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Abstract

We investigate a hierarchy of domains with totality where we close
some selected base domains, including domains for the reals, the nat-
ural numbers and the boolean values, under cartesian products and
restricted function spaces. We show that the total objects will be
dense in the respective domains, and that our construction is equiva-
lent to the analogue construction in the category of limit spaces.

In order to obtain this we will consider a restricted function space
construction.

1 Introduction

Algebraic domains are handy for interpreting types. Ershov [3] essentially
used algebraic domains to give a characterisation of the Kleene-Kreisel con-
tinuous functionals [5, 6]. In this case one considers the finite types over the
natural numbers.

One basic property of the continuous functionals is the density theorem, the
total objects is a dense subset of the domain in question. The density the-
orem was essentially proved independently by Kleene and Kreisel. Ershov
gave a proof in the setting of domains. Berger [1, 2] analysed the proof of the
density theorem and isolated a dual property to density, called totality, and
proved how densty and totality are properties that are preserved in general
through the function space construction. Totality has later been renamed
co-density. There are two reasons for this. One reason is that there are
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good examples of domains with a reasonable notion of totality, but where
Berger’s analysis does not apply. Thus we should not restrict the term ‘to-
tal’ to Berger’s concept. The other reason is that Berger’s ‘totality’ is a dual
to ‘density’, so co-density is a natural term.

In this paper we will consider the possibility of using base types of various

topological natures. For instance, we will include a domain with totality
representing the set R of reals as a base type. In a preliminary draft for this
paper we showed that if we consider the typed hierarchy with R as the only
base type, we will also obtain the density theorem. However, if we consider
e.g. R — N every total continuous function has to be constant while there will
be compacts in the canonical domain interpretation that cannot be extended
to any constant function.
There are of course partial, computable functionals of type R — N that
are not constant. If we want to include any of those in our construction
we cannot have a density theorem. In the main part of the paper, we will
restrict our interest to the hereditarily total objects. With this aim in mind
we will consider restrictions to the function spaces, restrictions that will lead
to effective domains, but such that density is preserved.

The key observation is that the only obstacle to proving density is that
we may try to map two path-connected objects to two objects separable
by a closed-open set. In order to handle this observation technically we
will consider domains with an extra relation ~ which we will call connected.
In addition we will have to strengthen the density property and generalise
Berger’s co-density property in order to make the preservation theorem work.

In the final section we will consider the hereditarily total objects in the
standard domain interpretations of the types, and compare this hierarchy
with our main hierarchy.

We will assume familiarity with the theory of algebraic domains, e.g. as
introduced in Stoltenberg-Hansen, Lindstrém and Griffor [14].

Remark 1 In this paper we will let a domain D be an algebraic domain, or
a Scott-Ershov-domain in the sense of [14]. In addition all our domains will
be coherence complete, i.e. a subset X of D is bounded in D if and only if
any two-point subset of X is bounded in D. We will not always make a point
of proving or stating this.




2 The types

Definition 1 We define the type terms inductively as follows:
1. The constants R, N, B and §) are type terms.

2. If o and 7 are type terms, then (0 x 7) and (¢ — 7) are type terms.

Remark 2 Without mentioning we will follow standard conventions for
dropping parentheses, mainly the outermost.

R will essentially be interpreted as the reals, IV as the natural numbers, B as
the set B of boolean values t for true and f for false. 2 will be interpreted as
the generic convergent sequence with a limit point, the one point compacti-
fication of N represented by the ordinal w + 1.

We of course have to use domain representations of these interpretations.

Definition 2 Let (D,C) be a domain that is coherence complete.
1. We write z =~ y if {x,y} is bounded.

2. A connection on D will be a reflexive, symmetric relation ~ on D
satisfying

i) Iz Cx,yCy and 21 ~ yy, then z ~ y.
ii) If X and Y are two sets bounded in D, and z ~ y for all z € X

and y € Y, then
Lx ~ L)
If z ~ y we say that x and y are connected.

If we operate with several domains, we will use appropriate indices to ~ and
~ to distinguish them.

Examples

1. N; and B; with ~ = =.




2. Let Ro be the set of closed intervals with endpoints in Q, together with
the full real (or equivalent, rational) line. Let these intervals be ordered
by reversed inclusion, and let R be the ideal completion.

We let z ~ y for all z, y in R.

We may consider Ry as the set of pairs (r, s) from Q where 7 < s, to-
gether with L, when it is essential to have the finitary aspect available.
This will be important in Definition 15.

3. Let g consist of all natural numbers n and all ”copies” n* of natural
numbers.
Let C be the least partial ordering satisfying

e nCmifn<m.

enCm*ifn<m.
Let Q. be the ideal completion of 2y, and let ~ = =.

It is easy to prove that these relations satisfy the definition of a connection.
We will of course use these domains as interpretations of N, B, R and ).

Definition 3 Let D and F be domains with connections ~p and ~pg.
We define ~ on D x E by

(z,y) ~ (u,v) & T ~puly~g .

Lemma 1 Let ~ be as in Definition 3.
Then ~ is a connection.

The proof is easy and is left for the reader.

Definition 4 Let D and E be two domains with connections ~p and ~pg,
and let F,G : D — E be continuous.

a) FeD % Eifforal z,ye D

z~py— F(z) ~p F(y).

b) If F and G are in D % E we let

F~G&VzeDVy e D(x~py— Fz) ~pg G(y)).




¢) D % E is ordered by the pointwise ordering.

Lemma 2 Let D % E be as in Definition 4.
a) D % FE is a domain that is coherence complete.

b) ~ is a connection on D % E.

Proof
a): D % E will be a closed subset of D — E with

FCGeDSFE=FeDSE.

It follows that D < E is a domain. Moreover, if F' € D < E, then F'is
compact in D % E if and only if F' is compact in D — E.

In order to prove a) we must also prove coherence completenes:

If X C D < F is pairwise bounded in D % E, then X is pairwise bounded
in D — E. We will show that | | X € D % E.

Let x ~p . Since X is pairwise bounded in D % E, we get that

Fi(z) ~g Fy(y) for all F} and F, in X.

By property ii) of connections, it follows that

| {F(z) | F € X} ~p | {F(y) | F € X}.

b): Property i) follows from property i) for £ and property ii) is proved as
the last argument under a).

Remark 3 In general, D % E is not a subdomain of D — E.
If p,...,p, are compacts in D and ¢, ..., g, are compacts in E such that

® D R®p Pj = ¢ NEqj

® Di ~D Pj = qi ~VE qj
then {(p1,q1),- .., (Pn, gn)} Will denote a compact
F(z)=| {a | p C o}

in D % E, and all compacts will be denoted in this way. For simplicity, we
will identify a compact with this denotation.




Lemma 3 Let D, Dy and D3 be domains with connections.

a) If f € D; % Dy and g € Dy % Ds, then the composition
gofe€ D% Ds.

b) Let f € D1 <5 (D2 <5 Dg)
Then g € (D1 x Dy) % D3 where g(z,y) = f(x)(y)

C) Let g € (Dl X DQ) <5 D3.
Then f € D1 % (Dy % Ds) where f(z)(y) = g(z,y).

The proofs are easy and are left for the reader.

Definition 5 To each type o we interpret o as a domain D(o) with a con-
nection ~, in the obvious way as follows:

1. N, B, R and 2 are interpreted according to the examples.
2. D(o x 1) = D(0) x D(7).
3. D(oc — 7) = D(0) % D(1).

3 The hereditarily total objects

By recursion on the type o we will now define the hereditarily total objects
of type ¢. Simultaneously we will define a binary relation = that will turn
out to be the consistency relation for total objects.

Definition 6 For each type o we define the set T'(0) of total objects together
with the binary relation =, on T'(¢) as follows:

1. T(N) =N and =y is the identity-relation.
2. T(B) = B and =p is the identity-relation.

3. Let = be an ideal of compacts in Rg. We let z € T(R) if Nz is a
singleton. We let x =g y if Nz = Ny.

4. T(Q) will be the ideals generated from the compacts n* together with
the ideal w = N. We let =q be the identity-relation.




5. Welet T(o x 7) =T(0) x T(7) and =pxr = =, X =,.

6. Welet T(c — 7) ={F € D(0) % D(r) | Vx € T'(0)(F(z) € T(7))}.
We let F'=,_,, G if :

V€ T(o)Vy € T(0)(z =, y = F(z) =, G(y)).

Lemma 4 ( Essentially Longo and Moggi [8])
For each type o, =, is an equivalence relation and

=,y Ny eT(o)
for z and y in T (o)

This was proved for the pure types over N in [8]. The property holds trivially
for all our base types, it extends trivially to cartesian products and the
argument of [8] is valid for our restricted function space construction.

Definition 7 By recursion on the type o we define the set Ct(o) and the
function p, : T(0) — Ct(0) as follows:

1. py and pp are the identity-maps on N and B resp. with Ct(N) = N
and Ct(B) = B.

2. If z € T(R) we let pr(x) be the unique element in Nz.
We let Ct(R) =R.

3. We let po(z) be the ordinal number n if z is the ideal generated from
n*, while po(z) is the ordinal number w if z = N. We let Ct(Q) = w+1.

4. For products we just let the definition of p commute with pairings, and
Ct(o x 1) = Ct(o) x Ct(T).

5. We let py—(F)(ps(z)) = pr(F(z)) and we let Ct(c — 7) be the set
of functions ¥ : C't(c) — Ct(7) that are of the form p,_,.(F') for some
FeT(oc—rT).

By Lemma 4 this definition is sound, p, is a map from 7'(c’) onto Ct(o) that
identifies exactly the =,-equivalent total objects.

We will later show that Ct(o) has a natural definition within the category
of limit spaces. :




4 Density and co-density

Definition 8 Let D be a domain.
A totality on D will be a subset D such that

elfzreD,zCye D, thenye D.

o The relation B
r=y<szhyeD

is an equivalence relation on D.

This concept corresponds to the category Ky in Normann [11]. All the do-
mains with totality that we have encountered in this paper are of this sort.

Definition 9 Let D be a domain with a totality D and a connection ~.
(D, D, ~) satisfies strong density if for all finite products R" of the base type

[¢]

R, all compacts in R™ % D can be extended to a total element in R™ % D.

Definition 10 Let D be a domain with a totality D and a connection ~.
We say that (D, D, ~) satisfies co-density if

1. If p and ¢ are inconsistent compacts in D there is a total, continuous
map t: D <% R such that ¢(p) and t(g) are inconsistent.

2. If p and ¢ are compacts in D with p % g there is a total, continuous
map t: D % B such that t(p) =t and t(q) =f.

Remark 4 When D and ~ are determined by the context, we will just say
that D satisfies strong density or co-density when (D, D, ~) does.

Lemma 5 R will satisfy strong density.

Proof

Let A= {(Ry, I1),...,(Rk, Ix)} be a compact in R* — R.

We will show that there is a total, continuous function f : R™ — R such that
fIR:) C I; for all 1 < k.

Each R; is a hyper-rectangle in R” where all corners have rational coordinates,
possibly including co and —oo.

Let ¢ be the least common denominator of all the rational coordinates of the
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corners of the R;’s. Let A,, be the set of m-dimensional cubes in R™ with
side lengths % and corners with coordinates (%, . %") for 41,...,1, € Z.

If C € A,41, then the boundary of C' is a finite union of elements from

Ap,.
Let G, =U{C | C € A,.}.
We may think of G,, as an m-dimensional grid in R".

By recursion on m < n we will define an increasing family of continuous
functions f,, : G, — R such that if C € A,, and C C R;, then f,[C] C L.
Gy is a discrete set of points.

For C € Gy, let fo(C) =0 if Vi < k(C & R;) while fo(C) e N{L; | C € R;}
otherwise.

The consistency requirement of compacts in R™ — R ensures that this is
possible.

Now assume that m < n and that f,, : G,, — R is constructed.
If C € A,,y1 and C' is one of the boundary hyper-cubes of C, then

CCR=CCR;= f,[C"] C I,

so the requirement is satisfied at the boundary of C.

If we extend f,, locally to a continuous function for each C' € A,,, the global
extension will also be continuous. It is easy to construct such an extension
satisfying the requirement.

This ends the proof of the lemma.

Corollary 1 All base types satisfy strong density and co-density.

Proof

Strong density is established for R. For the other base types o, all compacts
in R™ — D(o) will be sets of pairs with consistent right hand sides, so density
will be trivial.

The co-density property is trivial in all cases.

Lemma 6 Let D be a domain with a totality D and a connection ~.
If D satisfies strong density and P is a finite product of R and B, then the
total objects in P % D form a dense subset.

Proof
P will be a discrete set of closed-open subsets isomorphic to R™ for various
n. The density problem for P <> D then reduces to the density problems for
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R™ < D, that by assumption have positive solutions.

Strong density of course implies ordinary density, considering R < D. In
the proofs we will not focus on this case, but all our arguments will also hold
then.

Lemma 7 Let (D,D,~p) and (E, E,~g) be two domains with totality and
connection. ’

a) If both D and E satisfy strong density, then D x E satisfies strong
density.

b) If both D and E satisfy co-density, then D x E satisfies co-density.
The proof is trivial and is left for the reader.

Lemma 8 Let (D, D, ~p) satisfy co-density.

Let (E, E, ~g) satisfy strong density.

Then D < E with the induced totality and connection will satisfy strong
density.

Proof
It is sufficient to prove that D % E satisfies density, because by Lemma 3,

R % (D % E)

is isomorphic to
(R*x D) S E
and strong density will follow from the fact that the latter domain, by the
general argument, will satisfy density.
Let {(p1,41), -, (Pn,qn)} be a compact in D < E. Let

K={(,j)|1<i<j<nAp#p}

To each k = (i,7) € K we let P, be R if p; ~ p; and we let P, = B}
otherwise.

Let ty € D < Py be total such that ¢x(p;) and tx(p;) are inconsistent. For
the sake of saving notation, and without loss of generality, we assume that
ti(pi) is a compact in Py for all [ <n and k € K.

Let

P=1] P
keK
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For each [ < n, let

R = 1] te(m)-
keK
Consider the set

C= {(Rl; Q1)a R (Rm qn)}‘

Claim
C'is a compact in P % E.

Proof of claim

Let ¢; and ¢; be inconsistent with ¢ < j. Let k = (4,7) € K.

Then tg(p;) and ti(p;) are inconsistent, so R; and R, are inconsistent in
coordinate k. By the same argument, if g; and g; are disconnected, then R;
and R; will be disconnected in the argument k. This ends the proof of the
claim.

Now, by Lemma 6 let G € P < FE be a total extension of C. Let
F € D < FE be defined by

F(z) = G(Mk € K.tx(x)).

(See Lemma 3.)
By construction, F' will be a total extension of {(p1,q1),: ", (Pnsqn)}-

Lemma 9 let (D, D,~p) and (E, E,~g) be domains with totalities and con-
nections.

If D satisfies strong density and E satisfies co-density, then D < E will
satisfy co-density.

Proof
Let C; and Cy be inconsistent compacts in D < FE. Then there are
(p,q) € Cy and (p',¢') € Cy where p and p’ are consistent while ¢ and ¢’
are inconsistent.
Let s € E % R be total with s(p) and s(p’) inconsistent.
Let z € D extend both p and p'.
Let t(f) = s(f(z)) for f € D % E. Thent € (D % E) & R is total and
separates C; and Cb.

Now assume that C; and Cs are disconnected. Then there are (p, q) € Cy
and (p/,q') € Cy such that p ~p p’ but ¢ %4g ¢'.
Let s € E < B, be total such that s(¢) =t and s(¢’) =f.
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Since D is strongly dense there is a total ¢ € R < D such that p T ¢(0)
and p' C ¢(1).
For fe D % E, let

tf) = {s(f(#()) [0 <z < 1},

We use the topological compactness of [0, 1] to show that ¢ is continuous and
total. It is also easy to see that t € (D % E) % B,.
We end the proof of the lemma by showing

Claim
tu {(Cl’t)a (O2af)} € (D = E) = B).

Proof of claim

Since C1 and Cy are inconsistent and disconnected,

{(C1,t),(Co, 1)} € (D & E) % B,. We will show that (C1,t) agrees with ¢.
A similar argument will work for (Cy, f).

If f is consistent with C; we have that p T ¢(0), so f(¢(0)) will be consistent
with q.

Then s(f(4(0))) is consistent with s(g) = t.

If f is just connected with C; the same argument gives that

t(f) E s(f(¢(0))) is connected with s(q) = t.

This ends the proof of the claim and of the lemma.

These lemmas will give us

Theorem 1 Let o be a type. Then the domain D(o) with the induced totality
T(o) and connection ~, will satisfy both strong density and co-density.

Corollary 2 Let o be a type, z € T(0) and y € T(0). Then
T=,YE TR, Y.

This is proved by a trivial induction on the types, using density.

For each type o, Ct(c) will have a cannonical topology, the quotient
topology of (T'(¢),=,).

Corollary 3 Let o be a type and let z,y € Ct(o). Then either z and y are
path connected or x and y can be separated by a closed-open set.
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Proof

If z and y are disconnected there are disconnected compacts zo = z and
Yo £ y. There is a total map ¢ from D(o) to B, separating xo and yo. Let ¢,
be the map from Ct(o) to B obtained by factoring ¢ through Ct(o) via p,.
The inverses ¢, of t and f will be closed-open sets separating z and y.

If z and y are connected we prove the result by induction on o.
Continuously in z ~, y we construct a path P,(z,y) from z to y, ie. a
continuous function P = F,(z,y) : R — Ct(0) such that P(0) = z and
P(1) =y. At base types we are either forced to use the constant, or, in case
of o0 = R, we just let P(r) =ry+ (1 —r)x.

For product spaces we take the coordinatewise paths and for function spaces
o — 7 we let

P, (z,y)(r) = Az € Ct(0).Pr(z(2), y(2))(r).
Corollary 4 Let F' € D(o) — D(1) be total.
Then F € D(o — 7).

Proof

We have to show that p; ~, ps = F(p1) ~, F(ps). If p; and py are con-
sistent, this is trivial. If they are inconsistent, we use co-density to find
path-connected total extensions of p; and ps which will be mapped to path-
connected total extensions of F(p;) and F(ps). Then F(p;) and F(ps) must
be connected.

The uniform proof of Corollary 3 also shows

Corollary 5 Let z € Ct(o).
Then the path-connected component containing x is effectively contractible to
x.

Using standard arguments for the Kleene-Kreisel continuous functionals com-
bined with Corollary 4 gives us

Corollary 6 If F': Ct(0) — Ct(1) is continuous, there is a FeT(o—T)
with py—.(F) = F.

5 Limit spaces

In this section we will give a characterisation of the topological spaces Ct(o)
in terms of limit spaces, introduced by Kuratowski [7]:
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Definition 11 Let X be a set. X is a limit space if it is equipped with a
relation

r = lim z,
n—o

between elements z in X and sequences {z, }ney from X satisfying:
1. If z, = z for almost all n then z = lim,_,o, Zy,.

2. If z =lim, oz, and f: N — N is strictly increasing, then
T = lim,Hoo :Ef(n).

3. If =(z = lim,,, x,), there is a strictly increasing f : N — N such that
for no strictly increasing g : N — N we have x = limy, o0 Zg(f(n))-

Remark 5 In plain words we will say that any almost constant sequence has
the almost constant value as a limit, if a sequence has z as a limit, then any
subsequence will also have x as a limit and finally, if a sequence does not have
z as a limit, then there is a subsequence such that no further subsequence
has z as a limit.

The convergent sequences with limit points of any topological space will
satisfy these axioms.

A convergent sequence with limit may be viewed as a map from (2, into X.
We included € as a base type in order to simplify the discussion of the limit
space characterisation.

Definition 12 Let X and Y be two limit spaces.
a) X xY is organised to a limit space by coordinatewise limits.

b) The limit space X — Y will consist of all functions f : X — Y such
that
z = lim z, = f(z) = Jlggof(xn)
The limit structure is defined by
f=lim, oo fr if f(2) = lim, oo frn(z,) Whenever z = lim,_,o Zp.

Remark 6 Function convergency will imply pointwise convergency and is
as close to uniform convergency we can get with the vocabulary available.
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It is well known that these constructions define new limit-spaces.

Scarpellini [12] characterised the Kleene-Kreisel continuous functionals of a
given type as the canonical interpretation in the category of limit spaces.
This is also proved in Normann [10]. Using Corollary 6 and the original
proofs, we get

Theorem 2 For each type o, Ct(o) will be the interpretation of the type o
in the category of limit spaces.

Moreover, the topology on Ct(o) inherited from the domain D(c) will be
the same as the topology generated from the convergent sequences when o s
interpreted as a limit space.

Remark 7 Recently Menni and Simpson [9] established a connection be-
tween limit spaces and the equilogical spaces introduced by Bauer, Birkedal
and Scott [13]. Their argument can also be used to prove Theorem 2

6 The hereditarily partial functionals

In the previous sections we have given a domain interpretation of the types o
in such a way that the total objects are dense. An equally natural approach
would be to interpret the types in the standard way in the category of do-
mains and then consider the hereditarily total objects. Using the method of
Longi and Moggi [8] we still will have an equivalence relation on the total
objects corresponding to extensional equality. We will show that this alter-
native hierarchy will be characterised in the category of limit spaces exactly
as the previous hierarchy was. Thus we do essentially get the same total
objects. In particular, all our results about the topology of the total objects
will hold.

Definition 13 Let o be a type

a) By recursion on ¢ we let E(co) be the interpretation of ¢ in the cate-
gory of algebraic domains with standard exponents and with the same
interpretation of the base types a before.

b) Let S(o) be the hereditarily total objects in E(0).

Following Longo and Moggi [8] we still have
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Lemma 10 The relation
r="y e zNycS(o)

is an equivalence relation on S(o) corresponding to hereditarily extensional
equality, and in particular each total function will respect these relations.

Definition 14 We define Pt(c) and p2 from S(o) in complete analogy to
the definition of Ct(o) and p, from T'(o).

In order to establish the characterisation via limit spaces we need to improve
the argument leading to Corollary 6.

Lemma 11 Let X be a separable domain, let X C X be closed upwards and
let F': X — Pt(o) be continuous.
Then there is a continuous total function

F:X — E(o)
such that F: X — S(o) and
vz € X (p5(z) = F(3)).

Proof
Notice that £ combines a factorisation of F' through pJ and an extension of
this factor to all of X. The technical obstacle is that X need not be dense
in X.
We proof this lemma for ¢ = R only. For the other base types, we use a
similar, or even easier, argument. The extension to higher types is easy, and
is left for the reader. See also Remark 7.

So, let F': X — R be continuous. Let p, ¢ range over the compacts in X,
and I, J range over the rational intervals, i.e. the compacts in R.
Let {(pn, In) }nen be an enumeration of all pairs (p, I) where

1. p C z for some z € X.
2. F(z) €I forallz € X withp C z.

Let (p,I) € T if for some n
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1. pn CpAL, CI(ICL).
2. If i <n and I; NI, = 0 then p and p; are inconsistent.

We then obtain

Claim 1
If (p,I) € T, (¢,J) € T and p and ¢ are consistent, then I and J are
consistent.

Now let £ be the ideal generated from I', seen as a function.

Q’laim 2
F' is total.

Proof

Let z € X. Let € > 0 be given.

Then there is an n such that p, C = and I,, has length < e.

Now assume that for some i < n, I; N I, = 0.

If p; is consistent with z, then z Lip; is total and extends p;, so F(zUp;) € I;
contradicting that F(z) € I,.

Thus there is a compact ¢ C z that is inconsistent with p;.

As a consequence, there is a ¢ = z such that (¢,I,) € I'. Then I,, C F(z).
Since € > 0 was arbitrary, this proves the claim.

It is easy to see that F' restricted to X factorises F' through 0%. This ends
the proof of the lemma.

Remark 8 This lemma was first proved for flat domains like N;. It was
used by Waagbg [15, 16] proving a corresponding result for the transfinite
hierarchy of domains with totality based on N; and {L} with no total el-
ements, and closed under dependent sums and products. The argument is
also used in Normann [11] proving a corresponding lemma for domains with
totality inherited from evaluation structures (see [11] for a definition).

It may be a challenge to extend the constructions in this paper to a
transfinite hierarchy including the reals.

We may now argue as for Corollary 6 and for Theorem 2 and obtain
Corollary 7 Let o and T be types.

a) Pt(oc — T) consists of exactly all continuous maps from Pt(o) to Pt(r).
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b) Pt(o) with its topological limit structure is the interpretation of o in
the category of limit spaces.

c) Pt(o) = Ct(o).

A consequence of this corollary is of course that Pt(c) has the topological
properties of Ct(c). In all fairness, we do not need the full density/co-density
analysis to obtain this. If we consider the full evaluation trees of two total
objects of the same type, there will either be a branch that ends with two
different total objects in N, B or ., or, whenever a branch ends up in two
different end nodes, these end nodes are real numbers. In the first case, we
can separate the given objects by a closed-open set, and in the second case
we can construct a path from one object to the other. In both cases, we seem
to need Lemma 11 to extend from the total objects to all objects.

The fact that Pt(oc) = Ct(o) of course means that there must be some
connection between D(c) and F(o). Lemma 11 will provide us with one
connection. This is based on an underlying enumeration of all compacts
involved, and may not be considered to be natural.

Corollary 8 Let o be a type. There are total, continuous maps

¢, : D(c) — E(0)

and
Y, : E(0) — D(0)
such that
1. pg=p3 0 ¢g.
2. 3 = po © Y-
Proof

The existence of ¢, is a direct consequence of Lemma 11 and the existence
of 1, is proved from an analogue result for the other hierarchy.

We will end this paper by indicating that there is a hierarchy of kernek
domains of the two hierarchies, a kernel in which both concepts of totality
actually live.

In order to see this, we will view the compact elements of heach hierarchy
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as elements of HF', the hereditarily finite sets, using e.g. the empty set as
representing 1. We will let Dy(o) and Fy(o) be the ordered subsets of HF'
generating the domains D(o) and E(0) in the standard way.

Definition 15 For each type o, let Ko(0) = Do(o) N Ey(0).

Let Ko(o) be ordered by the common subordering induced from Dg(o) and
Eo (0’ )

Let K(o) be the domain of ideals over Ky(o).

The following is proved by a tedious, but simple, induction over the types.

Theorem 3 Let o be a type.
Let oy € T(0) and ag € S(o) such that

po(0n) = py(a).

Let a = a1 N, let ap be a extended to an ideal in D(o) and let ag be «
extended to an ideal in E(o).
Then ap € T'(0) and ag € S(o).

Corollary 9 Let o be a type and let « be an ideal in K(o). Then the fol-
lowing are equivalent

1. There is an oy € T(0) such that a = ag N Ko(o).
2. ap € T(0).
3. ag € S(0).
4. There is an ay € S(0) such that a = ag N Ko(o).

Remark 9 In general it is not true that if a4 is in T'(0) (or ag € S(o) ), then
a1 NKo(o) € K(o) (aaN Ko(o) € K(0)), simply because two compacts
in Ko(o) may be bounded in Dg(o) or in Ey(co) without being bounded in
Ko(o). When, however, two elements of Ky(o) are bounded both in Dy(0)
and in Ey(c), the join will be the same element of HF' in the two cases.
Thus the intersection of an element of D(c) and an element of E(o) will be
in K(o0).
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