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Abstract

We prove a stochastic maximum principle for controlled processes X (t) = X (¥ (t) of the
form
dX () = b(t, X (t), u(t))dt + o (t, X (t), u(t))dBH) (t)

where B(H)(t) is n-dimensional fractional Brownian motion with Hurst parameter H = (Hy,- -+, Hy,) €
(1/2,1)™. As an application we solve an optimal consumption problem with a terminal condition
in an economy driven by a fractional Brownian motion.

1 INTRODUCTION

Let H = (Hy, -+, Hyp) with1/2 < H; < 1,7 =1,2,--,m,andlet BE (t) = (B (1) .- , B{ (1)),
¢t € R be m-dimensional fractional Brownian motion, i.e. BH)(t) = BH) (t,w), (t,w) ERXQisa

Gaussian process in R™ such that

E[B®1)] = B™(0) =0 (1.1)
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and

E[BJ(H)(S)B]E:H)(t):I — {82Hj+t2Hj_|t_8|2Hj}6jk;1 S],kSn, S’tER, (12)

DO |

where
S = 0 whenj#k
F~ 11 whenj=k

Here E = E, denotes the expectation with respect to the probability law p = ug for B (1),

This means that the components B%H)(), e Br(nH)(o) of BH)(.) are m independent 1-dimensional
fractional Brownian motions with Hurst parameter Hy,Hs,--- , Hy,, respectively. We refer to

[MvN], [NVV] and [S] for more information about fractional Brownian motion. Because of its
interesting properties (e.g. long range dependence and self-similarity of the components) B)(t)
has been suggested as a replacement of standard Brownian motion B(t) (corresponding to H; = 1/2
for all j = 1,---,m) in several stochastic models, including finance.

Unfortunately, B)(.) is neither a semimartingale nor a Markov process, so the powerful tools
from the theories of such processes are not applicable when studying B#H )() Nevertheless, an
efficient stochastic calculus of B () can be developed. This calculus uses an Itd type of integration
with respect to BH)(.) and white noise theory. See [DHP] and [H@2] for details. For applications
to finance see [H@2], [HOS1] [HPS2]. In [HOZ] and [DZ] the theory is extended to multi-parameter
fractional Brownian fields B(H)(z);z € R? and applied to stochastic partial differential equations
driven by such fractional white noise.

The purpose of this paper is to establish a stochastic maximum principle for stochastic control
of processes driven by B )() We illustrate the result by applying it to a problem about optimal

consumption in finance.

2 PRELIMINARIES

For the convenience of the reader we recall here some of the basic results of fractional Brownian
motion calculus. Let B(¥)(t) be 1-dimensional in the following.

We let [ o( )dBU) (t) denote the fractional Ité-integral of the process o(t,w) with respect
to BU(t), as deﬁned in [DHP]. In particular, this means that if o belongs to the family S of step
functions of the form

N

o(t,w) = Zai(w)X[ti,tHl)(t) , (tw) eRxQ,
=1

where 0 <t} < t3 <--- < tyy1, then

/R o(t,w)dBH Zaz ( Ntig1) — BH (¢ )) 7 (2.1)




where ¢ denotes the Wick product. For o(t) = o(t,w) € S we have

2
E [/R a(t,w)dB(H)(t)r —F [/Ri a(s)o(t)e(s,t)dsdt + < . Dfo(s)ds) } ) (2.2)

where E =E,, ,
B(s,t) = rr(s,t) = H(2H — 1)|s — ¢ 2 (2.3)

and D? denotes the Malliavin ¢-derivative at s (see [DHP, Definition 3.1]). Using this we can
extend the integral [, o(t,w)dBH)(t) to the closure ,C;;z = E;Q(R) of S in the norm

)22 = B [/

+

2
a(s)o(t)e(s,t)dsdt + < Dfa(s)ds) ] . (2.4)
R+
This is in fact a Hilbert norm: If o, 6 € E;’z, we have, by polarization,

E [ / o (t,w)dBE) (1) / O(t,w)dB(H)(t)]
R R
= E [/ a(s)0(t)p(s,t)dsdt + ( D?U(s)ds/ Df@(t)dt)] . (2.5)
R2 Ry Ry

+

We note that we need not assume that the integrand o € [:(11),2 is adapted to the filtration F; ()
generated by B(H)(s,.); s < t.
An important property of this fractional It6-integral is that

E [/ o (t,w)dBH) (t)] =0 forall o€ E;ﬂ. (2.6)
R

(see [DHP, Theorem 3.7]).
We give three versions of the fractional It6 formula, in increasing order of complexity.

Theorem 2.1 ([DHP, Theorem 4.1]) Let f € C*(R) with bounded derivatives. Then for t >0
FBI @) = FBI0) + [ BB () + B [ B (2
0 0

Theorem 2.2 ([DHP, Theorem 4.3]) Let X (t) = [; o(s,w)dBH)(s), where o € Eé’g and assume
f € C*(Ry x R) with bounded derivatives. Then for t >0

se.x0) = r0,0+ [ L
t 2
+ [ 26, x (oot () + [ T s (Dot DX ()as. (29




Finally we give an m-dimensional version:
Let BH) (¢) = (B%H) ), -, B (t)) be m-dimensional fractional Brownian motion with Hurst

parameter H = (Hy,- -+, Hp) € (1/2,1)™, as in Section 1. Let o;; € [:;2 for1<i<n,1<j7<m.
J
We can define X (t) = (X1(t), -, Xn(t)) where

mo oo
Xi(t,w) = Z/ 0ij(s,w)dBS™ (s);1 < i <. (2.9)

Then we have the following multi-dimensional fractional It6 formula:

Theorem 2.3 Let f € CY2(Ry x R*) with bounded derivatives. Then, for t > 0,

FEX(E) = £(0,0) +/ (s, X ()ds +/ axz X (s))dXi(s)
/ {Z Dudn; (s,X(s Za,k X;(s ))}ds (2.10)
= oo+/tast ds+Z/ [zn:

(5))o3; (s, w)} B (s)

+/ (5) fua(s, X (s))] ds. (2.11)
Here A = [Ay;] € R™*™ with
m
)= ouDf (Xj(s); 1<i<n, 1<j<m, (2.12)
o2 f
Joz = l ] (2.13)
02i0%; | <i i<

and (-)T denotes matriz transposed, Tr[-] denotes matriz trace.

Since we are here dealing with m independent fractional Brownian motions we may regard €2
as the product of m independent copies of  and write w = (w1, -+ ,wy,) for w € Q. Then the
notation D,‘f) .Y in (2.10) and (2.12) means the Malliavin ¢-derivative with respect to wy and could
also be written

oY
LY = [ a5, 0DxiYdt = [ b, (5,8) 5 (6, w)it.
’ R R Owy,

The following useful result is a multidimensional version of Theorem 4.2 in [DHP]:

Theorem 2.4 Let

m
Z/erde( )(); E;§,1<j<m (2.14)




Then

D¢ X( Z/ DY o;(r)dB{D (r +/ (), (s,r)dr, 1<k<m.  (215)
In particular, if oj(r) is deterministic for all j € {1,2,---,m} then
t
D¢ X(t) = /O on(r) b, (s,7)dr (2.16)

Now we have the following integration by parts formula.

Corollary 2.5 Let X (t) and Y (t) be two processes of the form
dX(t) = p(t,w)dt + o(t,w)dBH (), X(0) =z eR"

and
dY (t) = v(t,w)dt + 0(t,w)dBF)(t), Y(0)=yeR",
where p :RXQ >R, v : RXxQ -5 R, 0 : RXQ = R gnd 6 : R x Q — R"™™ are given
processes with components o5, 0;; € [,;13 for1<i<mn,1<j<m and BE()) is m-dimensional.
J

Suppose that o(-) or 0(-) is deterministic. Then for T > 0,

T T
/ X(s)dY(s)] +E [ /0 Y(s)dX(s)}

T
E [/O / ZZ% (), (s, t)dsdt} (2.17)

=1 k=1

E[X(T)-Y(T)] = z-y+E

Proof This follows from Theorem 2.3 applied to the function f(¢,z,y) = zy, combined with
Theorem 2.4. O

3 STOCHASTIC DIFFERENTIAL EQUATIONS

For given functions b : RX R x 2 — R and 0 : R X R — R consider the stochastic differential

equation
dX(t) = b(t, X (t))dt + o(t, X (t))dBHE) (¢), ¢ e[0,T], (3.1)

where the initial value X(0) € L?*(ug4) or the terminal value X(T) € L?(ug) is given. The Itd
isometry for the stochastic integral becomes

T 2 T /T
E</O a(t,X(t))dB(H)(t)> _ ]E(/O /0 a(t,X(t))a(s,X(s))gb(s,t)dsdt)




Because of the appearance of the term D;X(s) on the right-hand-side of the above identity, we
may not directly apply the Picard iteration to solve (3.1).

In this section, we will solve the following quasi-linear stochastic differential equations using the
theory developed in [HO1], [HO2]:

dX(t) = b(t, X (t))dt + (0, X (t) + a) dBHE) (1) , (3.3)

where o; and a; are given deterministic functions, b(t,z) = b(¢,z,w) is (almost surely) continuous
with respect to ¢t and = and globally Lipschitz continuous on z, the initial condition X (0) or the
terminal condition X (T") is given. For simplicity we will discuss the case when a; = 0 for all
t € [0,T]. Namely, we shall consider

dX(t) = b(t, X (£))dt + o X (¢)dBE (¢) . (3.4)

We need the following result, which is a fractional version of Gjessing’s lemma (see e.g. Theorem
2.10.7 in [HOUZ)).

Lemma 3.1 Let
F = exp® ( f(t)dB(H)(t)> = exp ( f(£)aB®(t) - lnf||§b> :
Ry Ry 2
where [ is deterministic and such that
I913:= [, £ (065, 1dsdt < oo
+

Then
FoG= FT};G, (3.5)

where o is the Wick product defined in [HO2] and f is given by
[, [($)9()g(s,)dsdt = | f(s)g(s)ds Vg € C5°(Ry) (3.6)
¥ +

and

TJ;G(w) =G(w —/0 f(s)ds)

Proof By [DHP, Theorem 3.1] it suffices to show the result in the case when

G(w) = exp® ( g(t)dBH) (t)> = exp°(w, g) ,

R+

where g is deterministic and ||g||¢ < co. In this case we have

FoG

exp® ( | @ +g(v1aB (t))

Ry

= o ( L 140 + 901 aB0) = S71 = Sl - (7 g>¢) ,

6




where

(£,9)g = [, 1(5)9(0)9(s,t)dsdt.

But

~

G = et (/ g(t)aB () - f(t)g(t)dt>

= exp’ (/R g(t)dB(H)(t)—(f,g)¢>.

Hence

FriG = exp ( [ faB ) - SIS+ [ oaB ) - Flal - (f,g)¢> = FoG.

O

We now return to Equation (3.3). First let us solve the equation when b = 0 and with initial

value X (0) given. Namely, let us consider
dX(t) = —o, X () dBU (1),  X(0) given.
With the notion of Wick product, this equation can be written (see [H?2, Def 3.11])
X(t) = -0 X(t) o WH(2) |
where W(#) = B(#) is the fractional white noise. Using the Wick calculus, we obtain
X)) = X(0)oJy(¢)
= X(0) o exp® <— /Ot o, W) (s)ds)

t
= X(0)oexp(— | o, dBH)(s —l||a||2 ,
0 2! ok

where

t t
loll2, = /O /0 e, v)dudy

To solve Equation (3.4) we let
Y= X(t) o Jy(t).
This means

X(t) =Yio Jo(t),

where

X t
Jo(t) = J_o(t) = exp (/ o, dBH)(s) %”U”%t) :
0

(3.7)

(3.8)

(3.10)

(3.11)

(3.12)

(3.13)




Thus we have

Y, dX (%)

_ dJs(t)
= T q o Jo(t) + X(t)

d
- dﬁit) 0 Jy(t) = o1y (t) 0 X(t) o WU (2)

= T, () ob(t, X(8),w)
= T (Dbt s X (8),w + /0 5(s)ds),

where

/R aug(t)p(s, t)dsdt = / Gog(s)ds Vg € CP(R,) (3.14)

+ R4
We are going to relate 75 X (t) to Y;.
T_(}Xt(t,w) = T_g,[J__g(t)O’O Y}(t,w)
= T_&[J_g(t)T&Yt]
= 17_sJ_s(1)Y;.

Since 7_sJ_,(t) = [J_5(t)] !, we obtain the equivalent equation of Y; for (3.4):

v,
dt

This is a deterministic equation. The initial value X (0) is equivalent to initial value Yy = X(0) o

T (b, [T ()] iy 0+ /O 5(s)ds). (3.15)

J_+(0) = X(0). Thus we can solve the quasilinear equation with given initial value.
The terminal value X (7') can also be transformed to the terminal value on Y(T') = X(T) o

J_o(T). Thus the equation with given terminal value can be solved in a similar way. Note,

(H)

however, that in this case the solution need not be F."’-adapted. (But see the next section).

Example 3.2 Let us consider the case b(t,z) = byx for some deterministic nice function by of t.

This means that we are considering the linear stochastic differential equation:
dX (t) = by X (t)dt + o X (t)dBH) (¢) . (3.16)
In this case it is easy to see that the equation satisfied by Y is
Y, = b(t)Y;.
When the initial value is Y (0) = = (constant), = € R, then
Y; = asefot bls)ds
Thus we have the solution of (3.16) with X(0) = z
X(t) = Y(t)oJ_s(t)

= xTexp {/Otb(s)ds + /Ot o, dBH) (s) — %”UHi,t} . (3.17)

8




If we assume the terminal value X (T) given, then

V() = Y(T)e): t9)s
= X(T)o Jy(T)el 2

X(t) = Y({t)oJ_,(t)

T T T (T
= X(T)cexp { A b(s)ds — /t o, dBH) (5) — %/t /t a(u)a(v)gb(u,v)dudv} .
(3.18)

4 FRACTIONAL BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS

)

Let b: R x R X R — R be a given function and let F': {2 — R be a given F:(FH -measurable random
variable, where T' > 0 is a constant. Consider the problem of finding F (H) _adapted processes p(t),
q(t) such that

dp(t) = b(t, p(t), q(t))dt + q(t)dBE (t); ¢ [0,T) (4.1)
P(T)=F as. (4.2)

This is a fractional backward stochastic differential equation (FBSDE) in the two unknown processes
p(t) and g(t). We will not discuss general theory for such equations here, but settle with a solution

in a linear variant of (4.1)-(4.2), namely
dp(t) = [a(t) + bip(t) + csa(t)] di + q(1)dBH)(8); ¢ € [0, T] (43)
P(T)=F as., (4.4)

where b; and ¢; are given continuous deterministic functions and «(t) = a(t,w) is a given FH)-
adapted process s.t. fOT la(t,w)|dt < oo a.s.
To solve (4.3)-(4.4) we proceed as follows: By the fractional Girsanov theorem (see e.g. [HD2,

Theorem 3.18]) we can rewrite (4.3) as
dp(t) = [a(t) + byp(t)] dt + q(t)dBH(t); t e [0,T] (4.5)

where

B ) = BE(t) + /t csds (4.6)
0

is a fractional Brownian motion (with Hurst parameter H) under the new probability measure f

on F}H) defined by

) _ o {— w, )} (47)




where ¢ = ¢; is the continuous function with supp (¢é) C [0, 7] satisfying
T
/ Csh(s,t)ds=cp; 0<t<T. (4.8)
0
If we multiply (4.5) with the integrating factor

t
b= exp(= [ buds)

we get
d(Bsp(s)) = Bsa(s)ds + Bsq(s)dBH) (s) (4.9)

or, by integrating (4.9) from s =¢ to s =T,
T T -
BrF = Bip(t) +/t Bsa(s)ds + /t Bsq(s)dBH)(s) . (4.10)

Assume from now on that

T 2
”a“ﬁ;’Z[O,T] = Ey {/[O,T]X[O,T] a(s)alt)e(s,t)dsdt + (/0 Dfa(s)ds) ] < 00. (4.11)

By the fractional It6 isometry (see [DHP, Theorem 3.7] or [H@S2, (1.10)]) applied to B, /i we then
have

T A 2
E/jb '(/0 Oé(s)dB(H) (3)) :l = ”Ol“%;),z[O’T]. (412)

From now on let us also assume that
E; [Fz] < 0. (4.13)

We now apply the quasi-conditional expectation operator

& [17D)]
to both sides of (4.10> and get
~ T ~
BrE; [FIF™] = a(t) + /t BoBs [a(s)| 7] ds. (4.14)

Here we have used that p(t) is f,gH)—measurable, that the filtration .7:",5(H) generated by B(H)(s);s < ¢
: (H)
is the same as F,"/, and that

T N .
o [/ f(s,w>dB<H><s>|f£H)}=o, forall ¢<T (4.15)
t

for all f € £5°[0,T]. See [HO2, Def 4.9] and [HPS2, Lemma 1.1].

10




From (4.14) we get the solution

p(t) = exp (—- /tT bsds> E; [F]}"t(H)]

T s _ (H)
+/ exp <—/ brdr> By [o(s)| 7 ] ds; t<T. (4.16)
t t
In particular, choosing ¢ = 0 we get
T 5 T s 5
p(0) = exp (— / bsds> B, [F] + / exp (- / brdr> By [a(s)] ds. (4.17)
0 0 0
Note that p(0) is TSH)—measurable and hence a constant. Choosing ¢t =0 in (4.10) we get
T R
G = [ Buals)dB), (4.18)
0
where T
G =G =BrF(w) - | Aials,w)ds =p(0), (419)

with p(0) given by (4.17).
By the fractional Clark-Ocone theorem [H@1, Theorem 4.15 b)] applied to BW) [, we have

T A A~ ~
G = E,[G] + / s [D,GIF] dBH(s), (4.20)
0

where D denotes the stochastic gradient at s with respect to B (.). Comparing (4.18) and (4.20)

we see that we can choose
i & [, EE)
q(t) = exp </ brdr> Eg [DtGlft ] . (4.21)
0
We have proved the first part of the following result:

Theorem 4.1 Assume that (4.11) and (4.13) hold. Then a solution p(t), q(t) of (4.3)-(4.4) is
given by (4.16) and (4.21) respectively. The solution is unique among all f(H)-adapted processes

p(): q() € ﬁé’z[())T]
Proof It remains to prove uniqueness. The uniqueness of p(-) follows from the way we deduced

formula (4.16) from (4.3)-(4.4). The uniqueness of ¢ is deduced from (4.18) and (4.20) by the
following argument: Substituting (4.20) from (4.18) and using that E;(G) = 0 we get

0= [ (Brats) ~ B [D,GIFM]) 4B (o).

Hence by the fractional It6 isometry (4.12)

0 = E l:{/oT (ﬁsq(s) —-I~E,1 [ﬁsG|ﬁ§H)]) dé(H)(s)}Q]

J— ~A b F H 2
= 1Buals) ~ En [DGIFE] gy

11




from which it follows that

Bsq(s) — K [DSGIJ}S(H)] =0 for a.a.(s,w)€[0,T]xQ.

5 A STOCHASTIC MAXIMUM PRINCIPLE

We now apply the theory in the previous section to prove a maximum principle for systems driven
by fractional Brownian motion. See e.g. [H], [P] and [YZ] and the references therein for more
information about the maximum principle in the classical Brownian motion case.

Suppose X (t) = X(®)(¢t) is a controlled system of the form
dX(t) = b(t, X (t),u(t))dt + o(t, X (), u(®))dBH) (t); X (0) =z € R (5.1)

where b: [0.7] xR* x U — R* and ¢ : [0,T] x R* x U — R™™ are given C! functions. The control
process u(-) : [0,T] x @ — U C R* is assumed to be F(#)-adapted. U is a given closed convex set
in R¥.

Let f:[0,T]xR*xU — R, g: R* - Rand G : R* — R" be given lower bounded C! functions
and define the performance functional J(u) by

T
J(u) = E [ /0 £t X (1), u(t))dt + g(X (T)) (5.2)

and the terminal condition by
E[G(X(T))] =0. (5.3)

Let A denote the set of all ]-"t(H)—adapted processes u : [0,T] x  — U such that X (t) does
not explode in [0,7] and such that (5.3) holds. If u € A and X®)(t) is the corresponding state
process we call (u, X)) an admissible pair. Consider the problem to find J and @ € A such that

J=sup{J(u);u € A} = J(a). (5.4)

If such @ € A exists, then @ is called an optimal control and (@, X ), where X = X% is called an
optimal pasir.
Define the Hamiltonian H : [0,T] x R* x U x R* = R by

n m T
H(taxau>paQ) = f(t,x,u) +b(taxau)Tp+ZZqzk(t)/o Gik(saxﬁu)QéHk(s:t)ds' (55)
=1 k=1

Consider the following fractional stochastic backward differential equation in the pair of unknown
]-"fH)—a,dapted processes p(t) € R, q(t) € R**™ called the adjoint processes:

{dp(t) = —H,(t, X (t), u(t), p(t), q())dt + q(t)dB(t);  t €[0,7] (5.6)
P(T) = g2(X(T)) + X' Go(X(T)).

12




8H 8H T, . . o .
where H, = V,H = ( By ,m) is the gradient of H with respect to z and similarly with
gr and G. X (t) = X(®(t) is the process obtained by using the control u € A and A € RY is a
constant. The equation (5.6) is called the adjoint equation and p(t) is sometimes interpreted as the

shadow price (of a resource).

Theorem 5.1 (The fractional stochastic maximum principle) Suppose @ € A and put X =
X®™). Let p(t), q(t) be a solution of the corresponding adjoint equation (5.6) for some A € RY .
Assume that the following, (5.7)-(5.9), hold:

H(t,-,-,p(t),q(t), g(-) and G(:) are concave, for all ¢t € [0,T] (5.7)
H{(t, X(t),a(t), p(t), q(t)) = max H(t, X(£), v, p(t), a(1)) (5.8)
q(-) or o(-,X() is deterministic. (5.9)

Then if A € RY is such that (a,X) is admissible (i.e. (5.3) holds), the pair (@, X) is an optimal
pair for problem (5.4).

Proof We first give a proof in the case when G(z) = 0, i.e. when there is no terminal condition.
With (u, X) as above consider

T
A = ]E[ f@t,X(t),u dt—/ ft, X(t) (t))dt]
0

T
—IE[ {b(t, X (t) } p(t dt—/ b(t, X (t),u(t)) p(t)dt]
0

—E [/ / Z Z {ow(s, X(s),a(s)) — owr(s, X(s),u(s))} qik(t)dm, (s, t)dsdt}
=: A1+A2+A13Tk 1 (5.10)
Since (z,u) — H(z,u) = H(t,z,u,p,q) is concave we have
H(z,u) — H(Z,u) < Hy(z,4) - (x — %) + Hy(Z,3) - (u— 1)
for all (z,u), (Z,4). Since v — H(X(t),v) is maximal at v = @(t) we have

Hy(Z,a) - (ult) —a(t) <0 Vt.

Therefore




Since E [ (X (t) — X(£))Tq(t)dBE ()] = 0 by (2.6), this gives

/ x - X(t))%(t)] - (5.11)

By (5.1) we have
T _
Ay = —E l/o {b(t, X (t),a(t)) — b(t, X(¢),u(t))} 'p(t)dt}
T _ T _
= —E VO p(t) (dX(t) — dX(?f))] —E Vo p(t)" {o(t, X (1), a(t)) — o(t, X (1), u(t)} dBF (1)

T _
—E [ / p(t) (dX(2) — dX(t))} . (5.12)
0
Finally, since g is concave we have
9(X(T)) — g(X(T)) < g=(X(T)) - (X(T) — X(T)) (5.13)
Combining (5.10)-(5.13) with Corollary 2.5 we get, using (5.2) and (5.6),

J(@) = J(u) = A+ E[g(X(T)) - g(X(T))]
> A+E [g2(X(T)) - (X(T) - X(T))]
>A—E[p(T) (X(T) - X(T))]

T _ T _
=A- {E [ | xw-xm)- dp<t>] +E [ | pit)- (@xv - dX(t))}
T ,T N m _
i ZZ{am(s,X(s),u(s))—aik(s,x<s>,a(s)>}qiku)quk(s,t)dsdt]}

=1 k=1
> A~ (A 4+ Ag+ Ag) = 0.

T —~

This shows that J(@) is maximal among all admissible pairs (u(-), X(-)).

This completes the proof in the case with no terminal conditions (G = 0). Finally consider the
general case with G # 0. Suppose that for some \g € ]Rj_l\_’ there exists @), satisfying (5.7)-(5.9).
Then by the above argument we know that if we put

Tao [ [ 6,0, u(0)a + (x(1) + N Gx(D)

then Jy,(4o) > Jy,(u) for all controls u (without terminal condition). If Ao is such that ), satisfies
the terminal condition (i.e. @y, € A) and u is another control in .4 then

I(Ung) = Iao (Urg) 2 ao(u) = J(u)

and hence %), € A maximizes J(u) over all u € A. O
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6 APPLICATIONS: TWO OPTIMAL CONSUMPTION PROB-
LEMS

EXAMPLE 1 Suppose that the value of a firm at time ¢ is given by (u, « # 0 are constants)
dX(t) = (uX(t) — u(t)) dt + aX (£)dBH) () ; X(0) = z, (6.1)

where u(t) > 0 is the consumption rate. The problem is to maximize the total discounted expected

utility of the consumption, given by

J(u) =E l/oT e_‘%%(—tldt] ) (6.2)

where § > 0, v € (0,1) are constants (1—-y is the relative risk aversion) under the terminal condition
EX(T)] = zr € R. (6.3)

We solve this problem by applying the fractional stochastic maximum principle.
In this case the Hamiltonian (5.5) is

H(t,0,0,0) = e 4 (ua —w)p +a(tlaz [ 9(s,)ds (64
Y 0
and the adjoint equation (5.6) becomes
{ dp(t) = — {up(t) + aq(t) [y é(s,t)ds | dt + q(t)dBE)(t); te[0,T] (6.5)
p(T) = A

We see immediately that this equation has the (unique) solution
p(t) = A" T q(t) =0. (6.6)

To find @(t) we maximize

5t V7

v ——>H(t>x,v7P70) =e 7+(,U,CL'—U)])

over all v > 0 and get

1
a(t) = ("p(t)) " . (6.7)
To determine A (and hence p(t)) we put u(t) = @(t) in (6.1) and get, for 0 <t < T,
t

EX®)]=z+p ; E[X(s)] ds—/ota(s)ds.

This is a differential equation in y(t) := E [X(¢)]. Solving this equation and using the terminal
condition (6.3) we get

1 T T -4
op = 26T — bT )7 exp{“__}/ exp{w}ds
v—1"Jo 1 —v
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or

o [ [ o () o (D))

(6.8)
(zetT —ap) ' T Vexp(—6T);  py =9
provided that

ze!T > xp. (6.9)
We have proved
Theorem 6.1 Assume that (6.9) holds. Then the consumption rate @(t) which mazimizes (6.2)
under the constraint (6.3) is given by

a(t) = AT exp {% (= 8)t — m} , (6.10)

where X\ is given by (6.8).

Remark 6.2 Note that optimal consumption rate 4(t) in this model is independent of both the
Hurst parameter H and the volatility o. So in fact a(t) coincides with the optimal consumption

rate in the deterministic case (o = 0) in this example.

EXAMPLE 2 In the model (6.1) used in Example 1 we are assuming that if there is no
consumption then the value X (t) at time ¢ is the fractional geometric Brownian motion given by

X(t) = zexp {ozB(H) (t) + pt — %a2t2H} , (6.11)

which is the solution of (6.1) with u = 0 (see e.g. [H@2, Example 3.14]). This is a natural choice
of model from the point of stochastic differential equations because (6.1) is a natural fractional
analogue of a well-known model in the standard Brownian motion case.

However, rather than taking the stochastic differential equation as the starting point we might
choose a model where the value Y (¢) at time ¢ has the form

Y(t) = zexp {ozB(H) (t) + ﬁt} (6.12)

for some constants o and 3. Such a choice is in agreement with claims that in finance the logarithmic

returns
Y(t)

with At = ¢, — t,—1 behave like fractional Brownian motions with Hurst coefficient H € (1/2,1).
See e.g. [S, p.234].
If Y(t) is given by (6.12), then by It6’s formula (Theorem 2.2) Y (¢) satisfies the stochastic

differential equation

hy, :=log = (B(H) (tn) — B(H)(tn~1) + 5At>

ay (t) =Y (1) (B+ He*H~1a?) dt + oY (£)dBI (1) (6.13)
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The corresponding value Y (t) = Y () (t) when the consumption rate is u will hence satisfy the

equation
{ 4y (t) = [V () (8 + He1a?) — u(t)] dt + oY (1)dBI(1),
Y(0) =y
With

as in (6.2) and the terminal condition
E[Y(T)] =yr €R,

we now consider the problem of maximizing J(u).
In this case the Hamiltonian (5.5) gets the form

v T
H(t,y,u,p,q) = 6“”% + [y(B+ HEF ™ a?) —u] p+ ayq/ $(s,t)ds
0
and the adjoint equation (5.6) becomes

{ dp(t) = — {B + H2E102 4 aq(t) [T ¢(s, t)ds} dt + q(t)dBE) (¢)
P(T) = A :

Again we see that we can choose ¢ = 0 and this gives
1
p(t) = Aexp {ﬁ(T —t)+ ion(TQH - tZH)} .
To find the optimal consumption rate u*(t) we maximize
5tV 2H-1_2
U%H(tay)vapao):e '—+[y(/3+Ht Oé)—U]p
v

over all v > 0 and get

BT+ (5Bt A(TH —tQH)}
1— 2(1 =)

Substituting this value for u(t) is (6.14) we get, with y(t) = E[Y (¢)],

u*(t) = (e‘stp(t)) = — AT exp {

Y (t) = (B+ HP 1 a?)y(t) — Elu(t)]

which gives

2
~ [[ew {6t - 9) - g0 - ) bur(5)as

y(t) = y(0)exp {ﬁt + 1042t2H}
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(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)




Combined with the terminal condition (6.16) this leads to

1
yr = y(0)exp {BT + 5042T2H}

_ﬁT+®—ﬂﬁ_a%ﬂH—¥W}%

v (T 1
_/\Tl T — - 2T2H_ 2H
= | wp@% )+ 5el (T - ) - T

or

1 |
A= (yexp {ﬂT + —aszH} —yr)"!

2
1=y
L, 2H} /T By—35  ~yats*H
: — BT — = - d 6.21
exp{ ByT 2afyT ; exp 1_73 20— s , (6.21)
provided that
Y exp {ﬁT + %aQTQH} >yr. (6.22)

We summarize this in the following:

Theorem 6.3 Assume that (6.22) holds. Then the consumption rate u*(t) which mazimizes (6.15)
with the model (6.14) and the constraint (6.16) is given by

RANRES I P T |
where X is given by (6.21).
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