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Abstract

The purpose of this paper is to develop a fractional white noise calculus and to
apply this to markets modeled by (Wick-) It type of stochastic differential equations
driven by fractional Brownian motion By (t); 1/2 < H < 1.

We show that if we can use an It type of stochastic integration with respect to
By (t) (as developed in [4]), then the corresponding Ité fractional Black & Scholes
market has no arbitrage, contrary to the situation when the Stratonovich type of inte-
gration is used. Moreover, we prove that our Ité fractional Black & Scholes market is
complete and we compute explicitly the price and replicating portfolio of a European
option in market. The results are compared to the classical results based on standard
Brownian motion B(t).
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1 Introduction

Recall that if 0 < H < 1 then the fractional Brownian motion with Hurst parameter H is
the Gaussian process By (t); t > 0 with mean (Bpy(t)) = 0 and covariance

E [Bu(t)Bu(s)] = %{|t|2H +|sH — |t — 8|2H}

for all s,t > 0. Here E denotes the expectation with respect to the probability law for
By = By(t,w). For simplicity we assume By (0) = 0. | o

If H =1, then By(t) coincides with the standard Brownian motion B(t). If H > } then
By (t) has a long range dependence, in the sense that if we put

r(n) = cov (Bg(l), (Bg(n+ 1) — Bg(n)))

then

ir(n)=oo.

For any H € (0,1) the process By (t) is self-similar in the sense that By (at) has the same
law as aff By(t) for any o > 0.

Because of these properties By (t) with Hurst parameter H € (1,1) has been suggested
as a useful tool in many applications, including finance [15]. However, after a stochastic
integration theory for fractional Brownian motions was developed [3], [5], [13], it was dis-
covered [19] that mathematical markets based on By (t) could have arbitrage. This was the
case even for the fractional analogue of the basic Black & Scholes market (see [20] for a short
proof). In view of this the process By(t) was by many no longer considered promising for
mathematical modeling in finance.

However, as pointed out in [4], the first By-integration theory was based on using ordinary
products and led to an integral which we will denote by

/ " F(t, )0 Bu(t)

These integrals do not have expectation zero and we will call them fractional Stratonovich
integrals, in analogy with the situation for standard Brownian motion. (See [9]).
In this paper we will concentrate on the By-integral considered in [4], denoted by

/a ", W)dBx(t) .

These integrals have expectation zero. Since they are based on using Wick products rather
than ordinary products, we call them fractional Ité integrals, again with reference to the
corresponding situation for standard Brownian motion [9].
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The relation between these two integrals and properties of them are investigated in [4].

A different kind of stochastic calculus with respect to fractional Brownian motion, based
on the Gross-Sobolev derivative on the Wiener space, has been developed in [5].

The purpose of this paper is to develop a white noise calculus based on By (%), % < H <1,
and then use this to prove that the corresponding It6 type fractional Black & Scholes market
has no arbitrage. Moreover, we prove that this market is complete and we compute explicitly
the price and the replicating portfolio of a European call option in this market. Then we
compare the results to the classical results based on standard Brownian motion By(t).

Let us point out that even in the standard Brownian motion case, we will get arbitrage if
we use Stratonovich integral in the definition of self-financing portfolios. Here is an example
essentially due to Shiryaev [20]. Let p > 0. Let A; = e” and X; = e”**5* be the bond price
and stock price, respectively, at time ¢ (see Section 5). Then (A, X:) constitutes a Black &
Scholes market, namely,

dA; = pAdt
{ dX; = Xi(pdt + 6By),
where § denotes the Stratonovich type of differential. Take the portfolio (t) = (ut,vy),

where
u=1—e? and v, =2(eP —1).

Then
2

Xf = ’U/tAt + ’Ut.Xt = ept [eBt - ].]
It is easy to check that
dX? = u,dA; + vi6 X .

So 0 is self-financing if one replaces the Ito integral by the Stratonovich integral in the
definition of self-financing [17]. It is now easy to see that X§ = 0, X/ > 0 for ¢t > 0, and
X! >0 for ¢ > 0.

Thus the essential point in the problem of arbitrage is not just a problem of martingale or
non-martingale. The use of Itd type or Stratonovich type integrals also play a role. We hope
that our result will bring new interest in using fractional Brownian motions in mathematical
finance.

Our paper is organized as follows: In Section 2 we summarize the results from [4] and
prove a new result that we will need. In Section 3 we set up a fractional white noise calculus
based on Bg(t). In Section 4 we introduce differentiation and prove a generalized Clark-
Ocone formula for fractional Brownian motion. Then in Section 5 we apply our theory to
study markets modeled by Ito type stochastic differential equations driven by B (t).




2 Background

In this section we summarize the results from [4] that we will need.
Fix a Hurst constant H, 3 < H < 1. Define

B(s,t) = H2H — 1)|s — t]* 72, s,ter.

Let f: R — R be measurable. Then we say that f € Lj(r) if

7B= [ [ £65)7@(s,t)dsdt < o0

If we equip Lj(R) with the inner product

(f,g ¢,—//f 6(s,t)dsdt; f,g € L3(R)

then L3(r) becomes a separable Hilbert space. In fact, we have

Lemma 2.1 Let -
Cof(w)=ca [~ (¢ =)™ (0)dt

u

where

B HQH -1 (3-H)
AT (H-)T@-2H)’

and T denotes the gamma function. Then Ty is an isometry from L3(R) to L*(R).

(2.4)

Proof By a limiting argﬁment, we may assume that f and g are continuous with compact

support. By definition,

o) Loy = ¢ [{ [ (6= w 2 s(s)ds [~ =" 2g(0)at ) du
= & [, #) { / w) =324 — )H“3/2du}dsdt

=[] #(9)g(®)8(s, t)dsdt = (£,9)s,

where we have used the identity

CH/ WH32(1 — ) F=32qy = (s, t).

(See for example [6], p.404, for a proof of this identity.)




If fe Li(R) (deterministic) one can define / f(t)dBy(t) = / f(t)6Bg(t) in the usual
R R

way by first considering simple integrands

fm(t) = Z a‘gm)X[ti,ti-}-l)(t) )

setting
| £n®)dBa(®) = 3 o™ (Bultis) - Bu(t) (25)
and defining o
| #0dBa(®) = lm_[ fn(t)dBa(®). (2.6)
The limit exists in L3(R) because of the isometry
2
o ([ fml0dBu) = Il (2.7
For f € Lj(r) define
() = o ([ faBy - 51513) 23)

Then we have ([4], Theorem 3.1):
The linear span of {E(f); fe Li(R)} is dense in  L*(uy), (2.9)

where 4 is the probability law of By (see also next section).

3 Fractional White Noise Calculus

In this section we show how to adapt the traditional white noise calculus (see e.g. [7] or [10])
to the fractional white noise case. As before we fix a Hurst constant H € (-;—, 1) and we let
¢, Li(R), | - |4 and (-, )¢ be as in (2.1)-(2.3).

Let S(r) be the Schwartz space of rapidly decreasing smooth functions on r and let
) = 8'(R) be the dual of S(r), i.e. Q is the space of tempered distributions w on R. The map

f = exp(~31f13); f€S)

is positive definite on S(R), so by the Bochner-Minlos theorem there exists a probability
measure /iy on {2 such that

/Q e dpy(w) =e 2 forall feS(R), (3.1)




where (w, f) denotes the usual pairing between w € S'(R) and f € S(r). It follows from
(3.1) that

(. f)]=0 and =[(,f)?] =I|f}. (3.2)
Using this we see that we may define
By(t) = Bu(t,w) = {w, xp4()) - 33)
as an element of L?(u,) for each t € R, where
1 if0<s<t
Xpog(s) =14 -1 ift<s<0
0  otherwise.

By Kolmogorov’s continuity theorem B 1 (t) has a t-continuous version which we will denote
by By(t). From (3.2) we see that By(t) is a Gaussian process with

i, [Br(t] =0 and 5, [Bu(s)Bu(0)] = 5 {1 + s — [t = sPT} . (3.4)

It follows that By(t) is a fractional Brownian motion. Moreover, if f € Lj(r) then by
approximating by step functions we see from (2.5)-(2.6) that

(w, f) =/Rf(t)dBH(t, w). (3.5)
In the following we let
25 d" 2
_ (_1\n,z?/2 —x2/2\ . —
() = (—1)e” P~ (7)) n=0,1,2, (3.6)

be the Hermite polynomidls.

Lemma 3.1 There is an orthonormal basis {e;}io; of L3(R) such that for any t € R such
that '

|/en(s)¢>(s,t)ds| < Cynt (3.7)
R
Proof Define the Hermite functions as in [10] (see also [22])

- 22

hn(z) = 774 (0 — 1)) Vheoy(V22)e T, n=1,2,--

Then from [22], {ﬁn(x) ,n=12,-- } is an orthonormal basis of L?(r) and

z Cn™1  when |z| < 2y/7n
Fin(2)] < =
fin(@)] < {C’e“”""z when |z| > 24/n,




where v and C are certain positive constants, independent of n. (See for example, [22], p.26,
Lemma 1.5.1. See also [21]). Set

en(u) = cx / Tt — )RR, (1) dt (3.8)

u

Then by Lemma 2.1, {e,, n=1,2,---} is an orthonormal basis of L3(r). We have also

[ e()(s,tds = / { / w(v—s)H—?'/zﬁn(v)dv} 8(s,1)ds
_ / { [ ”w(v —*S)H—?)/?qs(s,t)ds} o (0)do

It is easy to verify that there is a positive constant C; such that
/ (v — §)E-329(s,t)ds < CiloH~3
—00
< Cuy/lvl as |v] = 0.

(This integral is bounded when v is bounded.) Therefore we have

| [ee)o(s,t)ds] < [ Culol2|hn(0)dv

c, o[ Y20~ T du + C, / o[ V2=l gy
[v|£2v/n [v[>2/n

2
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This proves the lemma. O

From now on we let {e,}52; be the orthonormal basis of L}(r) defined in (3.8). Then
the e;’s are smooth. Moreover, we see that

t— / e;(s)é(s,t)ds is continuous for each i. (3.9)
R
Let Z = (w¥), denote the set of all (finite) multi-indices o = (ay, - - -, o) of nonnegative
integers, (N is the set of natural numbers and vp = N U {0}). Then if o = (o4, -+, am) €L
we put
Ha(w) = hay ((w, €1)) - hap (W €m)) (3.10)

In particular, if we let € := (0,---,0,1,0,---,0) denote the i’th unit vector, then by (3.5)
we get
Hooy(w) i=h((w,e)) = (w, &) = / e;(t)dBg(t) . (3.11)

The following result is a fractional Wiener-It6 chaos expansion theorem:




Theorem 3.2 [/ Let F € L*(uy). Then there exist constants ¢, € R, o € I, such that

=Y caMHa(w) ( convergence in L*(ug)) - (3.12)
o€l
Moreover,
1|22, = D ale (3.13)
o€l
where o! = ajlag! - ap! if o= (a1, -, an) €Z.

Proof This result may be regarded as a reformulation of Theorem 6.9 in [4], where such a
chaos expansion is proved in terms of iterated Ito fractional integrals. (See Theorem 3.21).
A direct proof is the following:
Let £ be as defined in (2.8). Then if ay € R, k =1,2,---, we have

E(aker) = exp <ak(w,ek)—%aﬁ)
= i%hn(@,ek)% (3.14)

(See e.g. [10], Appendix C for more information about the Hermite polynomials).
It follows that if

f=> arer € Lj(r)
k=1

then
[e o] 1 o0
E(f) = exp(Zakwek —Z )
k=1 23
= lim H(Z —* b ((w, ex) )
N—>ook 1 \m=o0 n!
= lim > i’ —ha ((w, ex))
N—oo acT(N) kH]. Olk k
= lim S coHo(w) (limit in L3 (ug)) (3.15)
aeZ(V)
where Z(™) denotes the set of all multi-indices o = (a, - - -, &) of nonnegative integers with
ao; < N and we have put
Co = Hai if a= (o1, ,am).
k=1 Oék!

If we combine (2.9) with (3.15) we obtain that the linear span of {H,;a € I} is dense in
L* ().




It remains to prove that

B, [HaHpl =0 if a# (3.16)
and
By, [H2] = o ‘ (3.17)
To this end note that from (3.1) it follows that
B [F(w )+, @ em)] = [ F@)dn(@) (3.18)

for all f € L*(\,), where ), is the normal distribution on rR™, i.e
dhn(z) = (21) e 2P dgy o day; T = (21, Tm) ER™.

Therefore, if @ = (a1, .0m), 8= (61, - .Bm) We have

::13

%mw=mquwmwmmﬂ

ES
Il

1

o (Tk) gy (T1)dAm (21, -, Trm)

\ TT::]s

» (Tk) g, (Tk)dAm (z)

0 fa#p
akﬂko"“ o fa=p

L&

where we have used the following orthogonality relation for Hermite polynomials:

/h e“ dx~5w\/§;]'

O

Example 3.3 Note that by orthogonality of the family {H, }aer in L?(uy) we have that the
coefficients ¢, in the expansion (3.12) of F' are given by

1
= aE“qS [FHa] . (319)

Choose f € L3(r) and put F(w) = (w, f) = [ f(s)dBu(s). Then F is Gaussian and by
(3.16) and (2.7) we deduce that

E#¢ [FHe(i)] = Euy [( ) W, 61

= (f,ei)s /m/ & (u, v)dudv .




Moreover,
By, [FHew] =0 if [of > 1.

We conclude that we have the expansion

/Rf(s)dBH(S) =Y (fe)sHoo(w); feLiR). (3.20)
i=1
In particular, for fractional Brownian motion we get, by choosing f = X0,
0 t oo
Bu(t) =Y [ / ( / ei(v)qﬁ(u,v)dv) du] Moo (w). (3.21)
i=1 -

We proceed to define the fractional Hida test function and distribution spaces (compare
with Definition 2.3.2 in [10]):

Definition 3.4 a) (The fractional Hida test function spaces) Define (S)m to be the set of
all '

=Y aHa(w) € L*(ug)  such that

a€el

||7,b||%1k = Z a!ai(ZN)ka <oo forall ken, (3.22)

a€l

where
(2N)7:H(2j)7j if Y= (’71)"'>’Ym> el.

J

b) (The fractional Hida distribution spaces) Define (S)j; to be the set of all formal expansions

= bgHp(w)
BeT

such that

)%, : =" Blbz(2w)” ~9%¥ < 0o for some g¢EN. (3.23)
BeT

We equip (S)y with the projective topology and (S)} with the inductive topology. Then
(8)% can be identified with the dual of (S)g and the action of G € (S)j; on ¥ € (S)g is
given by

(G8) = (G, Wsymony = X laabs (3.24)

o€l
In particular, if G belongs to L?(ug4) C (S)5 and ¢ € (8)g C L?(up) then
(G,¥) = E,, [G¢] = (G, ¢)L2(u¢) .

We can in a natural way define (S)}-valued integrals as follows:
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Definition 3.5 Suppose Z : R — (S)}; is a given function with property that

(Z(6),9(®)) € L*(ug) for allyp € (S)u - (3.25)

Then [, Z(t)dt is defined to be the unique element of (S)} such that
([ Z@ade o) = [(2@,0@)dt forall v e (S)a. (3.26)
Just as in [10], Proposition 8.1, one can show that (3.26) defines [, Z(t)dt as an element of

(8)ir-
If (3.25) holds, then we say that Z(t) is integrable in (S)}.

Example 3.6 The fractional white noise Wy (t) at time ¢ is defined by

o0

Wi(t) =3 [ [ewat, v)dv] Moo (). (3.27)

i=1

We see that for ¢ > 13/9 we have

WOl = S0 et o)) ()"

= > UR ei(v)qﬁ(t,v)dvr (21)79 < o0

=1

by (3.7). Hence Wi (t) € (S)¥ for all t. Moreover, by (3.9) it follows that ¢t — Wg(t) is a
continuous function from r into (S)3. Hence W (t) is integrable in (S)F for 0 < s <t and

t 0 ot
[ Was)ds =3 [ / < [ s, v)dv) du] H.o(w) = By (t) (3.28)
0 i—1 /0 R
by Example 3.2. Therefore t — By (t) is differentiable in (S)}; and
d ) .
%BH(t) =Wg(t) in (S)k. (3.29)

This justifies the name fractional white noise for W (t).

Definition 3.7 Let

Fw)=> asHa(w) and Gw)=)_ bsHp(w)

ael BeL

be two members of (S)%. Then we define the Wick product F o G of F' and G by

(Fo@) ) = Y aabsHars(w) = Z( > aabﬁ) Hy(w). (3.30)

a,peT v€Z \a+pf=y

11




Just as for the usual white noise theory one can now prove (see [10], Lemma 2.4.4)

Lemma 3.8 a) F, Ge (S)y = FoG e (S}
b) ¥, n€(S)p=vone (S

Example 3.9 Let f, g € L3(r). Then by (3.10)

</R deH) o </RgdBH> =, (;(f, ) ¢>H5<z>> (i g,€; ¢H€<J)>

= Z (f, 6i)¢(9, ej)¢Hg(i)+e(j)

1,j=1

= P (eduloneleloncilones) + S edulon e (0,207 -1

i,j=1
i#]

- (i(f,ez)qswez)(i%ea weﬁ)+§f’e% (9, €:)s-

i=1 1

We conclude that

([ sase)o (Loim) = ([ sa50) - ([oi3) o a0

Example 3.10 If X € (S)} then we define its Wick powers X" by

X"=XoXo---0X (nfactors) (3.32)

and we define its Wick exponential exp®(X) by

exp®(X) = i L xon (3.33)

|
—o

provided that the series converges in (S)3;. Note that by definition of the Wick product we
have

(w, 6k>°n = (He(k))on - H,ne(k) = hn((w, 6k>) . (3.34)

Therefore, if ¢, € R We get

exp’(ck(w, er)) = i
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by the generating property of Hermite polynomials. More generally, if f € Li(R) we get

(1) = o (Dlfendsloren)
= Hoexp (f,en)o(w, ex))
= Hexp (f, ex)g(w, ex))

= Hexp< fren)slw, ex) — (f, ek)i>

~ o (Slheslores) - 3 S50

= o (1)~ 3If2) - (3.35)

Thus

exp’((w, f)) = E(f) forall feLi(Rr). (3.36)
More generally, if g : ¢ — - is an entire function (c is the set of complex numbers) with the
power series expansion

9(z1, 20) = ozt zin =) ca2”
(67 [

(where we have put z* = 2{*--- 22" if @ = (@1, -+, an) € I), then we define, for X =
(Xla U 7Xn) € ((S)E)na
go(Xla""Xn) = anxoa‘ (337)

Tt is useful to note that with this notation we in fact have
Heo(w) = (w,e1)° o+ 0 (w, €,)%" (3.38)
if o= (a, -+, a,) €Z. Or, if we define
r(w) = (w,er), §=(6,82 ) (3.39)
then
Ho(w) = €. (3.40)

We now proceed to define a generalized fractional stochastic integral of Itd type.

Definition 3.11 Suppose Y : R — (S)} is a giwen function such that Y (t) o Wy(t) is
integrable in (S)%. Then we deﬁne its fractional stochastic integral of It6 type, [, Y (t)dBu(t),
by

/Y ()dBu(t) /Y (t) o Wi(t)dt . (3.41)

13




Example 3.12 Suppose

n

Y(t) =3 Fi(w)Xpunen (t), where Fye (S)y.

i=1
Then by (3.28) we see that

n

[ Y @Bt = 3 Fiw) o (Bultiss) - Bu(t)) -

i=1
Hence our definition (3.41) is an extension of the fractional It6 integral introduced in [4],
(3.17).

In the classical Brownian motion case (3.41) represents a generalization of the Hitsuda-
Skorohod integral. See [14], [2] and [10], Theorem 2.5.9. Note that - as mentioned in the
introduction - in general the fractional It6 integral [Y (¢)dBg(t) differs from the fractional
Stratonovich integral [ Y (¢)0 By (t), which up to now has been the type of fractional integral
most commonly studied.

There is an It6 formula for the It6 fractional stochastic integral (see [4], Theorem 4.1) and
as in the case of the classical Brownian motion one can use this to compute such integrals.
But in some cases it is easier to work directly within the Wick calculus in (S)};. The method
is similar to the one presented in e.g. [10], Chapter 3. We illustrate it by means of two
simple examples:

Example 3.13

/Ot By (s)dBu(s) = /Ot By (s) o Wg(s)ds

¢ d 1 .o
- /0 Bi(s) o —Bi(s)ds = 5B (t)
L L on
= - t) — = 3.42
LBy (1) — 5, (3.42)
where we have used (3.41), (3.29), standard Wick calculus, (3.31) and finally the fact that
t rt
// o(u,v)dudv = t*7 . (3.43)
0Jo

Example 3.14 (Geometric fractional Brownian motion) Consider the fractional stochas-
tic differential equation

dX(t) = pX (8)dt + o X ()dBy(t); X(0) =g -0, (3.44)

where z, u and o are constants. We rewrite this as the following equation in (S)%:
ax(t
% = uX(t) + o X (t) o Wy(t)

14




. X (#)

dt
Using Wick calculus we see that the solution of this equation is

= (p+oWa(t)) o X(t).

X(t) = zexp® (ut—l— a/ot WH(s)ds)
= zexp® (ut +oBu(t)) . (3.45)

By (3.36) and (3.42) this can be written
' 1
X(t) = zexp (UBH(t) ot — 50%%1) . (3.46)

Note that
Eu, [X ()] = xeht . (3.47)

As in [10], we define the translation operator as follows: Let wy € §'(r). For F' € (S)m,

we define
TwF(w)=F(w+w); weS'(r).

It is easy to verify as in the proof of Theorem 2.10.1 that f — T, f is a continuous linear
 map from (S)g to (S§)g. We then define the adjoint translation operator T from (S)F to

(S)i by
(To, X, F) = (X, T F)), Xe(S)y, Fe(Sa-

Lemma 3.15 Let wo € L3(R) and define o(t) = [, wo(u)d(t, u)du. Then
T3, X = X oexp® ((w,wo)) - (3.48)
Proof By a density argument it suffices to show
(T2, X, F) = (X o exp® ((w,w0)) , F)

for 1 1
X =exp (lw,0) - 5la3) . F=exp (@ ) - 51f3)
where f,g € L3(rR) and wp € S(r). In this case, we have by definition
(T3, X, F) = (X, F(w+))

= (X, F(w))
— e(wo,f>¢_<f7g)¢ .

15




On the other hand,

(X o exp® (w,w0) , F) = (elorenmslotnls, )
elotwo.flg

This shows the lemma. O

With the white noise machinery established one can now verify that the proof of the
Benth-Gjessing version of the Girsanov formula, as presented in Corollary 2.10.5 in [10],
applies to give the following fractional version:

Theorem 3.16 (Fractional Girsanov formula I)
Let i € LP(ug) for some p > 1 and let v € L3(R) C S'(R). Let 7 be defined by
A(t) = [, #(t,s)y(s)ds. Then the map w — h(w +7) belongs to LP(uy) for all p < p and

Y+ Nduglw) = [ () - exp((w,7))dolw). (3.49)

S'(r) (®)

Proof By Lemma 3.15, we have

(X, ) = (X oexp® ((w, 7)), ¥) - (3.50)

Let X = 1. We see that the left hand of (3.50) is [s:) ¥(w + 7)dpgs(w) and the right hand
side of (3.50) is [s/z) ¥ (w) - exp®({w, ) )dpg(w). This completes the proof of this theorem. O

Corollary 3.17 Let g: R — R be bounded and let v € Li(R). Then, with £(-) as in (2.8),

2, [0(Ba() + [ 3(5)d)] = 2., (BaE)EN) (351)

Proof Define (w) = g((w, xp)) = 9(Bu(t)). Then

Dl +7) = ol + Fx0a) = 9(Bu(®) + [ 3(5)ds)

so the result follows from (3.36) and Theorem 3.16. O
The following Girsanov theorem will be used in Section 5.

Theorem 3.18 (Fractional Girsanov formula II) Let T > 0 and let v be a continuous
function with supp v C [0,T]. Let K be a function with supp K C [0,T] and such that

(K, flo= (v, Nrzwy, ¥ fe€(S), supp fC[0,T], (3.52)

; / K(s)(s,t)ds = y(t), 0<t<T. (3.53)
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Define a probability measure 14, on the o-algebra F:(pH) generated by {By(s);s < T} by

Wbt _ expe {—(w, K)} (3.54)
dpte

Then BH(t) = By (t) + [§vsds, 0 <t < T, is a fractional Brownian motion under fis,.

Proof Tt suffices to show that for any G(w) = exp {(w, f)} with f € S(r), supp f C [0,T]
we have

Epgr {G(W +7)} = Buy {G(w +7) ep° [ {w, K)]} = B, G(w) -

But in this case

By {G(w +7) exp® [—(w, K)]} = Eg, exp {(w 7, f) = W, K) = %lKli}
= EM,GXP{((,(J f—K)+ (v f)LZ(R)-l|K|3S}
= exp{ |f — K|¢ (7, )L2(R) - _|K|¢}

1
= exp {31 — (K, o+ 517+ (0 Doty — 51K
= el = E, e< wi) = E,,G(w).

a

Remark 3.19 Since By(t) is not a martingale, unlike in the standard Brownian motion
case, the restriction of ddi;ff- to .7-}(H), 0 < t < T is in general not given by exp® {—(w, X0, K )}

Remark 3.20 In [16], a special case of (3.51) was obtained. In Section 5, Theorem 3.18
will be used.

We end this section by giving an alternative Wiener-It6 chaos expansion theorem in terms
of iterated integrals:

Let IA/(%(R") denote the set of functions f(zi,--,z,) on R™ which are symmetric with
respect to its n variables and which satisfies

||f||L2(R”) (f’ f)L2 R"™) < o0,

where

(f7 )L2 &7 = /R"XR" f(ula T aun)g(vla e )Un)¢(u1avl) tee QS('UJn,’Un)d’U,l T dund’Ul v d’l}n
(3.55)
Thus one can define (see [4], Theorem 6.7) the iterated integral

(f) = / fdBy(s)®" =l / o o 8)dBu(s) - dBa(s:) . (3.56)

For n =0 and f = f; constant we set Io(fo) = fo and ||f0|]%i(R0) = f2.
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Theorem 3.21 [4] Let F € L*(uy). Then there ezist f, € f}i(R") form=0,1,2,--- such
that

F(w) =2 In(fs). (3.57)
n=0
Moreover,
1Fl 2200,y = ;H!anﬂii(an) : (3.58)

Proof For a direct proof see [4], Theorem 6.9. The result can be also deduced from our
Theorem 3.1 by using the identity

Heo(w) = / MR- - Re2*rdBE" (3.59)

R'":
if o = (ouy, - - -, ), Where @ denotes symmetrized tensor product. (See the proof of Theorem
6.7 in [4]). O

4 Differentiation. A Fractional Clark-Ocone Theorem

Now that the basic fractional white noise theory is established, we can proceed as in [1]
to define stochastic gradient and prove a generalized Clark-Ocone formula in the fractional
case.

Definition 4.1 Let F : S'(R) — R be a given function and let v € S'(R). We say that F
has a directional derivative in the direction vy if

D,F(w) := lim Flw+ey) = Fw)

e—0 £

exists in (S8)%. If this is the case, we call D, F' the directional derivative of I in the direction
.

Example 4.2 If F(w) = (w, f) = [, f(t)dBg(t), for some f € S(r) and v € L*(r) C S'(R)
then

D,F(w) = gg%—i-[<w+m,f>—<w,f>1
= hml [(e7, £) / f(t)

Definition 4.3 We say that F : S'(R) — R is differentiable if there exists a map ¥ : R —
(8)3 such that
U(t)y(t) = U(t,w)y(t) is (S)y — integrable
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and
/\I/tw t)dt for all € L*(R).

In this case we put

DF(w) = Zf (hw) = Tt w)

and we call DiF (w) = %E(t,w) the stochastic gradient (or the Hida / Malliavin derivative)
of F att.

Example 4.4 Let F(w) = (w, f) with f € S(r). Then by Example 4.2 F' is differentiable
and its stochastic gradient is

DiF(w) = f(t) for a.atw.

Just as in [1], Lemma 3.6 we now get

Lemma 4.5 (The chain rule I)  Let P(y) = Y, cay® be a polynomial in n variables y =
(y1,-+,Yn) € R™. Choose f; € S(R) and put Y = (Y1,---,Y,) with

Yi(w) = (w, fi) = / £(®)dBu(t); 1<u<n.

Then both P(Y) and P°(Y') are differentiable and

n

DiP(Y) = Z SAVOEDIPID Saa ()
1 a g
and .
DP°(Y Z (Y, Y ) = Y Y e (1)
i=1 O%i o g

Similarly, if we define Y® = (Yl(t), -, Y ®) with
Y(t) / fi(s)dBu(s /fz Xpo,4(s)dBr(s); 1<i<n

then we obtain, as in [1], Lemma 3.7:
Lemma 4.6 (Chain rule II)

d _, " oP\°
=P Y ®) = Z ((97) (YY) o Wx(t).
J

We want to extend the differentiation operator to a space of random variables containing
L*(ug). A convenient pair of spaces to work with is the following:
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Definition 4.7 (18], [1])
(1) Let k € N. We say that a function

W) =3 [ B € L2u)i fu e L")

n=0

belongs to the space G, = Gi(ug) if

111, = > nlll fall 2 anye™" < o0 (4.1)
n=0
We define
G = G(ug) = MZ1Gk(1ig) (4.2)

and equip G with the projective topology.
(it) Let ¢ € N. We say that a formal expansion

G=3 [ odBF®; g€ )

belongs to the space G_q = G_q(1g) if

o0

GIZ, = 3 nllgnl 22 erye™" < o0 (1.9
n=0
We define
G* = G"(kg) = UgenG—q(Hg) (4.4)

and equip G* with the inductive topology. Then G* is the dual of G. And the action of G € G*
on Y € G is given by

(G8) = 3 o, )z (45)
Remark 4.8 Note that by Theorem 3.21 we have
(8)ir € Glus) € L* () = (L¥(1s)) € G (o) C (S)ir-
Let ]:t(H) be the o-algebra generated by By(s,-); s < t. The following operator is useful:

Definition 4.9 a) Let G = Y2 fin 9a(8)dBS"(s) € G*. Then we define the quasi-
conditional expectation of G with respect to ]-"t(H) by

é“‘ﬁ [Gl]:t(H)] = Z /R"' gn(8) - Xo<e<tdBF"(s) - (4.6)
n=0

b) We say that G € G* is ]:,SH)-measumble if
B [GIFED] =G
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Remark 4.10 The quasi-conditional expectation & is different from the ordinary conditional
expectation. For evample, it is easy to check that E {BH(t)|.7-"S(H)] = By(s) for 0 < s < t.

But the computation of E [BH(t)I}"S(H)] is much more complicated. See for example [6].
As in [1], Lemma 2.8 we can get
Lemma 4.11 o) F € G, = |5, [FIF™] g, < |F|lg,-

b) F € G =&, [FIF™] e g
¢) F,G € G* = &,, [F o GIF] =&, [FIFA™] o8, [GIF™] .

Motivated by Lemma 4.5 we now make the following definition:

Definition 4.12 Let F = Y, caHolw) € G*. Then we define the stochastic gradient of F
at t by
dF
D.F(w) = E;(t,w) = co Y H, weilt)

= Z (Z Copeti) (Bi + 1)ei(t)> Hp(w) . (4.7)

8

7

Lemma 4.13 (A fractional Clark-Ocone formula for polynomials) Let F(w) be ]:}H)-measumble
and suppose F(w) = P°(Y) for some polynomial P(y) = Y., cay®, where Y = (Y1,---,Yy)
with Y; = (w, f;) as in Lemma 4.5, 1< j <n. Then

F(w) = P°(Y(T)), where YT = (w, fixp,m) (4.8)

and
F(w) = B,,[F] + /0 £,,, [DFIF™] dBxl(t). (4.9)

Proof The proof of Lemma 3.8 in [1] applies, with only conceptual modifications. For
completeness we give the details:
Note that

F) = &, [FIFE] = Yeak, [I77]”

= Y (YO =po(y®),
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where we have used Lemma 4.10 c¢) and (4.6). Hence by Lemma 4.5 and Lemma 4.6 we get
T ~
/O By, [DFIF™] dBy(t)

(gf ) (Y)ﬁ(t)lféf“] 4B (t)

|
<8P.>o (YO(t) o War(£)dt

|
3
~
)
|
3
~
Il
Y
|
~
3
<

The proof of the following is identical to the proof of Lemma 3.10 in [1]:

Lemma 4.14 o) If F' € G* then D.F € G* for a.a. t.
b) Suppose F', F,, € G* and F,, — F in G*. Then there is a subsequence {Fp, };-, such
that
DF,,, — D, in G for aa. t

We now have all the ingredients for the proof of the following results. We refer to [1],
Theorem 3.15 and Theorem 3.11 for proofs, which are similar to our case.

Theorem 4.15 (A fractional Clark-Ocone Theorem)
a) Let G(w) € G* be Fr-measurable. Then D;G € G* and &y, {DtGLﬂ(H)] € G* for a.a.

t. Ep, [DtG|.7-"t(H)] o Wy (t) is integrable in (S)3 and

G(w) =201+ [ "5, [DGIFD) o Walt)dt (4.10)
b) Suppose G(w) € L*(uy) is Fr-measurable. Then
(t,w) = £, [DGIF] () € L2(A x ),
where X\ is the Lebesgue measure on [0,T]. Moreover,
G(w) =201+ [ "5, [DGIE™) dBa(t). (4.11)

We shall call &, . [DtGlft(H)] the fractional Clark derivative of G in analogy with the
classical Brownian motion case. We will use the notation

V{G =&, [DGIFT] .

22




Example 4.16 Let £ € R and let

X(t) = oxp (i€Bx(0) + %g%QH) | (4.12)

Then from Example 3.14 it follows that

—1+z§/ s)dBi(s

Thus we have
VEX(T) = i€X(t).

Consequently,
VB (T) — jgiéBr@+5E (P (4.13)

Let f € S(R) and let f be the Fourier transform of £, i.e.

fe)= [ e f@)ds
Then 1 )
fla) = 5= | e fe)de.
F(Ba(T)) = 5 [ P18 fe)de.
Therefore by (4.13) we obtain

VIF(Bu(T)) = o [ VEPHDEf(E)de

= L [ g o ey
= g(Bx(t)),

where ¢ is the inverse Fourier transform of the product of the following two functions: f &)
and

Q(€) = it 7€ (T =11)

However, Q(€) is the Fourier transform of - P, 7(z), where

1 &
P.r(z) = e ATH—2H) (4.14)

\2m(T2H — £2H)

which is the heat kernel at time T2 — t2H_ Thus we have obtained
/ Qt T r— dy)

where ¢;7(z) = £ P.r(z).
In general, we can obtain the following
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Proposition 4.17 Let f be a function such that | f(Bg(T))| < co. Then

VEF(Ba() = [ aur(BulT) —)f )y, (415)

where

d . 1 _ﬁﬁL_H‘
= — W = - (T —t2 )
Gur(z) = pFur(e) with  Pur(o) \/En(TzH_ﬁH)e (4.16)

Remark 4.18 When H =1/2, (4.15)-(4.16) reduce to known formulas. (See [8]).

5 Application to Finance

With the Clark-Ocone formula to our disposal, we can now follow the approach in [1], adapted
to the fractional Black & Scholes market. This market has two investment possibilities:
(i) A bank account or a bond, where the price A(t) at time ¢ develops according to the
equation
dA(t) = pA(t)dt, A(0)=1; 0<t<T, (5.1)

where p > 0 is constant. _
(ii) A stock, where the price X (t) at time ¢ satisfies the equation -

dX(t) = pX(t)dt + o X (t)dBu(t); X(0)=z>0, (5.2)
where p and o # 0 are constants, 0 < ¢ < T. By Example 3.13 we know that

1
X(t) = zexp <JBH(t) + ut — 502t2H> : t>0. (5.3)

A portfolio 6(t) = 6(t,w) = (u(t),v(t)) is an F_adapted 2-dimensional process giving
the number of units u(t), v(t) held at time ¢ of the bond and the stock, respectively. The
corresponding value process Z(t) = Z°(t,w) is given by

Z0(t,w) = u(t)A(t) +v(t) X (t). (5.4)

The portfolio is called admissible if Z%(¢) is lower bounded a.s. (t,w) and -in addition-
self-financing, in the sense that

dZ°(t,w) = u(t)dA(t) + v(t)dX (t); te€][0,T]. (5.5)

This is the usual mathematical way of expressing that no money is going in or out of the
market (A(t), X(t)). It may be regarded as the continuous time limit of the corresponding
natural discrete time condition

Ze(tk_H) = Zo(tk) + u(tk)AA(tk) + ’U(tk)AX(tk) ,
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where

AA(L) = Altesr) — A(ty),  AX () = X (tes1) — X (&) -

Assume from now on that all portfolios § = (u, v) that we consider are admissible. Then by
(5.4) we have

u(t) = | (5.6)

which substituted into (5.5) gives
dZ°(t) = pZ°(t)dt + ov(t) X (2) %dt—l—dBH(t) . (5.7)
By the Girsanov theorem for fractional Brownian motion (Theorém 3.18) we see that
Bu(t) = “—;Et + By(t) : (5.8)

is a fractional Brownian motion with respect to the measure fi, defined on F}H) by

N T 1
dig() = exp (— [ K(EaBu(s) - -2—|K|§) duo() (5.9
where K (s) = K(T,s) is defined by the the following properties: supp K C [0,7] and
T p=p
/ K(T,8)g(t, s)ds = “—L, for 0<t<T. (5.10)
Jo

By Appendix, K (T, s) is given explicitly by

_ (1 —p) 2\1/2—
K(T.8) = o ra i — I~ )G s esm@ =12y e ) (61D

In terms of By (t) the equation (5.7) can be written
dZ°(t) = pZ°(t)dt + ov(t) X (t)dBy(t). (5.12)
Multiplying by e~** and integrating we get
e Z0(t) = e Pt 707 = 5 4 /Ot e ou(s)X (s)dBg(s), 0<t<T, (5.13)

where z = Z%(0) (constant) is the initial fortune.
An admissible portfolio @ is called an arbitrage for this market (A(t), X (t)); t € [0,T] if

Z°0)<0, Z°(T)>0 as and py ({w; 2°(T,w) > 0}) > 0. (5.14)
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From (5.13) and (5.9) we deduce that no arbitrage can erist, because by taking the expec-
tation with respect to fi, we get

Bs, e 2°(T)] = 2°(0). - (5.15)

The market (A(t), X (¢)); t € [0,T] is called complete if for every FI_measurable bounded
random variable F'(w) there exist z € R and portfolio § = (u,v) such that

F(w) = 2% (T,w) a.s. pg. (5.16)

By (5.13) this is the same as requiring that
T A
e TF(w) =z + / e~ ov(t) X (£)dBr(t) . (5.17)
0

If we apply the fractional Clark-Ocone theorem (Theorem 4.13 b)) to G(w) = e T F(w) and
with By (t) replaced by By (t) we get

T A «
e T F(w) = s, [eF| + /O Es, e DFIF™)| dBu(t), (5.18)

where D; denotes the stochastic gradient with respect to fus. Note that the o-algebra ﬁ,fH)
generated by By(s), s <t is the same as .7-}(H).

Comparing (5.17) and (5.18) we conclude that our market is indeed complete. Moreover,
there is a unique initial value

z=2%0) =g, [e"”TF]

and a unique portfolio 8(t) = (u(t),v(t)) needed to replicate (hedge) the claim F'(w). This
initial value is called the price of the (European) claim F. By an approximation argument
we see that the same conclusion holds for any lower bounded .7-":(pH)-measurable F(w) such
that £, [F?] < oo.

We summarize what we have proved in the following:

Theorem 5.1 The fractional Black and Scholes market (5.1)-(5.2) has no arbitrage. It is
complete and the price z of a lower bounded ]:}H)-measumble claim F(w) € L*(lg4) is given
by
z=e ", [F], (5.19)
where [iy s defined in (5.9).
Moreover, the corresponding replicating / hedging portfolio 0(t) = (u(t),v(t)) for the
claim F' is
o(t) = e PT 0o~ IX ()5, [DF| A (5.20)

and u(t) is determined by (5.6), (5.20) and (5.18).
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A claim of special interest is the Furopean call, where
F(w) = (X(T,w) — )", (5.21)
¢ > 0 being a constant (the exercise price). In this case we get:

Corollary 5.2 (Fractional Black and Scholes formula)
The price of the fractional European call (5.21) is

B 1 + 2
Z2=c¢ PT/R T <a: exp [ay + pT — 5 QTQH] c) exp l— 27%2[{] dy . (5.22)

The corresponding replicating portfolio 6(t) = (u(t),v(t)) is given by (5.6), (5.13), and

v(t) = ot PTOX () k(X (1)), (5.23)
where
~ s
Kly) = T / : h(z)dz, at (5.24)
1 logx — pt + 20%¢2H
jo 8y l8Tp a0t (5.25)
g
where
h(z) = OX[w) (we”“”T‘%"QTZH) : (5.26)

Here log denotes the natural logarithm.

Proof By (5.19), (5.3) and (5.8) we have

z = e g, (X T,w)— )]

(5.27)

1 +
= e TE,, (xexp (o u(T) + pT — 502T2H> —c

_ 1 L ' i
= e ”T/R T (&P (ay+PT— §U2T2H> - C> exp l 217{21{] dy (5.28)

which is (5.22).
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Now we show (5.23)-(5.26). By (5.17), the definition of the fractional Clark derivative,
and (5.21), we obtain
v(t) = o te PO X L) VIF(w), (5.29)

where F(w) = (X(T) — ¢)* and V{F denotes the fractional Clark derivative of F when F
is considered as a functional of By = By + Jo 52ds.

However,
Flw) = (X(T)-0o)"
(we 0By (T)+pT—10?T?H _ c)+
= g(Bu(T)),
where

g9(2) = (:ve"z+pT_'”2T2H - c)+ :

Hence by Proposition 4.17, we obtain

VIF = /R ¢.7(Bu(t) — y)g(y)dy,

where g;7(z) is given by (4.16). Applying the integration by parts, we have

Sop - /3PfT(BH ~9)g(y)dy
_ /R Pr(Bu(t) - y)g'(v)dy

Noticing that
A log X (t) — logz — pt + 10%t?H
Bu(t) g X(t) ga pt+ 35

and ¢'(y) = h(y), we obtain the corollary. O

Remark 5.3 One notices that z is indepen.dent of ,u One may compare this corollary with
the classical results for the classical Brownian motion case, e.g. ([17], p. 274-275, Theorem
12.8.6).

6 Appendix

It is interesting to obtain the explicit form of the Radon-Nikodym derivative in (5.9), i.e
the explicit solution K (7, s) of (5.10). Equation (5.10) was studied in details in for example
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[12]. The Lemma 3 of [11] can be applied directly to our equation with c(-) = #-2. Thus the
solution of (5.10) is given by

1 p—=p 1 g
K(T,s) = —
(Ts) HEH —1)dg o

(& e o

dy = 2 (g - H) T(2H — 1) cos(n(H — 2)). (6.2)

where

2
It is well-known that

PQ(% - H) 2—2H

Vo1l g i
- dz = —~2 "/
/0 227w —z)27"dz I‘(3—2H)w
So
d [ 1i_g g, (2-2H)T*(3 —H) | oy
dw/o @ w =2 = TR T
(3 —H) 1 on
T2 2H)w (6.3)
But . .
[ =) = (g —H) (Tt
Hence g T
EE/ wH Y — §)a Hy' 2 H gy = —(T — )z H (6.4)
By (6.1)-(6.4), we have
K(T,s) = kL s3=H(T — )3~H | (6.5)
o
where .
(6.6)

" T 2H(H -~ T2 - 2B @H — D cos(n(H ~ 3)
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