few results that cover all representations. The following result does just that,
and serves as a “noncommutative spectral resolution”. We will use the convention
that S; denotes the representative of the Cuntz algebra generator s; in any given

representation.
Let © = []5° Zg, and let o be the right shift on Q:

(1.1) o(z1,22,...) = (2, 23,...)

Define sections o; of ¢ by

(1.2) oi (z1,22,...) = (4,21,22,...),

for i = 1,...,d. Note that o is a d-to-1 map and that the sections are injective.
The sets

(1.3) Q; =0; ()

form a partition of the Cantor set (2 into clopen sets. The o; are right inverses of
o: ‘

(1.4) ooy =1id

fori =1,...,d. If uis a probability measure on 2, we say that u is o-quasi-invariant
if

(1.5) p(E)=0= p(c"'(E)) =0

for all Borel sets E C Q, and we say that p is o;-quasi-invariant if

(16) p(B) = 0= pu(o7* (B)) =0

for all Borel sets E C Q, where

w7 ‘71': (E) = {z ]| 0;(z) = (1,%1,22,...) € E},
o (B)={z|0o(z) = (z2,23,...) € E}.

The set of d conditions (1.6) is equivalent to the set of d conditions

(18) (03 (F)) = 1 (F) = 0

fori=1,...,d. The condition (1.5) is implied by, but does not imply, the condition
(1.9) (o (F)) =0= p(F)=0.

3




4 REPRESENTATION THEORY AND NUMERICAL AF-INVARIANTS

(Conditions like (1.8) and (1.9) make sense in this setting since o; and o are local
homeomorphisms, and thus map measurable sets into measurable sets.) Note that

(1.10) o H(EB) = Uai (E)

for all sets E by the chain: =z € |J,0;(E) < z =iy for some i = 1,...,d,
y€E <> o(x) € E & =z € ¢~ !(E). Note also that if p is both o- and
oi-quasi-invariant, we have the connection

dp (0 () _ dp(o: ) __(duoa)‘*(gwy»
du(y) — du(ooi(y)) dps '
between the Radon—-Nikodym derivatives.

Note also that the two quasi-invariance conditions (1.5) and (1.6) together
imply the d equivalences

(1.11) p(E)=0 < p(;E)=0, i=1,...,d,

for all Borel sets E C , and that (1.11) implies the o-invariance (1.5). (When
referring to (1.6) (or (1.11)) in the following we mean “(1.6) (or (1.11)) for all
i=1,...,d”). Let us prove this.

(1.5) & (1.6) = (1.11): If (1.5) and (1.6) hold and p(E) = 0, it follows from
(1.5) that p (0~ (E)) = 0 and hence from (1.10) that p(o; (E)) = 0 for all 4.
Conversely, if u (o (E)) = 0 for some i, then since E = o; 'o,E it follows from
(1.6) that u (E) =0.

(1.11) = (1.5): Assume that (1.11) holds and that p (E) = 0. Then p (0; (E)) =
0 for all ¢ by (1.11) and hence u (¢~ (E)) = 0 by (1.10).

The condition (1.11) does not, however, imply o;-quasi-invariance (1.6), by the
following example: d = 2, y = d-measure on (1,1,1,...). Then (1.11) holds for
all E, but (1.6) fails for E = {(2,1,1,1,...)} and ¢ = 2. In this case y is o-quasi-
invariant and o1-quasi-invariant, but not gs-quasi-invariant, so (1.5) does not imply
(1.6). More interestingly, the converse implication is always valid:

Proposition 1.1. If p is a probability measure on Q@ and p is o;~quasi-invariant
fori=1,...,d, then u is o-quasi-invariant.

Proof. Put p; (y) = d—’%g(—‘%n. Since the maps o; are injective and have disjoint

ranges, there is actually one function G such that

(1.12) G (oi (y)) = pi (y) -

One now proves as in (1.38) below (the tacit assumption there that p is o-quasi-
invariant is not needed for this) that

(1.13) ﬁgwwmw=LR@wwM@,
where
(1.14) R(g(x)= Y, Ggw)-

Y
o(y)==
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Note that the Ruelle operator R has the property
(1.15) R(foa)=R(1)-f,
by the computation
R(feo)()= >, GWFlew)=f( Y G =f(=)R({1) ().
0(;;:m ﬂ(y?i:w '
We observe that R (1) is a positive function by (1.14) and it is p-integrable, as can

be seen by using (1.13) on g = 1. If f is a positive bounded function on {2 we have
from (1.15):

(1.16) pu(foo)=p(R(foo))=p(R(A)- f).
Putting f equal to characteristic functions, the o-quasi-invariance (1.5) of p is
immediate. g

As a final note on invariance, observe that (1.11) implies the condition
p(BE)=0 < p(o(E)) =0,

by the following reasoning. Assume (1.11) throughout. If u(
w(oio (E)) =0 for all 4, but as £ C |J,; 040 (E) it follows that
versely, if u(E) = 0, write E as E = |J; 05 (E;), and then p (o (
and hence, as o (E) = |J,; 0; (E;), we have p (o (E)) = 0.

We now come to the main result in this chapter.

Theorem 1.2. For any nondegenerate representation s; — S; of O4 on a separa-
ble Hilbert space H, there ezists a probability measure p on  which is o;-quasi-

invariant for i = 1,...,d (and thus o-quasi-invariant by Proposition 1.1), and a
measurable direct integral decomposition

®
(1.17) H =/ H(z) du(z)

Q

of H into Hilbert spaces H (z) such that the spaces H (z) are constant (have fized
dimension) over a-orbits in Q, and there exists a measurable field Q > z — U ()
of unitary operators such that if

i [57]
(118) e= [ ¢@ duta)
is a vector in H, then
® .
(119) s = [ (5:6)(@) du ),
D
(1.20) sie= [ (510 @) dua),
where
(1.21) (5:8) (z) = x; (@) p () U (z) § (0 (),
(1.22) (S7€) (z) = p (03 (€))7 U (04 (2))" £ (0 (2))-
Here :

(1.23) pla) = (7)),
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so that

L (dp(oi @)\
a2 ol = (5 50)
and

. 1 "lf Tl = ia
(1.25) Xi (z) = {0 otherwise.

Conversely, if p, H, z — H(z) and z — U (z) satisfy all the conditions in the
initial part of the theorem, the formulae (1.19)—(1.24) define a nondegenerate rep-
resentation of Og on H.

Remark 1.3. At the outset the formula (1.21) does not make sense, since U (z)
is an operator on H (z), while ¢ (o (z)) € H (0 (z)). Here we have actually made
an identification of the Hilbert spaces H (z) over each orbit of ¢. The Hilbert
spaces over each o-invariant set have constant dimension p-almost everywhere by
the argument after (1.53) below. Hence if we define

Qny ={z € Q| dim (H (z)) =n}

for n = 1,2,...,No, then the sets ),y are y-measurable and o-, as well as o;-,
invariant up to sets of measure zero. If #,, is the Hilbert space of dimension n for
n =1,...,Ng, then we may identify # (z) with H, for z € (), and we have the
decomposition

@ Ro @ No
’H=/Q Q(z) du(a:)=§?l/ﬂ H (z) du(x)zgj’}{n®L2(Q(n),du).

(n)

Hence we may view U (z) as a unitary operator on H, for all z € Q. Since the
Q(n) are 0- and oj-invariant, the formula (1.21) is meaningful, and expressions like
the one on the third line of (1.42) make sense since ¢ (z) and 7 (o (z)) lie in the
same Hilbert space. The direct sum above is a decomposition of the representation
of Oy4. See also Remark 1.5, and see the book [57] for more details.

Before proving this theorem, let us consider the intertwiner space between two
representations s; — S; and s; — T;. Recall that an operator T intertwines these
representations if and only if it intertwines the operators S;, T5:

(1.26) TS; =TT, i=1,...,d
“Only if” is obvious. As for “if”, note that if T" satisfies (1.26), then

d
(1.27) T;T =Y TTS;S;
j=1

d
=Y T}T,TS;
=1
=TS;.

Theorem 1.4. Let S;, S; be representations of Qg on separable Hilbert spaces

52
(1.28) 'H:/Q H(z) du(z)
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and
~ ®
(1.29) 7i = / 7 () di ()
Q
as defined in Theorem 1.2. Partition § into three o-invariant Borel sets
(1.30) N=0QUQ; Uy

such that p and i are equivalent on Qo, G (1) = 0, and () = 0. Then an
operator T € B(H,H) is an intertwiner between the two representations, i.e.,

(1.31) TS; = 8;T,
if and only if T has a measurable decomposition
®
(1.32) T= / T(z) du(z)
Qo

where T' (z) € B (?—[ (z),H (z)) and
(1.33) T (z)U (z) =U (z) T (0 (x))
for almost all x € §y.

Remark 1.5. In particular, if S; = T}, the commutant of the representation con-
sists of all decomposable operators '

@
(1.34) T= /Q T (s) dp(a)
such that
(1.35) T()U(z)=U(2)T (0 (x))

for almost all = € §2, and the center of the representation consists of all decompos-
able operators '

®
(1.36) T:/Q A (z) Ngy(q) dpu ()

where the scalar function A € L* (Q,dp) is o-invariant. Thus the representation
is a factor representation if and only if the right shift on L* (2, dy) is ergodic. If
in addition dim (# (z)) = 1 for almost all z, then the representation is irreducible
since (1.35) then only has the trivial solutions T (z) = const.

Note that if the right shift on L2 (Q, du) is ergodic, then dim (7 (z)) is constant
for almost all z, and if Hg is a Hilbert space of that dimension, then we have an
isomorphism

(53]
/Q H(2) dp(z) = I (0, dp) ® Ho

and U may be viewed as a measurable function from (2 into the unitary group
U (Ho) on Ho. The element T is then a function from Q into B (Ho) and (1.35)
takes the form

T(z)=U(z)T (c(z))U* (z).
Thus the commutant of the representation is canonically isomorphic to the fixed-
point algebra in ’

L (9, dp) ® B(Ho) = L (Q, B (Ho))
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for the endomorphism
T+—U(Too)U*

Cocycle equivalence of functions with values in groups G of unitaries have been
studied recently in ergodic theory; see, e.g., [69, 60]. Equation (1.33) above in
that setup is the assertion that U and U (taking values in the corresponding G)
are cohomologous.

Proof of Theorem 1.2. We will first verify that the relations (1.17)—(1.25) define a
representation of Oy, and verify that its restriction to the abelian subalgebra

a € HZd)

is the spectral representation. If g € L (Q,du), we have

(1.38) /Qg<m>du<w)=z/igm d (@
=3 [[otu) HT )
_ ) o W)

Z/ ) Gloom i)

=3 [ ) e (o) dute)
=/Q ( D g(m)G(m)) dp (y),

a(z)=y

where G (z) = p(z)>. (If it happens that 3. o(x)=y G (&) = 1, the relation
(1.38) says that u is o-invariant, and p is then what is called a G-measure in [46].)
Applying (1.38) to g(z) = f (z,0 (z)) we obtain

(1.39) / f (@0 (z)) dp (z) = / £ (0 (), ) p (0 (0) % du(9).

(1.37) Dg=C* <sasz

Defining S; by (1.19) and (1.21), we see immediately from the x; (z) term that the
ranges of S; are mutually orthogonal, and if £ € H, then from (1.39):

(1.40) 113 = [ X (@) @) 0 @I du (@)
= [ 0@l @I du(@)

- /Q 0 (s @) IE@IP p (01 (1)) 2 dys(w)
— JelP?

so each S; is an isometry, and hence

(1.41) 1S, = 6,1
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Furthermore
(1.42)  (S;&lm) = (€| Sim)

z) | (Sin) (z)) du(z)

XL
=/sz ) (U (2)* € (2) |1 (0 (2))) d ()
= [ @U@ €@ n0e @) du@)
Q;
- /ﬂ p (03 W) (U (0 ()" € (0 () |1 (0)) (0 ()2 s (9)
:/9 (03 (1)) " (U (03 ()" € (0: () | 0 () da (v)

and the expression (1.22) for S} follows.
If a = (a1az...a,) with ai € Z4, define

(1.43) Sa = SaiSas " " Sans So = Sa1 Sz Say -
> One verifies from (1.21) and (1.22) that

(1.44)  Saf (2) = Xay (%) Xa, (0 (%)) Xa, (677 ()
p()p(o (@) p (" (z))
x U (2)U (0 (2))+-U (¢" 7" (2)) € (0" (2))
and
(145) S3E(2) = p(0an (1) (Gan-s0a0 (@) o5 (0 0 (2))
X U (0, (0))" U (0ar-10a0 ()" U (00 0y ()" € (700 0 (2)
Combining (1.44)—(1.45) with the relations

Oa, 0" (z) = 0™ (2),

n

(1.46)

Ooy "+ Oan, 0" (T) = 2,
which are valid if z = (a4, ..., ®n, Znt1,-..), We obtain
(1.47) S5a5a€(z) = Xo (z) € (2),
where
(1.48) Xo (1,%2,23,...) = 0a13,0033s * " * Oanan-
This proves firstly that
(1.49) i S;87 =

i=1

and (1.41) and (1.49) show that s; — S; is indeed a representation of the Cuntz
relations. Secondly, (1.47) shows that D4 maps onto the algebra of operators on H
of the form

(150) JRICEPREAE
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where A ranges over all continuous functions on the Cantor set 2. Thus the restric-
tion of the representation s; — S; to Dy is indeed the spectral representation.

To show the main part of Theorem 1.2, i.e., the existence of the objects H (z),
du(z), U (z), one does indeed start with a spectral measure u for the restriction of
the representation to D4. The spectrum of Dy is (2, so this gives the decomposition
(1.17), and the action of Dy on # is given by (1.47). If f € C' (2) = Dy, and My is
the representative of f in H:

[S]
(151) My = /Q £ (@) Loy dps (2),
then
d
(1.52) Moo = > S;M;S;
i=1

and the quasi-invariance of p under ¢ follows. Thus one may define p (z) by (1.23).
Similarly, if f € C () = D, has support in ¢; () = 1Q = Q;, one verifies that
(1.53) Myoo; = S:Mfsz

Thus the two representations of C ({);) given by f = M; on My H and f =
"M{os, on H are unitarily equivalent. In particular, this means that dim (# (z)) =
dim (# (o; (z))) for p-almost all z, so the constancy of dim (7 (z)) almost every-
where over the orbits of o1, ..., 0,4 follows. But (1.4) then implies that dim (# (z))
is constant on o-orbits (actually the two forms of constancy are equivalent). Also
it follows from the unitary equivalence (1.53) that u is quasi-invariant under o; and

_ 1/2
that p (o3 ()™ = (%ﬁ) exists. See [54] or [57] for details on spectral

multiplicity theory. Now, one may define a representation s; — T; of Oy on H by

(1.54) (T3€) (z) = x; (z) p (z) £ (0 (2)) -
One checks that this is indeed a representation of Oy by the first part of the proof,
and by the proof of (1.47) it follows that

(1.55) T.T: =S,8S

for all multi-indices a. Define an operator U by

d
(1.56) U=y STy
i=1

Using the Cuntz relations in a standard manner, one checks that U is a unitary
operator, and

(1.57) S; =UT;
fori=1,...,d. Putting
(1.58) toi=(logag ... o),
we have by (1.55)
(159) TuTh = SiaSh
= 5,5,555;
=UT,T,T,7T:U"
=UT,,T;U",

o
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and hence U commutes with the representatives on H of the algebra D4. Hence U
has a decomposition

(&)
(1.60) U= /Q U (z) du ()

where Q 3 = — U () is a measurable field on unitaries. It now follows from (1.54)
and (1.57) that S; has the form (1.21). This ends the proof of Theorem 1.2. O

Proof of Theorem 1.4. Adopt the assumptions in Theorem 1.4 and let T' be an
intertwiner between the two representations. In particular this means that T inter-
twines the two spectral representations of D; on ‘H and H, respectively, i.e.,

(1.61) TS,S:=_58,5:T

for all multi-indices . But this is equivalent to £ having the decomposition (1.30)
and T having the measurable decomposition

@
(1.62) T= /Q T () du ()
where T (z) € B(# (z),7 (z)). We now compute, using (1.21),
(1.63) TS5 (z) =T (z) (5:i£) (2)
=x; (2) p(2) T (2) U (z) € (0 (2))

and
(1.64) SiT¢(z) = x; (2) p () U (2) (T€) (0 (2))

=x: (@) p (@)U (2) T (o (2)) € (0 ()) -
Using the intertwining property (1.31) we thus deduce that
(1.65) T(z)U (z) =U (z) T (0 (z)) .

Conversely, if T satisfies (1.65), the intertwining follows from (1.63) and (1.64).
This ends the proof of Theorem 1.4. d




CHAPTER 2

The free group on d generators

In this chapter we will construct certain representations of Oy in the Hilbert
spaces H where the decomposition in Theorem 1.2 takes the form

®
(2.1) / H(z) dp(z) = L? (Q,dp) ® Ho.
Q
We will equip 2 = []{° Z4 with the product measure p = 1, defined from a choice of

weights (p,-)f=1, with p; > 0, and }_, p; = 1. Then the representation (1.21)-(1.22)
takes the form

1
(2.2) (i) () = 6i (21) ﬁU ()€ (o (2)),
(2.3) (878 () = ViU (03 (2))" £ (0 () -

The simplest case of this is when dimH = 1 and U (z) = 1. Then the correspond-
ing operators S; of (2.2) act on scalar functions in L? (2, ). The constant function
1 in L2 (Q, p) satisfies S;1 = /p;1, and the state wy = (1| -1) on B (L? (Q, 1))
satisfies

(24) wi (p(A) =wi (4), AeB(L*(Qp)
where
p(A) =) S;AS;.

This is the representation defined by the Cuntz states [11, Theorem 4.1].

It is well known, see, e.g., [11], that there is a correspondence between repre-
sentations of Oy (for some d including d = co) and endomorphisms of B (#). An
endomorphism p of B (H) has a finite Powers index d if the commutant of p (B (1))
is isomorphic to My (C), and then the corresponding representation is of O4. Two
representations 7, 7 of Oy define the same endomorphism if and only if there exists
a g in the group U (d) of complex unitary d x d matrices such that # = 7oy where
oy is the canonical U (d)-action on Oq4 rotating the generators.

There is precisely one conjugacy class of endomorphisms of B (#) with an
invariant vector state w, i.e.,

(2.5) wop=uw,

see (2.4) and [63, 64] or [11, Theorem 4.2]. We showed in [7] and [6] that the
theory of wavelets gives examples of endomorphisms in different conjugacy classes.
In this paper, we will also look at endomorphisms of von Neumann algebras not of
type L.

12
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Scale-two wavelet representations are constructed from measurable functions
on T subject to [m (2)* + |m (—2)]* = 2. If

my (2) =m(z)
me (2) = zm (—2)
then
(2:6) (8i8) (2) =m; ()€ (), §=1,2
define a representation of 0. Giving the wavelet representations (of Oy) in the

form of Theorem 1.2 amounts to representing the commuting operators (in fact
projections)

Sjl...S.S*,‘...S;fl:SaS; (Ol:(Jl]k))

ke
as multiplication operators on some L? (Q,H,). Such a representation will involve a
2-adic completion, but will perhaps not be explicit enough for practical applications:
In the representation, the operator

(27) (5,558 (2) = .2.15,% (0)--mg ()

X Z g, (wz) mj, (w*22) - my, (w2k_122k_1) £ (wz)
w2k =1 '
must be multiplication by a characteristic function of a set E, in the 2-adic com-
pletion.

We postpone the details to a later paper.

Returning to the computation of the measurable field 3 z — U (z) of unitary
operators in Theorem 1.2, we do the calculation for the (p1,. .., p4)-product measure
on = [[{° Z4, and with the resulting representation s; — S; of type IIL. (More
details on B-KMS states and the T¢ C U (d) action on Oy are included in Chapter
3 below.) We show there that if

(2'8) pJ:e-ﬂLJ’ j:]‘""’d,
and L = (L1,...,Lq) € R%, L; > 0, then the state w on O4 given by

(2.9) w(sy, v 85,85, 85,) = Oibingy - ixuPia Pis - Pi
is a (unique) B-KMS state for the one-parameter subgroup of T¢ defined by L,
ie., t > (el eftl2 . efle)  (For w to be a state, 8 must be chosen such that

Zj p; = 1, and then wg is the gauge-invariant extension to Oy of the product state
defined on UHFy & @ My as Q7" ¢, where ¢ is the state on My defined by the
density matrix diag (p1,...,p4).) Let s; = T; be the representation of O4 which is
induced from w via the GNS construction. Let F; be the free group on d generators
91,---,94, and let F; 3 g = A(g) be the trace representation of Fy. Recall the
trace tr on C} (Fy) is given by
1 ifg=e
tr (A = ’
(A (9) {O if g #e.
The Hilbert space £2 (F;) has as orthonormal basis the functions
1 ifz=g,

{& 19 €Fq} where ¢, (z) = {O g
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and

(2.10) tr(A) =(&|A(4)&), AeC(Fa).

Let Ho = £2 (Fy). For multi-indices a, set p* = pa, - * Pay -

Proposition 2.1. The state defined by (2.9), i.e.,

(2.11) w ($4,5%) = banD®

is the vector state defined by 1 ® &, in the representation on L2 (T[S Zg, £ (Fg)) =
Li (I17° 2a) ® 2 (Fa) by

(2.12) (T5€) (z) = ex?ix; (z) X (g5) € (0 (2)),

(2.13) (T7¢) (z) = e~ 8L )\ (g;1) € (0i (2)),

so, in particular, the operators U (z) from Theorem 1.2 are independent of the
product measure pu when the representation is realized in L2 ([15° Zg, 02 (Fy)), i.e.,
on vector-valued functions on the group []7° Zq with values in €2 (Fy) and with p
equal to the product measure on [[7° Zq relative to p; = e PLi j=1,...,d.

Proof. Note that the representation Tj in (2.12)—(2.13) is of the form T; = S; ®
A (g;) where S; is the representation in Theorem 1.2 corresponding to the scalar-
valued case with u product measure and U = 1. We then use

Lemma 2.2. Let (S;) be a representation of Oq in o Hilbert space L and let Ho be

a second Hilbert space. If (Aj);lzl are operators in Ho, then T; := S; ® A; define

a representation of Og4 in L ® Hy if and only if the A;’s are unitary.
Proof. We have
T;T, = S;S, ® AjA,
= Ok 1, ® A; Ak‘

Hence T} T, = djx1cen, holds if and only if each A; is isometric.
We have

DUTiTS =3 8;5] © Ay,
J J
But the projections S;S; are mutually orthogonal. So Zj T;T) = lLcgwn, if and
only if each A; is coisometric. The result follows. O

Now we apply the lemma to 4; = A (g;), Ho = £2 (F4), and it remains to check
that the vector state

(2.14) Qo:=10¢ € L? (sz, u) ® £2 (Fy)
1 .

yields the state w in (2.11). Let go = gy 9as * * * Yo, for multi-indices a = (ag . .. ax),
0; €Ly, 1 <1< k. Then T, = S, ® A(gs), and

(| TaT300) = (€ | A (9097") &) (1| SaS31)
= 5a7pa
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where p® = Py, Doy * Pay, and where we used Theorem 1.2 for the scalar-valued
representation S; in L? ([[{° Z4) and the observations from above on the trace of
Fy. The term

(€| A (9095") &) = tr (9297")
is nonzero (and therefore = 1) if and only if go = g4, i.e.,

Ga19az ***Gar = 91972 " G-

Since we are in the free group, this happens precisely when & = [ and go, =
g’)’l)"')gak:g’)’k' D

We now turn to the characterization of the cyclic subspace generated by the
representation m,, from Proposition 2.1 when the state w is given as in (2.9), (2.11).
Let

(2.15) Hay = [T (Od) Qo]

where Q = 1 ® £, and 7, (s;) = S; ® A (gi).

Let g1,. .., gq be the generators of Fy, and let S4 C Fy be the corresponding free
semigroup, i.e., Sy consists of elements go = go19as - ** Yo, (containing no inverses
of any g;, i =1,...,d) indexed by a = (a1 ... o), a; € Zg={1,...,d}, 1 <i <k,
with k& depending on . Let Sgl = {3"1 | s € Sd}, and let H_ := [/\ (Sd_l) fe] -
2 (F,) be the closed linear span in £2 (F;) of the vectors {\ (s7) & | s € Sa}. For
a multi-index «, and v € H_, define gl [17°Z4— 2 (F4) by

(2.16) &% (2) = X (2) A (ga) v

(=Xa ®A(9a)v), weHZd,x=(a:1,m2,...),
1

where

Xa ((E) = 5C¥1$15012m‘2 Tt éakzk
and we use the convention
(2.17) £9 () =v.

Lemma 2.3. The cyclic subspace Ha, = [m, (0g) Qo] C L2 (T13° Za, £* (Fa)) gen-
erated by Qo = 1 ® &, in the representation defined by T; = S; @ A(gs), where
(Si€) (z) = e3PLix, (z) £ (o (x)), € € L2 (JIS° Za, ), i3 the closure in L2 ([17° Za, €% (Fa))
of the linear span of the functions £ in (2.16).

Proof. From (2.12)-(2.13), we have
(2.18) Ty (1® &) () = DDy (2) X (g095) &,

where oo = (@3 ... ), ¥ = (7 ...7) are multi-indices, and

(2.19) L(a)= ZLa,. = Z#j (@) Lj,  #;(e)=#{o| o =75},

Since vy := A (g5) € € H—, the result follows. O
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Remark 2.4. The cyclic subspace Hg, is a proper subspacein L2 ([17° Za, £2 (Fa)).
If i # j, define £ (z) = &; (x1) A (gj) &, « € []7° Za. Then £ is orthogonal to He,.
For this, we need only show that £ is orthogonal to the vectors 5(0‘) (2.16). We

have
¢le) = ZPH s 0) [ Ko 01 0 (2) 0 0) & A 02}

= palaialpag o 'pozk ge |/\ g] ga) ’U) .
Since v € H_, it is enough to show that

zal <€e|/\ g] ga £5"1>

vanishes for s € S4. The second factor is tr (gj gas"l), and this is nonvanishing
only if g;8 = go. But the first factor is d;4,, S0 we must have ay = 4 for the product
to be # 0. Hence g;8 = g;9a, - * * §o,, must hold at a place where the product is # 0.
But this is impossible in the free group Fy. »

The vectors §1(,°‘) in (2.16) are indexed by the multi-indices @ = (a; ... ax) and
vectors v € H_. Using these we get the following explicit formula for the operators
Ti = My (Si).

Proposition 2.5. The generators T;, 1 < i < d, for the cyclic O4 -representation

of the state defined by (2.11) act as follows on the vectors 5(‘1) () = x, () A (ga) v
defined by (2.16) and (2.17) (z € [I7° Za, v € H-):
(220) T (€)= e/Diglio),
(2.21) ( )) e~(B/DLig,  glazas.on)
if o # ¢,

(2229)  Tr (ef) = e @AB®)

' Mg
(223) T,T; (£) =, (o) &

1f l7| <laf(ie, 1<k, y=(m...m), a=(a1...ax)),
and
(2.24) (T,13) €9 =x, ®v

withy = (71...m).
Hence, if | > k,

(225) T"T:&(,a) — e(ﬁ/z)(L(n)_L(’Y))é"/lal .. ’Ykakg (971 g;k1+1)v.

Proof. We compute the action of T; and T} directly from the formulas given in
Proposition 2.1. We have

T,el® (z) = e3PLix, (2) Xq (0 (2)) A (96) X (o) v
= e27L46; (21) 0y (22) O, (Th1) A (giGa) v

= G%ﬂLiX(ia) (@) X (9(iay) v
= eB/DLiglio) (g
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proving (2.20), and
TEE) (@) = O/ (05 (@) A (67) A
— o~ (B/2)L: 5mx(a2a3 ) (D)X ( )
o~ (B/2)Ls mlx(az...ak)(“’ (97 91900~ 9a)
e CIDLG, 0 Xy ) @) M (I(arz.c)) ¥
= e (B/DLig,, gloran) (g

(
)A

proving (2.21). The stated formulas for T¢{ and T.T: (v e H_, result

from the following covariance principle: x; ® v = E/(\i()g_l)v, and, more generally,

Xo @V = Ei?;&‘)v' The formula (2.24) is a special case of (1.47). O

Corollary 2.6. Let v be an arbitrary vector in H_. Asy= (y1...7) ranges over
all Z.q-multi-indices, the closed linear span of { (T,T%) 1(,‘3)}7 in L2 (TI7° Za, 22 (Fa))
is L2 ([13° Z4) ® v where p is still the (p;)-product measure on [[5° Zg.

Proof. This is immediate from (2.24). a
Remark 2.7. Let Hq, be the cyclic subspace of the representation of 04 induced
from the state w) (5,5%) = Pabay. Then L2 (J[° Zg) ® H_ is a proper subspace
in Hg,. For example, the vector x; ® &, is in Ho, © (L2 @ H_).

Proof. We check that (x; ® &, | f®v) =0 for all f € L*([[]°Zq4), and v € H_.
We may assume that v = ;-1 for s € Sy (= the free semigroup on the generators

{g; }?=1)~ The inner product is

s / £ (2) dpaggy (@) (Eps |€am1)
-1 -1

and (&, |€s-1) = tr (gi s ) = 0, since there is no solution s € S to the equation

sg; = e. O

Summarizing Remarks 2.4 and 2.7 we have
2QH_GHgy L2 L (Fy).

Definition 2.8. Let # and #_ be Hilbert spaces, and let M be a set. We say
that H is fibered over M with fibers isomorphic to H_ if there are isometries
14, indexed by o € M, iy: H- — H, such that H is the closed linear span of
{ia (H-) | @ € M}.

The Fibered Space. Let w(;) be the state from above, and let Hq, be the cyclic
space of the Og-representation. Let M (Zg4) be the set of all multi-indices formed
from Z 4. Then Hgq, is fibered (as a Hilbert space) over M (Zg), the fiber over each
ain M (Zg) is a copy of H_.

To prove this, let @ € M (Zg), and define H (a) = H_ by

Ha)={xa®(ga)v|veH_}.

The isomorphism H (a) = H_ and the isometries i, are then made explicit by
using the scale given by the following identity:

2 2
[Xa ® A(ga) vil3g, = P* lIvll3_
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where p* = Po;Day * * * Pay, > 0. The convention for the empty index ¢ in M (Zg) is
that the fiber H (8) over ¢ is

Hig)={1l®v|veH_}

where 1 = x, denotes the constant function “one” in L? ([]7° Z4). The action of
T;, T7 on the fibers is given by Proposition 2.5. In particular it follows from (1.47)
that the action of L™ (J]{° Zy) is given by

o (F) €9 = (fxo) ® M ga)v, vEH_.




CHAPTER 3

G-KMS states for one-parameter subgroups
of the action of T¢ on Oy

Consider the action of T on Oy given by

(3.1) o (21,---,24) (8i) = 28"
If L =(Ly,...,Ls) € R?, consider the one-parameter group
(3.2) of (z) = o (e, ... e?) (2).

In general, if % is a C*-algebra and ¢t — oy is a one-parameter group of *-automor-
phisms of 2, and 8 € R, recall that a state w over 2 is defined to be a o-KMS state
at value S, or a (o, §)-KMS state if

(3.3) w (zoip (y)) = w (yz)

for all z, ¥ in a norm-dense o-invariant *-algebra of g-analytic elements of % (see
[14, Section 5.3.1] for several alternative formulations of this condition). It is well
known that if L = (1,1,...,1), so that o is the so-called gauge group, the group
ol has a KMS state at value 3 if and only if 8 = log d, and this state is unique and
is given by

(3.4) W (848%) = Bayd1ol;

see [14, Example 5.3.27], [5], or [56]. We first note that the latter result has an
easy extension to more general one-parameter subgroups. '

Proposition 3.1. The one-parameter group JL_ admits a KMS state at some value

B if and only if Ly, La,...,Lg all are nonzero and have the same sign. This value
B is then unique and is given as the real solution of
d
(3.5) e Ple =1,
k=1

The oL -KMS state w at value B is then also unique, and is given by
(3.6) w (848%) = Gaye™? T Dy,

Proof. If wis a KMS state at value (3, then

(3.7) w(848%) =w (s%0i5 (54)) =€ S Layy (sts4) -
If a = (k), v = (j), this says

(3.8) w (s,8%) = ke Pl

19
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But

d d
(3.9 1= Zw (spsy) = Ze‘ﬁL"

and hence 3 is a solution of (3.5). But this equation has solutions § if and only if
all Ly are nonzero, and all have the same sign; and, in that case, the solution g is
unique. For definiteness, assume that all L; are positive, and then the solution §
of (3.5) is also positive. Because of the Cuntz relations, the element s s, is either
1 (if y = @), 0, or of the form s; or s} for some §. But from (3.7), we have

(3.10) w(ss) =e” Sili Lry, (s6)

and thus w (sg) = 0 for all nonempty strings §. Hence it follows from (3.7) again
that

(3.11) w (SQS:) = e_ﬁZL‘il Le 501"/:

which is (3.6). But this expression does indeed define a state by Proposition 2.1.

The case that all Ly are negative is treated similarly, so this proves Proposition
3.1. O

The KMS states and the one-parameter subgroups of automorphisms were also
used in recent papers [34, 48, 49] where crossed products Oy %, R were studied.
The states (3.6) seem to have first appeared in [22], [30] and [31].

The result in Proposition 3.1 is also related to results in [51], where KMS states
for one-parameter subgroups of the dual actions of actions of lattice semigroups of
endomorphisms scaling tracial states of a given C*-algebra are considered. It turns
out that the KMS states have non-trivial symmetries apart from invariance under
the one-parameter semigroup, and in particular an “explanation” is given of the
fact that our states given by (3.6) have the d,, term which forces them to live on
the maximal abelian subalgebra Dy which is the closure of the linear span of the
monomials s,s%, i.e., the fixed-point algebra of the canonical coaction of Fy.

Let us comment a bit on the representations defined by the state w in (3.8). For
definiteness, assume that Ly, ..., Lg are all strictly positive. Let 2y be the fixed-
point algebra of the modular automorphism group o(&). We prove in Proposition
4.1 and Remark 14.1, below, that 2, is an AF-algebra. We consider the following
algebras:

Og = closed linear span of all s,s?,
O} = UHF, = closed linear span of all s,s% with |a] = ||
= fixed-point algebra of the gauge action of T,
2, = closed linear span of all s,s% with L (o) = L (7)
= fixed-point algebra of the action o(F), where L (a) is defined by (4.2),
(93‘1 = GICARy = closed linear span of all s,s? where |a] = |y| and v is a
permutation of «
= fixed-point algebra of the gauge action of T¢,
Dy = closed linear span of all s, s% (see (1.37))
= fixed-point algebra of the coaction of Fy.
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We have the following inclusions:
OT

d
Dg < @ OF 04,

where 20y, = Ogd if and only if Ly, Ls,..., Lq are rationally independent and A, =
Og if and only if Ly = Ly = -+- = Ly. In general 2, has a skew position relative
to OT = UHF,.

We will here only analyze the representations given by the state (3.6) in the case
that L = (L, ..., Ly) is in a class extensively studied in the remainder of the paper:
Each pair L;, L; is rationally dependent. We have to refer to results in Chapters 4
and 5. By a renormalization (see remarks after (4.1)) we may assume that the L;’s
are positive (nonzero) integers, and that ged (Lq,. .., Lqg) = 1. Then the associated
one-parameter group o) is periodic with period 27, so we may view o(&) as a

representation of T in the automorphism group of Oy. Since ged (Ly,...,Lq) =1,
it follows, from the Euclidean algorithm and (4.5), that the spectral subspaces

(3.12) 07 (n) = {x €0y | O't(L) (z) = emtm}

Ar,

are nonzero for all n € T = Z [13]. But we argue in the beginning of Chapter 5
that the fixed-point algebra

(3.13) ™A, = 07 (0)

is a simple unital AF-algebra with a unique trace state 7 = wl|g,. Since all the
spaces 09 (n) OF (n)" are ideals in 2y, it follows further that

(3.14) 09 (n) 05 (n)* = AL

for alln € N. If (6,®) denotes the pair of extensions of (o, w) to the weak closure O}
of Oy in the representation defined by w, it follows from (3.14) that the I-spectrum
of the extension is

(3.15) r@) =T=2.

Also, since w is a o(Z)-KMS state at value §, where 3 is defined by (3.5), it follows
that

(3.16) t— & (—th)

is the modular automorphism group of &; see [14, Definition 5.3.1 and Theorem
5.3.10].

Now, since 7 = w|g(, is the unique trace state on 2y, it defines a type II; factor
representation of 2. Using (3.14) in the form

(3.17) 0g (n)AL0F (n)" = Az,
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it follows that the representation of Qg4 defined by w, restricted to 2Ar,, is quasiequiv-
alent to the trace representation, and in particular Y is isomorphic to the hyper-
finite II; factor,

(3.18) A =R,
Using the definition (4.2), we see that
(3.19) 845y €0g(n) < L(a)—L(y)=n  for all multi-indices a,~.

Thus, using (3.6), we see that, if y € A7 and z € OF (n) with z*zy = y = yz*z,
then

(3.20) w(zyz*) = e Pruw(y),
as follows from (3.16), (3.18), and (3.20). To see this, consider for example z = 5,57
with L (a) — L (y) = n. Let y be the initial projection of the partial isometry x,
ie., ,

Y =12"T=5,5,5,5,=35,5, €AL.
Then

w(y) = e PE)

from (3.6). But

TYT™ = 84,555,575, Sg

_— *
= Sa8as

and so
w (zyz*) = e AL@
= o~ BL()=L(7) g—BL(7)

=e Py (y).

An elaboration of this computation proves (3.20).
It now follows from (3.16), (3.18), (3.20), and [19] or [68, Proposition 29.1] that
" is the hyperfinite III,—s-factor. The factor O can be written as the crossed
product of A} ® B(H) (= the hyperfinite II-factor) by an automorphism scaling
the trace by e™#, something which is reflected in (3.20). This automorphism is
described in the end of Chapter 5, and should not be confused with a stabilized
version of the endomorphism A =), s, - s}, except when Ly =Ly =---=Lg = 1.
We defer a detailed analysis of the case when the L;’s are not pairwise rationally
dependent to a later paper. Although 2y is still an AF-algebra, it is no longer
simple, and it does not have a unique trace state. For example if d = 2 and L1, Lo
are rationally independent, then 27, is the GICAR algebra which is a primitive, non-
simple C*-algebra, and the extremal boundary of the compact convex set of trace
states is homeomorphic to the unit interval [0, 1]; see [4], [65], or [24, Examples
I11.5.5 and IV:3.7]. Hence the analysis of the algebras 2, will be radically different
for general L than in the femaining chapters of the present paper.




CHAPTER 4

Subalgebras of Oy

In this chapter we will study the fixed-point subalgebras of O4 under the one-
_parameter groups ¢ = o(E) of automorphisms defined by

(4.1) o) (s;) = elis;,  j=1,...,d,

where we will assume that all the L; have the same sign and any pair (Lj, L)
is rationally dependent. By a renormalization of the variable ¢ we may, and will,
assume that all the Ly are positive integers and that the greatest common divisor of
Ly,...,Lgis 1. The group afL) is then periodic with period 27. If @ = (g ... o)
is a multi-index with oy, € Z4, we define the weight function

d k

(4.2) L= #j(@Lj=) La,
j=1 m=1

where ;

(4.3) #; (@) = #{ai | 2 = j}

and using the standard multi-index notation

(4.4) Sa = Sa18az """ Sak

we have

(4.5) 01 (545%) = etE=LMg g7,

Since these elements span Oy, it follows that the eigenspace OF (n) in Oy is the
closed linear span of the s,s? with L(a) — L(y) = n. In particular, the fixed-
point algebra 2, = 0 = 07 (0) is the closure of the linear span of s,s with
L(a) = L()

The first result on 2y is that it is an AF-algebra, i.e., it is the closure of the
union of an increasing sequence of finite-dimensional subalgebras:

Proposition 4.1. Let L1,..., Ly be integers and consider the periodic one-param-
eter group o of x-automorphisms of Oq defined by

(4.6) o1 (S;) = eli s;.

Then the following conditions are equivalent.

(i) The fized-point algebra 2y, is an AF-algebra.
(i) All the L; have the same sign (in particular none are zero).
(iii) There is a B € R such that Oq admits a (o, 5)-KMS state.

Furthermore, if these conditions are not fulfilled, A1, contains an isometry which is
not unitary.

23
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Proof. (ii)<(iii) was established in Proposition 3.1.

(i) = (ii): Assume that (ii) does not hold. Then there exist 4,5 € {1,...,d}
with L; > 0, L; < 0. Put
(4.7) s=g; " sjl."'.
Then s is an isometry in 2z, which is not unitary. Hence 2{;, cannot be an AF-
algebra. This also establishes the final remark in Proposition 4.1.

(ii) = (i): We may assume that all L; are positive. We have noted that
O3 = 07 (0) is the closure of the linear span of s,s} with L(a) = L(y). If
L (@) = L (v), we define

(4.8) grade (s,s%) = L(a),

and we set grade (1) = grade(0) = 0. Now, if s,s%, sgsf are in OF then either
the product s,s5sss; is zero, or we have v = §' and the product is SaSeyry OF WE
have § = 6" and the product is 5,4 s%. In the latter two cases grade (s, s%s;5%) =
max (grade (s,s%) , grade (s, s3)), and, in the former case, grade (s,s%s5s7) = 0.
Thus in general,

(4.9) grade (s,s%s.s;5) < max (grade (s,s%) , grade (s.s3)) .

Thus if we define

(4.10) _ A, = linspan {s,s | L () = L (y) <n},

then A, is a x-algebra, and 2, is finite-dimensional since L; > 0 for i = 1,...,d.
Since any s, s € OF has a grade, it follows that (J,, 2y, is dense in OF = . Thus
21, is an AF-algebra, and Proposition 4.1 is proved. O

We refer to [4] and Remark 5.6 for AF-algebras and Bratteli diagrams, to
(1] for K-theory, and to [24] and [39] for good recent treatments of both. In
order to analyze the AF-algebra Ay, further, it turns out to be convenient to define
subalgebras 2, in a more sophisticated way than above, and this is the object of
the following. Note that, except for simple cases (like d = 2), the finite-dimensional
subalgebras introduced below are larger than 2(,. The main structure theorem on
Ay, is the following.

Theorem 4.2. Let Ly < Ly < -++ < Ly be positive integers such that the greatest

common divisor of L1,...,Lq is 1. It follows that 2L is a simple AF-algebra with
a unique trace state defined as follows: Let B be the positive real number such that
(4.11) Zd: e Pli =1,

i=1
and put
(4.12) p; = e PLi,
Then the unique trace state is the restriction to ™Ay of the state w defined on Oy by
(4.13) w (8483) = 8ayp®
where
(4.14) P% = PayPay ** Pay,

fora=(oq...0).
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m =0

n=20 1

3

I

i
N
L

E.F
FiGURE 1. d=2; L1 =1,Ls=1; 8=1n2.

Remark 4.3. During the proof of Theorem 4.2, we will show that the AF-algebra
A7, has a Bratteli diagram which stabilizes after a finite number of steps to having
constant incidence matrices. This diagram may be described explicitly as follows:

The nodes are indexed by (n,m), where n indexes the rows, n =0,1,2,..., and m
indexes the nodes in the row, m = 0,1,...,Ls — 1. Some of the nodes in the first
rows may correspond to the algebra 0: for example, (0,m), m = 0,1,...,Lq — 1,

correspond to the algebras M; = C,0,0,0,...,0. The embedding from one row to
the next is given as follows: There are lines from (n — 1,0) to (n,m) if and only
if m = Ly — 1 for some k, and the number of lines between these nodes is equal
to the number of such k’s. There is a single line from (n — 1,m) to (n,m — 1) for
m =1,...,Lq—1. Finally, to obtain the actual Bratteli diagram, one should throw
away all nodes corresponding to the algebra 0 as well as the edges emanating from
such nodes. The assumption that the greatest common divisor of L,...,Lq is 1
will imply that there are just finitely many such nodes. It will be clear from the
proof how this pattern appears. We give some examples in the figures below.

We will show that the unique positive eigenvalue of the constant incidence
matrix (the Frobenius eigenvalue) is e?.

Before proving Theorem 4.2 and Remark 4.3, we look at some examples.

Figure 1 is the CAR-algebra of type 2°; see [38], [4], [27], [14] and [65].

Figure 2 is the AF-algebra with same dimension group as the rotation algebra
g for § = @ = the golden ratio. Pimsner and Voiculescu [62] embedded 2y
into this AF-algebra.

Figure 3 illustrates that the Bratteli diagram is more “slow” in stabilizing when
the L;-numbers are dispersed. Figures 4 and 5 illustrate how the multi-indices build
up as the sizes of the matrix algebras increase going down the Bratteli diagram.
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m=20 m=1 m=0 )
n—0 Ll——]
o)
n=0
;,;f/f':;, / | 1
E :
(2)
(11) (12)
"2
(12)
(22)
(21)
(111) )
o)
(112) )
(121) )
(211) (212)
(211)

FIGURE 2. d=2; L1 =1,Ly =2; = —In((v5—1) /2). Then
the Bratteli diagram is given by the Fibonacci sequence. Detail on
the right shows the multi-indices for each node in the top five rows.
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m=10 m=3m=4 m="7

FiIGURE 3. d = 4; L = {4,4,5,8}; first matrix column =
(00021001)% 8= —Inz where z = (=2 + v/100 + 12v/69 +
/100 — 121/69) /6 ~ 0.7549 solves 2z* + z° 4+ 2 = 1. (Actually z

solves 22 + 73 = 1.) See the n =5 case in Example 5.3.

27
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m=0 m=1 m=2 m=0 m=1 m=2

P

(2)

(12)

(22)

FIGURE 4. d = 2; L = {2,3}; first matrix column = (0 1 1)%
B = —Inz where z > 0 solves 22 + z® = 1. Detail on the right
shows the multi-indices for each node in the top five rows. See the
proof of Lemma, 4.6.

n=20
n=1
n=2
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m=0 m=1 m=2 m=4

FIGURE 5. d = 3; L = {2,3,5}; first matrix column = (0110 1)*;
B = —Inz where z > 0 solves 22 + z® + 2% = 1.

29
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The significance of the choices of L;-numbers will become more clear in Chapter 5
below where we study isomorphism invariants for the AF-algebras 2[;, in general.

Figure 4 represents (o1 1), the first of two AF-algebras which share Perron—
Frobenius eigenvalue A = e where a = e = 0.7549 is the real root of z2 +z3 = 1.
The other one, (1000 1), is obtained from z + 5 = 1, which has the same positive
root a. (See Remark 4.10 and Chapter 5 for more details on the Perron—Frobenius
eigenvalue.) Yet these two AF-algebras are non-isomorphic, since their dimension
groups have rank 3 and 5, respectively. (See Theorem 7.8.) They correspond to the
pair of lattice points (2, 3), (1,5) that is illustrated in Figure 18.

Figure 6 illustrates the procedure in the proof of Lemma, 4.6, below.

Let 7 be the additive real character defined on the dimension group Ko (2z,)
by the trace state, [27]. Figure 12 represents two examples with the same ker (1)
(=2 Z3), the same 7 (Ko) (= Z [}]) but still non-isomorphic AF-algebras, as they
represent different elements of Ext (Z [§] ,Z®). (Details in Chapter 10.)

We will prove Theorem 4.2 and Remark 4.3 via a series of lemmas. First a
definition:

Definition 4.4. A set {eay}, vel of elements of a C*-algebra 2, doubly indexed
by a finite set I, is said to be a system of matriz units if

() eaveen = dyeean,
(i) eq = ey
In that case, matrices (Aay), eI Over C may be represented in 2 as follows:
(Aay) = >, 27 Aayeay. Note that we do not assume that the projection Y, eqa
is the identity of .

Lemma 4.5. Let Ly, Lo,...,Lq be positive integers and let o = o= be the associ-
ated automorphism group (4.5). Let Br = {s,8%} Ler be a finite set of elements
of Ar, = OF. The doubly indexed set By is then a set of matriz units if and only if
there is an n € N such that L (o) =n for all a € I.

Proof. Consider arbitrary multi-indices o, -, £, and 7 built from Z4 The product
(4.15) (so5%) (sesy)
is nonzero only if either v is of the form v = ('), or £ is of the form & = (y¢&'). If
each of the factors in (4.15) is in OF, then L (o) = L () and L (§) = L (7). Recall
that the grade of the first factor is L (), and that of the second is L (£). If the two
factors have different grades, and if the product is nonzero, then ' # ¢ or &' # g.
In the first case, the product is sasz‘m,), and in the second it is s(ag,)s;‘,. In either
case, if v/ #£ @ or &' # ¢, the product of the two elements from B will be nonzero
with v # ¢, see (4.15), so B will not then be a set of matrix units, i.e., condition (i)
of Definition 4.4 will not hold. This proves the “only if” part of Lemma 4.5.
Conversely, if there exists an n such that L(a) = n for all @ € I, then the
case v = (&7') with o' # ¢ is excluded since L(&y') = L(¢) + L(y'). TFor if
L(v)=L(§) =mn, then L(7") =0, and v = g. The same argument also excludes
€ = (v¢') with & # ¢. It follows that condition (i) of Definition 4.4 will be satisfied

e .
for ey, = 848% with I as an index set. O

Lemma 4.6. Let d € N and let L1,...,Ly be positive integers. Define L (a) =
> #i (@) Lj on all finite multi-indices o from Zgq as in (4.2). Define

(4.16) L™ (n) = {a| L(a) =n}
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and put
(4.17) E, ={y|v=(ai) where L(a) <n and L(a) + L; > n}.
Then

(4.18) Do sasht Y, ssh=1,
a€L=1(n) YEE,

i.e., the projections in the family {s,s% | a € L™  (n)} U {s s} |y € En} are mu-
tually orthogonal with sum 1.

Proof. Let us use the shorthand notation

(@) =€sa  (=5a5a)-
It follows from the computations in the proof of Lemma 4.5 that, given two projec-

tions (@), (), then (@), (y) are either mutually orthogonal, or one is contained in
the other; and the latter case occurs in, and only in, the following two cases:

Case 1. a = ya'. Then (a) < (v). Or,

Case 2. v = ay'. Then (y) < (a) (with strict inequalities if and only if o # g,
~' # @, respectively).

Using this, it follows easily from case-by-case considerations that the projections
in the family

Ap={(a)|a€ L7 (n)UE,}

are mutually orthogonal. For example, the projections (a), @ € L™! (n) are mutu-
ally orthogonal by Lemma 4.5, and if @ € L™ (n) and y = (§%) € E,, with L (§) < n,
'L (8) 4+ i > n, then both Case 1 and 2 are excluded, so () (y) = 0; and similarly, if
a = (gj) and v = (d%) are in E,, then (a) () # 0 implies a = <. It remains to show
that the projections in these two families add up to 1. If not, there would exist a
multi-index (d) such that (4) is orthogonal to all projections in the two families. If
then L (§) < n, we could find a &' such that 66’ € L™ (n) or 68’ € Ey, but since
(6) (88") = (66") # 0, this is impossible. If L (§) = n, then § € L~ (n), which is
impossible. If L (§) > n, write § = (6105 ...dx). If there exists an m < k such that
>iti Ls; = n, then (6) < ((61...0m,)), which is impossible; and, if not, there is
an m with Y°;%, Ls;, < n and EmH Ls, > n. But then (61 ...d0p41) € By, and
(0) < ((d1...6m+1)), so this is equally impossible. Thus the prOJectlons in the two
families add up to 1, and Lemma 4.6 is proved. |

Example 4.7. The procedure in the proof of Lemma 4.6 may be illustrated graph-
ically as follows: Let @ = (a1 ...q,) € L71 (n), and set

E, (a) = {vy| 3¢ < p such that v = (a1 ...agv4+1) and L (y) > n}.
For the example d = 3, L1 =1, Ly = 2, Lz = 4, we have
E4((1111)) = {(1112),(1113),(113),(13)};
E; ((121)) \E4 ((1111) {(122),(123)};

) =
((22)) contains a new element (23);
((211)) contains the rest, i.e., (212),(213).
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(1111)

<~ (13)

(211) |

 e——(212)

(22)

(3)

FIGURE 6. Illustration of procedure in proof of Lemma 4.6, with
d=3, L=1{1,2,4}. Compare with Figure 7 and Example 4.7.
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{1,2,4}; first matrix column

Compare with Figure 6 and Example 4.7.

FIGURE 7. d=3; L
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Level 1:

Level 2:
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(1)

(2)

- (1)

- (2)

- (3)

- (3)

Level 3:

Level 4:

(3)
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(12)
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(22)

(11)

(12)

(13)

(21)

(22)

(23)

(13)

(23)

(31)

(32)

(33)

FIGURE 8. L = {2,2, 3}; levels 1-4. Compare Figures 8§, 9, and 10
with Figure 11.
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FIGURE 9. L = {2,2,3}; levels 5-6.
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Level 7:
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b e ———— (1111)
) e ————— (1112)
f e——— (1113)
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; e—— (1123)
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"
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FIGURE 10. L = {2,2,3}; level 7.
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(33)
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&

&
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(3)

(3)

(02 1)

L = {2,2,3}; first matrix column

Compare with Figures 8, 9, and 10.

)

FIGURE 11. d =3
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This is illustrated in Figure 6. Elements from L~!(4) have arrows coming from
the left ending at dark bars, while elements from E4 have arrows coming from the
right ending at light bars. The points in L~! (4) U B4 together represent Cuntz
algebra generators. The ordinary diagram for this 2y, is illustrated in Figure 7.
Corresponding diagrams for Ly = Ly = 2, Ly = 3 are shown in Figures 8, 9, 10,
and 11.

Proof of Theorem 4.2 and Remark 4.3. Referring to Lemma, 4.6, define

(4.19) B, (0) = L™ (n)

and

(4.20) En(m) = {7 € x| L(y) =n+m}

for m = 1,2,...,Lq — 1; for greater m’s, E, (m) becomes the empty set. E, (m)
may also be the empty set for some m € {0,...,Ls — 1}, but we will prove in a
moment that if the greatest common divisor of Ly,..., L4 is 1, this only happens

for finitely many pairs (n,m). Now, define 2(™™) as the linear span of elements
oy = 8485 With o,y € By, (m), m =0,..., Ly — 1, with the convention that 9((nm)
is empty if E, (m) = ¢ and %40 = C1, A®™) = 0for m =1,...,Lqg — 1. Tt
follows from Lemma, 4.5 that each (™™ is a full # (B, (m)) x # (E, (m)) matrix
algebra, and that the units of 2(™™) are orthogonal and add up to 1 as m runs

over 0,1,...,Lg — 1 for fixed n. Put

Lg—1
(4.21) A, = P A,
k=0
If L () = n, then
d
(4.22) M=)
=1
and
(4.23) ¥i € Epy1 (Li — 1), i=1,...,d;

and hence A0 is partially embedded in 2("+1™) with multiplicity equal to the
number of &’s such that Ly — 1 = m. We also have

(4.24) Enp1 (m) C Ep (m+1)

form =0,1,...,L; — 2, and thus A™™+D) is embedded into 2" *+1™) with mul-
tiplicity 1 for m = 0,1,...,L; — 2. It follows that %, is indeed an increasing
sequence of finite-dimensional subalgebras, and in particular 2, contains all mono-
mials s, 5% € Uy, of grade < n. Thus U,, A is dense in Ay, reestablishing that 24y, is
an AF-algebra, and the description of the embedding 2,, «— 2,41 proves Remark
4.3. The remaining statements in Theorem 4.2 will be proved after Lemma 4.8,
below.

By Proposition 3.1, the state defined on O4 by (4.13) is a (o, 5)-KMS state.
Thus the restriction to Ay = OF is a trace state. Now the embeddings 2, < A1
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are given by a constant embedding matrix J : if, for example, d = 4, L1 = 1,
L2 = L3 = 3, L4 = 4, then

DO -

J =

OO O
OO -=O
O = OO

1

In general J has the property that J™ has strictly positive matrix elements for some
positive n. This is in fact equivalent to the property that the numbers Ly,...,Lq
have greatest common divisor 1, which may be seen as follows:

Lemma 4.8. Let P be the semigroup generated by L1,...,Lg:

d
(4.25) P = {anLk ng € NU {0}} :
k=1
Then N\(P is finite.
Proof. Since Ly, ..., Ls have greatest common divisor 1, there are ny € Z such that

d
> Ly =1,
k=1

and hence there are x1,z2 € P such that
1 =x9 + 1.

Now, if ad absurdum N\P is infinite we may find arbitrarily large y € N\P,
but then y — x1, y — z are not contained in P; thus y — 1 — z1, ¥y — 1 — T2,
Yy — Ty — T2 are not in P, etc., and thus we can find arbitrarily long sequences of the
form (2,2 + 1,z +2,...,z + k) not in P. But as P contains NL;, this is impossible.
Thus N\ P is finite. O

End of proof of Theorem 4.2. Since any node in the Bratteli diagram is connected
to a node of the form (n,0) further down, and (n,0) is connected to all nodes
(n +m,0) where m € P, it follows that all nodes in a row will be connected to all
nodes in some row further down, which means that J" has strictly positive matrix
elements for some n € N. Therefore 2y, is simple [4], and 2 has a unique trace
state [27, Theorem 6.1], [69]. This ends the proof of Theorem 4.2. O

Remark 4.9. The semigroup P defined by (4.25) can be read off the diagram of
A as follows: n € P if and only if the node (n,0) actually occurs in the diagram,
i.e.,, if and only if L™ (n) # ¢. To decide which (n,m) actually occurs, start with
the vector (0,0) =1, (0,m) =0, m=1,...,Lq—1, and apply the incidence matrix
J. For example, in the example illustrated in Figure 3, with L = {4,4,5,8}, we
have P = {4,5,8,9,10,12,13,14, ...}, while in the right-hand example in Figure
14, we have P = {3,6,7,9,10,12,13,14,...} (both P’s continuing with no further
gaps in the sequence).

Remark 4.10. The result on the unique trace state cited at the end of the proof
above is actually related to the classical Perron-Frobenius theorem [37, 61, 35].
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480

951 470

555

645

441

290

FIGURE 12. d = 6; L = {1,3,3,3,4,4} (left), L = {2,2,2,3,4,4)}
(right). These define non-isomorphic algebras (see Chapter 16).
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mg 1 0 0 0 O 0 0 0\« place M;
0 01000 0 00
0 00100 0 00
mg 0 0 0 1 0 0 0 O {+ place M
g = 0 00 0O0T1 0 00
0 00 0O0TO 0 0 0
0 00 0O0O 0 10
0 00 O0O0O 0 01
my, 0 0 0 0O O -+ 0 0 0/« place M,

FIGURE 13. Incidence matrix.

If v{™ is the value of the trace state on the minimal projections in 52(5,?) = Ql(”'m),
and v(" = (v((,n), . ,vg:)_l), then

(4.26) v = (M) g,

provided n is so large that the Bratteli diagram has stabilized, i.e., D/ # {0} for
m =0,1,...,Lg — 1. Since the components of v(™ have to be nonnegative, the
only solutions of (4.26) are such that each v(™ (for large n) is a multiple of the
Perron—Frobenius eigenvector v of J, i.e.,

(4.27) vd = Agv.

Recall that the irreducibility of J (some power of J has only positive matrix units)
implies that J has a simple positive eigenvalue Ao such that Ao > |u| for all other
eigenvalues u, and the corresponding one-dimensional eigenspace is spanned by a
vector v with positive components. All v(™’s for large n are multiples of v. (This
is because of the uniqueness of the normalized positive solution of (4.27), together
with the fact that v(™) = const.-e~#™v is indeed a solution. Note that the Perron—
Frobenius eigenvalue of J is 8.) Thus v may be computed explicitly in the examples
by choosing n so large that the diagram has stabilized, and using (4.13) and (4.20)
to evaluate the trace on the minimal projections in Ql,(-,?). The result is surprisingly
simple; see (5.17) in the next chapter.

Let us give the details of the graphic description of the embedding of 2, into
Ap+1. Suppose that the integral weights of Theorem 4.2 are1 < L; < Ly <--- <L
L4 with possible multiple occupancy. Let

L1;=M1 fOI‘lSiSil,
L; = M, for i; < i <ig,
(4.28)

L; = My for ip_1 <i<ip=d.
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Let m; = 4; — ij—1 be the multiplicities. Then, after stabilization, the partial
embedding of 91(()”—1) into the factors 22157?), m =0,...,Lq — 1, are given by the

diagram in (4.29) below (illustrated in the case L; = 1):

(4.29)

M,y M, M;
my lines ms lines ms lines

Then J~! is given by the matrix

0000 0 0
1000 0 0
0100 0 0
0010 O 0
(030) a_ 00010 0
0000 0 0

o O o o o

M

m

mp

m

mk

mj
mp

My,

my, lines.

<+ place M;+1,
j=1,..,k-1

The characteristic polynomial for the corresponding inverse J~! is proportional to

(4.31) P () = mpz™s +mp_1 g™t 4 mpa™ -1

Since ZLI miePM: =1, we see that £ = e~? is the unique positive root for this
polynomial. Thus e? is the Perron-Frobenius eigenvalue for J.

Remark 4.11. Note that the implications (i) < (ii) <« (iii) in Proposition 4.1
remain true even if Ly, ..., Ly are not integers, by essentially the same proof. This
is because the action o(2) defined by (4.1) is almost periodic in all cases, and hence
2, is the closure of the linear span of s,s? with L () = L () even in the general

case, using (4.5) and the definition

k
L(a) = Z Ly,,.

m=1
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It is no longer true that (i) = (ii). Take for example d = 2 and L;, L, rationally
independent irrational numbers of opposite sign. Then A, is the GICAR algebra
[24].







Part B

Numerical AF-Invariants







CHAPTER 5
The dimension group of 2,

In this chapter and the following ones we will construct isomorphism invariants
for 2z, and try to classify the 2(p. It is known that there exists a complete isomor-
phism invariant for AF-algebras 2{, namely the dimension group. In the case that
2 has a unit this is the triple (Ko (%), Ko (), ,[1]) where Ko (%) is an abelian
group, Ko (), are the positive elements of Ko (%) relative to an order making
Ko (/1) into a Riesz ordered group without perforation, and [1] is the class of the
identity in Ko () (if 2 is nonunital, replace [1] by the hereditary subset {[p] | p
projection in A} of Ko (%), ). See [27] for details on this and the following state-
ments. (Connections to ergodic theory are also described in [72], [71].) Let us
now specialize to the case that 2 is given by a constant N x N incidence matrix
J (with nonnegative integer entries) which is primitive, i.e., J™ has only positive
entries for some n € N. Then % is simple with a unique trace state 7. In the
case that Ko () = ZY, this class of AF-algebras (or rather dimension groups) has
been characterized intrinsically in [41, Theorems 3.3 and 4.1]. In general when J
is an n x n = Ly X Ly matrix with nonnegative entries, the dimension group is the
inductive limit

(5.1) zN LygN Lygh L,
with order generated by the order defined by
(5.2) (my,...,mn)>0<=m; >0 on Z%.

This group can be computed explicitly as a subgroup of RV as follows when
det (J) # 0 (as it is in our case): Put

(5.3) G =J™(ZV), m=0,1,...,
and equip G, with the order
(5.4) Gh =0 ((2")").
Then
(5.5) GoCGLCGyC--,
and
(5.6) Ko (21) = Gm,
m

a subgroup of RN (containing Z?), with order defined by
(5.7) g>0 if g >0 in some Gp,.

47
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The action of the trace state 7 on Ko (2) may be computed as follows: If A is the

Frobenius eigenvalue of J, and & = (e, ..., an) is a corresponding eigenvector in
the sense
(5.8) alJ =\

(ie., Jtat = Aat, see [27, pp. 33-37]), then if « is suitably normalized (by mul-
tiplying with a positive factor), the trace applied to something at the m’th stage
of

3 MR

(5.9) ZlN — ZzN — ZBN —
is
(5.10) 7(g) = X" {alg),

where (- | -) here denotes the usual inner product in RY, i.e., (a|g) = Zf_’__l Q4ig;-
Taking a as the Frobenius eigenvector in (5.10) makes the ansatz well defined: if
9 € G € Gy, then

(5.11) A (] g) = A (o] 7).

Thus 7 is an additive character on Ky (%), and up to normalization the unique
positive such. If we identify [1], with (1,0,0,...) in the first Z", the normalization
of xis a; = 1.

Elements of the kernel of the additive real-valued character 7 on Ky (2) are
called infinitesimal elements. Thus Kj (2() is an extension of 7 (Ko (2)) by the
kernel of 7. But in general it is not the trivial extension, i.e.,

Ko () 27 (Ko (AL)) @ (kernel of 1),

which complicates classification; see Chapter 10.

Suppose we calculate the groups 7 (Ko (1)) and ker (77) for a specific pair,
given by L and L/, say. Then if one of the two groups 7 (Ko (1)) or ker (1) is
different for L and for L', the AF-algebras 2 and 27+ are non-isomorphic. We
show, however, in Chapter 10 that the AF-algebras can be non-isomorphic even if
the two groups agree for L and L'.

It can then be shown that the range of the trace on projections is
7 (Ko (Az)) N[0, 1].

When Kj (21) is given concretely in RY as above, the trace can be computed
as

(5.12) 7(9) = (al9),

where g € m’th term Z% is identified with its image J~™%!g in RY; and the
positive cone in Ko () C RY identifies with those g such that 7 (g) > 0, or g = 0.

Let us now specialize to the case that J = Jr has the special form we are
interested in . So assume that 1 < Ly < Ly < -+ < Ly, that the greatest common
divisor of Lq,...,Lg is 1, and put

(5.13) {L.,...,Lg} = {MI,...,Mk},

my oMy,
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where m; is the multiplicity of M;. Put

(5.14) N = My = Lg.
Then the incidence matrix J is
(5.15)
1 0 1 0 0 0 O 00 O 0 0
0 0 1 0 0 O 0 0 O 00
0 0 O 1 0 O 0 0 O 00
M| mg 0O O 01 0 00 O 0 0
0 0 O 0 0 1 0 0 O 0 0
J = 0 0 0 00 0 10 0 00
Mol mg 0 O 0 0 O 01 0 0 0
0 0 O 00 O 00 1 0 0
0 0 O 0 0 0 0 0 O 1 0
o 0o 0 -~ 00 O 0 0 O 01
Mi\mg O O -+ 0 0 O 00 O 00
Let z = e™# be the unique solution in (0, 1) of
(5.16) 1-) " ma™ =o0.
If
(5.17) o= (1,6“‘3,6“2",...,e_(N_l)ﬂ) ,
then « is the left Frobenius eigenvector
(5.18) aJ = ela.
As explained before, we have the identification
(o]
(5.19) KO(Q[L):UJ‘"ZN (CRM)
n=0

with the trace functional

(5.20) T (y) = (a|y) , ye U J 7N,
n=0
Using
N .
(520 (] 7778 = =79 o] ) = e 3 6D

i=1
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for k € Z%N, n € N, together with the fact that the range of the trace is a subgroup
of the additive group R, it is clear that the range of the trace is Z [e_ﬁ], ie.,

(5.22) T (Ko () =Z [e7P],

and, furthermore, from [27],

(5.23) 7 ({p | p projection in Az }) = Z [e7P] N [0,1].
Now, if m = (mq,...,my) is an element of the k’th group
(5.24) zN Ly gN Ly I, ..

and m is an infinitesimal element then (a|m!) =0, i.e.,

N .
(5.25) Zmi (e“ﬁ)z_l =0

(where we include zero terms!). This sum Zf;l m;zt~! is a multiple of the minimal

polynomial pg (z) having e~ as a root. If this minimal polynomial happens to
bel—-3, m;z™i, which has degree N, then there are no nontrivial infinitesimal
elements, and

(5.26) Ko(G)=Z[e"].
If ps has degree deg (pg) < N, it follows that

N
(5.27) kawk_l = p(z) - (arbitrary polynomial of degree < (N —1)-degpg).

i=1
It follows that the group of infinitesimal elements of the m’th group Z¥ is isomor-
phic to
(5.28) ZN-deers

and as J maps these groups into each other, we obtain the infinitesimal elements
as an inductive limit

(5.29) gN-degpp Jo, 7 N-degpp Jo, ..
where Jy is a restriction of J, so Jp is an injective matrix with integer entries,
but the entries are no longer necessarily positive, as we see in the examples. See

Chapter 7 for more details on Jg.
In conclusion, the complete invariant

(5.30) (Ko (1), Ko (1), , [1])

of the algebras 2(;, defines an extension

(5.31) 0 — ker (1) == Ko (Ar) - Z [e™#] — 0
together with an element [1] of Ko (/1) such that
(5.32) 7([1]) = 1.

See Chapter 10 for more details on these extensions. Concretely, Ko (2(1) is the
subgroup (5.19) of R, 7 is given by (5.20) and (5.17) and

(5.33) [1] = (1,0,0,...,0)
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and
(5.34) Ko (&), ={0}u{ve Ko () | (a]v) > 0}.
Note in passing that if G is any countable abelian group which is an extension
0—Go— G -5 Zfa) — 0

where Gy is a torsion-free abelian group and a is a real number, and Z {a] is equipped
with the order coming from Z [a] C R, and if G is equipped with the order g > 0
if and only if 7(g) > 0, then G is unperforated and has the Riesz interpolation
property, so G is the dimension group of an AF-algebra by Effros-Handelman—
Shen’s theorem [28], [24]. ‘

Another way of describing (Ko (), Ko (A1), ,[1]) which will be quite useful
in the sequel is the following: Let pr, (z) be |det J| times the characteristic polyno-
mial of J~1, see (4.31), (5.16), (5.48), and let a = e~ be the positive real root of
this polynomial (i.e., 1/a is the Perron—Frobenius eigenvalue of J). Then

(5.35) Ko (L) = Z[z] / (pr)

as additive groups, and the order on Ko (%) is given by that p + Z [z] pr, (z) > 0
if and only if :

(5.36) p(a) >0
(this condition is well defined since pr, (a) = 0). The element [1] corresponds to

1+ Z [z] pr, (z) by this isomorphism. Application of J=* on Ko (%) (which is well
defined by (5.19)) corresponds to multiplication by z, i.e.,

(5.37) I (p(2) + Z [g] pr (2)) = zp (2) + Z [z] pz. (2)

where the left-hand polynomial is identified with its representative in Ko (2z,) given
as in (5.38), below. The isomorphism between the concrete realization of Ko ()
in (5.19) and Z [z] / (p1) is thus given by

(5.38) (ag,...,an—1) —rag + a1z + -+ ay_1zV 1

mod py, (z),

and using this and (5.21) the statements above follow immediately. Note also that
in this picture

(5.39) ker7 = Z [z] po (z) / (pz (2)) 5

where p, € Z [z] is the minimal polynomial of a, which is a factor of pr,. Factorizing
(5.40) pL (%) = po (2) pa (2)

we thus have

(5.41) kerT = Z [z] / (po (2)) -

This viewpoint will be important in Chapter 7 and later chapters.

One connection between the cone (5.2) and that of (5.34) can be made by
the use of [36, Lemma 2], which shows that a given element g of Ko (2%4r) =
Uk>o J;FZN satisfies 7(g) > 0 if and only if there are k € {0,1,2,...}, n =
(n1,...,nN) € ZN, such that n; > 0, and v € ker () such that

g=v+J;"n.

In applications, this “concrete” realization of (Ko (%z), Ko (%), ,[1]) is often
nevertheless not concrete enough to decide isomorphism and non-isomorphism of




52 REPRESENTATION THEORY AND NUMERICAL AF-INVARIANTS

the algebras 201, but there is a simple sufficient condition for isomorphism, namely
equality:

Corollary 5.1. Let 1 < Ly < --- < Lgand 1 < L} <-.- < L), be two sets of
integers, each with greatest common divisor 1. Assume
(5.42) the unique solutions z,y € (0,1) of the equations
d d’
1- ZwLi =0and1-— ZyLi =0 are the same, i.e., T = y;
i i

and
[o2) o0

(5.43) Ly=Ly(=N) and |JJg @) =] 75" (2").
n=0 n=0

It follows that A1 and Ar: are isomorphic C*-algebras.

Proof. By condition (5.42) and (5.16)—(5.18) the Perron-Frobenius eigenvalue e”
and the normalized left Perron—Frobenius eigenvector « are the same for Jr and
Jr. But (5.43) states that Ko () and Ko (%) are the same subgroup of QV,
and by (5.34) the positive cones are the same. By (5.33), [1] is represented by
the same element of the two cases, and thus the complete invariants (5.30) are the
same. Thus 2y and 2z, are isomorphic C*-algebras. O

Still we will see in the examples that the computation of (Joo, J; ™ (Z) is not
so simple in general. But there is one simple special case, namely when my =1 in
(5.15), i.e., |det (Jr)| = 1. Then J; ' is a matrix with integer entries, so Jr,: ZV —
ZV is bijective and hence

(5.44) Ko () =2V
by (5.19). It follows immediately from Corollary 5.1 that

Corollary 5.2. Let 1 < Ly <--- < Lgand1 < Ly <..- < LI, be two sets of
integers, each with greatest common divisor 1. Assume

(5.45) the unique solutions z,y € (0,1) of the equations
d &
1- ZxL" =0andl-— ZyL" =0 are the same, i.e., x = y;
i i

and
(5.46) Lys=LY and L4—1 < Lg and Ly _; < Ly (i.e., the matrices Jg,

and Jp: have the same rank, and the lower left matriz element is 1).
It follows that Ay, and g+ are isomorphic C*-algebras.

Proof. In this case |det Jr| = |det Jr/| = 1 so Ko (1) = Ko (A1) = ZY and the
result follows from Corollary 5.1. O

In general we will see in the examples that the algebras 2y for different L’s
are “almost never” isomorphic. However, Corollary 5.2 may be used to make some
isomorphic tuples:
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Example 5.3. It is convenient from here and henceforth to write J in the form

m 1 0 --- 0O
mg 0 1 -+ 00
(5.47) J=1| -
my—2 0O .10
my_1 0 O 0 1
my 0 0 -+ 00

instead of (5.15), and then equation (5.16) becomes

N
(5.48) pL (z) = ijzj -1=0.
=1

As noted in (4.30)—(4.31) this equation is my times the characteristic equation of

00 -+ 0 0 =
10 0 0 -m
(5.49) N
00 -+ 1 0 —mr=
00 -~ 0 1 —ma=t

The condition in Corollary 5.2 is that my = 1, i.e., the polynomial (5.48) should
be monic. Now it follows from Corollary 5.2 that two monic polynomials of the
form (5.48) give rise to isomorphic algebras if they have the same degree N and
the root in (0,1) is the same for the two polynomials (under the overall condition
ged ({2 | ms #0}) = 1). (This is no longer true if the polynomials are not monic;
see, e.g., the examples in Chapters 16 and 17.) To generate polynomials of the form
(5.48) with the same root, one may start with a fixed polynomial of the required
form, e.g.,

po(z) =23 +2% -1,
and then multiply po (z) with a polynomial
g(z)=2z"+ kpno1z™ 4 kp_ox™ 24+ ki + 1.
Choose the coefficients ki, ..., kn,—1 as integers such that m; > 0 for all 7 in

n+2 )
po (z)q(z) = 2™ + Emj:cj -1

=1
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This procedure, applied to n = 2,3,4,5, gives the following values for the possible
first column

m1
m1 my
mN—-1
Mp43 my 1

of the incidence matrix J:
n = 2: Two isomorphic algebras:

—_ 0 O O
— - OO

n = 3: Two isomorphic algebias:

-0 O = O
N O OO

n = 4: Three isomorphic algebras, which are subalgebras of Os, O4, Oz, re-
spectively:

—HNNOOOO
== O OO
_H O COCOoONOO

See Figure 14.
n = 5: There are 6 + 1 possibilities to begin with,

0 0 0 0 1 0 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 1 0 1 0 2 1
2110’ fop’fop’1f{’10f’
2 1 1 0 0 0 0
2 1 1 1 1 0 0
1 1 1 1 1 1 1

but in the last example ged (L) = 2, so this falls outside our scope. The
remaining 6 vectors give rise to isomorphic subalgebras of Oy with d =
6,5,4,4, 3,4, respectively. Note that this shows that d is not an invariant.
The next-to-last example is illustrated in Figure 3.
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/,

i d ),.:;"Y‘:‘~ /’JVN Jﬂ/;"
rd g e j/y

FIGURE 14. L = {5,5,6,6,7} (top left), {3,5,6,7} (bottom left),
and {3,3,7} (right), illustrating the n = 4 case in Example 5.3.
These represent isomorphic algebras.
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Remark 5.4. The isomorphism of the algebras 2z and ;- established in Exam-
ple 5.3 for various pairs L, L' was arrived at in a quite roundabout way. In general
it follows from [4, Theorem 2.7] that 2y, and 2+ are stably isomorphic if and only
if there exist natural numbers ki, ko, k3, ..., l1,12,13,. .., and matrices A;, As,...,
B1, B,, ... with nonnegative integer matrix elements such that the following dia-
gram commutes:

<
S
R

NAa X AN AN A

S
o
.
°€k—

ék.
o

(5.50)

<
~F

¢
%—k‘ °

%
%

This means that

Jfi = BiA;
(5.51) Lo
Ji = A1 B;
for i = 1,2,.... There are examples showing that the sequences A, B, k, [ cannot

always be taken to be constant when they exist [10]. In our case, when the Ji’s
are nonsingular, the existence of constant sequences would entail that Jr, and Jy
have the same dimension, and J# be conjugate to J%,. Note in this connection that
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Jy, is conjugate to Jr if and only if L = L', because the characteristic polynomial
of Jr, completely determines L = (Ly,...,Lg4), as we have seen.

In the covariant version of this isomorphism problem, it is known from a the-
orem by Krieger that the sequences can be taken to be constant. Let G (L) be
the dimension group associated to L, and (o), the automorphism of G (L) deter-
mined by Jr. Let now B = A @ K (E2) be the stable AF-algebra associated to
G (L), and o, an automorphism of By, such that the corresponding automorphism
of G(L) is (oL),. Then Krieger’s theorem [50] says that (G (L), (or),) is isomor-
phic to (G (L'), (or+),) if and only if there is a k£ € N and nonnegative rectangular
matrices A, B such that

AJL = JLIA,

BJLI = JLB,
(5.52) AB= Tt
BA = Jk,.

If also N > 1, it was proved recently in [12] that this is also equivalent to outer
conjugacy of oz, and ors. All these results were proved in the more general setting
of constant incidence matrices. In the Jy case, the conditions simply mean L = L.
In fact, the third condition in (5.52) implies that both A and B are nonsingular.
Hence, the first condition reads Ji = AJA™!, and we conclude that Ji, and Ji
have the same characteristic polynomial. Since the coefficients in the characteristic
polynomial of Jy, are the numbers in the first column of Jz, it follows that Jp = Jp .
as claimed. (See also (11.1)—(11.2) for more details.)

Note that the Williams conjecture discussed at the end of Chapter 6 in [27]
has been settled in the negative in [47]. :

Let us end this chapter by mentioning another corollary of results in [12], which
classifies the actions o(&) of T on Oy defined by (4.1):

Corollary 5.5. Let 1 < L; < --- < Lgand1 < L} < --- < L) be two sets
of integers, each with greatest common divisor 1. The following conditions are
equivalent.

(i) The automorphism or, of A ® K (¢2) defined prior to (5.52) is outer con-
jugate to or .
(i) (G(L),(o1),) is isomorphic to (G (L'),(or),)-
(iii) The action oF) of T on Oy defined by (4.1) is outer conjugate to the action
(2,
(iv) o) and o) are conjugate actions of T.
(vy L=L". '

Proof. We already noted above that (i) < (ii) is [12, Corollary 1.5]. But (ii) <
(iv) follows from [12, Corollary 4.1]. The implication (iii) = (ii) follows by noting
that the stabilization of the dual actions of o(%), o(T') is outer conjugate to or,
o1 by Takai duality. The only remaining nontrivial implication is (ii) = (v); as
noted in [10], the relations (5.52) imply that J;, and Jz+ are similar, and thus have
the same characteristic polynomial. But by (10.10), the characteristic polynomial
determines Jz, and thus L uniquely. Thus (ii) = (v). a
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Remark 5.6. The equivalence relation of Bratteli diagrams referred to in the sec-
ond paragraph in the Introduction can be described as follows: The diagram itself
can be described as a sequence of incidence matrices

(5.53) Ji, Jay Js, Ja, ...

These are (not necessarily square) matrices with integer nonnegative matrix units
such that the number of columns in J,41 is equal to the number of rows in J,. One
way of obtaining an equivalent diagram is then to remove rows from the diagram
and connect the remaining vertices by edges with multiplicity given by the number
of ways one can go from the upper vertex to the lower along the original diagram.
In terms of incidence matrices, one picks an increasing sequence 1 < n; < ng < ng
of integers, and replaces the sequence (5.53) by

(5'54) Jn2—1Jn2—2"'Jn17 Jna—l']’na—Q'.QJﬂ.z)

The equivalence relation is then simply the equivalence relation on sequences of
incidence matrices generated by this relation. One has to apply the relation or its
inverse four times to go from one diagram to another. Roughly, start from

A — Ay — A3 —> -
by removing rows to obtain
An, — Upy — Ay — -0+,
then insert new rows to obtain
Apy — By, — Apy, — By, — -+,
then remove rows to obtain
By — By, — By — -,

and finally insert rows to obtain

B — By — Bz — --- .
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One example from [4], where the first and last steps are unnecessary, is

Here the algebra is the UHF algebra @ Mz of Glimm type 2%, also illustrated in
Figure 1. The algebra to the left is the fixed-point subalgebra of @ M, under the
infinite-product action @°° Ad (§ %) of Zs, and the figure shows that this fixed-
point algebra is isomorphic to the full algebra [67]. To show directly that the pairs
or triples of diagrams shown in Figures 14, 15, 17, 19, and 20 can be transformed
into each other by this method is presumably a much harder task, as it is to show
directly that the pair in Figure 12 cannot be transformed into each other.




CHAPTER 6

Invariants related to the Perron—Frobenius
eigenvalue

Let J, K be two nonsingular N x N matrices with nonnegative matrix elements
which are primitive, i.e., for sufficiently large n € N, J” and K™ have only strictly
positive matrix elements. Let A1, Ay be the Perron—Frobenius eigenvalues of J, K.
Then A, Ay are algebraic numbers, and Q[\;] and Q[\q] are fields which are finite
extensions of Q. If A\; and Ay are rational, they are integers since they satisfy a
monic equation. If in addition IV = 1, then the stable C*-algebras associated with
the corresponding dimension groups characterized in (5.1)~(5.34) are My ® K (H),
where M) is the UHF algebra of Glimm type A*® and X (#) is the compact
operators on a separable Hilbert space 7. It follows from Glimm’s theorem [38] that
these algebras are isomorphic if and only if A\; and As contain the same prime factors.
In particular, if J = (6) and K = (12) (as 1x 1 matrices), the associated C*-algebras
are isomorphic. See also [10, Example 9]. This was partly generalized in [10,
Proposition 10], where it was proved that if J, K are nonsingular primitive N x N
matrices and the stable C*-algebras they define are isomorphic, then Q[A1] = Q[A2]
and A1, A2 are products of the same primes over this field (i.e., primes in the subring
generated by the algebraic integers in the field). The example mentioned above
shows that ) itself is not an invariant, and the purpose of this chapter is to show
that A itself is not an invariant in more interesting examples of matrices of type
(5.47),

mi 1 0 0 0
me 0 1 00
(6.1) J=| - -,
my—z 0 .10
my_1 0 0 01
my 0 0 -+ 00

where the m; are nonnegative integers, my # 0 and ged {¢ | m; # 0} = 1. The
characteristic polynomial of J is

(6.2) det (1 — J) = Y — gtV —matN 2 — oyt —my

and the Perron—Frobenius eigenvalue X is the unique positive solution of this equa-
tion.

More examples of this kind where the J’s are 2 x 2 matrices can be constructed
by a machine developed in Chapter 13; see in particular Example 13.5 and remarks
prior to Proposition 13.4.
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The example we shall give here is a modification of another example in [10,

Example 9]. For a = 2,3,4, ..., consider the monic polynomial
(6.3) pa(t)=(t—a?) (®+at+a®) =+ (—a®+a)t®+ (—d® +d®)t —a’.
The last three coefficients are negative for a = 2,3, ..., so this is the characteristic

polynomial of

a®—a 1 0
(6.4) J=|a*=0a%*> 0 1].

a* 0 0
The spectrum of J, consists of the roots
1 4 1 9
— 2 (_—- 42 -2
(6.5) sp(Ja)—{a ,( 2+2\/§> a,< 5 2\/§> a}
and hence we observe
(6.6) sp(Ju2) = {A? | A€ sp(Ja)}.

Thus J,2 and J? are conjugate over Q [v/3], and hence over Q. Now put

2 10 12 10
(6.7) K=h=|4 01|, J=Jy=[48 0 1}.
16 0 0 256 0 0

Then we compute that

6.8) JT =TK?
for
1 0 0
(6.9) T=|1-4 2 1].
0 16 —4
Let
1 0 O
(6.10) S=T"1=1]2 1 1
3 6
8§ 2 _ 1
. 3 3 12
It follows from (6.8) that
(6.11) SJ=K2S.
For a given n € N, put
(6.12) A=K"S=8J", B=T.
It follows from (6.8), (6.11), and ST =TS = 1 that
(6.13) JV=T8J"=BA, K®=K™ST=AB.

This is a version of (5.51) except that A, B are not necessarily matrices with positive
integer matrix elements, only rational elements. To remedy this we now replace J,
K by scaled versions

2d 1 0 124> 1 0
(6.14) Ky=|4d®> o 1], J,=|48* 0 1],
1645 0 0 256d° 0 0
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where d is an integer. One now checks that the eigenvalues of both K73 and J; are

L

(6.15) 1642, 4(—§:I:%\/§>d2,

and then

(6.16) JiTa=T;K3,  SaJy=K2S,,

with

1 0 0 1 0 0

6.17) Ty=|—-4d> 2d 1], Sy=T;'=|2, 1 _1_

o (o 164° —4d2> e ¢
842 2 __1_
3 3 12d2

With this change, we note that K7 is a multiple of an arbitrary large power of d
with an integer matrix provided n is large enough. Taking n = 4 we compute

192d* 124 1
(6.18) K3Sy= | usigs 043 24
g g i

Choosing d = 3 we see that

(6.19) A=K3Sy = S,J3
is a positive integer matrix. Similarly
144d*  40d®  8d?
(6.20) T,K3= | 640d° 96d° 48d*
' 20484% 512d" 256d°
is a positive integer matrix whatever integer value d has, and we put
(6.21) B =T,K4 = JiTs.
Now, redefining
6 1 0 108 1 0
(6.22) K=K;=[36 0 1], J=Js=1[ 388 0 1],
432 0 0 186624 0 O
it follows from (6.16), (6.17), (6.19), and (6.21) that
AJ = KA,
(6.23) JB = BK?,
’ J* = BA,
K® = AB.

Thus, J and K? are shift equivalent in the sense of (5.52), and in particular, J and
K define isomorphic AF-algebras by (5.51). But the Perron—Frobenius eigenvalues
of these matrices are 16d? = 122 = 144 and 4d = 12, respectively. Hence this
eigenvalue in itself is not an isomorphism invariant.




CHAPTER 7

The invariants N, D, Prim (my), Prim (Rp),
Prim (Qn-p)

In this chapter, we establish a triangular representation Jg = ( {)0 ;2 ) of a
D

matrix Jz, in the standard form (7.2) such that the submatrices Jy and Jp are again
in the same standard form (with the exception that the integers corresponding to
m1,...,my are no longer necessarily positive), and ker (1) is obtained from Jp the
same way Kp (2r) is obtained from Jr. We then use this for the derivation of
numerical C*-isomorphism invariants.

Proposition 8.1, Corollary 8.3, and Theorem 7.5 below account for the terms
Z (%] (where k € Z,k > 2) in K, (%) and in ker (7,) when they are present, as they
are in many examples; see, e.g., Examples 18.1 and 18.2. The convention regarding
L = (L,...,Ly) is as in Theorem 4.2. We assume 1 < Ly < Ly < --- < Ly, and
we count the values of the L;’s with multiplicity according to:

(71) mj; = # {Li I Li = ]}
for =1,..., N where N := L;. Then the matrix J = J, takes the form

my 10 0 0
my 0 1 0 0
(72) e
mpy—1 00 0 1
my 00 -~ 0 0

We always assume ged {i | m; # 0} = 1. With this convention, we have my > 1.
Let a := e~# where 8 is the unique solution to

(7.3) Ze_m’i = ije_ﬂj =1
i J

As explained in (5.15)—(5.18), X := €f is the Perron-Frobenius eigenvalue for Jz.
The results in this chapter are somewhat technical. The matrix J is given a
00 g ) where Jy and R have
the same type (7.2) as J, and @ is of rank one (see Theorem 7.5). Hence it is
easy to read off the determinants of J and Jy. We use this to show that the prime
factors of these determinants are C*-isomorphism invariants (Theorem 7.8).

representation which admits a triangular form (

63
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Each lattice Z¥ is (linearly) isomorphic to the space Vn of polynomials f €
Z [z] of degree < N — 1. This means that matrix multiplication by Jy in Z¥
is equivalent to an operation on the polynomials Z [z] of degree < N — 1. This
operation can be described by the following explicit representation.

Lemma 7.1. Define

(7.4) Vn:={f(z) €Z[z]|degf <N —1}.
Let
(7.5) fm (z) i =mq +maz + -+ myz L.

Then matriz multiplication by J in ZY induces the following operation J on Vi :
- ‘ ) z)—f(0

(76) )@ =0 @)+ TOTO pey

Proof. For k= (ky,...,kn) € ZN,let fr, (z) = k1 + ko + -+ + knzN-1. Then

(Jfi) () = fan ()
=mak; + ko + (moky + k3)z+ ...

+ (mN_1k1 + kn) V2 4 mel.'IIN—l

N N
=k Zmi.’tl_l + Z kj$7_2
i=1 j=2

n fk_(w) — I (0),

ZT

= fk (0) fm (z)
which proves the lemma. O

The construction of Ko () and ker (1) involves the Frobenius eigenvector
a = (a1, 0az,...,ay) which solves

(7.1 aJ = da
where A = e is the Frobenius eigenvalue. (See (5.8).)

Lemma 7.2. Let a:= A\"! = e #. When normalized with oy = 1, the eigenvector
a from (7.7) is

(7.8) a=(1,a,a®...,a"1).
Proof. This was verified in (5.17). O
Lemma 7.3. Let a = (1,a, e ,aN‘l) be the Frobenius eigenvector, and let

Do (z) € Z [z]
be the minimal polynomial of a = e~B. With the identification
ZN2Vy ={f €Lz]|degf < N -1},
as in (7.4), the following two conditions are equivalent for k = (k1,...,kn) € Z™:
(i) k€ {a}".
(i) pa (@) |fx (), where fi (z) = YN, kit
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Proof. We have

N

(7.9) (kla) =Y kia*™* = fi(a),

=1
showing that fi (a) = 0 if and only if k € {a}". But fi (z) is divisible by p, (z) if
and only if a is a root. d

Corollary 7.4. If D := degree of p, < N — 1, then the subgroup {oz}L NZY may
be represented in the form

{¢(2)pa (z) | ¢(z) € VN-D}.
IfD = N, then {a} - NZYN = {0}. In any case, J leaves {a}*NZY invariant, and
if D< N -1, J induces an operator q — Jo(q) on Vn_p by
(7.10) J (qpa) (z) = (Jog) (z) pa (z), ¢ € Vn-D.

Proof. The representation ¢ (z) p, (z) is unique since p, (z) is irreducible. To see
that {a}J‘ N Z% is invariant under J, use (7.7) directly, or substitute z = a into
(7.6) as follows: If f € Z [z] satisfies f (a) =0, then

TN @ =10 @+ IO - g0 r0)a =0,
where we used the identity fn, (a) = a~! which in turn is equivalent to (7.3). O

We need one more prelude to the main theorem of this chapter. As in Lemma
7.3, let p, € Z [z] be the minimal polynomial of a = e~P and let py be the minimal
polynomial of the Perron-Frobenius eigenvalue A = 1/a = e®. It is clear that these
polynomials have the same degree D, and up to a sign

1 1
(r.11) n@=2"n(1), nw=-n(3).
Since A is a root of the monic polynomial (10.10) in Z [z], it follows that py is a
monic polynomial, and hence the constant term in p, (z) is 1, i.e.,

(7.12) pa (0) € {£1}.

(This also follows from (4.31), or (5.48).) We will often fix the normalization of p,
such that p, (0) = 1.

Theorem 7.5. Let J be a matriz of the form (7.2) with the m; positive integers,
mpy # 0, ged {i | m; # 0} = 1. Normalize the minimal polynomial p, () by pa (0) =
1. Decompose the polynomial fm (z) = m1 +maz + -+ mya¥ 1, given in (7.5),
by the Buclidean algorithm, yielding

(7.13) fm (z) = am (CIJ) Do () + T (T),
where gm (8) = Yoy Qrz*t, 1 () = S P, Ryak=1. It follows that, in the
basis

(7.14) {pa () ,2p4 (2),...,aY P 'py (2) ,1,3,...,2° 7"}
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for ZVN =V, the operator J is given by

Q1 10 .-« 0 0 Q1 0 0 - 0 O

Qo 01 .-+ 0 0 Q2 0 0 - 0 O

Qs 00 . 0 0| Q 00 -~ 0 0

Qn-p-1 0 0 0 1{@n-p-1 0 O 0 0

(7.15) J = Qv-p 0 0 - 0 0| Qnv-p 0 O 0 0
0 0 Ry 10 0 0

Ry 0 1 0 O

O Rs 0 0 0 O

Rp_; 0 0 0 1

0 0 Rp 00 -+ 0 O

In the extreme case D = N, the upper left-hand matriz in (7.15) disappears, and
the lower right-hand matriz is just (7.2). If D = N — 1, the upper left-hand matriz
15 (Q1), and if D =1, the lower right-hand matriz is (Ry) = (Rp). In general, the

coefficients Ry, ...,Rp can be computed from the formula
1- a
(7.16) rm (T) = —%@.

(Withéut the normalization p, (0) = 1, the upper left-hand matriz elements Q; must
be replaced by p, (0) Q; where p, (0) € {£1}.)

Proof. We leave the modifications needed to cope with the extremal cases D =
N,N — 1,1 to the reader, and consider the generic situation 1 < D < N — 1.
We use formula (7.6) in calculating J in the basis defined from Lemma 7.3 and
Corollary 7.4. Define -

7.17 e :=a'p, (), j=0,....,N—D-—1.
J

Then {e;} is a basis for {a}" N Z by Lemma 7.3. Furthermore,

J (€0) = J (pa) = pa (0) fm () + IM

= Pa (0) dm (m) Da (.’E) + (pa (0) Tm (:E) + T

~

“
remainder

Since deg ((pa (z) — pa (0)) /z) < D it follows from Corollary 7.4 that the remainder
is zero (this accounts for (7.16)), and

N-D
J (€0) = pa (0) gm (2) pa (z) = pa (0) Z Qjej1,
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which accounts for the upper left column in (7.15) via formula (7.13). Since for
j>0 ’
, Jp, — .
J (ija) =0+ 3_1_)5;_0 = xj_lpaa

the rest of the left half of the matrix (7.15) is accounted for.

For the rest of the entries in the formula (7.15) for J, pick the monomials
1,z,...,2P~1 as a basis for the remainder terms in the Euclidean representation
of Z = Y. Using again (7.6), we get

J (1) = fm (%) = gm (2) pa (2) + 7 (2),,
which accounts for the (N — D + 1)’st column in (7.15).
For j such that 0 < j < D we have, using (7.6):

zi -0 .
=qJ 1,

J(zf) =0+

and that accounts for the remaining columns in (7.15). O

Corollary 7.6. Assume 1 < D < N — 1. Then the relationship between the deter-
minants of J and the restriction Jo of J to {a}" NZYN is given by

(7.18) det (J) = (=1)°7" Rp det (Jo) = (-1)V ' mp,
and

(7.19) det (Jo) = (=) P p, (0) Qn-p,

and therefore

(7.20) P (0)@n-p = (-1)” F,

which implies that Qn_p # 0.

Proof. Use the standard rules for computing determinants on (7.15), and use (7.13).
O

Note that the number my is not an isomorphism invariant. See, for example,
(6.22)—(6.23), or let us consider the following example from [10, Theorem 5 and
following remark]. If

(41 , (6 1
(7.21) J‘(32 0)’ d _(16 o>’

then in both cases the dimension group G (resp. Gy) is Z [5] @ Z [§] with order
given by (z,y) > 0 <= 8z +y > 0. Furthermore, a = %, so the minimal
polynomial is p, (z) = 8z — 1 in both cases. Clearly mq = 32 for J and mj = 16
for J', so my = mq is not an invariant. But, as

4 + 32z = 4p, (z) + 8, 6 + 16z = 2p, (z) + 8

we have R; = 8 for both J and J', so this does not a priori rule out that Ep is an
invariant. This is, however, ruled out by (6.22), where Rp has the value 144, 12 for
the two matrices respectively. We will in fact prove in Theorem 7.8 that the sets
of prime factors of my, Rp, respectively, are invariants. See (10.11) and Figure 15
for more on (7.21).
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Proposition 7.7. Let (J,Z"), D = deg(p.), and the trace () = (- |a) be
as described in Theorem 7.5 and (5.20). Let Jo denote the restriction of J to
{a}' NZN = ZN-D, Then
(7.22) ker (1) = | Jg™ (2N7P),

n>0
where the equality refers to the identification (7.17).
Proof. This proposition is essentially also true in the more general situation where
J is a primitive nonsingular matrix. Using the standard basis for Z%, we saw in
(5.3)-(5.6) that

Ko (%) = [j J~m(zN).
m=1
But g = J~™ (n) is in ker 7 if and only if (using (5.8) and (5.10)):
=7(9)=1 (J_m (n)) = <a].]_mn) =" {(a|n),
i.e., if and only if n € Z¥ N {a}™, that is,
J M (n)Nkerr =J"" (ZN n {a}J‘> .
Using the basis (7.14) in Theorem 7.5, this is (7.18). More specifically, we saw

in (7.15) of Theorem 7.5 that J takes the block form ( Lg] ;2 ) relative to the
R

decomposition

(7.23) ZN=Lye7P,  Lo=z""P.

The submatrices Jy and Jg are both invertible in dimensions N — D and D, respec-
tively. Moreover (7.15) shows that each of the submatrices Jy and Jg has a form
which is similar to that of J itself. The (N — D) x D matrix () was also computed
in (7.15). For J~!, we therefore have the formula

(7.24) g1 Jyt ‘ —JtQJUR?
0 |

Jgt

and, similarly,

* ok
J—n
(7.25) J‘”:( 0 * % )
0 | Jg"

Theorem 7.8. The following numbers and sets of primes are isomorphism invari-
ants for the AF-algebras 2AUp, where the members of L satisfy the hypothesis in
Theorem 4.2:

(i) N, i.e., Lg,

(i) the set of prime factors of my,

(iil), resp. (iil)’, the set of prime factors of Qn—p, resp. Rp, the coefficient in

the highest-order term in g, (z), resp. rm (z), where

N-1

O

(7.26) mi +mox + o+ MmNz T = g (2) Pa (2) +1m (2)

and
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(iv) D = deg(pa).
The invariants can be read off from the following commutative diagram:

0 0 0 0
} ! | +
gN-D Jo, gN-D o, gN-D o, | — ker()
m
¢ { | | ¥
m
! + + +
zp % gp Is  gp In = D7
} + } +
0 -0 0 0

where the vertical sequences of maps are short ezact sequences, and the horizontal

maps are injective, and where J has the form (7.15), J = < {;) (? ) This
R

picture is also valid when J is a general nonsingular primitive N X N matriz, except
that Jo, Q, Jr do not then have the special form in Theorem 7.5. Nevertheless,
N, D, Prim (det J), Prim (det Jo), Prim (det Jg) are still invariants for stable C*-
isomorphism, where Prim (n) denotes the set of prime factors of n for any n €

Z\ {0}.

Remark 7.9. The Prim-invariants are independent in the following sense: In
Chapter 16, we give examples J, J' for the same fixed values of N and D where

Prim (Qn_p) = Prim (Qn_p)
but
Prim (Rp) # Prim (R}p) ;

and also examples with

Prim (mp) = Prim (m}y)
Prim (Rp) = Prim (R})

but
Prim (Quy_p) # Prim (Qy_p) -

Proof of Theorem 7.8. (i) We have already commented that N = Ly is the rank of
the group Ko (2), so N is an isomorphism invariant.

(ii) If n € N, let again Prim (n) denote the set of prime factors of n, with the
convention Prim (1) = @. If 2 and ™/ are isomorphic, it follows from (5.51) by
taking the determinant on both sides that

Prim (my) = Prim (|det (B;)]) U Prim (|det (45)]) ,
Prim (m'y,) = Prim (|det (A4;41)|) U Prim (|det (B;)]),
Prim (my) = Prim (|det (B;+1)]) U Prim (|det (4i+1)]),
Prim (m/y,) = Prim (|det A;12|) U Prim (|det Biy1]) ,

where we used Corollary 7.6. Hence

(7.28)

Prim (m/y,) C Prim (my) C Prim (mfy:)
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50
7.29 Prim (m'y,) = Prim (my) .
N

Thus in particular Prim (mpy) is an isomorphism invariant, as claimed.
As the exact sequence

(7.30) 0 — kerT — Ko () — 7 (Ko (1)) — 0

is uniquely determined by the dimension group (Kg (), Ko (Ar) +), the group
ker 7 is an isomorphism invariant. But if Jy denotes the restriction of J to ker =
ZNn {a}J', then Jy identifies with the upper left-hand part of the matrix (7.15).
But @n—p # 0 by Corollary 7.6 and hence det Jy # 0 by (7.19). It follows from
Proposition 7.7 that N — D = rank (ker 7) is an isomorphism invariant and thus D
is so. Thus (iv) is proved. Furthermore, if J' is another nonsingular primitive inci-
dence matrix defining the same dimension group as J, it follows from Proposition
7.7 that

(7.31) U )™ @ -P) = ] 5" (")

n>0 n>0

and thus Jo and Jj are related as Ji, and Jy in (5.51), except that the B;, A; now
are just (necessarily nonsingular) integer matrices, without any positivity. (See an
elaboration of this in the following paragraph.) But positivity did not play any role
in the first part of the present proof, and hence

Prim (|det Jo|) = Prim (|det Jg|) .

But |det Jo| = |Qn-p| and |det J)| = |Q/y_p|, so Prim (Qn—p) is an isomorphism
invariant, which shows (iii).

By [27], the groups Ko (2 (Jy)) and Ko (20 (JL:)) order isomorphic. Let 6 be
the corresponding order isomorphism. It follows from (5.34) that 6 restricts to an
isomorphism of ker (7) onto ker (7). We have shown in Proposition 7.7 that ker (1)
is constructed from Jp the same way Ko (% (J1)) is gotten from J, as an inductive
limit. Now apply (7.22) to both ker (r) and ker (7'). Then the argument from
(5.51) yields

J§ = CiE;,
(J0)" = Biya Ci,
where k1,k2,..., l1,l2,... are natural numbers, and the matrices C1,C3,... and
E,,E,,... are (N — D) x (N — D) over Z.

The argument which yields ker (1) as the inductive limit U, Jo "Z" P in
(7.22) also yields the following associated isomorphism:

(7.32) Ko (1) /ker (1) = | ] Jg 2P
n>0

This follows by general category theory from the commutativity of the diagram
(7.27) and exactness of the vertical short exact sequences of this diagram. Let us
elaborate on this: Use induction, and (7.22) for ker (1), starting with the obvious
isomorphism

N NP =P
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N—D
(ZZp ) ) (?) r——)lEZD,

given by

and arriving at

7.33 g (K ny gy
l R
Since
(kY _ (I k+ Q1
(- (2
for a suitable matrix Q¥ by (7.25), we get
(7.35) JrzN g Jsra NP = ganrP

with the isomorphism induced by p;, of (7.33). It is an isomorphism, for if J;"I =0
then I = 0 since Jg is nonsingular. So then

—n
7 (1)=("%")
by (7.34). This proves (7.35).
By (7.27), we get
Ko (A1) / ker (1) = ( the inductive limit
constructed from J~"ZY /J7"ZN D),

and so

Ko (U1) / ker (1) = ind JR"ZP

= J Jz"z”

n>0

by (7.35). To see this, we must also check that the defining homomorphism
(7.33) does indeed pass to the respective inductive limit groups J,~q J —7ZN and

Unso J5™ZP. But note that

—n (kY _ 1—(n+1) Jok + Q1
J (z)“’ Jrl

and the right-hand side is mapped into
T gpl = g™
under p,y1 from (7.33). So we have the commutative diagram
JzN — J-m g N

pN e

pn b Prnti
—n
s/

of homomorphisms of abelian groups. As a result, there is an induced homomor-
phism of the respective inductive limit groups

Ko (%) 5 | Iz 25,

n>0
)
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where J = Ji, for short. The formula (7.34) shows that
ker (p) = U Jo NP = ker (1)
n>0

where we used (7.22) in the last step. Hence, by the homomorphism theorem, we
have

Ko (5) /ker (1) 2 | ] Jg"22,
n>0

which is the assertion (7.32).

Let L and L' be as in Theorem 4.2 with associated matrices J = J;, and J' =
Jr+, and suppose the C*-algebras 2y, and 5 are isomorphic. The corresponding
order isomorphism

0: Ko () — Ko (™Uzr)

therefore induces isomorphisms

O(restriction) : ker (1) — ker (")
and

8(quotient) : Ko (Az) / ker (1) — Ko (Urr) /ker (1').
It follows further that f(quotient) then induces an isomorphism
U JzrzP = | (gp) "z
n>0 n>0

This makes sense since we have already concluded that N = N’ and D = D'.
(Recall that N — D = rank (ker (7)).)

Now the argument after (7.31) applies to Jg and Jj, the same way as we used
it to get identity of the sets of primes for |det Jo| and |det J§|. Using finally

Rp = |det JRl R RID = |det JII%I R
we conclude that
Prim (Rp) = Prim (R}p),

which is the claim. The final statement of Theorem 7.8 is clear from the proof
in the special case that J has the form (7.2). The only thing that separates the
general case from the special one is the special form of Jy, Q, Jg in (7.15), and
thus the formulae |det (J)| = mn, |det (Jo)| = |@n—p| and |det Jr| = |Rp|- O

Corollary 7.10. Assume that J satisfies the hypotheses of Theorem 7.5 and let )\
be the Perron—Frobenius eigenvalue of J. Define Jr as in the proof of Proposition
7.7.

(i) There is a natural isomorphism between the two (unordered) groups Z [3]
and ind (Jr) = U5 Jg"Z7.
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(i) If ap == (1, 1/A,...,1/AP7Y), so that apJr = Aap, the isomorphism is
determined by {(ap| ) as follows:

0 — ind(Jg) — Z[1/A] — O
1 1
QP — R

W w
v —  (ap|v)

where (- | -) is the usual inner product in RP .

Proof. The result follows from the equality 7 (Ko (7)) = Z [%] in (5.22), and the
natural isomorphism

T (Ko (%)) = Ko (%) /ker (1) = | | JR"ZP

n>0

coming from (7.27) in Theorem 7.8 above. See also (7.40)—(7.43) below. O

Corollary 7.11. If J, J' are two matrices of the form (7.2), one of them has
a rational Perron—Frobenius eigenvalue, and they define isomorphic AF-algebras,
then both the Perron—Frobenius eigenvalues A, X' are integral, and Rp = A and
=X, s0
D ’

Prim (Rp) = Prim (A\) = Prim (\') = Prim (R}p) .

Proof. If for example A is rational then X is integral since it is a solution of a monic
polynomial. If J and J' define isomorphic AF-algebras, then it follows from [10,
Proposition 10] that Q[N] = Q[A] = @, i.e., X is rational and thus integral, and
A, X are products of the same primes, Prim(\) = Prim ()\'). But in this case
Do () =1 — Az, and by (7.16) rp, (z) = Az/z = A = Rp = R. O

Remark 7.12. If g € Ko (Az) € QV has coordinates g* = (ko,k1,...,kN-1)
relative to the old basis A = (1,z,...,z¥ 1) and coordinates g% = (lo, l1,...,In-1)
relative to the new basis in Theorem 7.8, then g corresponds to the polynomial

N-1  N-D-1 N-1 '
(7.36) po(@) =Y kiat= D lap.(@)+ Y, Lz VtP.
=0 =0 i=N-D
If
D
(7-37) pa (m) — Z ammm’
m=0

we hence compute

N-1 ]/\(N—D—-l) ' D—1 .
(7.38) py () = Z aj—il; | 7 + Z litN-p2?,
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and hence the transformation matrix between the new and the old coordinate sys-
tem is

(7.39) If =
0 : N-D-1 N-D N-1
0 ap 0 0 0 0 10 -+ 01}o
a1 ag 0 0 0 01 0
D-1| ap—1 ap—2 ' 0 0 0 -+ 1 |b-1
D ap aGp_1 Gp-1 ‘*+ G 0 0 0 |p
0 ap
ag 0
0 ap as a1 ag
0 as a1
0 0 0 ap ap-1
N-1 0 0 0 0 ap 0 0/ ~N—1
N-D-1 N-D N-1

More interestingly, let us illustrate the power of the polynomial representation in
the computation of the trace functional 7 (g) in the new representation. Recall
from Lemma 7.2 that

(7.40) 7(9) = (a|g*) =p, (@) .
If B € (RV)" is the row vector such that
(7.41) 7(9) = (B]9°) = (8| I%g")
we have 8 = & = a (I2) ™. But note that
(7.42)
N-1  N-D-1 N1 N1
7(9) = pa (a) = Z kia' = Z lia'p, (a) + Z Lia=N+D = Z Liai=N+D
=0 =0 i=N-D =0
and hence
: _ D-1
(743) p= (8’(1]’ " "N»OD~1,NED’N—%+1, R at )

gives the trace functional in the representation (7.14)—(7.15). This is useful in
explicit computations of the dimension group from the formulae (5.19)—(5.20):

(7.44) Ko (%) = | J"zN,
n=0
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which in the new representation becomes

(7.45) Ko (L) = D (JB) ™" IZzN.

n=0

Here J§ is J in the alias (7.15) and I§ = (Ig‘)_1 where I is given in (7.39). Note
that

(7.46) |det 1] = lap|V "

so IBZN is a lattice containing Z* as a proper sublattice if |ap| # 1.




CHAPTER 8

The invariants Ky (1) ®z Z, and (ker 1) ®z Z,, for
n=273,4,...

In this chapter we will mainly study invariants deducible from the groups
Ky (%) = G and kert = Gy alone without the order structure. Of course any
invariant associated to these groups will be an invariant of the algebra. For exam-
ple viewing G as a Z-module, the groups G ® Z,, for p = 2,3, ..., are invariants.
We will also discuss structure on G coming from the embedding Z~ < @ given by
(5.3)—(5.6) and the shift automorphism defined by G, but since this is extraneous
structure it is not clear that it leads to invariants (the shift itself is not an invariant
by the example (6.22)—(6.23)).

Both in the construction of Kj (%), and in that of ker (1), the following
inductive limit is involved:

(8.1) LCT L) CI2(L)C-

where £ is a lattice of the same rank as the matrix J. But both £ and J change in
passing from Ky () to ker (1) for the inductive limit construction.

‘We next show that quotients of these lattices, which are obviously finite groups,
are necessarily cyclic when J is the original J.

Proposition 8.1. The quotient
(8.2) J=ED (L) /T (0)
is tsomorphic to the cyclic group Zm, = Z,/mnNZ for each k =0,1,....

Proof. In general, if " is a lattice in RN and if M is an N x N matrix such that
M) CT, then I' /M (T') is a finite abelian group of order |det (M)|. See, e.g.,
[74, Proposition 5.5, p. 109]. Applying this to (8.2) for each k, we get that

(8.3) Ap = J- g s g-kp
has order = |det J| = my. Note from Corollary 7.6 that
(8.4) det (J) = (-1)" T my.

A further calculation shows that the usual matrix multiplication, £ 3 1 — JI,
induces an isomorphism of abelian groups Ay = Ay for each k; so, in proving
cyclicity, it is enough to deal with & = 0 where the assertion amounts to the

Claim 8.2. There is an isomorphism
(8.5) 2N/ JLN — Ly

76
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given by
0
0

(8.6) | +JZN — i+ myZ, Q€.
0

i
Proof of Claim. Since ZV /JZN has order myy it is enough to show that the lattice
0

0 :
element v; := | ' | =deyisin J ZN if and only if the number i is divisible by m .
)
i
Hence, we must show that, if ¢ € Z, then the equation v; = Jk is solvable in Z if
and only if myli. But k = J~! (v;) = iJ ! (en) is a solution in RY; in fact, the
explicit formula is given by (4.30) or (5.49) as follows:

4
e
mn
i
kQ = —-m;—,
myn
(8.7) } ks =—ma—,
my
i
kn = —my_1—.
\ mn
This proves that k € Z¥ if and only if my|i as claimed. O
As mentioned, the claim proves Proposition 8.1. O

This can be used to give a unique representation of elements g € G.

Corollary 8.3. Let G be the inductive limit group formed from (8.1).

(i) In terms of the elements v; = ten, i = 1,...,my, introduced in the proof of
Claim 8.2, the following unique representation for points g in G is valid:
(8.8) g=1+J vy + T 20 + -

where l € L, i1,12,... € {0,1,...,mny — 1}, and the sum is finite.
(ii) The ZN-coordinates of g in (8.8) are elements of Z [51;]

(iil) If g is represented as in (8.8) and l = (l,...,In) € Z¥, and the trace T is
given by the Frobenius eigenvector o in (7.8) as in (5.20), then

N
(8.9) T(9) =Y Lol 4 ipa TR
j=1 k>1

Proof. Follows directly from Proposition 8.1, Lemma 7.1, and Lemma 7.2. See in
particular (8.7) and (5.3)—(5.6). O

Remark 8.4. Note that the right-hand side of (8.9) is related to the S-expansion
(a =1/, or B = X) of the number 7 (g) ([58] or [36]). But the expansion here is
finite.
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Corollary 8.5. If G is described in the polynomial representation (5.35) as

(8.10) G =1z /pr(z)L]z],
where
N .
(8.11) pr(z) = ijx’ -1,
=1
then the element g in (8.8) is given in this representation by the polynomial
N
(8.12) p) =) Lizd™t + Y gV,
j=1 E>1

This representation is unique within the constraint 0 < iy < mpy — 1.
Proof. Tmmediate from (5.35)—(5.38) and Corollary 8.3. O

We will consider an analogue of Cdrollary 8.3 for ker (7) later, in (8.16) and
Corollary 8.8.

Remark 8.6. If ¢(z) is some representative polynomial in Z[z] for g € G =
Z[z] / (pL (x)), one may obtain p(z) as follows: Let nz™ be the leading term
in g(z). If M < N — 1, there is nothing to do. If M > N, add an integer
multiple of pr, (z) 2™~ to g (z) such that the leading coefficient is contained in
{0,1,...,mn — 1}. Then do the same thing for the second leading term in the new
polynomial, etc. We are soon going to adapt this procedure to the case where Z is
replaced by Z, = Z/pZ.

So far we have mainly considered ordered groups in this chapter and Chapter
7. The order is not essential for most of the results, however. Let us first consider
Theorem 7.5.

Let J be a nonsingular N x N matrix over Z, and set ind (J) := {J,,5, J "Z".

We identify it concretely as a subgroup of Q¥ (actually of Z [1/ |det J|]"), by the
natural inclusion mapping

ind (J) — Q.

Corollary 8.7. Let J be a nonsingular N x N matriz over Z, and suppose that
there is some D such that J has the triangular representation

813 Jo vV N-D
(8.13) 0 |Jp D

N-D D
where the entry block matrices are also over Z, and their sizes are as indicated.
Then there is a natural short exact sequence in the category of abelian groups

0 — ind(Jo) — ind(J) — ind(Jp) — O
1 1 1

0 — QV-P — QY — QP — 0
W w
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where the morphisms in the first row are restrictions of those in the second one, as
follows: If k € ZN-P, and | € ZP, then

L(Jg k) =J (’8)

()

Proof. The details are contained in the last part of the proof of Theorem 7.8. O

and

We now specialize to the case where J has a form similar to (5.47),

Q1 1 0 -~ 00
q2 0 1 --- 00
(8.14) Jo=| S
gm-2 0 1.0
gyu—1 0 0 01
gy 0 O -+ 0 O

but now we merely assume that gi,...,qa are (not necessarily positive) integers
and that Jy is nonsingular, i.e., gir # 0. Again one verifies that gas times the
characteristic polynomial of J Lis

M
i=1

and one verifies as in (5.35)—(5.38) that Go = ind Jy identifies with the additive
group

(8.16) Go = Zx] / (po (7))
in such a way that application of Jj ! corresponds to multiplication by =.

Corollary 8.8. Adopt the notation and assumptions in the preceding paragraph,
in particular

(8.17) Go =ind (Jo) = | J Jp"2M.
n=0
Then the results (i), (ii) in Corollary 8.3 and (8.12) in Corollary 8.5 remain valid,
i.e:
(i) In terms of the elements v; = ien, 1@ = 1,...,qum, the following unique
representations of elements g of Go are valid:
(8.18) g =1+ J5 vy + Iy 20, + -

where | € ZM iy,i5,... € {0,1,...,qm — 1}, and the sum is finite.
(i) The polynomial representative of g in (8.18) is '

M
(8.19) leﬂ,‘j—l =+ Zik$M+k_1,
j=1

E>1
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and this form of the representative (i.e., with 0 < i < qp) 1S unique.
Proof. As the proofs of Corollary 8.3 and Corollary 8.5. |

In the following we will consider derived groups of the form Gy ®zC where C is
an abelian group. Recall from [15] that Gy ®zC is the free abelian group generated
by ¢®C, with g € Gy, ¢ € C, modulo the relations (g1 + ¢2)®C = 91 ®C+ g2 ®C,
g®(C1+ Cs) = g®C1 +g®Cs. (This and all the other remarks also apply to G as
an unordered abelian group with the obvious modifications.) We will be interested
in the case C' = Zy, where n € {2,3,...}.

Since Go = Z [z] /po (z) Z [z] we have a short exact sequence

(8.20) 0—po(2)Z[z] — Zz] — Gy — 0.

But by [15, Proposition II.4.5] the functor - ®z C is right exact for any abelian
group C, so in particular,

(8.21) Po(2)Z[2)®z2Zn — Zg)|®@Zp=Zp[z] — Go®zZ,—0

is exact for n = 2,3,4,.... Thus Gp®zZ,, is isomorphic to Z, [z] modulo the image
of po () Z [z]®zZ, in Zy, [z], and this image is easily seen to be pé") (z) Z, [z], where
p((]") (z) is the polynomial pg (z) with the coefficients reduced modulo n. (This is
because the map m — m mod n is a ring morphism Z — Z,,.) Thus

(8.22) Go ®27in = Zn o] / (0§ (2) Znlo])

Corollary 8.9. Adopt the notation and assumptions in Corollary 8.8, and let n €
{2,3,...}. Let

(8.23) div =ged {n,qm},
where qpr is the leading coefficient in po (z) (see (8.15)). Then any
(8:24) 9€ Go®Ln= Lnlz] /p§” (x) Bnla]
has a unique polynomial representative of the form
(8.25) Zz a7t 4y iR
E>1

where 0 <l <n, 0 < iy < d1v = ged {n, qp}, and the right-hand sum is finite. In
particular, if ged{n,qu} = 1, then

(8.26) Go ® Zp, =2 7M.

Proof. If ¢ (z) is a polynomial in Zy,[z] / (p(()n) (z)), we may assume that all the
coefficients of ¢ are in {0,1,...,n — 1} by reducing modulo n. Let mz™ be the
leading term in ¢ (z). If N < M — 1, there is nothing to do. If N > M add an
integer multiple of po (z) 2™ =™ to ¢(z) mod n such that the leading coefficient
is contained in {0,1,...,gcd (n,qar) — 1}. Then do the same thing for the second
leading term in the new polynomial, etc. It is clear that this procedure determines
the coefficients iy uniquely.
In the special case that ged (n, gpr) = 1, the expansion (8.25) reduces to

M
=1
UL
=1
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and hence
Go®Zn,=2ZM
in that case. O

Remark 8.10. We will see later, in Chapter 16, that Corollary 8.9 gives an efficient
method of distinguishing cases which are not distinguished by the invariants in
Chapters 6 and 7.




CHAPTER 9

Associated structure of the groups K; (2;) and
ker T

In this chapter we will study associated structure of the groups Ky (1) and
ker 7 which is related to the action of J, to the embeddings Z" C K, () and
ZN-P C ker T, and to invariant subgroup structure of J. It is not clear that these
additional structures define invariants per se, but we will see in Chapter 16 that they
can be used to establish a quite effective machine to determine non-isomorphism
when the basic invariants from Chapter 7 are the same.

Remark 9.1. Let J be a nonsingular matrix with nonnegative integer entries, and
suppose, for some k € N, that J* has only positive entries. We saw near (5.1)—(5.6)
that then Gy may be obtained as the inductive limit

(9.1) ZN s JZN s JIN s

and N is the rank of G ;. Moreover, (9.1) defines an embedding of Z* as a subgroup
of Gz, and we can consider the quotient group F (J) := G5 /Z¥. (It is not clear
that the group F(J) is an isomorphism invariant.) Using Theorem 7.5 we can
similarly show that ker (7) has an analogous representation. Its rank is M = N —-D,
and it is obtained as an inductive limit -

(9.2) ZM s J7aM s J7P M s o

where Jy is the upper left-hand submatrix of (7.15):

1 1 -« 0 0
Qs 0 . 0 O
(9.3) Jo = : oo, Qi€ Qum #0.
Qm-1 O 0 1
Qu 0 -+ 0 0

The number m cannot be derived from the groups F' (L) := G, /Z" and F; (L) :=
ker (1) /Z™ by the example below, where N, resp. M, is still the rank of G'r,, resp.
ker (7).

Three important properties we establish in Lemma 9.2 below, which relate my
and the group F (J), are the following (see details below):

(i) F'(J) has elements of minimal order my;
(ii) every element of F'(J) has a finite order which is a divisor of a power of
my; and
(iii) myF (J) = F (J).

82
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Lemma 9.2. Let the (Li)g=1 system be as in Theorem 4.2. Let J be the inci-

dence matriz (7.2), and assume |det J| = my > 1. Consider the group F' (L) =

Ko (1) /ZY, where we use the concrete realization (5.6) or (9.1) of Ko (%L).
Let ey, ..., en be the standard basis for ZY, and define

(94) - g;i = J"ieN
fori=1,2,3,..., and
(9.5) g—i =eN—i

fori=20,1,...,N — 1. Then the elements g; generate Ky (21) as an abelian group,
and satisfy the relations

(9.6) MNIN+i = gi —M1Git1 — " — MN_19N+i—1

fori=—(N—-1),—(N—=1)+1,.... Moreover, Ko () can be characterized as a
group as the abelian group generated by elements g_n41,9-N+2,.-. satisfying these
relations, and the order in Ko () is given by

(9.7) Y @gi>0 = Y At >0,
i>1-N i21-N

where the sums are finite and X\ is the Perron—Frobenius eigenvalue of J.
Correspondingly, if we put

(9.8) z; =g¢; mod ZV,
- the z; satisfy the relations
(9.9) | i =0
fori=1—N,2—N,...,0 and
(9.10) MNTN4i = i — M1Ti41 — ** — MN_1TN+i—1

fori =1—-N,2—N,..., and F (L) can be characterized as the abelian group
generated by these relations.

Proof. Let g; = J %eny € G (L), z; = g; mod Z¥~, and m = my. Then

mgy =€ —Mmiéz — - —MN-1€EN,
mgs = J_lel - ’In1J_162 — = mN_]_J_leN
=eéz —Mmiezg — '+ —MN-26N —TMN-191,
and
mgs = €3 —Mmieq — - —MN-201 — TMN-192,

MIN+i = gi —M1Gi4+1 — *+* —MN-19N+i—1,
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and in F (L) =G (L) /ZN:

mx; = 0,

mTy = —MN-121,

mi3z = —MN—_2T1 —MN-1T2,

mIN = —miTy — -+ —MN-1TN-1,
MIN4i; = Ti —M1Ti41 — - — MN-1TN+i—1-

This proves the relations (9.6), (9.9) and (9.10). To prove that the relations
(9.6) actually characterize Ko (2() we use the polynomial representation (5.35)—
(5.38). There Ko (1) is characterized as the additive group Z [z] modulo the linear
combinations of the elements

z"pr, ()

for n = 0,1, 2, where pr, (z) is given by (5.48) as
N
oL (z) = ijw] - 1.
=1

Thus Ko (1) is characterized as the abelian group generated by elements 1, z, 22, . ..
with the relations

+1 N+i—1

N+ —..._mN_la:

myz P =z"—miz’

fori=0,1,2,.... But then the abelian group defined by the relations (9.6) above
is isomorphic to this polynomial group through the map

gi Q,‘H_N_l

fori =1— N,2— N,.... This proves that the abelian group defined by (9.6) is
isomorphic to Ky (), and furthermore, an isomorphism between the groups is

given by
i+ N -1
S e X eatl
i>1-N i>1-N

Using (5.36), we thus see that (9.7) is valid.
Since ZV C Ky (%) identifies with the free abelian group generated by

J1_N,92—N,--., 9o in the above picture, the remaining statement about F' (L) is
immediate. g
Remark 9.3. For the example J = (é é g), the relations for the z; take the form

4331 = 0,

4132 = O,

413 = —T1,

4:171':1372—3_371'—2; i:4,5,....
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This example has Perron—Frobenius eigenvalue A\ = 2. Thus we see that the group
F (L) for this example is isomorphic to (Z [1] / Z)2 by the isomorphism

1
T — (Z’()) ,

1
$2—)<0,Z>,
1
R
(L1
T4 42’ 4/’
1 1
To\EE)

We will later, in Proposition 11.25 and Remark 11.23, use these relations to prove
the useful scaling property

{9 € Ko (U;) | 4ig € 23} = T~ %28

fori=1,2,...; see, e.g., Corollary 11.22 for the use of the scaling. We know from
(5.31) that Ko (%) is an extension of Z [1] by ker 7, and we will show in Example
18.1 by using relations analogous to the above for ker 7 that ker is an extension
of Z [i] by Z. | |

For the example J = (4 1), A = 2 (1 + v/2), we have N = 2. Here order (21) =
order (z3) = 4, while

429541 = Tai—1
4z9519 = 3T25—1 + T2;

for i € IN; that is, the transition matrix in this example is (§ ). It follows from
Proposition 11.25 and Remark 11.23 that also this example has the scaling property
{9 € Ko(y) |4ig € Z?} = J~%Z2

Remark 9.4. The spectra of the respective matrices of the decomposition J =

( ‘go 52 ) in Theorem 7.8 and Corollary 7.10 may be summarized by the fac-
R

torization

(9.11) det (tly — J) = det (t]lN_D — Jo) det (tlp — JR) -

Since all three matrices J, Jy, and Jg have the form (7.2), the coefficients in the
respective characteristic polynomials are just the numbers from the first columns
in the three matrices. It is also clear from Theorem 7.5 that the Perron—Frobenius
eigenvalue ) is in the spectrum of Jg, and so the points ¢ in the spectrum of Jp
satisfy |o| < A.

Corollary 9.5. Let (J,L£), L = Z", be as described in Proposition 7.7. Then there
is a finite decomposition series of lattices L1, L2, ..., Ly such that

(i) the characteristic polynomial of J|c, is irreducible;
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(i) N >rankL; >rank Ly > -+ > rank £, (if more than one term) with each
L; invariant under J;

(i) when the corresponding inductive limit groups G; are formed from each L;,
they satisfy Gp — -+ = Go = G1 = Ko (™) and G1 = ker(r). The
step from L; to Liy1 is that of Theorems 7.5 and 7.8. The first column
in J; = J|c; defines an element of Z[z] by (7.5). If this polynomial is
irreducible, then the algorithm stops. If not, it has a real root a;, and we use
the corresponding minimal polynomial p,, (t) € Z[t] in passing to the nezt
step © + 1 of the algorithm as done above in the proof of Theorems 7.5 and
7.8. The corresponding absolute determinants |det J;| and polynomials p; (t)
form successions of divisors.

Proof. The proof is similar to the proof of Proposition 7.7. We use the fact that if
J = (%) represents a step in the algorithm, and if py (t), pJ, (t) and pg,, ()
are the corresponding characteristic polynomials, then py () = py, (¢) - psg (£).

As described in (iii), the argument is by recursion: Suppose

~f( NN
J_(O K1>

is a triangular representation as in Corollary 8.7. Then formula (9.11) yields divis-
ibility for the respective characteristic polynomials

(9.12) chy (t) = chy, (t) chg, ().

If this first reduction decreases the rank, then (9.12) shows that chy (£) could not
be irreducible. At the first step in the reduction, Theorem 7.8 and Corollary 7.10
show that the Perron—Frobenius eigenvalue A is a root of chg, (¢). We must show
that, if chy, (¢) factors nontrivially, i.e., chy, (t) = ¢ (t)p(¢), with ¢ (t),p (¢) € Z [t],
and say p (t) irreducible, then the process may continue. Since the matrices J; and
K, have the same form as J at the outset, we would get

(9.13) T (%’1%) ,

again with the properties from the proof of Theorem 7.8 and Corollary 8.7. Let
f (@) = chy, (t). Then J; may be represented, via (7.11), as multiplication by t
on Z[t] / (f (t)). Let W denote the following induced linear mapping (quotient by
ideals):

Zl/ (@) 21/ (F@),
W (h(t)+q) :=p (@) h(t)+ (f), for h(t) € Z[t]. It is well defined and injective due
to the assumptions made on f (¢). Since J; is represented as multiplication by ¢ in
Zt) / (f (t)), the range of W is then a nontrivial invariant subspace (over Z) for
Ji, and we arrive at the triangular form (9.13). The argument from the proof of
Theorem 7.8 shows that the entries of (9.13) must have the same standard form as
described in the previous step. Hence the process may continue until at some step,
p say, ch Jp‘ (t) is irreducible. a




CHAPTER, 10
The invariant Ext (7 (Ko (%)), ker)

In this chapter and the next we study the set £ ()) of matrices Jy, of the
form (7.2) such that AN — ma AVt — . —mpy_1 A —my = 0. For the case when
X € Z., we will show in Theorem 11.10, Corollary 11.12, Corollary 11.13, Theorem
11.17, Corollary 11.20, and Proposition 11.21 that 7 (v) can be used to show non-
isomorphism where 7 is the normalized trace, and v is the right Perron-Frobenius
eigenvector, i.e., Ju = Av, v; = 1. See (14.5) for the explicit form of v.

There are examples J, J' such that all the three Prim-invariants agree on J
and J' while the C*-algebras 27 and 2+ are non-isomorphic. Take, for example,
N=3D=1)A=X=2 and

m=|ms | = O , and m' = ml2 = 2

(For more examples, see also Chapter 16 and Table 1 in Chapter 11.) Then the
respective triangular forms are

and therefore
Qy=Qy=R, =R, =2.

In the next chapters, we identify additional quantities which can be used to distin-
guish 2y and 2. If v denotes the right Perron-Frobenius eigenvector, then one of
these quantities is 7 (v). The actual non-isomorphism of the two specimens above
can, however, be established by using (8.26) in Corollary 8.9; see the N = 3 case
in Chapter 16.

We mentioned in Chapter 5 that the dimension group D (%), that is the group
Ko (21) with the Riesz order and the element [1],, is a complete isomorphism
invariant by the general theory. Objects that can be derived from D (), like
7 (Ko (A1), ker 7, Ext, N = rank (Ko (1)), and the sets of prime factors of my,
Rp, and Qn_p, are secondary invariants. In this chapter and the next we shall
treat the invariant in Ext (7 (Ko (1)), ker 7) defined by Ko (2z).

Aside from the two groups ker (1) and 7 (Ko (2z)) themselves, D (1) deter-
mines the intrinsic exact sequence: :

(10.1) 0 — ker (1) — G - 7(G) — 0,
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where we use the shorthand notation G = G := Ky (). Hence the complete
invariant D (%) for isomorphism of the AF-C*-algebras 2y, includes (10.1), char-
acterized as an element of Ext (7 (G),ker (7)). We shall need a few facts from
homology about the Ext-groups, and we refer to [52] for background material: if A
and C are abelian groups, an element of Ext (C, A) is an equivalence class of short
exact sequences of abelian groups

(10.2) 0— A E-1C—0.

It is conventional to use the same letter E also to denote this exact sequence and
E or [E] to denote the equivalence class. Two elements E and E’ are said to be
equivalent in Ext (C, A) if there is an isomorphism §: E — E’ of abelian groups
such that

E
7 Y
(10.3) 0 — 4 jo ¢ — 0
p -
[3 E, T

commutes, or more globally if

0 — A — E — C — 0
(104) a J, 0l J, ¥

0 — A — E — ¢ — 0
commutes, where «, - are isomorphisms of abelian groups. Note if we have § €
Hom (E, E'), and if « and + are isomorphisms, then 6 will be an isomorphism by
the Short Five Lemma; see [52]. With a standard addition E + E', Ext (C, A) itself
acquires the structure of an abelian group. E” = E + E' is defined by

E'={(z,y) eE®E | 7(z) =7 ()} /{(t(a),—'(a)) | a € A}
with
' A— E":avr— [(t(a),0)]
and
' B — C: [(z,y)] — 7 (z).

(In these considerations, 7, 7/, and 7" are only viewed as maps of abelian semi-
groups.) This makes Ext (C, A) into an abelian semigroup, with identity element
the trivial extension

Ey=AdC,
to: A — Ep: a — (a,0),
70: By — C: (a,b) — b.

Any element has an inverse given by

B =E,
Vo= -,
)
=T,

and this makes Ext (C, A) into an abelian group.
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We say that (10.2) splits if there is a ¢ € Hom (C, E) such that 7 o ¢ = id.
This is equivalent to

E=zAaC (direct sum of abelian groups),

with trivial maps ¢, 7, and then the corresponding F is the zero element of the
abelian group Ext (C,A). Note that Ext (Zs,Z) = Zjy. The corresponding two
group elements, 0, resp., 1, are (the equivalence classes of) (10.5) and (10.6):

(10.5) 0— 22— (22)® Ly X% 7y — 0
and
(10.6) 0— 22— 224 7, — 0,

where the second, (10.6), is non-split. More generally,
(10.7) Ext (Z, A) = A/ mA,;

see [52]. A refinement of (10.7), also due to Mac Lane et al., is the characterization
of :

(10.8) Ext (Z [+],ZY)

as a solenoid, depending on k,! € N, k > 1. In particular, (10.8) is overcountable.
The description of our 2’s associated with |det Jz| = k in the special case that
ker (1) = Z!, must be given in terms of (10.8).

In the general case, we have Jr, of the form

mg 1 0 0 0
my 0 1 0 0

(10.9) =™ 0 o 0 0 :
my_1 0 0 0 1
my 0 0 -« 0 0

where my = (—l)N_1 det Jr, and the characteristic polynomial pz, (A) is
(10.10) pr(A) =det(A—Jp) =AY —m AV — o —my A —mp.

Here N is the rank of G;. Then Z¥ is embedded in G, and we can introduce the
quotient group Gy /ZY. Using this, we show that G, /Z" is a specific extension
of the inductive limit group C,,,, defined by

m
ZmNAZm?vMZm%_)"' .
Let 7 be the normalized trace on Gr. Then there is a short exact sequence
0 — ker (1) — G — 7(GL) — 0.

We further show that, if M is the rank of ker (), then ker (7) /ZM is an extension
of a second inductive limit group Cj formed from finite cyclic groups:

k k k
Ly —> Lz — Ligs —> -+,
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where k divides my. It will follow in particular from the construction that every
element of G1,/Z" has a (finite) order which divides a power of my; and, similarly,
that every element of ker (1) /Z™ has an order which is a divisor of k* for some i
(depending on the element).

Note that, as a consequence of (10.10), the vector (mq,...,my) is a similarity
invariant for Jg, i.e., two nonsingular matrices Jr and Jr: of the form (10.9) are
similar if and only if they are equal. But similarity of two J;’s is a condition which
a priori is much more restrictive than isomorphism of the corresponding pair of C*-
algebras, 2y, and 2. In [10] this is discussed in detail, and we show for example
that the matrices we discussed in (7.21),

4 1 6 1
(10.11) JL_(32 0) and JL,_<16 0),

define isomorphic C*-algebras. (See Figure 15, below.) Other examples are in
Example 5.3, in (6.22), in Chapters 13 and 16, and in [10].

Let L be such that 7(Gr) = Z [3] for some k. Then %A, corresponds to a
nonzero element of Ext (Z [1] ,ker (7)), if and only if

(10.12) 0—ker(r) — G, —Z[}] —0

is non-split. Let Jr, be given as usual (see (10.9)), and let G, be the inductive limit
from

(10.13) N cut (M) cupt (e c---

For the pair (10.11) we show in [10], or, more generically, in Proposition 13.3,
that (10.12) is the following exact sequence:

(1014) 00—z [}] 20 g 1 xz 4] =S 5 o,

This is the zero element of Ext (Z [3],Z []): aninjection ¢: Z [$] = Z [L] xZ [}]
may be defined by

(10.15) P (u) = (guu> ,  u€eZl3].

Then clearly 7 (¢ (u)) = u, so ¢ defines a section, and (10.14) splits.

The inductive limit G from (10.13), and 7(GL) = Z [3], k > 1, in general
define a nontrivial element of Ext, i.e., (10.12) is non-split in general. It is split
if and only if there is an element g € G such that (k‘i) g € G, Vi € N, and

7(g9) =1.







CHAPTER 11

Scaling and non-isomorphism

In this chapter we introduce a number 7 (v), and prove in Theorem 11.10 and
Corollary 11.22 that it can be used to establish non-isomorphism for classes of
algebras where the basic invariants in Theorem 7.8 are the same..

Let A € Ry, and let

LX) = {J | J is of the form (11.2) with Perron-Frobenius eigenvalue A}.
In particular, the standard matrix Jy, is in £ (A) if and only if
(11.1) MmN —mp V=2 — o mpy A —mpy = 0.

The admissible numbers A must therefore be algebraic. These algebraic integers
A may be specified further; see, e.g., [42], [66], and [58] for more details on this
point.

We are not restricting the size N x N of the matrices J in £ (X).

Our main result, Theorem 11.10, in this chapter, is that 7 (v) = (a|v), intro-
duced in (11.3)-(11.4), can be used to show non-isomorphism of a class of cases in
L) when A€Zy, A > 1.

We consider matrices J = J,,, = Jr having the form

mg 0 1 0 0
(112 Ja=| ™ 00 000
my—1 0 0 0 1
my 0 0 -+ 0 0

with m; € Z, m; > 0, my > 0, and satisfying the further requirement that for
some k € N, J* has only positive entries (equivalently, ged {i | m; # 0} = 1). Non-
unimodularity means my > 1.

Recall from (5.17) that the vector o = ay = (1, A71,..., A\=N=1) satisfies

(11.3) alJ = Aa,
and also there is a unique v € Z [A]" such that
(11.4) Jv = v and v =1

An explicit expression for v is given in (14.5). When J is given, let s be the
corresponding AF-algebra.
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TABLE 1. Parameters for Examples A and B in (11.5)-(11.6).

A my Rp ker(r) F=Ky/7Z® {(a|v)
Example A: 2 2 2 A Z [%] e/ %
Example B: 4 4 4 72 7 [%] e/ %%

Our list of invariants, so far, cannot separate the AF-isomorphism classes cor-
responding to the following pair of examples (Examples A and B) where:

ma 0 my 0 :
(11.5) My =13 and [ my =1[15], Aa=2and A\g = 4.
ms A 2 msa B 4

The stabilized Bratteli diagrams:

Example A:

(11.6)

7 Example B:

For both these examples, the basic invariants in Chapter 7 have the values
N =3, D =1, Prim(my) = {2}, Prim (Rp) = {2}, Prim(Qn_p) = @. These
invariants do not directly separate the isomorphism classes of the examples. How-
ever, since one Perron-Frobenius eigenvalue is a power of the other, we will show
that 7 (v) can be used to check non-isomorphism of the two AF-algebras 24 and
2 p. This is shown for this specific example in Observation 11.2, and more generally
in Theorem 11.10.

It is easy to check that both examples have ker (1) = Z2, and 7 (Ko) 2 Z [1].
Strictly speaking, 7 (Ko) is Z [3] for Example A, and Z [}] for Example B; but

Z [3] = Z [4] with the natural isomorphism specified by

1 1

Z'_}22i'
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Hence, both of the examples are characterized as elements of Ext (Z [$] ,Z?), in
the usual manner. Let G4 and G g be the respective Kop-groups. The rank of each
group is clearly N = 3.

The next Observation illustrates the previous remarks about mpy. Let Fjy :=
G4/ Z3, and similarly for Fp.

Observation 11.1. G4 /Z* =2 Gp/L* =2 Z [}] /L.
Proof. The respective quotient groups have the following generators:
Fp:z; = J2i63 mod Z*3
and
FB: Y = Jgieg mod Zs,
and a use of Lemma 9.2 yields:
(a) 221 =0, 22441 = x;,4 €N, and
(b) 4y =0, 4yi+1 = ¥i, L € N.
Hence Ga/Z*=Z [L] /Z,and Gp/Z* 2 7L 3| /2= 3] /Z. O
The crucial property derived from (a)-(b) above is not really Observation 11.1,
but that scaling by a power of 2 (in Example A) and 4 (in B) determines a filtration

of G4 = U, 50 J1"Z3. Specifically, let ma: G4 = Fa = Ga,/Z? be the quotient
mapping. If elements of F4 are represented as (i1,2,...,4n—1,1), 1; € Zg, we write

gn=z+i1J  es +iaJ  es + ...
tin1 ;" les +1-J "3 forz € ZP, ij € {0,1}.
Recall from Corollary 8.3 that this representation is unique. Then
74 (gn) = (irl’ié’ sl 1) ) gn € Gn (A) = JX"Z3a

and we note that

TA (2gn) = (ilz”iIS’ e 7iln—17 1) =TA (JAgn) .
— —

n—1 places

A similar remark applies to Fg = G /73, but there the scaling is by a power of
4. We have proved the following:

An element g of G4 is in Gy, (4) if and only if 2"g € Z2. .

Similarly, when g € Gg, then g € G, (B) = Jg"Z?* if and only if 4"g € Z3. We
shall need this in the proof of Observation 11.2 below. (See Figure 16.)

In summary, both examples have N = 3, D = 1, and 7 (K (%)) = Z [3], and
the other data are as in Table 1 (above).

The proof of non-isomorphism for A and B uses the fact that (a4 |va) and
(ap|vg) have different prime factors than 2 for their numerators.

Observation 11.2. Examples A and B correspond to non-isomorphic AF-algebras
A4 and Ap.

The argument proves that there is not even a nontrivial homomorphism 8: Gg —
G 4 which makes the diagrams in (11.7) and Figure 16 (below) commutative.
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. Gy (B) o Gn (4)
i / n \
- 9 7\
nes % 0 \ \
N NN \
s NN N
e NN\

. \\ \ Jhton
AN

s NN N

n =10 \ \ /
- NN
n=12 \ /

n=13 N/

FIGURE 16. The (nonexistent) matrices ¢, in the proof of Obser-

vation 11.2 (examp

le with k = 3).

The nonexistent isomorphism §: Gg — G 4:

0 — ker(rp) JBy Gg & 1m(Gg) — O

)

|
0 — ker(

IR

»n

2|0

N

IR

TA) LAy Ga

o=
=R

IR

EN TA(Ga) — O
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Proof. 1t is enough to show that G4 and Gp represent different elements of
Ext (Z [}] ,Z?). This can be done by recursion, and use of the relations (a)-(b).
Alternatively, it can be checked directly by the argument from the proof of Theorem
11.10 below that the two Ext-elements G4 and G'g are different in Ext (Z [%] ,Z2).
Both arguments are essentially based on the (o |v)-number, even though g # Ag.
In the present case, A} = 4 = \g, which is good enough. The present argument is
essentially a “baby” version of the argument in the rest of this chapter.

We sketch the details. It is a proof by contradiction. Suppose 6 were an
isomorphism of the ordered Ky-groups, say 6: Gg — G4, which made them the
same element of Ext (Z [5] ,Z?). Since G4 = J,5o J1"Z?, there is a k such that
6 (23) C J3*Z3. We then claim that 8 (J5"Z%) C J;*T®™Z3 for all n. The
argument for this is based on properties (a)-(b) for the generators: Let x € Z3. To
verify that 8 (Jg"z) € J;*72"Z3, we must check that 22"+*¢ (Jz™z) € Z°. This
holds since 22749 (J5"z) = 250 (4"J5"z) € 286 (2%) C 2%J;*Z3 C Z°. Hence
22n+kg (J-"z) € 23, and therefore 8 (J5"z) € J;*H*™M 78 as claimed.

These maps may be represented with matrices ¥, € M3 (Z) as follows:

6(J5"a) = (@),  weZhn=012..,
with the consistency conditions
¢n=Jf;”¢oJ§", n € N.

Thus 1o = J48|zs, and b, = JET2"0JZ"|zs (see Figure 16). This defines the
sequence v, as a sequence of linear endomorphisms of Z*, and so each 1, is rep-
resented by a matrix in M3 (Z). That turns out to be very restrictive. It is not
satisfied for 1o = I5. In fact, even J4J ]-3-1 has a non-integral entry. (The matri-
ces 1, play the role of the intertwiners A, in the diagram (5.50), with 4; = %o,
As = 11, ete., but in the reasoning here positivity does not play a role.)

Letvyg = (% ) and vg = <411) be the normalized Perron—Frobenius eigenvectors:

Java = 2v4, Jeup = 4vup.

Hence
ll/)n (UB) = JinwojgnUB =4"" in’l,bo (’UB) — _TA (¢OUB)UA
n—oo T4 ('UA)
by the Perron—Frobenius theorem. But
74 (thovp) = 2"75 (vB)

since @ preserves the normalized trace; see (11.7).
Hence, by taking n large, ¥y (vs) (€ Z3) will be arbitrarily close to 28 Z2{%8) 4, =

Ta(va)

3
2k ( % ) , where we used the numbers from the last column in Table 1. If (QE?)) o
i\j=

denote the matrix entries of 1/, then Qg?) € Z,and ¢y, (vB), = Yl‘) +4Q§g) +Q§§).
But they are integers, so there is an ng € N such that Z 3 ¢, (vg), = % for all
n > ng. Since 3 does not divide 11, this is a contradiction. We have proved that
the Ext-elements are different as claimed. O

Remark 11.3. We will get back to the idea of defining 8 by a matrix in GL (N, R)
in a more systematic way later, in Proposition 11.7.
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Let J be a matrix specified as in (11.2) and let G = G5 be the corresponding
inductive limit group (see Chapter 5). Recall my = |det J|. Setting G; := J*ZT,
we shall use the homomorphisms, g ~ m¥;g, in localizing the scaling G, i =
1,2,.... It is immediate from the proof of Claim 8.2 that myJ —! has integral

entries, i.e., is in My (Z). Since miyJ~¢ = (myJ™!)", this is also true for the
iterations. We have proved the following implication:

(11.8) geG=g€CG and  miygeZV.
It will be useful that a scaled version of the converse also is true.

Proposition 11.4. Let J be given as specified in (11.2). Then there exists ap € N
such that the following implication (a) = (b) holds for g € G:

(a) mng € ZN

4
(b) g € JP(ZM)
Furthermore, for the same p € N we have the following implications for g € G:
(c) miyg € ZN

)
(d) g€ J7®(ZN) for i = 1,2,3,....
Proof. Tt myg € Z", then g € .-Z", and hence g has the form

g___(l’ ykN)+m
mN

where k; € {0,1,... ,my — 1} fori=1,...,N, and m € Z¥. But G can contain

at most mY elements of the form (ki, ... ,kn) /my where k; € {0,1,... ,mn—1},

and since this number is finite and

Gy = U J N

is an increasing union, it follows that there is a p € N such that all these elements
are contained in J~PZY. But as ZN C J7PZY, the implication (a) = (b) follows.

Next, choose p € N such that (a) = (b) holds. We prove by induction with
respect to 4 that (c) = (d) holds. i = 1is (a) = (b), so assume (c¢) = (d) holds for
i — 1, and assume that g € Gy and

m}'vg = mﬁ;lmNg e zZV,

By the induction hypothesis, we then have

mng € J~PGDZN,
But applying JP(=1) to both sides, we have

’mNJp(i_l)g ezv.
Applying the case i = 1, one obtains

Jp(i—l)g e J PN,
and applying J~?¢~1 to both sides

ge J PN

and this proves (c) = (d). a
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Note that the implication (a) = (b) holds if there is a p € N, and an E €
My (Z), such that

(11.9) | J? = myE.

If (c) = (d) holds for all g € QV, then J%# (ZV) C m4ZY for all 4, so (11.9) is
valid. Thus (11.9) is stronger than (c) = (d).
Definition 11.5. Suppose J is a matrix of the form (11.2). We say that J has
scaling degree < p, and write deg(J) < p if there exists an ng € N such that, for
g€ GJa

mf\,g eZV=gc¢c Jlie]=nogz N
More generally, if m is a positive integer containing exactly the same prime factors
as my, we say that J has m-scaling degree < p = p(™ and write m-deg(J) < p if
there exists an ng € N such that, for g € G

mig € ZN = g e J-lpl-nog N,

Note that as m contains the same prime factors as my, J has a finite m-scaling
degree if and only if it has a finite scaling degree, and the last is true by Proposition
11.4.

We note en passant that the above remark implies the following corollary, which
is true whether the Perron—Frobenius eigenvalue A is rational or not. (But if A is
rational under the conditions in the corollary, it follows from the characteristic
equation that Prim()\) C Prim (my)).

Corollary 11.6. Let J be a matriz of the form (11.2), and assume that each m;
is either 0 or contains all the prime factors of my. It follows that

N
o=l
when G is identified as a subgroup of QV by (5.6).

Proof. Since J~! = - where E is a matrix with integer coefficients, it is clear
from (5.6) that

mnN

N
GCZ [L] .
But it follows from (11.9) that
—1—nZN cJ N C G
my
forn =1,2,..., and hence the converse inclusion is valid. O

It follows from the inductive limit construction for G, i.e., G = ;5 Gi, Gi C
Giy1, that if the implication (c) = (d) holds for some p € N, then it also holds for
p+ 1, and so the scaling degree is well defined.

While the two groups from (10.11), Ko (2, ) and Ko (1), agree, the relation-
ship between the corresponding scale of subgroups is more subtle. Using (11.9) we
can establish the following subgroup inclusions:

(11.10) (a,) Gi g ng and (b) Gi g G3i’
where
Gy i=J;*2?  and 1= JoRTR
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To prove this, let J = Jp and K = Jr.. We proved after the statement of
(11.9) that there is an E € My (%) such that J® = 16E. Since 16Kt € M, (Z), we
conclude that

JK'=E-(16K™') € My (Z)
and so
K72 Cc g-3z2
Similarly
JUK™ = E' (16'K ') € M, (Z)
since each factor is in My (Z). This yields
K72 C J-%72,

which is the assertion (11.10)(b). The claim (11.10)(a) follows by the same argu-
ment applied to the factorization K® = 32F for some F' € M, (Z), and 327! €
M, (Z).

The discussion above leads to the notion of the degree of an isomorphism or
homomorphism 6: G — G' as follows. When talking about isomorphisms and
homomorphisms, we will henceforth always assume that 6 ([1]) = [1'], i.e., in the
concrete representations,

(11.11) G={JrmN=JG. G =rzN=Ja,,
n n n n

1 1

' 0 0
6 maps ( : ) into ( : ) . We may assume N = N’ in the discussion since IV is an
0 0
0 0

isomorphism invariant. But as 6 is an order isomorphism, this means that 708 =71
for the associated normalized traces. Recall from (5.20) that

(11.12) ' =(1,d,d?,...,a", r=(la,...,a""

where @’ = 1/)N,a = 1/X\ where X is the Perron—Frobenius eigenvalue of J', J,
respectively.
The following proposition is a globalization of Corollary 5.1.

Proposition 11.7. A map
(11.13) 0:G=Js e -G =]z

n
is an isomorphism between the ordered groups (G,G4) and (G',G'y) (mapping [1]
into [1']) if and only if there exists a matriz A € GL(N,R) and a sequence (n;) in
N with the following properties:

1. 0(g)=Ag forgeGCRY;

2. dA=a  wherea=(1,a,...,a"%), etc.;
3. J'MAJTie My(Z)  fori=1,2,...;

4. JMATYJ' "t e My(Z) fori=1,2,...;

040

(11.14)
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Furthermore, 8 is a homomorphism from (G,G4) into (G',G",) (mapping [1] into
[1']) if and only if there exists a matriz A € My (R) with the properties (1), (2),
(8) and (5). In both cases we actually have

m

N

Proof. Assume first that 6 is given, and define the matrix A by
1 0 0
0 1 0
(11.15) A=|o| O [0 O |,....010
0 0 1

If g € G, then g € G; = J™'Z! for some i, and hence g € my'Z", ie., mig € ZV.
But then

(11.16) miyB(g) = B(miyg) = A(mivg) = miAg
and as G has no torsion,
(11.17) b(g) = Ag

which shows (1). But then (2) follows from 7/ 08 = 7. Furthermore, as G; = J¢ZY
is finitely generated, it follows that 6(G;) C G, for some n;, i.e.,

(11.18) AJ LN C T ™MLy
which shows (3). The property (4) follows likewise from §~(G) C Gy, for some
m;. Property (5) follows from
(11.19) o([1]) = [1].
Conversely, if A € GL(N,R) is given with the properties (2)—(4), one deduces that
6 defined by (1) has the properties:
'of=r,
0(G;) C Gy,
071(G) € G
o([n]) = [0,
80 @ is an order-automorphism from the property (5.34), i.e.,
(11.21) G+ ={geG|7(9) >0}uU{0}.

The last statements in Proposition 11.7 are straightforward from |det(J'™)

I'm;
My .

(11.20)

Ol

Our next aim is to show that the constants n;, m; in Proposition 11.7 can be
chosen such that they increase linearly with . First, a definition:

Definition 11.8. Adopt the notation (11.11), and let § be a homomorphism from
G into G'. We say that the degree of 8 < s, and write deg(f) < s, if there exists
an ng € N such that

(11.22) 0(G:i) C Grg (s
for all 1 € N. (Here |si] is the largest integer < s1).
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We next show that any homomorphism 6: G — G' (mapping [1] into [1']) has
a finite degree which can be computed in concrete examples.

Proposition 11.9. Let G = G5, G' = Gy and let § be a morphism from G into
G' mapping [1] into [1']. Assume that N = N',Prim(my) = Prim(m}y) and let
m = lem(mpy,my). Then

(11.23) degf < m-deg(J').
(The last statement means that if m-deg(J') < s, then degf < s.)
Proof. If

(11.24) o: | JsmzN — | JJ 2N
n n

is a morphism, there is a ko such that

(11.25) g(zNy C J TRzl = Gy,

Then

%

E

(11.26) m*otig(G;)

3
2

3
z

N
N~ "~ . —/~

15

N
TN N
E
e e e
3
Ea
=
N
=z

3 £
3
2

N

2 3
2
N———
Sls
T
N——
=
N
P4

N

Thus, if m-deg(J') < p, then

(11.27) 0(G;) C Gll(i+ko)pj+no

for some ng and all ¢, and hence deg8 < p. O
Note now that if

(11.28) m-deg(J') < s

where p,q € N, then the conclusion in Proposition 11.9 says that there is an nyg

such that

(11.29) \ Jimrtno A J=r e My (Z)

forn=1,2,..., where A is the matrix in Proposition 11.7. This implies the main
result on the Ext-invariant in this chapter, which, together with Remark 11.11,
is surprisingly effective in establishing non-isomorphism when all the elementary
invariants in Chapter 7 are the same.
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Theorem 11.10. Let J, J' be matrices of the form (11.2) with N = N’ and
Primmpy = Primm/y. Assume that the associated Perron—Frobenius eigenvalues
A, X' are rational (and thus integers), and let m = lem(my,mly). Assume there
exist rational numbers p, q with

(11.30) m-deg(J') <

Sl

and such that
(11.31) NP =),

Let o/, o, resp. v', v, be the left, respectively right, Perron—Frobenius eigenvectors
of J, J' gwen by (5.17), (14.5), respectively.
If there exists a unital isomorphism Ay — Ay, then

(@] v) 1
(11.32) o [0 € Z [5] .

Remark 11.11. A rather effective “workhorse” to show non-isomorphism in cases
where all the basic invariants in Theorem 7.8 are the same and the Perron—Frobenius
eigenvalues are integers, is to use Theorem 11.10 together with the fact that m/y-
deg(J') = 1 if m)y_, is nonzero and m'y, m)y_; are mutually prime. See Proposition
11.25 and Remark 11.23 below. More generally, my-deg(J') = n if mjy_, = 0

mod my for k=1,...,n —1and mjyy_,, and m/y are mutually prime.
Note for example that this theorem covers the two matrices:
010 0 10
Ja=11 3 0 1 Jg=1| 15 0 1
2 00 2 00

considered in Observation 11.2. We have A4 = 2, Ap = 4, and since 3 and 15 are
mutually prime with 2, we have 2deg J4 = 1 = 4-deg Jg. (This also follows from
Lemma 11.14). Using the computation in Observation 11.2,

13

(a4 |va) = (ap | vB) = T

Z;
Since 1-deg J4 = 1, we have 2-deg J4 = 2 by Proposition 11.4, and applying The-
orem 11.10 with m = lem(2,4) = 4, J' = J4, J = Jg, p = 2, ¢ = 1, we see that
(11.32) takes the form

13
¥ enp

which is clearly false. Hence, there is no unital morphism 2 — 204. Of course, the
proof of Theorem 11.10 is just a more general version of the proof of Observation

11.2.
Proof. By (11.30) in the form (11.29), it follows that there exists an ng such that

(11.33) J'mPEmoA 771 e MN(Z)
forn=1,2,..., when A is the matrix associated to the homomorphism
0: Gr — Gr

by Proposition 11.7. We have
(11.34) Jrmptna g J-nty _ y-nayinptno gy




11. SCALING AND NON-ISOMORPHISM 103

Since A\ ™ = 1 for all n, it follows from Perron-Frobenius theory that there
exists a constant ¢ € R such that

(11.35) lim A"/ PO Ay = o,

n—roo

But the first component of v’ is 1 by (14.5) and
J'mrtmo AT e Mn(Z)

for all n, and since all components of v are integer by (14.5) and A € N, it follows
that c in an integer. But it follows from (11.35) that

! no_ 1 -ng [/ I np+no
cla [v') = lim A (o' | T Av)

= lim AN Pt (o) | Av)

n—oo
=N (a|v)
where we used (11.14)(2). It follows that
(alv) _ ¢
(a/ | v/) - M 1o
S0
(alv)
(a,|v,>€Z[%]=Z[%:|. O

We will often apply this theorem in the following special form:

Corollary 11.12. Let J, J' be matrices of the form (11.2) with N = N' and
my | mly, and same Perron—Frobenius eigenvalue A = X'. If deg(J') < 1 and there
exists a unital morphism Ay — Ay, then

(11.36) éjf : Z>> ez L] =2 [4].

Proof. In this case m = m/y. a
The following even more special corollary will be useful in Chapter 16.
Corollary 11.13. Let J, J' be matrices of the form (11.2) with N = N' and

my =mpy = A= \N. If there exists a unital morphism Ay — Ay, then

(11.37) ((;f I z,)> eZ[i].

Proof. First apply Lemma, 11.14 below to deduce my-deg J = 1 and mj-degJ' = 1.
But then we may apply Theorem 11.10 with p = ¢ =1 and m = my = mly. O

Lemma 11.14. Let J be a matriz of the form (11.2) with my = X. Then
(11.38) my-deg(J) = deg(J) = 1.

Remark 11.15. If A = my, it follows that Rp = A = +my and Qy_p = £1in
(7.15), hence |det Jo| = 1 where Jp is given by (9.3) and ker 7 = Z~~! by Theorem
7.8. Conversely, if ker7 = ZN~! we must have |det Jo| = 1, hence Rp = £\ =
+mpy, i.e., A =mpy.

Conclusion:

A=mpy < kerr 272N,
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The theory for the A = my case will be developed in much more detail in Chapter
17.

Proof. If A = my, the matrix JE in (7.15) takes the form (now D = 1):

@ 10 - 0 0
@ 01 .. 0 0 Q
@ 00 . 0 0 Qs
(11.39) Jg = L :
n-2 0 0 0 1 Qn_s
-1 00 0 0 -1
0 00 0 0 my
where
Qr=m1 — A
Q2 =mg + dmy — N2
(11.40) Q3 =m3 + Amy + A2my — A
QN-1=mn_1+dmy_g+- -+ AN Emy AN =

Note in passing that

1
-Q1
(11.41) v=| —Q2

—Qnos

is the right Perron—Frobenius eigenvector of J by (14.5).
Using (7.24) one computes that

0 0 0 0 -1 |3t

10 0 0 @ 0

01 0 Q 0
(11.42) JEl = :

00 1 0 Qn-3| O

0 0 0 1 Qn—2| O

00 00 0 e
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Tterating, one computes that

P ()

(11.43) JEF = :
k
pgv)l(ﬁl;)
‘00 - - 00 1

k
. My

where p (m) € Z[z] and the degree of the polynomial p( )
degp( ) = (k—1+1)VvO
forl=1,...,N — 1. Using this and the transformation matrix

(11.44) 1% = (15H™

0 —-L L 1 1 1
my m3, mN=3 mN=2 mN—1

0 0 L __1 __1 __1
mn mi -4 mN =2 mN =2
0 0 o0 i
mN

1

0o 0 0 0 0 s

1 1 1 1 1 1
my m3, mN=3 mN—2 ml -1

and the definition of my-deg together with (7.45) one has to show that for any
I,k € N with I < k and any n € Z" that
miyJg *I8n € 12N
U
(11.45) JE kI8 e JE LN
0

Jg'kI18n € I5ZN.

(The last equivalence is trivial.) This can be done by brute force, looking at highest
order terms in ﬂj—N We do omit the painful details, however, since the result can
also be proved by another method described below. O

The alternative way of proving Lemma 11.14 is based on:

Proposition 11.16. Let J be a matriz of the form (11.2) with my = A = m.
Use the concrete realization (5.6) or (9.1) of G = Ko(%s), and define F = G/Z".
Then the generators x1, T2, T3 of F' defined in Lemma 9.2 satisfy

(11.46) mz; =0
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and

(1147) mz; = T;—1, i= 2, 3, cean
Thus,

(11.48) F=z[L]/z

the isomorphism being given by

(11.49) —
m'l»

Proof. From the relations (11.40), it follows that

(11.50) my =Q1+m

my = —mQ1 + Q2
mz = —mQ2 + Q3

my—1=-—mQn_2 +Qn_1

my =m=-mQn-_1=> Qn-1 = —L
Inserting these relations in the relations (9.10) for z; in Lemma 9.2 gives
(1151) mx; = Tij—-N — (Ql + m)a:i_N_l_l

= (—mQ1 + Q2)Ti—Nt2
= (—mQ2 + Q3)Ti-Ny3
—(-mQnN-2+QNn-1)Ti1.
We know already from (9.9) that z; = 0fori =1~ N,2 - N,...,0. Assume by
induction that z;_; = maz; for all j < . It follows from (11.51) that
MT; = Ti—N — Q1Ti—N4+1 — Ti-N
- Q2%i-N-2 + Q1Ti-Ny1
— @3Ti-N+3 + Q2Ti—Nt2
—QN-1%i—1 + QN—2T;
=—(-Dzi1 =m1.
This shows (11.47), and the remaining statements in Proposition 11.16 are obvious.

O

Alternative Proof of Lemma 11.14. Use the notation of Proposition 11.16 and de-
fine

(11.52) Gi=J"zZY, F =G/ /%"
It follows from Proposition 11.16 that
(11.53) F; 2 ZyNi=7/N.

The conclusion in Lemma, 11.14 is
(11.54) Gi={ge€G|migeZ}.
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But
(11.55) mig € ZV < mi(g+2Z™) =0,
so this conclusion is equivalent to
(11.56) F;={h € F|m'F=0}.
But the last statement is obvious from (11.49) and (11.53). This proves Lemma
11.14. O
We will now prove a theorem somewhat close in spirit to Theorem 11.10. If G
is a torsion free abelian group, and n = 2, 3,4, ..., we define
(11.57) Dn(G) = [ n*G
k=1

= the set of elements
of G which are
infinitely divisible by n.

D,(G), as well as its rank, is clearly an isomorphism invariant of G, and any
homomorphism G' = G' will map D, (G) into D,(G'). D,(G) only depends on G
and the prime factors of n, and D,(G) is in a natural way a Z [%]-module. Note
that even if the rank of D,(G) is 1, D,(G) is not necessarily isomorphic to Z [%],
as seen from the example G = Z [§] and n = 2. But in the rank 1 case, Dn(G) is
isomorphic with a subgroup of the additive group R containing Z[L].

In the special case that G = Ko(2), where J is a matrix of the form (11.2),
and the Perron—Frobenius eigenvalue A of J is rational, and thus an integer, we note
that the right Perron-Frobenius eigenvector v, normalized as in (14.5), is contained
in Dy(G). In fact, since J~lv = A~'v we have
(11.58) Di(G) 2 Z [1] .

If, furthermore, rank (D) (G)) = 1, there exists a subgroup D?(G) C Q such
that

(11.59) Di(G) = DY(G)v
and this identity defines an isomorphism between Dy (G) and D?(G).

Let DgU(G) be the set of multiplicatively invertible elements of D?(G), so if
for example DgU(G) = Z [%], this is the set of numbers of the form pi"p3* ...pp"
where p; -+ - p;, are the prime factors in n and nq,ng,... ,nym € Z.

Theorem 11.17. Let J, J' be matrices of the form (11.2) with rational Perron-
Frobenius eigenvalues A\, X' and Prim(\) = Prim(\') = {p1,... ,pm}. Assume
rank(DA: (Ko(Q[J/))) = 1

and let o, o, resp. v, V', be the left, respectively right, Perron—Frobenius eigenvec-
tors of J, J' given by (5.17), (14.5), respectively. If there exists a unital morphism
Ay — Ay, then

(11.60) (Sf : Z,)> e DY (G

In particular, if
(11.61) Dy (Ko@p)) =27 [%] v’
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we conclude

(a|v)
(11.62) o T € Z[3]=7[5].
If in addition the unital homomorphism Ay — ™Ay is an isomorphism, and
(11.63) D\(Ko(%1) =Z [3] v,
then there exist integers ny,... , N, such that
(a]v) n
11.64 A =P py? .. plm,
( 6 ) <a, | 'U’) P17°Dy Pm

Remark 11.18. It does not suffice instead of (11.61) to assume that Dy (Ko(2(s1))
is isomorphic to Z [], because, say, Z [+;] /p is isomorphic to Z [] if p is a
prime not in the set {p1,... ,pm}. For the same reason, even though the existence
of an isomorphism 2y — 2, implies that Dy (Ko(As)) ~ Z [3\17] one cannot omit
condition (11.63) to obtain (11.64). See the proof for explanation of this.

Proof. Let ¥: Ko(2s) = Ko(¥ ) be the K-theory morphism defined by the mor-
phism 20; — 2. Since Prim(A) = Prim()\’) we have

Dx(Ko(2s)) = Dy (Ko ()
and since

Dy (Ko(2y)) = DY (G')
and thus
(v) € %(Da(Ko(2s)) € DY (G’
thereis a & € Dg (G") such that ;
P(v) = &v'.
Apply (@' | to both sides
(@ [P(v)) = &(a | V).

But since the morphism is assumed to be unital, we have (o' | ¥ = (a | by unique-
ness of the trace, and hence

(a]v) =& | V).

This proves (11.60). Since (11.61) means DY (Ko(27)) = Z [£], (11.62) follows,
Finally, if the homomorphism 2; — % is an isomorphism and (11.63) holds, it
follows by reverting the proof that %%)) € Z [5], and thus ({%I%% has a multi-
plicative inverse in Z [%] But multiplicative invertible elements of Z [%] have the
form on the right-hand side of (11.64).

There is one interesting circumstance where (11.62) or (11.64) is automatically
satisfied.

Lemma 11.19. Let J be a matriz of the form (11.2) with rational (and thus inte-
ger) Perron—Frobenius eigenvalue A. Assume that

(11.65) Prim(my) = Prim())
and that »
(11.66) rank(D)(G@)) = 1.
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It follows that

(11.67) DA(G)=1Z[3]v

where v is the right Perron—Frobenius eigenvector given by (14.5).

Proof. Since J~™v = A™™v, it is clear that

(11.68) Z [L]v C DA(G).

Conversely, if g € D»(G) C G, then miyg € Z" for some N since
my = (=1)V*+ det(J).

But as Prim()\) = Prim(my), it follows that Mg € Z¥ for some j. But D(G) has
rank 1 and v € D»(G), so Dy(G) C Qu. Thus

NgeQnz?.

But as v € 7V and the first component of v is 1, it follows that Qu N ZY = Zv.
Thus Mg = nv for an n € Z, so

n
g=EvEZ[§]v.

This together with (11.68) proves the lemma. O

Corollary 11.20. Let J, J' be matrices of the form (11.2) with integer Perron—
Frobenius eigenvalues A\, X', and let o, o, resp. v, v', be the left, resp. right, Perron—
Frobenius eigenvectors of J, J' given by (5.17), (14.5), respectively. Assume that

(11.69) Prim(\) = Prim()\') = Prim(mpy) = Prim(mjy/) = {p1,... ,Pm}
and that

(11.70) rank(Dy (Ko(™))) = 1.
If there exists a unital morphism Uy — Ay, then
{a]v) 1
11.71 7 =
(AL vy €23
and if this morphism is an isomorphism, there exist integers ni, ... ,ng, such that
(@|v) _ nine. on
(11.72) o) =php...pim,
Proof. If there exists an isomorphism, then
(11.73) Dy (Ko (%)) = D (Ko(2Ly))

= Dy (Ko(2))

and hence it follows from (11.70) that rank D (Ko(2s)). The rest is straightforward
from Lemma 11.19 and Theorem 11.17. d

In applying Corollary 11.20, the most difficult condition to verify is of course
(11.70). To this end, the following criterion is often useful.

Proposition 11.21. Let J be o matriz of the form (11.2) with integer Perron—
Frobenius eigenvalue A, and let v be the corresponding right eigenvector given by
(14.5). Put

Gi=J""Z" and G=JG:




110 REPRESENTATION THEORY AND NUMERICAL AF-INVARIANTS

as usual. Assume that there is an n € N such that

(11.74) {g€ G| \"g € ZN} C Gn;
for alli € N, and assume that

(11.75) A"J™™ has integer entries.
It follows that

(11.76) Di(@) =17 [%]v,

so in particular (11.70) is fulfilled.

Proof. Tt suffices to show that
(11.77) DA(G)NZN = Zw.
For this, let w € Dy\(G) NZY. Then w = A\"g; for a g; € G for all i € N. Using
(11.74) we have

gi € G = J~MZN
S0

w = X"g; € (\"T )LV,

Thus

we (TN,

i>0

But A", being the Perron—Frobenius eigenvalue of the primitive matrix J", is strictly

larger in absolute value than any other eigenvalue, and since A”J ™™ is a matrix with
integer matrix elements, it follows that

(I ~™izN ¢ R nzZ™.
i>0
But since the first component of v is 1 by (14.5), it follows that
RvNzZY =Zvnz™
$0
weZvnZy
and this proves (11.77) and thereby (11.76). O

Corollary 11.22. Let J, J' be matrices of the form (11.2) with integer Perron—
Frobenius eigenvalues A\, X' and let o, o/, resp. v, v', be the left, resp. right, Perron—
Frobenius eigenvectors of J, J' given by (5.17), (14.5), respectively. Assume that

(11.78) Prim()\) = Prim()\') = Prim(my) = Prim(m/y) = {p1,... ,Pm}
and there is an n € N such that
(11.79) {ge G | \MgezV}yC G,
for all i € N, where
G/ = Jl—nizN
and

(11.80) DAL s has integer entries.
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If there exists a unital morphism Ay — Ay, then

{a|v) !
11.81 Z |+
( ) (a/ l UI) € [)\]
and if this morphism is an isomorphism, there exist integers ny,... ,Nm such that
a | v)
(11.82) <(a, I o = 25y SRy 2
Proof. This follows from Corollary 11.20 and Proposition 11.21. O

Remark 11.23. Note that condition (11.80) is equivalent to A’ J' =™ having in-
teger entries for 4 = 1,2,... and hence this condition is equivalent to

Gni C{g € G'| AMg e 2}

for i = 1,2,.... Thus, conditions (11.79) and (11.80) taken together are equivalent
to the single condition

(11.83) {geG | \MgezZN} =G,

fori=1,2,....
Now one proves as in Proposition 11.4 that (11.79) is equivalent to the same
condition for i = 1, and hence (11.83) is equivalent to the single condition

(11.84) {ge G | \"geZN}=G..
By the same token, (11.74) A (11.75) is equivalent to (11.84).

Scholium 11.24. We saw in Lemma 11.14 that if A = my, condition (11.84) is
automatically fulfilled with n = 1, and this was used in the proof of Corollary 11.13.
Thus, Corollary 11.13 may be viewed as a special case of Corollary 11.22. But in
order to verify the hypotheses (11.84), we need an efficient algorithm. One such
algorithm is one that in particularly “pure” form occurs in the proof of Proposition
11.16. So in terms of G = Ko(%r),

F=G/Z"

F, =G /ZN = g7z /7N
we want to establish (11.84), i.e.,
(11.85) {h€ F|A\"h=0}=F,.

In the special case A\ = my = m, we may proceed like this: If z1, o are the
generators of F' in Lemma 9.2, (9.8) and (9.9), then

mzy =0
MTy = —MN-1T1
(11.86) - mr3 = —MN—_2Z1 — MN-1T2
MTy = Tk—N —M1TE-N+1 — **° — MN-1Tf—1

(where we use z; = 0 for [ < 0). As seen for example in Corollary 8.8, any element
h € F can be uniquely represented as

(11.87) h=1t1x1 +toxas ++ + txTk
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for some k, where t; € {0,1,...,m — 1}. It follows from (11.86) that mh = 0 is
equivalent to

(11.88) —tompy_1T1 + -+ 1k (xk_N — MITf—N41 — " — mN—l«Tk—l) = 0.
The leading term here is —tympy—12g—1. If now
tgmy—1 Z0 mod m

for ty = 1,2,...,m — 1, it follows that mh = 0 = t; = 0. Thus t;zy cannot be
the leading term in A. Continuing in this manner, one loops off tx—1, tx—2, etc.,
and one ends up showing mh = 0 & h € Fi. If now my—; = 0 mod m, one
gets from the outset that mzs = 0, and hence there are no restrictions on ¢9, and
since now my—_1Zx—1 can be expanded in zg_o,Tx_3, etc., one may try to go one
step further and show that t; = 0, etc., and then h € F; if tm,_, # 0 mod m
fort € {1,...,m — 1}, etc. In general, it may of course happen for example that
tmy—a #0 mod m for some ¢ € {1,...,m —1} and tmy_2 =0 mod m for some
other ¢, and then the computation of {h € F' | mh = 0} becomes much more
complicated. Let us single out the simple case.

Proposition 11.25. Let J be a matriz of the form (11.2) and put m = my.
Choose n € {1,... ,N} such that

(11.89) my-—r =0 mod mpy
fork=0,...,n—1, and assume that

(11.90) ged(my—_pn,my) = 1.
It follows that

(11.91) {he F|mh=0}=F,.

If n = N, condition (11.90) may be omitted.
Proof. Once one notes that condition (11.90),

gcd(mN_n, mN) = 1,

means that
tmyn—n #0 mod my
fort=1,2,... ,my-1, this is clear from the discussion preceding the proposition.
O
Example 11.26. Consider
0100 1100
11010 | 1 0 10
J= 2 00 1) J= 0 001
8 0 00 4 0 0 0

Here A=)\ =2, s0
Prim()\) = Prim(\') = Prim(my) = Prim(m/y) = {2}.

Note that
0 0 1 0
o | 00 -1 1
= 4 0 -1 -1
0 4 0 -1
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so (11.75) is satisfied with n = 2. Further note that
1

111 2 13
@v=(1353) |3 |- 7
4

and
Dy (L 111
@i = (1353

but this number does not have a multiplicative inverse in Z [+]. Thus, if we can
show (11.79), :

[ RS Sy

and hence

{geG | Mg e ZN} C GY,
it follows from Corollary 11.22 that 2(; and 2y are non-isomorphic. But Proposi-
tion 11.25 applied to J’ shows that
{h€ F|4h =0} = F,.
Thus (11.84) holds with n = 2 and in particular (11.79) is valid. This shows the
non-isomorphism of the two dimension groups.

In addition to the criteria of non-isomorphism given by Theorem 11.10, Corol-
" lary 11.12, Corollary 11.13, Theorem 11.17, Corollary 11.20 and Proposition 11.21,
it is frequently possible to decide non-isomorphism by another route, namely by
establishing that the exact sequence (5.31):

0 — kerT — Ko(y) — Z[3] — 0
splits for one specimen but not for another. With Ko(2 ) realized as (5.19), there
is a simple criterion for this.

Lemma 11.27. Let J be a matriz of the form (11.2) with integer Perron—Frobenius
eigenvalue A with

Prim(\) = {p1,.-- ,Pm}-
The following conditions (i) and (ii) are equivalent.
(i) The ezact sequence

0— kerT — Ko(%s) — Z[}] — 0

splits.
(ii) There is a w € D\(G) such that T(w) has a multiplicative inverse in Z [1],
i.e., T(w) =p'py? - phm for suitable ny, ... ,nm € Z.

Proof. (i)=-(ii): If the sequence splits, let
¥: L [5] — Ko(y)
be a section, and put w = (1). Then
w €1 (Z [+]) € DA(G) and 7(w) = 1.
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(ii)=-(i): If (ii) holds, we can define a section ¥ by
p(r(w)) = w
and since Z [+] 7(w) = Z [}], and w € DA(G), 9 extends uniquely to Z [5]. O
Corollary 11.28. Let J be a matriz of the form (11.2) with integer Perron—Frobenius

eigenvalue A with Prim()) = {p1,... ,pm} and left and right Frobenius eigenvectors
a,v given by (5.17), (14.5), respectively. The ezact sequence (5.31):

(11.92) 0 — kerT — Ko(%y) — Z [5] =0
splits if

(11.93) (a|v) =pi'py* Py

for suitable ni,n9,... , Ny N Z.

Conversely, if (11.92) splits and rank(D(@)) = 1 and Prim(my) = Prim(}),
then (o | v) has the form (11.93).

Proof. Since always v € Dy (@), the first statement follows from Lemma 11.27.

The last statement follows from Lemma 11.19: If rank(D(G)) = 1 and Prim(my) =
Prim(}), then Dx(G) = Z [{]v and if ¢ is a section for (11.92), then %(1) €
Dx(G) = Z [5] v. Thus, there is a t € Z [¥] such that 9(1) = tv. But then

1= (a|y(1)) = {a|tv) =t{a]v)

and it follows that (o | v) has the multiplicative inverse ¢ in Z [§], so (o | v) has
the form (11.93). O

Example 11.29. An instance where the isomorphism question for two C*-algebras
207 and 2 is not immediate is when

1 1 0 010
J=1[1 0 1 and J=13 0 1
2 0 0 2 0 0

Both matrices are regular, and both have determinant 2 and Perron—Frobenius
eigenvalue 2. The respective right eigenvectors are

1 1
vy= 1|1 and vy =12].
1 1

T(vy) 7

r(op) 9
it follows from Corollary 11.13 that the two C*-algebras 2; and 2 are non-
isomorphic. The non-isomorphism here is perhaps a bit surprising since the two
matrices J® and J'% have the same spectrum.

Later, in Theorem 17.14, we will show that {Prim /\,)\27'(1))} is a complete
isomorphism invariant for 3 x 3 matrices with A = mg. For the two matrices
above one computes that A27 (v) is 7, 9, respectively, confirming that they are
non-isomorphic. See also Theorem 17.16.

Since




CHAPTER 12
Subgroups of Gy = o, J;"

Before applying our general theory of isomorphism of stationary AF-algebras
to more specific examples in Chapters 13-18, we will mention one more example
of how to decide nontriviality of extensions which is sometimes useful. In many
examples we compute that G = Ko (1) or Gy = ker 7 or some other group is an
extension of the form

(12.1) 0— H— Go—Z[3] —0.

We first state a proposition which is a variation of a result due to David Han-
delman [8, Proposition 10.1].

Proposition 12.1. Let E be an N x N matriz with integer entries and assume
det (E) # 0. Let f (z) = det (zl — E) be the characteristic polynomial of E and let
f@) = fi(x) fo(z) - fn(z) be the decomposition of f into irreducible polynomials
in Z [z]. Define

q(z) = H fi(=), p(z) = H fi(z).
1£:(0)]=1 1£: ()1
Then '
p(E)ZY C {m ez | qE)m =0} =[|EFZ".
k

Proof. The left inclusion follows from ¢ (E) p(E) = f(E) = 0. Next note that
W = {m € Z"|q(E)m =0} is an Einvariant sublattice of Z". Note that if

g(z)= Ef:o giz®, then go = %1, so we may assume gy = —1, and hence m € W if
and only if

k
m= Z ¢Em.
i=1

But then by iteration

!
k
m = (Z qi]Ei> m
=1
for I =1,2,..., and expanding those polynomials we see that

m e ﬂ]E’ZN.
l
Thus

WCV= ﬂIEiZN.
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But V is also an E-invariant sublattice of Z", and thus a free abelian group, and
the restriction of E to V is clearly surjective. Since E is injective, it follows that
E|y is invertible and thus |det (|y )| = 1. But the characteristic polynomial of E|y
is a factor of the characteristic polynomial of E, and since the constant term of the
former polynomial is %1, it is a factor of ¢ (z). It follows that g (E|yv) = 0, which
means V C W. O

In order that an extension such as (12.1) shall be trivial, it is necessary that
Gp contain Z [%] as a subgroup. In order to decide that, the following more local
proposition is sometimes useful. The condition on £ means that £ = Z™ and that

L spans Q™ over Q.

Proposition 12.2. Let Jy be a nonsingular M x M matriz with integer matriz
elements, and let L be a free abelian subgroup of rank M of QY. Consider the
additive subgroup

(12.2) ‘ Go=J /oL
n=0
of QM. Let d € N be a number such that
(12.3) E=dJ;!

is a matriz with integer matriz elements. Assume that

(i) there is a prime factor f of the monic polynomial

M
det ML — E) = (d_ego det (én - J0>

such that |f (0)| = 1.
It follows that
(i) Go contains a subgroup isomorphic to Z [%]
but (ii) does not imply (i) in general.

Remark 12.3. Let us exhibit a partial example showing that (ii) does not imply
(i). Let

010 0 0
0 01 0 O
Jo = 0 00 0 0
000 0 1
d 00 -~ 0 O

and £ = ZM. Then JM = d1, so Go = U, J; 2™ = 7. [4]¥
holds. But since

ﬂEkzM — ﬂEMkzM — ﬂd(M_l)k'ZM =0
k k k

and hence (ii)

it follows from the equivalent form (iii) of (i) in the proof below that (i) does not
hold.

Proof. We know from Proposition 12.1 that (i) is equivalent to
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(i) N, E*ZM #0.
We now argue that (iii) is equivalent to
(iv) Npey BFL #£0.
But since both £ and Z™ are the free abelian groups generated by M points in

QM , and there is an element of GL (Q, M) transforming these M-tuples into each
other, it follows that there is a natural number n such that

(12.4) LC %ZM and ZMC ;1L—£.
Thus the equivalence of (iii) and (iv) follows by linearity. Next, put
(12.5) H =) d*Go.

k>0

Clearly, H is a subgroup of G containing 0. We now show

o0
(12.6) (E*cCH.
k
But this follows from
oo o0 oo
E*C =(d* I L € () d*Go = H.
k k k

But since (i) < (iv), it follows from (i) and (12.6) that H # 0. But if g € H, then
d~*g € Gy for all k by (12.5). Thus Gy contains a subgroup isomorphic to Z [%].
O




CHAPTER 13

Classification of the AF-algebras 2; with
rank (Ko (%)) = 2

Let us consider matrices of the form (5.47) with N = 2,

(13.1) J= (2; é) ,

where mq,ms € N. We divide the discussion into two cases.
Case 1. The Perron—Frobenius eigenvalue A is rational, and thus A € N.

In this case one computes that J has the form

(13.2) Jz()‘k_/\k é) E=1,...,A—1,

and the spectrum is
(13.3) spec (J) = {~k,A}.

Referring to Theorem 7.5, we have D = 1, N = 2, and the triangular form (7.15)
is (with pe (z) = Az — 1):

-k k
(13.4) < 0 /\> .
Hence the invariants of Theorem 7.8 are:
(a) N=2,

(b) Prim (kA),
(c) Prim (k),
(c)" Prim (A),
d) D=1

Furthermore, we will argue below that
(13.5) ker (1) 2 Z [1] (Ko () =Z[3],
so Ko (%) is an extension of Z [{] by Z []:
(13.6) 0 —Z[t] — Ko(®&) —Z[3] — 0.
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To see this, one computes
(13.7)

(" o) =m0 ) G 4
L < AT - (—k)"i+1 AT = (k)" )
A+ k \EATH L A (k)T RN (—K) T

R GO A= (k)"
Xtk (kA (=R (- (—k)‘”"l)) '

Hence, using (13.7), one computes

_ A—k 1 " s
(138  g= ( o 0) (n2>

1 (1 n

= m |:()\TL1 + nz) A (k) -+ (kn1 - nz) (—k) (_/\>:| s

and thus, using (5.17),
1

(139) T (g) = (1, X) g= (/\n1 + 7'7,2) AL

This confirms (5.22): 7 (Ko (%)) = Z (3), and we see that g € ker (7) if and only if
Ang +ng =0, ie., ne = —Ang, so g € ker (1) if and only if

(13.10) 9= A—Jlm (kna + Ana) (k)™ (_1A> =m (=K (—1,\>

for an ny € Z,n € N, which confirms ker (1) 2 Z [], so the sequence (13.6) is well
defined and exact.

Now, using (13.8) we can prove
Proposition 13.1. If G = Ky () is realized concretely in Q® as above we have

(13.11)

201 () +2 0 () coc oy B () + oot B ()
Z}:ZZ) (n1,n9) = ——

ged (ny, ng°)
for ni,ny € N, where ged (nq,n°) is the (unique) greatest common divisor of ny
and n* for large m. Furthermore an element a (llc) +0b (_1)\) of G is (nonzero)
positive if and only if
(13.13) a>0.

In particular, the following conditions are equivalent:

() G=17 1] (i) +Z 5] <_1A>

and
(b) Prim (A + k) C Prim () N Prim (k).
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G can also in general be characterized as the set of linear combinations of
elements of Z? and the elements

1 AT~ (=k)"
(13.14) Atk <k)\‘" + (=R A)

with integer coefficients, n =1,2,....
In the special case

(13.15) Prim (A\) = Prim (k)
put
(13.16) Xo =[] {p|p € Prim(A) = Prim (k)} .
Then
’ [%0] =¥/ [l]z.

(13.17) G=
2 [%]
Remark 13.2. Note that the condition (b) in Proposition 13.1 is equivalent to
each of the conditions

(c) Prim (A + k) C Prim (}),

(d) Prim (A + k) C Prim (k).
Clearly (b) = (c) and (b) = (d). For (c) = (b), use k = (A + k) — A, etc.

Proof. Setting ny = —An; in (13.8) we obtain

1 (1 1

(1318) g = /\—-+—k- (knl + )\nl) (—k}) (_/\> =" (—k) (_/\)
and hence

1
(13.19) Z [¢] (_/\) CaG.
Next setting ny = kn in (13.8) we obtain similarly

1 (1Y a1

(1320) g= m (/\’ﬂl + kTLl) A (k> = nl)\ (k‘) s
50

1
(13.21) Z (1] <k> CaG.
‘We conclude that

1 1

(13.22) 2 [1] (k) +Z ] (_ A) ce.

Conversely, if g € G it follows from (13.8) that g has the form

(13.23) g=a (i) +b (_&) )

where the pair a, b has the form

_L —n __]_-_ _ AL
(13.24) a—A+k()\n1+n2)/\ ) b—>\+k(kn1 ny) (—k)
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for suitable n1,ng € Z, n € Z. But writing

m
a= m ()\'I’Ll + 712) A_(n+m)
and choosing m large enough, it follows that
1
— - 7L
“€ oxrn2 Bl

and using the same reasoning on b, the inclusion

. 1 (1 1 e

) oc e bl (1) et B ()
follows. Applying (5.17) and (5.34) to a = (1,1/]), it follows that g = a(}) +
b(2,) is positive if and only if a > 0.

We have (A + k, k) = 1 if and only if Prim (A + k) C Prim (k), and hence (b) =
(a). But if (b) is not fulfilled, then (A +k,k) > 1 or (A+k,A) > 1, and choosing
ny = 0 (or ng = 0) in (13.8) we see that G contains elements that are not in
Z 3] (2)+2Z (3] (25). Thus (a) = (b).

Next, define

(13.26) g (n1,n,n) = A%rk [(Anl +ng) A" (i) + (kni —n2) (k)" (_1,\>]
for n € N, ny,ne € Z. Then
g (n1,m2,n) =ni1g(1,0,n) + n2g9(0,1,n)
and
g(1,0,n+1)=g(0,1,n),

so G is spanned over Z by Z? and the elements

1 (.1 a1
_ 1 AT = (k)"
A+ E\EATT+ (=R)TN)
It remains to prove the last statement in the proposition. So assume Prim (\) =

Prim (k) and define Ao by (13.16) as the product of the primes in this set. It follows
that the matrix elements in the left column of

7= (%" )
all are divisible by Ao and hence all matrix elements of J2" are divisible by A2, i.e.,
AZ2 D JLA,
and hence, applying A\, "J 2" to both sides,
/AN D v/l
It follows that

(13.28) GDZ [L] 72 =
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Conversely, G is spanned over Z by Z? and the elements (13.14) for n = 1,2,....
But

1 AT = (=R Y1 1 B = (="
1329 7% (m-n +(=k)" A) TAnkr A+ k (k““ +(=1)" At
_(=p" 1 At — (k)"
TNk Ak \- (- et )
But since A = —k (mod X + k), we have \* = (—k)" (mod X + k), so the vec-

1 A" = (=k)"
—_— n i . foll
tor Tk (_ (/\n _,_.1 —(—k) +1) has integral components. It follows that the

2
elements (13.14) are contained in Z [Al—o] . Thus

(13.30) GCZ [%] .
Now, (13.28) and (13.30) finally establish (13.17). (The last argument was also
used in [10, Remark after Theorem 5].) a

In general, the sequence (13.6) does not split, i.e., there does not exist a well
defined homomorphism ¢: Z [+] — Ko (%) with 70t =id. (Well defined means
for example 9 (mA™™) = ¢ ((mA)A~""1).) In general, the class of Ko (2) in
Ext (Z [+],Z [+]) depends on properties of the prime decompositions of A and
k, and seems to have to be treated on a case-by-case basis. There are, however, two
special cases that behave nicely. The first of these is the last case in Proposition
13.1,

(13.31) Prim (A\) = Prim (k).
Then

o))

with trace functional (1,1/X). Since the dimension group is a complete invariant,
the following Proposition ensues.

Proposition 13.3. Let Ji, Jy be 2 X 2 matrices of the form (13.1)—(13.2) and let
the subindices 1, 2 refer to Jy, Jo respectively.
(a) If J1, J2 define isomorphic C*-algebras, then Prim (A\;) = Prim (A2) and
Prim (k1) = Prim (ks).
(b) If Prim (k1) = Prim (k2) = Prim (A\2) = Prim (\;), then Ji, Jo define iso-
morphic algebras.
In the latter case, the dimension group s

(13.33) G=Z[{}|kePrim()}]’

with positivity determined as follows: g = (g1,92) € G is positive if and only if
g1+ Aogs > 0, where Ag = Hpeprim(h)p.

Proof. As already remarked, (a) is a special case of Theorem 7.5 and [10, Proposi-
tion 10]. As for (b), Proposition 13.1 shows that

(13.34) Gi=GCs=17 [;—0]2
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as unordered groups, with positive cones determined by
1

(13.35) (Gi)y = {g =(g1,92) €Gi | g1 + 392 > 0} .
T

But then the map

oy
(13.36) (91,92) —> (gl, /\—ng>

defines an isomorphism of ordered groups G — G; for 4 = 1,2. Thus (G, (Gi), ),
i = 1,2, are both isomorphic to (G, G.), and Proposition 13.3 follows. O

The second special case that behaves nicely is when condition (b) in Proposition
13.1 is fulfilled, i.e., Prim (A + k) C Prim (A) N Prim (k). Let us first mention a
simple algorithm to construct all pairs (A, k) of positive integers with 1 <k < A—-1
satisfying these properties: One first picks such a pair (X', k') with ged (X, &) =1,
then lets o be the product of all the prime factors of A’ + k', and then the pair

A=npX, k=nuk',

where 7 is an arbitrary positive integer, will have the property (b). One obtains all
pairs (A, k) having the property (b) in this way, since given one such pair one may
divide by ged (A, k) to obtain (X, k'), and then get back to (A, k) by the process
above.

As a simple example of the procedure above, take A’ = 2 and k' = 1. This gives
u =3, so all pairs

are examples.
If (b) is fulfilled, there is an exact sequence

0—Z[}i—G5Z[;] —0
which splits. This is because G has the form (a) in Proposition 13.1, and one verifies

directly that the map
Ag 1
. 1 ) . ,
w'Z["] G:g )\+k(k>

is a section (it is well defined since Prim (A + k) C Prim())). Hence we get a
different criterion from that in Proposition 13.3:

Proposition 13.4. Let Jy, Jo be 2 x 2 matrices of the form (13.1)—(13.2) and let
the subindices 1, 2 refer to Ji, Jo respectively.
If Prim (k;) = Prim (k) and Prim (A1) = Prim (A\2), and

Prim (); + k;) C Prim (X;) N Prim (k;)

fori =1,2 (see Remark 13.2 after Proposition 13.1), then Ji, Jo define isomorphic
algebras.” Furthermore in this case the dimension group is

o~ 1 1
a=2[t]oz[3]
with positivity determined by positivity of the first coordinate.

Proof. This follows from the discussion before the Proposition. O
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. 6n1 1 o 6TL2 1
S = <3n1 0> Ja = (3n2 o)
where the positive integers nj, no contain the same prime factors, then the corre-

sponding AF-algebras are isomorphic. The case n; = 2, no = 4 is illustrated in
Figure 17, below.

Example 13.5. If

Remark 13.6. If

A—k 1
J= < Ak o)
then the right Perron-Frobenius eigenvector v in (14.5) is v = (}) and hence
A
=1 _= —,
(o) =1+ %= 24

But if Prim (A 4+ k) € Prim ), this number has a multiplicative inverse in Z [$].
Hence the split property used in the proof of Proposition 13.4 can also be deduced
from Corollary 11.28.

Let us focus on an example of the use of Propositions 13.1 and 13.3: Consider
the list of matrices in Table 2, below. It follows from Proposition 13.3(a) that the
only candidates for nontrivial pairs defining isomorphic AF-algebras from this list
are

s G0 (%)

and

(71 L (11
(1239 (LD (L),

The first of these pairs actually defines isomorphic algebras by Proposition 13.3(b).
(This was already proved in [10, Theorem 5].) For the latter of these pairs the
special criteria of Proposition 13.1 cannot be employed. But as 78 = 2-3-13 and
156 = 2-2-3-13 we have ged (7,78) = 1 and ged (1,156) = 1, and it follows
from Proposition 11.25 that degJ’ = 156-degJ’ = 1 = degJ = 78-degJ. But
m = lem (78,156) = 156 and hence we may apply Theorem 11.10 to the pair J, J'.
-Using the formula in Remark 13.6 we see that

19 o 25
@l =35 (@]v) =1,
and hence
(a|v)y 19

= ¢z[&].
(a/ | ,vl> 25 13
It follows from Theorem 11.10 that 2(; and 2 are non-isomorphic.
Finally, note that the set of 2 x 2 matrices of the form (11.2), or (13.2), with

A = myg, i.e., the matrices
A—-11
A0

for A = 2,3,4,... all give rise to non-isomorphic algebras. This is proved in Section
2.
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12

150

1872

172800

352656

.
&

FIGURE 17. L = {1,...,1,2,2,2,2,2,2}, first column = (12 6)*
——

12
(left); L = {1,...,1,2,...,2}, first column = (24 12)° (right). See
—— ———

23364

24 12
Example 13.5. These diagrams represent isomorphic algebras.
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TABLE 2. Prim invariants for various %2 algebras with
rank (Ko (1)) = 2.

Matrix (13.2): (47¥1) Block form (13.4): (*%) Prim(k) Prim())
A=8

() @) e
(% o) (7 3) 2@
) @) e e
G) @) e e
(4 o) (2 3) B @
G) @) e oa
) @) o ow
A_lg(ﬁ.ﬁg, o) (T &) 23 19
(12113 o) (> 5) 23 03

Case 2. The Perron—Frobenius eigenvalue A is irrational, and hence in a quadratic
extension of Z, since A satisfies a monic quadratic equation.

In this case, the exact sequence (5.31) is
0—0— Ko(&) —Z[}] —0,

so Ko () equals Z [], in the sense of ordered groups. But since (Ko (), Ko (%))
is a complete invariant, and the ordered group Z [A\] determines 1/ uniquely when
1/ is in a quadratic extension of Q, it follows that the irrational number

1 mi+4dmy —my

A 2m,

is a complete invariant. But since the equation

1—miz—mez? =0
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for 1/ is irreducible, and 1/X is characterized as the positive solution of this
equation it follows that A determines m;, mso in this case. Conclusion:

Proposition 13.7. If

_ my 1 1 _ m{l 1
(13.39) J= (mz 0), J' = (mg 0
are matrices with m;, m,,m},m} € N and at least one of the numbers \/m3 + 4m,
or v/mi?% + 4m), is irrational, then the AF-algebra 2y is isomorphic to ™Ay if and
only if
(13.40) my =mj and ™, = mj.

Finally, recall that if mq = 1, mg = m € N, then 2 is the Pimsner—Voiculescu
algebra associated with the continued fraction

244 m
(13.41) /\:ml+ 7;11-!- m2=m1+ﬂ)\2-=m1+ 2m ;
mi + 2

see [62]. See Figure 2 for the special case m; = my = 1.




CHAPTER 14

Linear algebra of J

We have introduced several parameters related to C*-isomorphism invariants
" on the AF-algebras %y, L = (L1, ..., Lq) such that gcd (L;) = 1. Those parameters
compute out as shown in Table 3 for the examples in Figures 1-5 and 12. We have
included the value of d from @4, and the Perron—Frobenius eigenvalue ), in the table
(we have shown in Example 5.3 that d is not an invariant in general). The actual
invariants are Z [}], D, N, Prim (my /Rp), Prim (Rp), while 7 (v) is a restricted
invariant (see Theorems 7.8 and 11.10).

Remark 14.1. It is to be stressed that the parameters are computed for examples
(L1,...,Lq), subject to the restriction that the greatest common divisor is one,
i.e., ged (L;) = 1. It is immediate from Chapter 3 that the pair of AF-algebras 2y,
and 27, computed from the two, (Li,...,Lq) and (sLy,...,sLs), are isomorphic.

But, in a sense, the two parameters N and ¢, = A~!p} (%) scale by s. Since

TABLE 3. Some parameters related to invariants for various 21z, algebras.

Fig. Equation d A D N my Rp 7(v)
4 ;
1 2z=1 2 A=2 11 2 2 1
2 s+a?=1 2 A= 1tSE 2 2 1 1 8-
3 20t +a2%+a¥=1 4 A=a3', 3 8 1 1 4+a}+4d}
az = 0.7549* ~ 4.6669
4 r?4+2°=1 2 A=az'* 3 3 1 1 2+ad}
~ 2.4302
5 z24+2%+25=1 3 A=a"l, 5 5 1 1 24a®+3a°
a = 0.6997 ~ 2.8459
z+2°=1 2 A=a;'* 3 5 1 1 1+4d}
~ 1.9805
z+4z3 =1 5 A=2 1 3 4 2 2
322 + 223 = 1 5 A=2 1 3 2 2 ¢
12 z+32%3+2z8=1 6 A=2 1 4 2 2 i
12 3z%+2%+22*=1 6 A=2 1 4 2 2
z+228 +4zt=1 7 A=2 1 4 4 2 %
322 + 4zt =1 7 A=2 1 4 4 2 ¢

* Note: z2 4+ 2% — 1 is a factor of both 22* 4+ 2% 4+ 2% — 1 and z 4 2° — 1; see lines 3, 4, 6.
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my = |det J|, my does not. To see this, note that the scaling L — sL, s € N,
corresponds to a simple inflation of J, as illustrated by (s = 2):

200
m 10 o
0.

mg 0 1] +— 1 ,
ms 0 0 :

and these matrices define isomorphic stable AF-algebras. (For the 6 x 6 matrix
the maps in the inductive sequence are not injective:) In the last example, to get
back from the inflated matrix to J, simply delete the rows numbered 1, 3, and §
(shaded), and the columns numbered 2, 4, and 6.

Hence, to compute parameters for a general divisible (L;)-system, first pass to
(L}) where L] = g_Cd%Tj)Li’ and then use the prescribed formulas (for the parame-
ters) on the (L})-system.

We next consider the following observation regarding the parameter 7 (v).
Proposition 14.2 (Scaling Property for the Parameter). Let (L1,...,La) be given,
and let s € Q.. Let 7 (v) and 7 (vs) be the respective numbers for L and sL, as

follows: let v € RN satisfy Jv = M, v; = 1, where X\ is the Perron—Frobenius
eigenvalue for aJ = Aa. Then

(14.1) T(v) = }\_lp’L (%)
where
d
(14.2) oL (z) = ZmLi -1,
i=1
and the corresponding number for sL is
(14.3) 7 (vs) = s7(v).

Suppose deg (L) > 1. Let the other Toots of pr (x) be {az}f:"l_1 Then, by the
assumptions, |a;1| < A, and

La-1
DL (e“ﬂL) = H (e_ﬁ’“ —ai).
i=1
Proof. Writing J in the form
ma 1 0 0 0
meg 0 1 0 0
(14.4) J=| ° R
my_—2 0 0 . 10
my—1 0 O 0 1
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note that then (14.2) becomes
N -
pr(z) = ijx’ -1,
—

and the eigenvector v may be computed by directly solving Jv = Av:

1

/\—ml
2 _ —

(14.5) v= AT = A —my eRV.

)\3 — m1>\2 — mz/\ — ms
AN-1 mlAN_z — = MN_2A—TMpN_]
Since 7 (z) = (a|z), with o = (1,a,a%,...,aN"1), and a = }, we get
7 (v) = (a|v)
=N—-(N-1)mia—(N-2) mea® — - — 2my_sa™ "% = mpy_1aV !
N-1

= Nmya™ + mia +2mpa® + -+ (N = 1)mpy_1a
= ap,L (a) 3
where we used the fact that
m1a+m2a2 +~--+mNaN =1.

We claimed in (14.1)—(14.2) that 7 (v) = ap], (a), and this now follows. The scaling
property (14.3) is immediate from this. , O

Corollary 14.3. Let J, J' be two matrices specified as in (14.4), and suppose they
have the same value for the rank N and the same Perron—Frobenius eigenvalue .
Let v, resp. v', be the right Perron—Frobenius eigenvectors (with v; = vy = 1).
Then

v=0v <= J=J.
Proof. If v = v/, then recursion in (14.5) yields m; = mj for i = 1,2,...,N — 1.
Since N and ) take the same values on J and J', the identity (in each case),
mn
T}
shows that then also m, = m/y, and therefore, by (14.4), J = J'. The converse is
clear. a

N-1 N-2
A —m1A —---—mN_z)\—mN_lz




CHAPTER 15
Lattice points

Let (Li)?zl be a standard system, and let 2, be the corresponding AF-algebra.
We saw that the trace is unique and determined by the value of the L;’s. It is clear
that when (L;) is given (L; > 0 say), there is a unique g such that Z?=1 e Pli =1.
This means that x5 := e~? is a root of

pr () =28+ +zhe -1

But with the restrictions L; € N, L; < Ls < - -+ < Ly, it follows from Example 5.3,
and, later, Chapter 16, that the L;'s are not determined by 8. We have already
seen examples illustrating that, up to the obvious permutations, there is for fixed
0 < z < 1 and d, a multiplicity of lattice points on the variety (L;) C R, L; > 0
with Perron—Frobenius eigenvalue 1/z. The pair of lattice points (2,3), (1,5) in
Figure 18 are on the same curve. For d = 2, we know of no other pair of distinct
lattice points over the 45° line lying on the same curve.

Example 15.1. Consider the AF-algebra of 22 4+ 23 = 1 in Figure 4. There e =
a ~ 0.7549 is the positive root and pg (z) := 1 —z? — 2® is the minimal polynomial.
K, of this example is therefore given by (5.26), and ker (r) = 0. But there is

also an example for N = 5, J5 = with the same § (and therefore

HOOOR
[=lwlalelg
OOORO

0
0
1
0
0

OoOHOOO

root a = e~#). Now for this related example, there are infinitesimal elements, i.e.,
ker (15) # 0 (in fact ker (75) = Z?), and hence the corresponding two AF-algebras
are non-isomorphic. Specifically, ker (5) may be computed from (5.29) where the
restriction matrix Jo is (1, §). Since detJo = 1, it follows that ker (75) = Z2, as
claimed.

The examples z® + £ — 1 and 23 + 2? — 1 show that we must at least add
N = N’ as a condition for isomorphism, because these two have the same 4. (In fact
28 +z—1= (2°+2® —1) (22 — 2 +1).) The triangular form J5 = ( {;) JQ >

R

from Theorem 7.5 which corresponds to this factorization is

11|11 0 0
o= 1 ol-1 00 |¢€

J: 0 010 10
0 01 01
0 0|1 0O

and the three Prim-invariants from Theorem 7.8 are all &.

(—JR

However, in Chapter 16, for d > 5, we will give other examples of multiple
lattice points. (We also gave such examples in Example 5.3.) In those examples,
for each of the cases d = 5 and d = 6, there are three such multiple points on the
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L,
5‘\ D)

T ~ 0.7549
0.6180

P

,_l
8
fl
[

7N 0 \\\\_

1 2 3 4 5 1

FIGURE 18. Examples from lattice points: % = —gli-Lz

e B = % variety. There are others for different values of G, but none with d = 2.
The value of d is different for the two in the above pair; and if it is further assumed
that | = Ly + Ly be the same, convexity and symmetry show that there cannot be
double points.

For d = 2, the picture is as shown in Figure 18. There is some non-uniqueness
as follows: if

myzlt + mozt? 4+ Fmyalt =1
where L;;m; € N, then, if Q(z) is any polynomial of the form
Qz) =1+ Efn:l Nmal™, where n,, are positive integers, 0 < n,;, < Ly, then
Q (z) (myz™* 4+ --- + myzl* — 1) = 0, which gives another polynomial of the form
above. Even the added condition
S =
i

does not imply uniqueness, by Example 5.3 and Chapter 16.




CHAPTER 16

Complete classification in the cases A = 2,
N =23,4

The examples when the Perron-Frobenius eigenvalue A = 2 entail some of the
essential features of the dimension groups associated with the corresponding AF-
algebras 2r,.

The construction in the examples below is a special case of the following: Let
p(z) € Z [z] be given, and assume it is irreducible. Let N € N, and let Fn (p) be
the set of N x N matrices over Z of the form

my 1 0 0
Mo 0 0 0
(16.1) J=
my_1 O 0 1
my 0 -+ 0 0

with my > 1, and m; > 0, such that p(z) divides py (z) = Ef\il mzt — 1. We
saw that, for p (z) = 2z — 1, 2y = #Fn (22 — 1) is finite for all N = 2,3,.... An
analogue of this holds true in general. If p(z) = z® + 23 — 1 (see Example 5.3),
then F4 (p) = @, while z5 (p) = #F5 (p) = 2. The two elements of Fs (p) are

mq 1 0
msy 0 0
m3 0 , 1 s
my 0 1
ms 1 1

corresponding to isomorphic 2’s. This approach is in general most useful if p (z)
has the form ZiD:l n;z' — 1 where the n; are nonnegative integers, np # 0 and
ged {i | n; #0} = 1, because then we can say at the outset that the Perron-
Frobenius eigenvalue of (16.1) is 1/a, where a is the unique positive root of p(z).

For each N = 2,3,4,..., there is only a finite number zx of possibilities for
the matrix J. Since the matrix J is of the form (16.1) they are described by
the numbers m; of the first column. They are given by the following algorithm:
I Qu...,Qn-1 € Z, and ¢(z) = 1 + Qnorz + -+ + @iz, then py (z) =
(2z — 1) ¢ (z) has the form

pr(z) = —1+mz+-- +myz
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with m; > 0, my > 0 if and only if @; > 0 and
Q1 < 2Q2,
Q2 < 2Qs,

(16.2)

Qn-—2 £2QN_1,

\ QN—l < 2.

This is proved by simple algebra. The numbers zpy are zo = 2, 3 = 6, 4 = 26,
.... In a slightly more condensed form, the conditions are

0<Q1<2:Q2<4-Q3<8-Qu<-- <2V 2. Qp_; <2VL

It follows that the specific cases may be summarized for N = 2, 3, and 4 (lexicographic
order from (16.2)):

s (20

my 1 1 0 0 0 o\ *
(16.4) me |: [1),(0),13),(2],[1],(0] ,
ms 2 4 2 4 6 8
and
my 1 1 1 1 1 1 0 o\" /0
Mo 1 1 0 0 0 0 3 3 2
(16'5) m3 1 b 0 b 3 b 2 ) 1 b 0 2 1 b 0 b 3 b)
ma 2 4 2 4 6 8 2 4 2
0 0 o\ /0 0 0 0 0 oY
2 2 2 1 1 1 1 1 1
210112 lol s l4] 132 |1]lo0]"
4 6 8 2 4 6 8 10 12
0 0 0 0 0 0 0 oY
0 0 0 0 0 0 0 0
710065143210
2 4 6 8 10 12 14 16

But inspection reveals that, of the two N = 2 cases (16.3), only the first one has
L;-values with greatest common divisor equal to one. For the six N = 3 cases
(16.4), all but the last of them have this property. Finally, for the N = 4 examples
(16.5), the property holds for all but the 8th, 12th, 18th and the last one. Note
that the 20 ’s associated to the last vector in each of the three sequences are all
isomorphic, and isomorphic to the algebra defined by the constant 1 x 1 incidence
matrix (2), i.e., the Glimm algebra of type 2 illustrated in Figure 1. The algebras
corresponding to the third and seventh vectors in the N = 4 sequence (16.5) are
illustrated in Figure 12.

In order to distinguish the isomorphism classes of the remaining specimens, we
will use the invariants developed in Chapters 6-12. Since A = 2 in these cases,
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we always have 7 (Ko (%)) = Z [%] and D = 1. Thus the invariants in Chapter
7 reduce to N, Prim (my), and Prim (Qn—1) = Prim (my/2). It follows from
Remark 11.15 that in these cases my = 2 if and only if ker7 2 Z"V~1, and then
Corollary 11.13 can be used to distinguish some cases. Here a = (1,%,%,..., 58=1)
by (5.17) and v is given by (14.5) with A = 2. (The case A = my will be studied in
detail in Chapter 17.) We will also use some secondary invariants derived from the
group Gy = ker 7, since of course any group invariant derived from Gy is an invariant
for 2. Since Gy is a natural Z-module, the tensor product group Go ® Zy, (tensor
products as Z-modules) is a secondary invariant. For example Zg ® Zp = Ziged(q,p)»

ZQZLy = ZLp and Z [%] ® Ly = Ly, where (p,q) = p/ged(p,q*>) is defined
by (13.12). For our specimens, it will be useful to use p = 2, and using (5.41):
Go = Z [z} / (po (z)), we obtain Go ® Zy = Zy(x) / (po,2 (¢)) where po,2 (z) is
the polynomial obtained from po (z) by reducing the coefficients modulo 2. Thus
Go ® Z4 is the direct sum of a finite number of copies of Zs, and this finite number

is an invariant. See Corollary 8.9.
Then to work on the list (16.3)-(16.5).

Rank 2 (N = 2): By (16.3) there is only one specimen, (;)

Rank 3 (IV = 3): By (16.4), there are five specimens, which can first be classified
as follows:

Group Prim (m3)
number  Prim (mg3/2)
@ 1\ @ 7o\ ®
1 5 1l (3] ,
2 2

(a) (b)
o ()
{2} 4 )4 H
0
{2,3}
)

For Group 1, we may use Corollary 11.13. But this was done already in
Example 11.29 with the result that these two specimens define non-isomorphic
algebras. (Specimen (b) will be considered further in Example 18.2.)

For Group 2, we compute, using (8.26) in Corollary 8.9,

Group 2 Specimen Do (z) Go ® Zy

1
(a) (0) 222 +z+1 Zo
4

0
(b) 2 222 + 2z +1 0
4
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and hence Gy is non-isomorphic for the two examples. (Specimen (a) here has

already been studied in Remark 9.3, and will again be considered in Example 18.1.)
We conclude that all the 5 specimens in the N = 3 case are mutually non-

isomorphic.

Rank 4 (N = 4): Here we have 22 specimens which can be divided into 6 groups

according to the invariants Prim (m4), Prim (m4/2):

Group Prim (m4)
number  Prim (my4/2)

() (3)

1 1\ 70\ 0\ 70\ /0
. {2} 1| (o] (3] [2] (1] (o
o 1| |3 1| (3] [5] |7
2/ \2) \2/ \2/ \2/ \2
D@ N\ O 0@ 0\ 0O 0\® /o\®
. {2} 1| |o ol |2 1| (1] [o] |o
{2} o {2 of 2| [4f 2] |6] |4
4) \4) \8) \4/ \4/ \8) \4/ \8
0 /0N® 70\ /0\@
3 {2,3} ol (2 1] o
{3} 1 1 3| |s
6/ \6/ \6/ \6
0
A {2,3} 0
(2,3} 2
12
0\® /g\®
5 {2,5} 1 0
{5} 1 3
10/ \10
0
6 {2,7} 0
{7} 1
14

For Group 1, we may apply Corollary 11.13. Using (5.17) with e = % and
(14.5) together with pr, (2) = 0, we compute for two general matrices of the form
(14.4) with N =4 and X = 2 that

1
(a]|v) = §(4(m1 +mg) + 3mg + 2my) .

For the 6 specimens in group 1 this leads to

13+ 24
8

(avi) =
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fori=1,2,...,6. It follows that

(o] i) 1
(afv;) # 2]

2

whenever i # 7, 4,7 = 1,...,6. We conclude from Corollary 11.13 that all these 6
specimens define mutually non-isomorphic algebras %y,, although each defines an
exact sequence of the form

0—2—G—Z[}] —0.

In Group 2 there are 8 specimens. Let us compute the polynomial pg (z) =
pr (z) / (2z — 1) for these, and use the result to compute Go ® Z2, where Go =
kert = Z[z] / (po (z)), using (8.26) in Corollary 8.9. The result is exhibited in
Table 4 on the next page.

It follows from Table 4 that we can group the 8 specimens into 3 subgroups
with no isomorphism between the different subgroups:

Subgroup 1

(d): , (8):

= NN O

Here ker 7 ® Zy = 0, so ker 7 is a torsion-free abelian group of rank 3 such that all
the elements are divisible by 2, and also ker (1) C Z [}] ? 1t follows that

kert = Z [%]3 )
Thus G is an extension
0—2Z[}E°—G—2Z[}] —0

in all three cases. But Ext ( [1], [4]*) = 0 by [15, Proposition VL.2.1]. (If one

assumes a priori that G is divisible by 2 this is trivial, but in the general case one
proceeds as follows: It is clear that Ext (Z 3],z [%]3) =~ Ext (Z (3] ,Z [%])3 (ie.,
three copies). Assume that

(16.6) 0—Z[] —M—Z[}] —0

is an exact sequence of Z-modules. Since Z [1] = Z ) (localized in {2}), Z [3] will
be Z-flat. Take the tensor product of (16.6) with Z [1] over Z to obtain

(16.7) 0—Z[] 2 MezZ[}] —Z[;] —0,

which has to be isomorphic to (16.6). But (16.7) splits by the initial remark.) Thus
the three vectors in subgroup 1 define isomorphic algebras.

This can also be seen much more directly as follows: It follows directly from
Corollary 11.6 that G = Z [%]4 for these three specimens (d,g,h) and the Perron—
Frobenius eigenvalue A = 2 in all three cases, so it follows from (5.17) and (5.34)
that the three specimens are isomorphic.
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TABLE 4. The specimens in Group 2 for Rank 4.

Group 2 Specimen Do (z) Go ®z Zs

1

(a) (1) 1+z+2? + 223 Z32
4
1
0 1+ z+ 222 + 223

(b) 2 = (1+z) (1+223) 22
4
1

(c) 8 1+ z + 222 + 42° Zs
8
0

(d) g 1+ 2z + 222 + 22° 0
4
0

() 1 1+ 2z + 3z* + 22° 72
4 = (1+2) (1+z+23%) 2
4
0

© |, 142 + 322 + 428 72
8

(h) 1+ 2z + 42? + 4a3 0

0
() (g) 1+ 2z + 422 + 22° 0
4

0 OO

N
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Subgroup 2

N O =

(b): , (o)

co O O+

4
In specimen (b), po (z) = (1 +z) (1 + 2z%) so ker7 is given by an extension

0—Z[1] — kerr —Z—0

(the right morphism is evaluation of the polynomial at —1, where po (—1) = 0).
By Z being a free Z-module, this extension automatically splits. In specimen (c),
po (z) =1+ z + 22% + 423 is irreducible, and we have an exact sequence

0——>Z—>ker7-—>Z[%]2—>0.

We will show that these specimens are non-isomorphic by using Corollary 11.22.
Let J correspond to specimen (b) and J' to specimen (c). By Proposition 11.25 we
have

{he F'|8h=0}=F;
and hence (11.84) is fulfilled:
{geG|2%g€ N} =Gy,

One now computes (a|v) = § and (o' [v') = 5, s0

(a]v) 9 1
=—¢Z|3].
. (OL' | ,UI) 10 [2]
It follows from Corollary 11.22 that there does not exist a unital morphism 2l; —
2, and in particular specimens (b) and (c) are non-isomorphic.

Subgroup 3

(a): , (e): (£):

O ==
N ™)
co N = O

Specimen (e) has the reducible polynomial
po(z) =22° + 322 + 22+ 1= (z+1) (22° + z + 1)
so there is an exact diagram

0
I

0—Z— E —ZL[3] —0.

1
(16.8) ker T

O+ N+
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The horizontal sequence is described in detail in the end of Example 18.1. The
vertical sequence necessarily splits since Z is free, i.e.,

Go=kerr=2Z®E.

Since po (1) = 0, evaluation at —1 gives a homomorphism ker (1) — Z, which is
the lower vertical map in the diagram. Specimens (a) and (f) have irreducible po-
polynomials, so there are no homomorphisms G — Z, and therefore these are non-
isomorphic to specimen (e). But specimens (a) and (f) are mutually non-isomorphic
by Example 11.26. Hence all three specimens (a,e,f) are mutually non-isomorphic.
Note also that for (e), it follows from Proposition 11.25 that {h € F(®) | 4h = 0} =

F{® and hence
{g € FO |49 = o} =GP,

For this specimen we have

<a(e)

DI
=
ooj
N—

v(e)> = (1

[SORNSURN R

and since
<a(a) v(a)> =2 and <a(f) ‘v(f)> = %,

it follows also directly from Corollary 11.22 and Remark 11.23 that these specimens
all are non-isomorphic.

In Group 3, there are 4 specimens. We compute the polynomial pg (z) =
pr (z) / (2z — 1) for these, and use the result to compute Go ® Z3, where Gg = ker 7
=Zz] / (po (z) Z [z]), using (8.26) in Corollary 8.9.

Group 3 Specimen Do (2) Go®Zs

1

(a) g 1+ + 222 + 328 VA
6
0

® |2 1+ 2z + 2% + 3¢° 72
6
0

(c) zl)) 1+ 2z + 3z% + 328 Zs
6
0
0 1+ 2z + 42® + 323 2

(@) 5 =(1+4z)(1+z+3z?) Ls
6
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Thus we see immediately that specimen (c) is non-isomorphic to the three others.
Also, we see that specimen (d) permits a homomorphism from ker7 into Z, but
not the two others, so it remains to consider the pair (a,b). But for both these
specimens we have my = 6 and mg = 1, so applying Proposition 11.25 we have

(he Fl6h=0}=F,

for both. But this means that 6-deg J = deg J = 1 for both. But (a(® |v®) =12
and () |v(®) = 2 and hence Theorem 11.10 implies that there cannot be a
unital homomorphism from either of these specimens into the other. It follows that
the four specimens in this group are mutually non-isomorphic.

Groups 4 and 6 have only one specimen each, so the basic invariants Prim (my)
and Prim (m4/2) suffice to separate this group from the others.

In Group 5 there are two specimens,

0 0
1 0
@: 1] O],
10 10

For both of these m4 = 10 and m3 # 0 and m3 is mutually prime with m4. Thus
Proposition 11.25 implies that

10-degJ =degJ =1
for both these specimens. But in this case (a(® |v®) = 2 and (a® |v®)) = 2,
and it follows from Theorem 11.10 that there are no unital homomorphisms from
one of these two into the other.

In summary, all the 22 permitted specimens in (16.5) are mutually non-isomorphic
except for one group of 3 isomorphic specimens, namely the ones in Subgroup 1 of
Group 2:

0
0
(16.9) 6

b )

= N N O
0~ O O

4

These specimens are illustrated in Figure 19.
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FiGure 19. L = {2,2,3,3,4,4,4,4}; first column = (0 2 2 4)*
(left); L = {3,3,3,3,3,3,4,4,4,4}; first column = (0 0 6 4)* (cen-
ter); L = {3,3,3,3,4,4,4,4,4,4,4,4}; first column = (0 0 4 8)*
(right): The three isomorphic algebras in the final summary of
Chapter 16 (see (16.9)).




CHAPTER 17

Complete classification in the case A = my

We will now continue the study of the case A = mpy begun in Corollary 11.13,
Lemma 11.14 and Proposition 11.16. We will introduce a new invariant I (J) in
(17.12) and Corollary 17.6 below. In the case N = 1, the invariant always has the
value 1 (Section 1), but in the case N = 2, the invariant separates all specimens
in this class, so they are all non-isomorphic (Section 2). More interestingly, in the
case N = 3, the pair (Prim A, I (J)) turns out to be a complete invariant (Theorem
17.14), and this can be used to exhibit nontrivial pairs of 3 x 3 matrices in this class
giving isomorphic algebras. It is curious that for N = 3, the equality I (J) = I (J')
forces A to be unequal to A’ (unless J = J'; Proposition 17.13). For N = 4 we
do exhibit an isomorphic pair with A = X/, and we present a proof of K.H. Kim
and F. Roush that (IV, Prim A, I (J)) is a complete invariant in general for the class
A =my (Theorem 17.18). In this class, it also turns out that (V,Prim A, I (J)) is
a complete invariant for stable isomorphism (see Corollary 17.21).

Lemma 17.1. Let J be a matriz of the form (11.2), and assume that the Perron—
Frobenius eigenvalue A of J is equal to my. It follows that

(17.1) G=JJ 2N =2V +Z[5]v,

where v is the right Perron—Frobenius eigenvector given by (14.5).
Proof. Clearly ZV C G and v € Z%, so J™"v = A~"v € G, and hence
(17.2) ZN+Z [t vCa.

Since @ is the smallest J~!-invariant subgroup of @V, in order to show the converse
inclusion it suffices to show that

(17.3) JYZN+z[i]v)czV+Z [X] v.
But as J~!v = $v, it suffices to show that
(17.4) JZN N +Z [3] v.

Then it suffices to show that the right column vector in J~1 in (5.49) is in Z%V +

Z [1] v. But using my = A and (14.5) we see that this column vector has the form

A~lv+m, where m € Z". This proves (17.4) and thus Lemma 17.1 is proved. O

Lemma 17.2. Let J be a matriz of the form (11.2), and assume that A = my.
Let v be the right Perron—Frobenius eigenvector of J normalized as in (14.5). It
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follows that v has the form

1
V2
UN-1
1
where
(176) Vi41 = /\1)1’ — m;

fori=1,2,...,N—1.

Proof. This is an immediate consequence of (11.40) and (11.41) in the proof of
Lemma 11.14. O

Lemma 17.3. Let J, A = mpy, v be as in Lemma 17.2 and define the (N — 1) x N
matriz My by

Vg -1 0 0 0
V3 0 -1 0 0
vny_1 O 0 -1 0
1 0 0 0 -1
Then
—nry N 11V N-1
(17.8) G=Jr 2" ={sen}]" | Mz ezV1}.

Proof. Let vt = {y € ZV | (y|v) = 0}. We will also prove that
(17.9) G:{xEZ[%]N[VyEVL: (y|x)€Z}
by establishing the following relations between the right-hand sets of (17.1), (17.8)
and (17.9):
(17.1)r € (17.9)r € (17.8)r C (17.1)z.
The first inclusion to the left is immediate, and since the vectors
(v3,—1,0,...,0), (v3,0,=1,0,...,0),...,(1,0,...,0,—1)

are all in v by (17.5), the second inclusion follows. But if x €(17.8)g, then

2 €z [4]

To = ULy + Mo

Ty = U3T1 + M3

IN-1 =UN-1T1 + MN—-1
TN =21 +my =vNZ1 + My

where my,...,my € Z, and hence x = m+ z;v €(17.1)g. O
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Lemma 17.4. Let J, J' be as in Lemma 17.2, and assume that there is an isomor-
phism 6: G — G’ (and thus N = N', Prim ()\) = Prim (X')). Let A € GL (N, Z [3])
be the matriz in Proposition 11.7 implementing the isomorphism. It follows that

(17.10) Av =¢v'

where £ is an element of Z [}] with multiplicative inverse (i.e., & is a product of
powers of the primes in Prim (X)).

Proof. By Lemma 17.1 we have
G=2Z"+Z[}]v,
G =Z"+Z [}V
S0
DA (G)=Z[3]v,
and
DA(@)=Z[3]V'

(see (11.57) for the definition of Dy). But § must map Dy (G) onto Dy (G'), from
which the assertion follows. O

Note that Lemma 17.4 immediately gives a strengthening of Corollary 11.13.
But we will do better: see Lemma 17.9.

Corollary 17.5. Let J, J' be matrices of the form (11.2) with my = X and
mn» = X. If there is a unital isomorphism 2y — Ay, then N = N', Prim () =

Prim (\') = {p1,...,pn}, and there are integers my, ..., my such that
alv
() <<a’ iv, =Pl P

Proof. We have N = N' and Prim (my) = Prim (m}y,) by Theorem 7.8. From
(17.10) and Proposition 11.7, it follows that

(a]v) = (& |Av) = (! |&v') = €(a' | V')
O

We will now give a useful alternative form of Corollary 17.5 by means of the
number

N
(17.12) IWJ) =Y ol = AN 4 oAV 2 by A+ 1

where v1 = 1,vs,...,vny-1,uy = 1 are the components of the right Perron-
Frobenius eigenvector in Lemma 17.2. The next corollary says that I(J) is an
invariant in the context A = my.

Corollary 17.6. Let J, J' be matrices of the form (11.2) withmy = X and mjy, =
N. If Ay is isomorphic to Uy then

(17.13) I(J)=1I(@J").
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Proof. Using Lemma 7.2 and (17.5) we have

1

1
(a|v)=1+v2—+-'-+vN_1 W

1
A ANV—2
1
bvie (AN 4w dV 2 by A+ 1),

+

and a similar expression is valid for (¢ |v'). Combining this with (17.11) we find
an element &' € Z [}] with a multiplicative inverse such that

AN AN 2 by A+ 1) = (VN 4 o)V ol N 1)
Now, we may find two disjoint subsets of {p1,...,pn}, say Py and P_, such that

¢ = H pP) H g ™9,

peEP} geP_

where n (p) € N, n(¢q) € N. The relation above may be written

II 2@ (AN 4w AN =2 -y A + 1)

pePy
— H qn(q) ()\IN—-—I +v/2/\lN—2 4o +U}V—1>‘I + 1) )
geP_
Since the primes pi,...,p, are all distinct, and all of them are factors of both A

and X', and thus none of them are factors of the polynomials (--- + 1) above, it
follows that Py = P_ = @&. Thus &' = 1. But this means

/\N—l (a|v> — /\/N—l (oz’ |v/>

and
(17.14) T =M ulV=2 4 oy A+ 1
e e T e R A/ AR P U o
=I(J). 0

Under some circumstances, Corollary 17.6 can be used to give more amenable
conditions for isomorphism.

Clorollary 17.7. Let J, J' be matrices of the form (11.2) withmy = X and mly, =
. If there is a unital isomorphism Ay — Ay and A = X', then
(17.15) (a|v) =(a'|¥).

. If there is a unital isomorphism Uy — Ay and X' is an integer multiple of A,
then
(17.16) A=)
Proof. The first statement follows from the formula

(a]v) = A~ WN-D1)

in the beginning of the proof of Corollary 17.6, as well as from the corollary itself,
and the fact that N is an isomorphism invariant (Theorem 7.8).
For the second statement, note that (17.13) implies

(17.17) v AV 2 b o A= NN (N2l )
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and the expression in parentheses is positive. We have assumed that )’ is an integer
multiple of A, and if this multiple is > 1 we will show the contradiction

(17.18) VAN T2 4 puy g A < Mo

This will prove the lemma. Since

(17.19) VA2 4y A ANV TE NN A2
=(N—-2)AN"1

by (14.5), (17.18) will follow if we can show that
(N —1)AN=1 < ¥N-1_ \N-1
or
(N-1) <N/
But as X' is an integer multiple of A, this says
(N -1) < 2N
which is obvious when N > 1. O

Lemma 17.8. Adopt the assumptions and notation in Lemma 17.1. Then G has
a direct sum decomposition

(17.20) G=2""'OL}]v,
where ZN=1 identifies with the elements of Z~ with zero first coordinate. If o0 =
(L, 5m=) and B = (3,32 .., 38=T), on element x ® v of G is positive if

and only if (B|x) + & (a|v) > 0.

Proof. Put H = ZN"' @ Z [3] v. Since v; = 1, this sum is really direct, and it
follows from (17.1) that H C G. Conversely, if y+&év € G, define &' = £+y; € Z [}]
and write y + &v = (y — y1v) + €'v. But y — y1v € ZV~! since v; = 1, and hence
y+ev=(y-yv)+&veZN'+Z[3]v. ThusG C H and G = H. Sincex € G
is positive if and only if (a|x) > 0 the last statement is clear. a

Lemma 17.9. Let J, J' be matrices of the form (11.2) with A = my and X' = mjy,
Prim (\) = Prim (\'), N = N', and I (J) =1 (J'), so that
(1ram G-V +n[]v=2" "0y,

' G=z"+7[}]v =2""eL[}]V

by Lemma 17.1 and Lemma 17.8. Then any unital order isomorphism : G — G
has the form

(17.22) 6 (x,&v) = (Ax, (n (x) + fz\'N_l)\_(N”l)) v’)
relative to the right decompositions, where
(17.23) AeGL(N-1,72),

(17.24) n € Hom (ZV~1,Z [1]),
(17.25) (B]x) = (8| Ax) +n (x) (o' [ V'),
(17.26) AV=v and n@) =XVN"Ix"WN-D_
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where
Vo )
(17.27) V= and V' =
UN-1 UN_1
1 1

Conwversely, if (A,n) satisfies (17.23)—(17.26), then (17.22) defines a unital order
isomorphism G — G'.

Proof. Let A € GL (N, Z [}]) be the matrix in Proposition 11.7 implementing the
isomorphism. By Lemma 17.4, Av = £v', and by the proof of Corollary 17.5,

(a|v) _ e 10)) — M N1y —(N-1)
(al |V') )\/—(N—l)I(J/) ’

=

and thus
(17.28) Av = NN —(N=-1)r
This shows that

0 (6v) = N NI\~ (N-1)y!
for all £ € Z [%] Furthermore we must have
(17.29) Olzv-1=A@dn(-)v,

where A € My_1(Z) and n € Hom (ZV-%,Z [+]). Now, (17.22) follows from
(17.28) and (17.29). For 6 to be onto, A must be surjective and hence A €
GL (N, Z). The condition (11.14)(2) in Proposition 11.7 is equivalent to

(Blx) +€(a|v) = (8| Ax) + (o [n(x) v') + EX N TIA-N= (o [ v)
for all x @ év € ZN' @ Z [3] v and since AN"Ha|v) = I(J) = I(J) =
NN=1(a'|v"), this is (17.25). Finally noting that
1

(17.26) is a transcription of (11.14)(5):
Av — A¥ = XN -1y (A9, (%) v')
= (—AV, (—17 @)+ )\’N_lx\_(N_l)v’)) .

1 1
But since A <O> = (?), this is equal to
0 0

vi— ¥ = (—V',V') ’

which is equivalent to (17.26).

For the converse statement, one has to verify that if 6 is defined by (17.22),
then 6 satisfles the conditions in Proposition 11.7, but this follows by the same
computations as above. (Note that as § (G) = G’, the conditions (3) and (4) in
Proposition 11.7 are automatic. To show 6 (G) = G’, note first that 6 (Z [3] v) =

1

Z [%] v', and next, since A is onto, there is for any m € Z¥~! an n € ZV~! with
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An = m, but then § (n ® (—n (m)v)) = Av® 0 = m& 0, thus § is surjective. It is
clearly injective.) O

Note that Lemma 17.9 hints at a method of constructing unital order isomor-
phisms (A, 7). First find an 4 € GL (N — 1,Z) satisfying AV = ¥/, and then solve
(17.25) for n (x). However, one then has to check (17.24) and the remaining condi-
tion in (17.26), and these conditions are very restrictive. This is illustrated by the
following lemma.

Lemma 17.10. Adopt the notation and general assumptions in Lemma 17.9. If
(A,n) is a solution of the conditions (17.23)-(17.26), then

! N-1
(17.30) n (ZVY) (w_)) Z.
and thus one may without loss of generality replace (17.24) by
7 N-1
(17.31) » € Hom (ZN—l, (=00 Z) |

In particular, if A = X, then
(17.32) n € Hom (z"1,Z).

Proof. Note first that by the beginning of the proof of Lemma 17.7, (o’ |v') has
the form

(aX+1) _ I(JY)
A N-1 —)\IN—l’

(17.33) (o |v') =

where a is a positive integer. But it follows from (17.25) that
_ (B]x) - (8']4x))
"0 =T e
_NMNT(Bx) — (8] Ax))
B I(J)
o X (T )
= I(J")

((*T’)N_l Z+ Z)
- 1(J)
_ged ()M
TOMN-11 ()

Z.

But on the other hand

1(x) € Z 5]

by (17.24), and since I (J) = (aX + 1) is mutually prime with A, (17.30) follows.
The remaining statements in Lemma 17.10 are obvious. O

Note that among the solutions of the relations in Lemma 17.9 one can always
look for one of them with n = 0. Because of (17.26) such solutions only exist if
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A=), and then A must satisfy
A€eGL(N-1,7Z)
(17.34) (B]A= (8]
Av =¥,

Thus if A = X, the existence of an A with the properties in (17.34) is a sufficient
condition for isomorphism. We next formulate a rather complicated condition which
is both sufficient and necessary for general X, \.

Lemma 17.11. Adopt the notation and general assumptions in Lemma 17.9. Then
a necessary and sufficient condition that G and G' are unital order isomorphic
is that there exists an integer (N — 1) x (N —1) matriz A = [aij]ﬁ;:l with the
properties

(17.35) A€GL(N-1,2),

N
(17.36) NNTINE N g XN eT(Nz (L]  fori=2,3,...,N,

=2
(17.37) Av =¥
Thus a necessary condition for isomorphism is that
(17.38) NNZIN=N e T()Z [4] + 2.

Remark 17.12. Note that since all the terms on the left side of (17.36) are integers
except A' ™%, and I (J) is mutually prime with A and X, and Z [}] is closed under
division by A, the condition (17.36) can be formulated in the following more user-
friendly way:

N
(17.39) XY o N e NN L 1)) 2

j=2
fori=2,3,...,N.
Proof. We know that the conditions (17.23)—(17.26) in Lemma 17.9 are necessary
and sufficient. But with A given, one may use (17.25) to define 7,

_ (Blx) — (8| Ax)
9= )
_NNT((Bx) ~ (6] Ax))
I(J")
and since I (J') = I(J) is relatively prime to both A and X', we see that (17.36)
is necessary and sufficient for (17.24) by putting x = es, es,...,ey. Finally if 7 is

defined as above we have
IN-1 S 1 N—1 A

b (ﬂIV)I(J)\) (817
_ XNV (afv) 1) = NN (o [v) - 1)
B I(J)
XD - T(J)
- I(J)
— /\IN—l/\—(N—l) -1,




17. COMPLETE CLASSIFICATION IN THE CASE X = mpn 151

so the last condition in (17.26) is fulfilled.
Finally, (17.38) follows by putting ¢ = N in (17.36). O

We will now apply this theory to more specific examples.

1. The case N =1

Here one has A\ = my automatically, and the corresponding C*-algebra 2y, is
the UHF-algebra of Glimm type A* [38]. Thus the algebras corresponding to A
and X' are isomorphic if and only if Prim()\) = Prim (A\). (Note that I(J) =1 in
all these cases, so this invariant does not separate isomorphism classes.)

2., The case N =2
Here it follows from (13.2) that the possible J’s with NV =2 and A = my are

(17.40) J= (A ! (1))

for A =2,3,.... By Lemma 17.2, v = (1), and by (17.12),

(17.41) I(J)=A+1

It follows from Corollary 17.6 that all the algebras corresponding to (17.40) for
A=2,3,4,5,... are pairwise non-isomorphic.

3. The case N =3

Using Lemma 17.2 one observes that if A € {2,3,...} is given and A = ms,
then J has the form

A— V2 1 0 1
(17.42) J={ly-1 0 1 with v = [v
A 00 1

where 1 < vy < A. Using (17.12) one computes
I(J)=X 4w+l
Hence an immediate corollary of Corollary 17.6 is:

Proposition 17.13. If J, J' are matrices of the form (17.42) with A = X' and
N =3, then 2 and A are isomorphic if and only if J = J'. The same is true if
one X is an integer multiple of the other.

Proof. The last statement follows from Lemma 17.7, (17.16). O

Let us now look at the example
A=48=2.3, N =54=2-3
Then one computes that I (J) = I (J') for exactly the following four pairs:

vy |15 24 33 42
vh| 2 10 18 26

In general the solutions of (17.39) together with (17.35) and (17.37) in Lemma
17.11 may be found as follows.
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Let A = (a b) = (“22 “23>. Then (17.37) is fulfilled if and only if
c d asy Q33

b=vy — avy,
d=1-cvs,
and then (17.35) holds if and only if
det A = a— cvh = %1,
and it follows that the conjunction of (17.35) and (17.37) is valid if and only if

(17.43) A= (cvéci o ]%ﬁf v2>

for an integer c. To determine this integer, we use (17.39) to deduce (for i = 2,3):
(17.44) A (WhN +1) € (FA+N)N +I(J)Z,

(17.45) cvaA? (VAN +1) € (vh Fua) NN + A2 = X2+ I (J))Z,

where

(17.46) I =X 4vd+1=XN24+ubN +1=1(J").

Now, let us note that (17.45) actually follows from (17.44), with the same c. This
is because (17.44) implies that

(17.47) e (X)) (VA + 1) C v A (FA+N)N + I (J) v AZ
CoA(FA+N)N+T(J)Z.
But note that
D = v A (FA+ X)X — ((vh Fua) A2X + A% = X'2)
=0 AN 2 — 0 AN — 2% 4 N2,
AsT(J) =X +vA+1=XN2+v))X +1=1TI(J') we have that
A= X2 =N —up),
and hence
D = v N2 — b A2N — b N 4 wg X
=v A (N2 +1) o) (A2 +1)
= v Al (J') — vadus N — vHN'T (J) + vh N wg A
eI(J)Z.

Thus (17.45) follows from (17.44), i.e., the two conditions (17.44) and (17.45) are
equivalent to (17.44) alone. But now observe that

vhN +1=T(J") = X2,
and hence (17.44) is equivalent to
e e (FA+N)N+T(J)Z.

Since AX'? is relatively prime to I(J), it follows from the Euclidean algorithm
within Z that this relation always has a solution ¢ in Z! Thus we have proved:

Theorem 17.14. If J, J' are matrices of the form (17.42), the following conditions
are equivalent.
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(a) Ay and ™Ay are isomorphic.
(b) Prim (\) = Prim (X') and I (J) = A2+ v d + 1=XN2 +upN +1=1(J").

Proof. The necessity of the conditions was established in Theorem 7.8 and Corollary
17.6. The sufficiency follows from Lemma 17.11 as argued before the theorem. [J

Remark 17.15. It follows from the argument that the A € GL(2,Z) and the
1 € Hom (ZN e/ [%]) corresponding to the isomorphism can and must be taken
to be

A= cvh =1 vh — cuavh Fv2
c 1—cug ’

where ¢ is any solution of
N2 e (FA-NXN+I(N)Z
and 7 is then defined by (17.25).

In particular the four pairs mentioned after Proposition 17.13 define isomorphic
algebras. For example, the algebra defined by

3 1 0 1
J=[719 0 1 with A=48 and v= | 15
48 0 0 1

is isomorphic to

52 1 0
J=1107 0 1 with ' =54 and v' =

54 0 O
Here I (J) = I (J') = 3025, and the Euclidean algorithm gives

[

¢ = —313308 = 1292 (mod 3025)

and thus one A that can be used is

A= 2585 —38773
T \1292 -19379)°

4. The case N > 4

In this section we prove that Theorem 17.14 remains valid also in the general
A = mp case, i.e., {N,Prim\, I (J)} is a complete invariant. If A is a matrix in
Mp—1 (%) of the form

(1748) A= (ag ag -“°° aN)

in terms of column vectors as, ..., ay, then an easy computation shows that Av =
v’ as in (17.37) if and only if

(1749) ay = VI — VYgag —V3ag — ' —UN—-1AN-1-
Thus condition (17.35) says that
(17.50) det (az az -+ ay-.1 V') = #£1,
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and what remains is to choose ay,as,...,ay—1 such that (17.39) is satisfied. For
example, try

a 0 - 0 V) — agVq
0 as 0 v§ — agvs
(17.51) A= :
!
0 0 an—1 Uy_1 — GN—1UN—1
ca €3 -+ CN-1 l-—coug—c3v3— - —CN_1UN_1
Fixing c¢s,c3,...,cn—1, One may now choose ay_1,aN§—32,...,02 successively such

that the determinant of the lower right k¥ x k matrix is 1 for £k = 2,3,...,N — 1.
This leads to the recursion relations

!
an-1=14+cn_1Vy_1,
)
an—2 =1+ CcN_206N_1VN_g,

(17.52) an-3 =1+ cN-_3aN—2aN-1Vy_3;

ag =1+ coazaq--- aN_lv’z.

Inserting this in (17.39) gives a way of determining suitable values of ca,...,cny_1 as
in the N = 3 case, but we have by now already made several arbitrary choices which
we did not need to do in the N = 3 case, and it is not quite clear that this approach
leads to the goal. There is, however, one case where it does, namely if A = A’. Then

one may simply choose cg =c3 =--+=cy—1 =0,andsoaz =az3=---=any_1 =1
and

10 -+~ 0 vy — V2

01 0 vy — U3
(17.53) A= |:

0 0 1 'Uﬁv_l —UN-1

00 -+ 0 1

Since A = X', (17.39) is automatically satisfied, and we have
Theorem 17.16. Let J, J' be matrices of the form (11.2), and assume that A =
mn = X = mly. Then the following three conditions are equivalent:

(a) Ay and Uy are isomorphic;
(b) N=N'and I(J)=1I(J');

and

(¢c) N=N'and (a|v) = (a']|V').

Proof. This follows from the remarks before the theorem, Lemma 17.11, Corollary
17.6, and the formula

(17.54) (a]v)y =TI(J)/AN-L. O
Example 17.17. The present example shows that Proposition 17.13 does not ex-

tend to the case N = 4, i.e., isomorphism does not imply A # X, and it also shows
that Theorem 17.16 is not merely concerned with the empty set.
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The example is

1 100 01 00
12 010 / 8 010
(17.55) 7= 1 0 0 1]’ J= 2 0 01
3 000 3 000
Here A = X =3, and
1 1
12 P
(17.56) v=lyf vi=1y
1 1
See Figure 20. Using the unique decomposition
1
0 v
17.5 = —
wrsn 0 =t ™
0

where (a|w) = 0, one sees that the n’th row vector in the left diagram in Figure
20 behaves asymptotically like
vt 27
17.58 3N———=—=-3"(1,2,4,1),
(17.58) oy =5 Y (L2
and the n’th row vector in the right diagram in Figure 20 behaves asymptotically
like

27
17.59 —-3".(1,3,1,1).
( ) 58 ( ’3’ ? )
(The latter matrix has an eigenvalue —2.769..., which is negative and close to 3

in absolute value, therefore the slow and oscillatory convergence to the asymptotic
behaviour indicated by the figure.) One can now check that the conditions in
Lemma 17.9 are fulfilled with

1 0 1
(17.60) A=10 1 -3], n=0.

0 0 1
In fact, since A = X = 3 and n = 0 it suffices to check (17.34), and that is
straightforward. Thus the two AF-algebras 2; and 24, are isomorphic, showing
that Proposition (17.13) does not extend to N = 4. Computing the matrix A in
Proposition 11.7 for this example, one finds

1 00 O
01 0 1
(17.61) A={g 0 1 _3
0 0 0 1

We are now ready to state and give the proof of the main result in this chapter.

Theorem 17.18. (K.H. Kim and F. Roush) Let J, J' be matrices of the form
(11.2) satisfying the standard requirements there, and assume that A = my and
N =mly,. Then the following conditions are equivalent.

(a) Ay and Ay are isomorphic.
(b) N = N', Prim (\) = Prim (X'), and I (J) =1(J").
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1 1
1 2 11 S 3 8 2 [T 3
N y
/‘F'!
3 13 14 8 2 3
\
16 20 36 16 | 24
\
36 68 185 28 | Y 6
104 257 444 T 108 140 I 201
361 652 1252 | 3 312 564 396 265 | 3 o6
1013 1974 4283 1083 1692
, <
2987 \ 6309 12226 3039 1188
§
9296 18200 35896 8961 10742 14331
§ \
27496 54488 11217 27888 23115 13176

Ficure 20. L ={1,2,2,3,3,3,3,3,
umn = (12 11 3)* (left); L = {2,
column = (0 8 2 3)* (right). See (
represent isomorphic AF-algebras.

3,3,3,3,3,3,3,4,4,4}, first col-
2,2,2,2,2,2,2,3,3,4,4,4}, first
17.55)—(17.61). These diagrams
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We will establish later, in Corollary 17.21, that these conditions are also equiv-
alent to stable isomorphism of 2y and 2.
In order to prove this theorem, we will need some elementary facts about

(17.62) Sp={x€Z"\ {0} | gedx = 1},

where n is a natural number, and gcdx is the greatest common divisor of the
components of x. If x € Z™ we write (x| if we think about x as a row vector and
|x) if we consider x as the column vector which is the transpose of (x |. Thus, by
the Euclidean algorithm,

(17.63) Sp={|x) €Z"|3 (t| € Z" > (t|x) = 1}.

Note that GL (n,Z) (i.e., the group of matrices in M, (Z) with determinant +1)
acts on | S,) by multiplication from the left. The reason is that if x € Sp, there is
at € Z™ with (t|x) = 1, and hence (t| A71A|x) =1, so Ax € S,. We next argue
that

(17.64) The action of GL (n,Z) on S, is transitive.

Proof. By [55, Theorem IL1], there exists for any |a) € |Sp) a matrix A, €
GL (n,Z) such that the first column of A, is |a): this means |a) = Ay |e1). But
if | B) € | Sn), this means AOtA[;1 | 8) = | @) and transitivity follows. O

Now, let us prove

Lemma 17.19. If a®, o®, vi, vy € Sy, the following conditions (17.65) and
(17.66) are equivalent if n > 3.

(17.65) There is an A € GL (n,Z) such that ('Y | A= (a?| and A|v1) =|va).

(17.66) (@M |vy) = (a® |vy).
(The implication (17.65) = (17.66) is true for all n, but the converse implication
may fail for n =2.)
Proof. (Due to K.H. Kim and F. Roush.) If (17.65) holds, then
(@M [v) = (@M | A]v1) = (@® |v1).
If, conversely, (17.66) holds, first choose matrices U,V € GL (n, Z) with
@NU=(er], VIv1)=]er).
This is possible by (17.64). It follows from Lemma 17.20, below, that there exists
a matrix B € GL (n,Z) such that the first column in B is U~![v2) and the first
row in B is (a® |V~1. For this, we note that U~!|vy) € |S,) and (¢ |V~! €
(S, |, and the first component of U™ |vs) is (e; [U™!|v2) = (o) [UUL |vy) =
(W |vg) = (a® |v1) = (@@ | V71V |vy) = (al® |V~ | e;) = the first component
of (a!? | V1. Now put
A=UBV.

Then

(@ | A= (oW |UBV = (e; | BV = (@ |[V7IV = (a? |,
and

A|vi) =UBV|vi)=UB|e)) =UU " |vy) =|va). O

Thus, we have to prove
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Lemma 17.20. Let a, (8 be vectors in S, with a; = By, and assume that n > 3.
Then there ezists a matriz V € GL (n,Z) such that the first column in B is |a)
and the first row is (3.

Proof. (Due to K.H. Kim and F. Roush.) We will use the fact that row, respectively
column, operations on a matrix can be effectuated by multiplying from the left,
respectively right, by matrices in GL (n,Z). For example, interchanging the first
two rows in A corresponds to multiplying A from the left by ($3) ® 1,2, and
adding p times row 2 to row 1 corresponds to left-multiplying by (§4) @ Ln—a.
The corresponding column operations follow by taking the transpose. If now A €
GL (n,Z) is a matrix of the form

Q1 Bo -0 Bn
A= a2 * * ,
* *
On

let 74 = ged (B2, .- ., Bn), and choose ps, ps, . .., pg such that pefBa+- 4+ ppfBn = 71
p2

Let Ui be a matrix in GL (n —1,Z) with first column | : ) (it exists by [55,
P
Theorem I1.1]). Now multiply by A from the left to obtain

Q1 | M Y2 0 Yn—1l
1]0 0 1] 0 0 -
N 2 * *
0 0| pe *
A =A| - =] o ,
Uy .
0 01 pn * ' * *
Qn
where the remaining elements 7s,...,Yn—1 on the first row are linear combinations

of Ba,...,Bn, and thus multiples of ;. By subtracting integer multiples of the
second column from the remaining columns, one finally finds a matrix U € GL (n, Z)
such that

aplm O 0
@2 * *
AU = as
* *
6273
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Putting 72 = ged (v, ...,a,) and transposing all these operations, one finds a
V € GL (n,Z) such that
a1 T 0 e 0
" * *
VAU = 0 )
* *
0

where ged (v, ;) = 1. Thus, if we can prove Lemma 17.20 for this kind of matrices,

the general Lemma 17.20 follows by multiplying from the left and right by the

inverses V~1, U, This reduces the proof of Lemma 17.20 to the case
a3:a4=-.~=an:0:ﬁ3:ﬂ4:--.=ﬂn’

and ged (a1, az) = ged (B1,B2) = 1 where still a; = B1. But to this end one can
use the matrix

aq ,62 0 O 0
(67} 1 z O 0
0 1 y O 0
0 0 01 0
0o 0 00 .-+ 1

The determinant is o (y — =) — a2 B2y, but as ged (a1, a2B2) = 1, this can be made

equal to 1 by choosing the integers (y — z) and (—y) by the Euclidean algorithm.

This ends the proof of Lemma 17.20, and thus of Lemma 17.19. Note that if n = 2

the proof above does not work: One must choose an integer z such that

ar P2
z

s =1z — azfy = 1

when a1, ag, B2 are given with ged (aq,a0) = 1 = ged (a4, B2), and this is clearly
impossible in general. O

Proof of Theorem 17.18. (Due to K.H. Kim and F. Roush.) If J, J' are matrices of
the form (11.2) with A = my and X' = m/y,, then N = N’ and Prim (\) = Prim (\')
by Theorem 7.8, and then I (J) = I (J') by Corollary 17.6. This proves (a) = (b).
The converse implication follows in the cases N = 1,2,3 by Theorem 17.14 and the
discussion around (17.41), so we may assume N > 4 from now on. Assuming (b)
it follows from Lemma 17.11 and Remark 17.12 that 2y and 2. are isomorphic if
and only if there exists a matrix A € GL (N — 1,Z) such that

(17.67) (B'|A= (B8] modI(J)zZN!
where we now define '

(17.68) Br= ANTH(NNZ2 NN N1
and

(17.69) B=NN"T(AN=2 N3 N1
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and
(17.70) Alv) =|¥).
Now, one checks that
(17.71)
(B'19) = AN (NN2eh o+ Ny +1) = AWV () - AN N
and ‘
(17.72) (B19) = NN (J) = N N-1)\N-1
and thus
(17.73) (B'1¥) = B9+ (W= NN"1)T(J)=(8]|¥) mod I(J).

Now we cannot apply Lemma 17.19 directly on ot = 8, a® =8, v{ = ¥, vo = ¥,
for two reasons: we do not have (3,8’ € S, and the condition (17.66) is only ful-
filled modulo I (J). But let us remedy this by modifying 3, 8’ as follows: First add
an integer multiple of I (J) (0,0,...,1) to A’ to obtain a new £, called 8%, such
that (8()'|¥') = (8|¥). This is possible since the last component of ¥/ is 1 by
(17.27). Now modify the new ) to 42 by adding integer multiples of the vec-
tor I(J) (0,0,...,0,—1,v}_;) to B until the second-to-last component contains
none of the prime factors in Prim (A\) = Prim (\’). This is possible since I (J) is rel-
atively prime to A and X', Then (8" |¥') = (3| ¥') since (0,0, ...,0, —1,vly_4)
is orthogonal to ¥ and 8(®' € S,,. Finally, modify 8 to 82 by adding multiples of
I(J)(0,0,...,0,—1,un_1) until the second-to-last component is relatively prime
to the first N — 3 components. Then (83 |¥) = (8|¥) and hence

(B'9) = (B]9).
But since N —1 > 3 we may now apply Lemma 17.19 to find an A € GL (N — 1,Z)
such that
(BP' A= (f?] and A|7)=]|¥).

But since

(6@ |=(f'] mod I()ZN~!
and

(8P| = (8] mod I(J)Z N7,
it follows that

(B'|A=(B] modI(J)z"N""
Thus (17.67) and (17.70) are fulfilled and Theorem 17.18 is proved. O

Let us end this chapter by mentioning that the equivalent conditions (a) and

(b) again are equivalent to the condition that 2; and 2 are stably isomorphic,
i.e., to that 2; ® K (#) is isomorphic to 2 K (H), where K (#) is the C*-algebra
of compact operators on a separable Hilbert space . This is due to the very special

position of [1] in Ky (), and this property has no general analogue: For example,
it is impossible to find an automorphism of Z [%] mapping 1 into 3.

Corollary 17.21. Let J, J' be matrices of the form (11.2) satisfying the standard
requirement there, and assume that X = my and X' = mly,. Then the following
three conditions are equivalent.
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(a) The triples (Ko (2%s),Ko (%), ,[1]) and (Ko (1), Ko (A1), ,[1]) are iso-
morphic, i.e., the dimension groups are isomorphic by an isomorphism map-
ping [1] into [1].

(b) The dimension groups (Ko (), Ko (Us),.) and (Ko (%s), Ko (%s),) are
isomorphic.

(¢) N =N', Prim(A) = Prim(X), and I (J) = I(J").

Proof. The equivalence (a) < (c) is Theorem 17.18, and (a) = (b) is trivial. Thus
it suffices to show that (b) = (c), so assume (b). Then one establishes N = N’
and Prim ()) = Prim (\') exactly as in Theorem 7.8, and it remains to establish
I(J) = I(J"). For this one notes that Proposition 11.7 remains true in the context
of nonunital isomorphism with the exception that the condition 5 is just removed,
and condition 2 is replaced by

(A= plal,
where p is a positive scalar. But since p induces an automorphism on the range
Z [3] = Z [$] of the trace, it follows that u is an invertible element of the ring
Z [x]. Now the Lemmas 17.1-17.3 do not involve [1] and are still valid, and then

Lemma 17.4 is valid with the same proof. Now the equation in the proof of Corollary
17.5 becomes ’

(@]v) = p Mo [Av) = p7H (o |&v') = pTHE (| V'),
so Corollary 17.5 is still valid. The proof that I (J) = I (J') is now exactly as in
the proof of Corollary 17.6. O




CHAPTER 18

Further comments on two examples from Chapter
16

We now consider two sub-examples with N = 3, d = 5. Although the groups
Ko (1) and Ko (/) have the same rank, we will show directly in Examples 18.1
and 18.2 that they are non-isomorphic. The details also serve to illustrate what goes
into the computation of some particular inductive limit which is not immediately
transparent.

The two algebras corresponding to = + 4z® = 1 and 3z2 + 223 = 1 are the two
with stabilized diagrams

& \ rd \ i\

110 010
Ji=10 0 1], Jo=13 0 1].
4 00 2 00

The two examples above both have § =1In 2, and rank (Ko (%)) = 3 (and d =
5), but the two dimension groups are actually non-isomorphic since the Prim (Q)
invariants are different; see the N = 3 case in Chapter 16. We will, however,
establish this the hard way in Examples 18.1 and 18.2 by showing that the respective
ker (7)-groups in the two examples are non-isomorphic.

Example 18.1. This is an elaboration on Remark 9.3.

110
Li=[0 01
400

The Frobenius eigenvalue is 2 (see (5.8)) and the corresponding normalized left
eigenvector « is
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Thus the dimension group, as a subgroup of R® (N = 3), is

w1 1 0 27" | 0 0 4 2 1
Ug 1 -2 1 R - 4 -2 -1]2z8
n=0 2 0 —2 0 o 4 2 —3

(where the union is increasing), i.e., J,, M,Z3 when M,, is the product matrix. The
range of the trace on Ky is o applied to this set (the range of the trace on 2y is
gotten by intersecting with [0, 1]). We have

1 1 1 0 27" 0 0 4 2 1
ag 1 -2 1 0 * * 4 -2 -1
2 0 -2 0 = x/ \4 2 =3

1 2" 0 0 4 2 1
=—(1 0 0) 0 *x x 4 -2 -1
4 0 * %/ \4 2 -3
4 2 1
=(2_”'2 0 0) I
. ¥ k%

=(2—n 2—n+1 2—n—2)’

ie,aM, = (27" 2 "1 27"2) and applying this to Z* we reconfirm that the
range of the trace is the set of all dyadic rationals. The range of the trace on the
m’th term in

73— 73— ...
is
27 (a|29) = 27 (1,4,1) 2°
=2 "7,

Now, the infinitesimal elements of the m’th Z3 are the elements of the kernel of
aJ; ™! = 2-m+lg ie., the elements of the kernel of e, that is elements of Z3 of

the form
n1
N9 =nie; + (277,1 + nz) es,

—4n1 - 2712

where ni,ng € Z. Thus

m 2=7 | 0 0 0
Jl_n N2 =A 0 Jn ni .
—4n; — 2n, 0 0 2n1 + ng

Thus the dimension group of 2, is an extension
0— Go— Ko (%) — Z [5] — 0,

where Gy = kerT is the group of infinitesimal elements. It is rather complicated
to describe G in the matrix formalism above, so let us instead use the algebraic
description in (5.41), that is,

Go=Z(z] /po (2) Z [x],
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—-1x /-7

by (5.17). Ji has eigenvalues 2 and A\x = —s |A+] < 2; Ji leaves the

subspace orthogonal to a = (1,1, 1) invariant. This is spanned by the vectors

1 0
€1 = -2 s €y = 1 s
0 -2
and one computes that the matrix of the restriction of J to this subspace is
-1 1
0= ()
We may compute the iterated inverses J; ™ by straightforward speétra,l theory, and
if we put
§= (1 -iV7) /4
the result is
-n 1 __1 B 2
J—n = —1 1 — 1 1 #'n—ll pin—l un—l + l_—‘n—l .
© T\-20 (-2)"h=B\ w3 ot

The eigenvector of J; with eigenvalue 2 is

Thus, if
1 1 0
A=(€o €1 62)= 1 -2 1 y
' 2 0 =2
then
2 0 0
AlnAa=10 -1 1
0 -2 0
and
2771 0 0
ATVTPA = (AT A T =T 0 —n
0 o
Thus
27" 0 0
-n __ -1
JIT=A 8 Jn A
We have
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where
_pr(z)  z+4® -1

— 9,2
@) =1 2z +z+ 1.

po ()

Now, embed Z in Gy as the group H generated by 1 (mod pp (z)) (note that nl # 0
(mod po (z)) for all n € Z\ {0}, so this is really an embedding). We argue that

Go/H=Z[}].
We have
Go/H = (Z[z] /po (z) Z [z]) /21
=(Z[z] /(22 +z+1) Z[z]) /Z1
=Z[z]/ ((2z> +z+1) Z[z] + 1Z)

as abelian groups. Let (p (z)) denote the residue class of the polynomial p in Gy /H.
Let

up = (z) = (—22%) = 2uy,
where u; = (—z?). Since

(22" + 2™ +2"71) =0,

we obtain

(") =~ (@) +2 (")
for n = 1,2,.... It follows by induction that the elements (z") are divisible by 2
forn =1,2,... (this is not true for n = 0 by a use of Lemma 9.2.) Furthermore, we

can find monic polynomials p, of degree n+ 1 such that the sequence u, = (p, (z))
has the property

Unt1 = 2un

for all n. But then {1,p (z) = z,p1 (z) = —22,...,pok—1(z) = —2® + 2% —--- —
2% pog (z) = 2% — 23 + ... — 2?*+1 ...} span all of Z [z], s0 ug,u1, ... span all of
Go/ H. 1t follows that

Thus Gy is an extension of the form
0—Z—Go—Z[3] —0.

In conclusion we have the exact diagram

0
}

!
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010
J2=13 0 1
2 00

Again the Frobenius eigenvalue is 2 and the normalized solution of

Example 18.2.

aJs = 2a
is
a=(L11).

J has eigenvalues 2, —1, —1. With e;, e; as before, J, leaves the subspace spanned
by e; and ey invariant, and the matrix of the restriction is

-2 1
-1 0/°
The determinant is 1, and one computes that

1
et+e=|-1
-2

is the unique eigenvector with eigenvalue —1. Using

1
fi=er+e= (-1
-2

as basis instead, one computes that the matrix is

(o )

and

and hence
-1 1\™" nfl n
(0 4) - Y)
forn =0,1,2,.... The right eigenvector of J, with eigenvalue 2 is
. ,
fo= (2> .
1
Thus, if
1 1 0
A=(fo A fo)=|2 -1 1|,
1 -2 -2
then

2 0 0
A'LA={0 -1 1
0 0 -1
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and
2°" 0 0
ATVLPA = (ATTRA) M = 0 (=)™ (-1)"n].
0 0 (=)™
Thus
2°" 0 0
JL"=A1 0 (-1D)" (=1)"n]A™!
0 0 (="
We have

1[4 2 1
A-1=§ 5 -2 —=11.
-3 3 -3

- Thus the dimension group as a subgrdup of R? is

o (1 1 0) /2™ 0 0 4 2 1
U§ 2 -1 1 0 ()™ (-1)"n) |5 -2 -1]|2z8
n=0” \1 =2 -2 0 0 -)" / \-3 3 -3

The range of the trace is a = (1, %, i) applied to this set, which is
w4 27 0 0\ /4 2 1 oo
U 1 (1 0 0) * %k % x x x| Z%= U (2—n 9—n+1 2—11.—2) 73,
n=0 ok x k) \x ox % n=0
which is not unexpectedly the set of dyadic rationals. Since the determinant of the
matrix (' %) (or (Z2§)) is 1, this matrix defines a 1—1 map on the infinitesimal
elements, so the group of infinitesimal elements is isomorphic to Z2. Thus K (1)
is an extension

0—Z>— Ko (A1) — Z [] — 0.

We see that the dimension groups of the two examples 18.1 and 18.2 are non-
isomorphic, so the algebras are non-isomorphic.
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