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K3-surfaces of genus 8 and varieties
of sums of powers of cubic fourfolds

Atanas lliev and Kristian Ranestad

Abstract. A general K3-surface S of genus 8 determines uniquely a pair of cubic 4-folds: The
dual Pfaffian cubic F/ = F’(S) and the apolar cubic F” = F"/(S). As Beauville and Donagi have
shown, the Fano variety Fp/(g) of lines on the cubic F'(S) is isomorphic to the Hilbert scheme
Hilby S of length two subschemes of S. The main result of this paper is that HilboS parameterizes
the variety V.SPg(F”(S),10) of presentations of the cubic form F”(S) as a sum of 10 cubes,
which yields an isomorphism between Fr/(g) and V.SPg (F"(S),10). As another corollary of our

and Beauville and Donagi’s result we show that V.SPg(F",10) sets up a (6,10) correspondence
between F'(S) and Fpr(g).

1. Pfaffian and apolar cubic 4-folds
associated to K 3-surfaces of genus 8

1.1. Let V be a 6-dimensional vector space over C. Fix a basis eg, ..., es for V, then e; Ae;
for 0 < i < j <5 form a basis for the Pliicker space of 2-spaces in V or lines in P% =
P (V). With Pliicker coordinates z;;, the embedding of the Grassmannian G = G(2,V) in
P4 = P(A?V) is precisely the locus of rank 2 skew symmetric 6 x 6 matrices

0 To1  To2  To3  To4a  Tos

—zp1 O Ti2  T13 T4 T15
M= | "%z —Tu2 0 T23  Tog  Tes

—Zo3 —T13 —T23 O Tag T35 |’

—Zosa —T14 —Toa —T34 0 T45
—Zos —T15 —Tos —T35 —Tas O

The secant variety K of G in P4 is the locus where M has rank 4, so it is a cubic
hypersurface defined by the 6 x6 Pfaffian of M. The dual variety of G is a cubic hypersurface
K* = K in the dual space P'* [cf. Zak]. K* is the secant variety of G* = G(V,2) the
Grassmannian of rank 2 quotient spaces of V, and of course G* = G.

1.2. A K3-surface is called general if its Picard group is isomorphic to Z. A general K3-
surface S with Picard group generated by a linebundle H of degree H? = 14 is embedded
via |H| into a Grassmannian G (6,2), for convenience we choose G* = G(V,2) in P, In
fact S is the intersection of G* with a linear space Lg of dimension 8 [Muk]. The dual
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space Ps = Li C P is 5-dimensional, so Ps N K is a Pfaffian cubic 4-fold which we
denote by F'(S).

1.3. Via duality Ls C P corresponds to the space of nine linear forms ho, ..., hs on
P!4. The Pliicker embedding of the Grassmannian G = G(2,V) in P is arithmetically
Gorenstein. The homogeneous coordinate ring Rg has syzygies, easily computed with

[MAC],

1 - - - - - _

— 15 35 21 — — —
- — — 21 35 15 —

- - - - - -1

The Grassmannian variety has dimension 8, so Pg = Lt defined by the linear forms h;,
does not intersect GG, and the quotient A = Rg/(ho,...,hs) is an Artinian Gorenstein
ring. Its Hilbert function is (1,6,6,1) and it has socledegree 3, so A is the apolar Artinian
Gorenstein ring AF” for some cubic hypersurface F” C Ps. We denote by F”(S) = F"
this apolar cubic 4-fold.

1.4 Lemma. There is a 19-dimensional family of cubic 4-folds F"' whose apolar Artinian
Gorenstein ring is a quotient of Rg.

Proof. Macaulay showed that there is a 1 : 1 correspondence between hypersurfaces of
degree d and graded Artinian Gorenstein rings generated in degree 1 with socledegree d
[Mac] (cf. also [E p. 527]). Now, an isomorphism between such rings is of course induced
by a linear transformation on the generators. In our setting any such linear transformation
is again induced by an automorphism of G* and correspondingly of G. The isomorphism
classes of general K3-surfaces of genus 8 correspond precisely to orbits of 8-dimensional
subspaces L [cf. Muk]. There is a 19-dimensional family of K 3-surfaces of genus 8, so the
lemma follows. O

Remark 1.5. F” is not a Pfaffian cubic. In fact the Pfaffian cubics also form a 19-
dimensional family of cubic 4-folds, and the above correspondence determines at least a
birationality between the family of Pfaffian cubics and the family of apolar cubics F”.
On the other hand, computing the apolar quadrics to a Pfaffian cubic with [MAC], it
can readily be checked that there are in general no quadratic relations between these
apolar quadrics, while the apolar quadrics to a cubic F” have nine quadratic relations:
As we shall see in the next section, the apolar quadrics define the restriction to the 5-
space P = Pg = Lt of the Cremona transformation defined by all quadrics through
G. The inverse Cremona transformation is defined by quadrics again, and since P has
codimension 9 in P4, there are at least nine quadrics containing the image of P, i.e. at
least nine quadratic relations between the apolar quadrics.

1.6 Problem. Find an alternative description of the apolar cubic 4-folds F" .




2. Geometry of G(2, V) and its
associated Cremona transformation

2.1. In the Pliicker coordinates x;;, the equations of G = G(2,V') are the 4 x 4 Pfaffians
of the matrix M. Denote the Pfaffians by ¢;; 0 <i < j <5 and the 6 x 6 Pfaffian by m.
While

M = To5T14%23 — T04T15%23 — T05T13T24

+ T03T15%24 + T04%13%25 — T03T14T25
+ To5T12T34 — T02L15T34 + T01L25L34
— X04T12T35 + L02L14%35 — T01L24TL35

+ T03%T12%45 — T02T13%45 + Lo1L23T45,

the quadrics g;; are:
Q45 = T03T12 — T02%13 + T01Z23
435 = T04T12 — T02Z14 T T01T24
Q34 = T05T12 — T02T15 + To1x25
q25 = T04T13 — T03T14 + T01T34
Q24 = T05T13 — To3T15 + To1T35
Q23 = To5T14 — T04%15 + T01Z45
Q15 = T04T23 — T03%24 + T02T34
q14 = To5T23 — T03T25 + T0235
413 = To5T24 — T04T25 + T02L45
q12 = To5T34 — T04T35 + T03T45
qos = X14T23 — T13%24 T T12T34
go4 = T15T23 — T13T25 + T12T35
Go3 = X15T24 — T14%25 + T12T45
qo2 = T15T34 — T14%35 + T13T45
Qo1 = T25T34 — T24T35 + T23T45.

Notice that (—1)*"7~1g;; is precisely the partial of m with respect to x;; i.e.

3m= Y (1) zyqs.
0<i<j<5

The Pfaffians g;;, define a Cremona transformation [cf. ES]
| p: P> Pl
In fact
qij (qst) = MmZij,
so the Cremona transformation is its own inverse. Since the sum of two rank 2 matrices
has rank at most 4, and any rank 4 skew symmetric matrix is the sum of two rank 2 skew

symmetric matrices, the secant variety of GG is the cubic hypersurface K defined by the 6 x6
Pfaffian m of the matrix M. The Cremona transformation contracts precisely all secants
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to G. The exceptional divisor lying over G in the Cremona transformation is mapped to a
cubic hypersurface K’, the secant variety of a variety G’ which in turn is isomorphic to G.

The Cremona transformation ¢ is a morphism on the complement of G = G(2,V), it is
birational on the complement of K, while K \ G is mapped to G'.

2.2. Under the Cremona transformation ¢ it is natural to set G’ = G(V*,2) 2 G(4,V). In
fact, the preimage under ¢ of a point [U] € G’ is a 5-dimensional space Py which intersects
G in a quadric hypersurface of rank 6. Geometrically we may interpret this quadric as the
Grassmannian G(2,U). This is readily checked with the equations above.

2.3. The preimage under ¢ of a line in G is a rational scroll ruled in 5-dimensional spaces.
For this first note that the points where only the quadrics go; and goo are nonzero, are
mapped to a line on G’. On the other hand, by inspection, all the quadrics ¢;; except o1
and go2 vanish on the union of G and a cubic scroll defined by the 2 x 2 minors of

T13 T14 Tis
T2z T24 T25
inside the 8-dimensional space Z(zo1, 02, Zo3, o4, Tos, L12). By homogeneity on G’ the

preimage of any line is a 6-fold cubic scroll.

2.4. Next we consider a tangent space to G. Without loss of generality we may consider
the line spanned by Lo; =< eg,e; >C P(V) corresponding to the point po; = (1,0,...,0)

on G. Let
ZTo2 To3 Toa Tos
Nop =
T12 T13 T14 15

Lemma 2.5. Ny; has rank 1 on G precisely at the points which correspond to lines which
meet Lo1. In fact the tangent space to G at po1 is defined by z;; =0 2<i<j <5, and
the 2 x 2 minors of N1 define the contact cone inside this tangent space.

Proof. When z;; =0 for 2 < i < j <5, then the Pliicker quadrics reduce to the minors of
Nopi. On the other hand when this matrix has rank 1, i.e.

a(Toz, To3, Toa, Tos) + B(T12, T13, T14, 215) = (0,0,0,0)
then it is the Grassmannian point of the line
(Beo + ae1) A (zozes + Toses + Toses + Toses)
which is a general line which meet Lo;. : a
2.6. For a special tangent hyperplane section, i.e. a Schubert cycle corresponding to a
point on G*, we may consider the hyperplane Z(zo1). Notice that inside this hyperplane

the 5-space Z(z;; | ¢ € {0,1}) intersect G along the quadric hypersurface defined by qo1,
which is naturally identified with G(2,U), where U =< e, €3, €4, e5 >. Furthermore the




points in the Schubert cycle Z(zp1) N G correspond precisely to lines which meet P(U).
Altogether the Schubert cycle forms the union of subvarieties G(2,U’) where P(U’) is a
3-space which intersect P(U) along a plane. Each of these subvarieties is a rank six 4-fold
quadric hypersurface which span a fibre of the Cremona transformation. It follows from
2.5 that the matrix No; has rank one inside the special hyperplane Z(xo;) along all these
fibres. '

2.7. Finally we investigate certain subvarieties associated to secant lines to G*. For this,
fix two disjoint sets of indicies ij and kl.
Let

V(ij, kl) =< gqst|(st) & {ik,il, jk, jli} >,

and

Z(ij, k‘l) = Z(V(ij, kl)) n Z(:Bq;j, :ckl).

Then dimV (35, kl) = 11 and Z(i7, kl) is the locus inside the hyperplanes Z(z;;) and Z(xx;)
where the matrices IV;; and Ny, d_eﬁned as above, both drop rank.

2.8 Lemma. Z(ij,kl) is a subvariety of degree 10 and codimension 5 inside Z(x;j, Tr1).

Proof. This is a generic variety, with invariants easily computed in [MAC]. It is the
intersection of two rational normal quartic scrolls inside a rank 4 quadric. For the degree
we note that this subvariety is a degeneration of the intersection of two codimension 2
cycles of bidegree (1, 3) on a rank 6 quadric. Thus the degree is 10. O

2.9. Clearly the two hyperplanes Z(x;;) and Z(xy;) correspond to points on G*. Denote
by L(ij, kl) the line spanned by them. It is of course a secant line to G*.

2.10. Comparing the two matrices N;; and Ny; we see that inside the intersection of the
corresponding tangent 8-spaces, i.e. in the 3-space Z(zs: | st # ik, jl,il, jk), the two sets
of minors reduce to the quadric

LikZjl — TilLjk

which represents on G the intersection of the corresponding Schubert cycles, i.e. the lines
which meet both L;; and Li;. On G this is of course a quadric surface in a 3-space. On the
other hand, on G’ the corresponding quadric surface has a preimage under the Cremona
transformation which is precisely the variety Z(ij, kl). ’ '

2.11 Corollary. The preimage of a quadric surface under the Cremona transformation
is projectively equivalent to Z(ij, kl) of degree 10 and dimension 7 inside the intersection
of two special tangent hyperplanes Z(x;;) and Z(xx).




3. The variety of sums of powers VSPg (F, 10)

3.1. For a homogeneous polynomial f in n + 1 variables, which define the hypersurface
F = Z(f) C P", we define the variety of sums of powers as the closure of the set

VSP(F,s) ={{<ly >,...,<ls >} € Hilbs(Pn) | IN; € C: f = MI¢ + ... + X1}

of powersums presenting f in the Hilbert scheme [cf. RS]. It is often natural to identify a
powersum of length s presenting f with some s-secant linear space to a projection of some
e-uple embedding of P”. In our case s = 10, e = 2 and n = 5. When we take the closure
in the corresponding Grassmannian, we get what we denote by V.SPg(F,10) and call a
Grassmannian compactification of the set of powersums of f.

3.2. Given a general 5-dimensional space P C P'* defining the apolar Artinian Gorenstein
ring A" of some cubic F”/ C P. The Cremona transformation above restricts to the
projection from partials of P, and an element

T € VSP(F”, 10)

is a subscheme of P of length 10 which spans a 3-dimensional space Pr in the image. The
preimage Vi C P! of Pr is defined by 11 quadrics.

3.3 Lemma. With suitable choice of coordinates Vi = Z(ij, kl) for some (ij, kl).
Proof. This proof depends on the following lemma which is interesting on its own:
3.4 Lemma. IfT € VSPg(F",10), then T C KN P.

Proof. Let I' € VSPg(F"”,10). We may assume that I' is smooth and spans P. Then
'NG Cc PNG = 0, so by the Cremona transformation any point of I is mapped to G’
or to the complement of K’. The image ¢(I') spans a 3-space Pr. The inverse Cremona
restricted to Pr is defined by the quadrics through G’ N Pr. Assume that K’ N Pr # Pr.
Then the restriction of the inverse Cremona transformation to Pr is birational onto its
image. Since the image intersects P in I' which in turn span P, the image must span at
least an 8-space. But in that case the degree of the image is 7 or 8 so it cannot contain I'.
Therefore Pr C K/, and ' C K. 0

For Lemma 3.3 we note that I" is mapped to G’ by the Cremona transformation. Now,
first note by 2.2 that a 3-space meets each fiber of the Cremona transformation in a linear
space. Furthermore the restriction of the inverse Cremona transformation to the 3-space
Pr is not birational. Therefore the fibers meet Pr in lines or planes unless it is all contained
in a fiber. When the fibers meet Pr in planes, each plane must intersect G’ in at least a
conic section, so the intersection G’ N Pr must be the union of ‘a plane and a line. On
the other hand it is not hard to check that no 3-space intersect G’ this way, so this is
impossible. When the fibers meet Pr in lines, then G’ N Pr must be a curve with one
secant line through each general point, i.e. a twisted cubic curve or the union of two lines.
Both of these cases occur as intersections with the Grassmannian. Note also that there
could be no extra points of intersection in addition to these curves, since these would lie
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on proper trisecants to the Grassmannian, which is absurd since the Grassmannian is cut
out by quadrics.

Now, the preimage under ¢ of a line is a 6-fold cubic scroll by 2.3, so the preimage of
a conic section must be a 6-fold scroll of degree 6 and the preimage of a twisted cubic
curve must be a 6-fold scroll of degree 9. But I' is the intersection of the 5-space P with
the preimage under the Cremona transformation of G’ N Pr. Since I' is'0-dimensional, the
length of this intersection cannot exceed the degree of the corresponding preimages. Since
these all have degree less than 10, these cases are excluded and we conclude that G’ N Pr
is a quadric surface.

The intersection of G’ with the 3-space Z (q5t|8t ¢ {ik,il,jk,jl}), is the quadrlc surface
Z(qikgj1 — qugik)- Corollary 2.11 implies that the preimage of this surface under the Cre-
mona transformation is Z(ij, kl). By homogeneity Lemma 3.3 follows.

3.5 Theorem. VSPg(F",10) is isomorphic to the family of secant lines to G* N L, i.e.
to Hilba(S) where S is the K8 surface S = G* N L.

Proof. Clearly PN Z(ij, kl) is a subscheme of degree 10 if and only if P is contained in the
span Z(z;;, zxi) of Z(ij, kl). Furthermore, by 2.9, P C Z(z;j, zx) if and only if the secant
line L(ij,kl) C L = P+. Thus Lemma 3.3 gives an inclusion V.SPg(F",10) C Hilby(S).
On the other hand consider a secant line to S, which we may choose to be L(ij, kl) after
a suitable change of coordinates. Assume that I' = Z(i7, kl) N P is a finite smooth scheme
of length 10.

3.6 Lemma. IfT is smooth and the ideal of ' is contained in the ideal of the 15 quadrics
apolar to F", then T' € VSPg(F",10).

Proof. [RS, 1.3]. O

Smoothness and finiteness of I' = Z(ij, kl) N P are open conditions, so the theorem follows.
a

3.7 Question. Does V.SP;(F",10) and VSP(F",10) coincide for general F' in the family?
For this it remains only to check whether every point in the closure of the family of secant
lines actually correspond to finite subschemes of P, i.e. that the closure correspond to the
closure in the Hilbert scheme of length 10 subschemes of P.

3.8. Now recall from Beauville and Donagi, that the variety of secant lines to S = LNG* is
isomorphic to the Fano variety of lines F(F’) of the Pfaffian cubic fourfold F' = F'(S) =
PNK, where P =L+ [cf. BD]. Thus we have an incidence correspondence

I={(p,T)|pel}cC F'(S)x VSPz(F"(S),10) 2 F' x F(F").
The second projection is clearly 10 : 1.
3.9 Proposition. The projection of the incidence correspondence

I C F'(S) x VSPz(F"(S),10)

onto the first factor is generically 6 : 1.

e
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Proof. Consider a general point p € PN K. Since p € K \ G, the Cremona transformation
¢ is defined in p and the fiber containing p is a 5-space P,. The space P, intersects G
in a quadric @, corresponding to all lines in some 3-space Up, and the parameter point
of U, is the image point ¢(p) of the Cremona transformation. There is a unique point
p* € G* = G(V,2) whose corresponding nullspace is U,,. In the dual space P;' C P is the
tangent 8-space Ty~ to G* at p*. Now, the point p is in the image of the projection from the
incidence correspondence, i.e. is contained in some I' € V. SP¢(F, 10), if P, is contained in
two special tangent hyperplanes, corresponding to two points on G*. These special tangent
hyperplanes which contain P, are parametrized by all 3-spaces that intersect Up, in a plane.
On G* this is, by 2.5, precisely what is defined by the minors of a matrix N, equivalent
to No; inside the tangent space T,» = P;- C P4, The hyperplanes which contain both P
and P, form Ptn sz- in P14, This is a 3-space, since the two 5-spaces P and P, intersect.
Inside Tp+ the minors of N, define a rational quartic 5-fold scroll, so the intersection with
P+ is 4 points. The secants between the 4 points are secant lines to L N G*, corresponding
to sets I that contain p. O
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