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ABSTRACT. We illustrate the use of white noise analysis in the solution of stochastic partial
differential equations by solving explicitly the stochastic Neumann boundary value problem

LU(z) — c(x)U(z) =0, = €D CRY,
v(z) - VU(z) = =W (z), =€ 0D

where L is a uniformly elliptic linear partial differential operator and W(z), = € R?, is d-
parameter white noise.

1. INTRODUCTION

Since the seminal book by Hida [4] appeared in 1980, there has been a rapid development
of white noise theory and its applications. In particular, white noise theory has found many
spectacular applications in mathematical physics. See, e.g., [5, 7] and references therein.

In addition, white noise calculus turns out to be useful in the study of stochastic differential
equations, both ordinary and partial. See [6].

The purpose of this paper is to illustrate the application of white noise calculus to stochas-
tic partial differential equations (SPDEs) by studying the stochastic boundary value problem of
Neumann type:

(1.1) LU(z) — c¢(z)U(z) =0 for z € D,

(1.2) v(z) - VU(z) = =W (z) for z € OD.

Here D C R? is a given bounded C? domain and L is a partial differential operator of the form
d 0, & 5?

(1.3) L= ; bi(x) bz, T ig—; aij (z)m,

c(z) > ¢ > 0 and y(z) are given functions (satisfying certain conditions) and W (z) = W(z,w),
w € ), is white noise.

One may think of U as a temperature in a medium governed by the differential equation
LU(z) — c¢(z)U(z) = 0. Then the Neumann boundary condition models heat flux across the
boundary which in our case is given by white noise. (See, e.g., [2].)

As pointed by Walsh [9] for similar SPDEs, it is not possible to find a solution u(z,w) of
(1.1)—(1.2) which is a regular stochastic process (random field), unless the dimension d is very low.
To cover the general case it is necessary to introduce some kind of weak solution concept. One
possibility is to look for solutions u(z,w) such that

(1.4) u(-,w) is a distribution (in z) for a.a. w.

This is the approach chosen by Walsh.

For nonlinear SPDEs such an approach causes difficulties because one will have to define nonlin-
ear operations on distributions. However, it is possible to adapt the Colombeau nonlinear theory
of distributions to some nonlinear SPDEs. See, e.g., [8].
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The other possibility is to look for solutions u(z,w) such that

(1.5) u(z, -) is a stochastic distribution (in w) for all z.

Such an approach fits well with the white noise theory, where both the Hida space (8)* and the
more general Kondratiev space (S) of stochastic distributions are to our disposal. Moreover, in
these spaces there is a natural product ¢ (the Wick product) and a corresponding theory for
nonlinear operations on distributions.

In this paper we will use this second approach and look for solutions of the type (1.5). We will
prove that, under some conditions, the equation (1.1)—(1.2) has the unique solution

(L6) () =B [ [ e (- oo (0))ds) W(zi(), ) d6(@)

where (z4,&) = (2:(0),&(@)), & € 0, is the solution of the Skorohod stochastic differential
equation

(17) diBt = b(a:t)dt + O'(il't)d,ﬁt + 7(mt)d€t

where 3; = 8;(®) is the d-dimensional Brownian motion on a filtered probability space (ﬁ, T, 13’”)
The pair (z4,&;) is unique under the conditions that z; € D for all t, & is a nondecreasing adapted
process increasing only when z € 8D. The process ¢ is called local time of z; at 9D and the
process x; is called the reflection (at 8D, at the angle y) of the Ito diffusion y; given by

(1.8) dy = b(ye) dt + o (y:) dfs-

For a more detailed explanation see Section 3. We refer to [1] and [3] for information about
Skorohod stochastic differential equations and the associated Neumann boundary conditions.
The process u(z, - ) defined in (1.6) belongs to the space (S)* for all z.

2. A BRIEF REVIEW OF THE WHITE NOISE THEORY

For the convenience of the reader we recall briefly the concepts and terminology we will use
from white noise theory. For more information we refer to [6].

In the following we let (1, S (R%), B) be the white noise probability space. Here Q2 = S'(R%) is
the space of tempered distributions on R?, B denotes the Borel o-algebra on Q and p is defined
by the property that

(2.1) [ &) = a5 101

for all ¢ € S(R?) (the Schwarz space of rapidly decreasing smooth functions on R?), where (w, ¢)
denotes the action of w € S'(R?) on ¢ and ||¢||> = [y« ¢(2)? dz, dz being the Lebesgue measure
on R?. :

We let {nx}32, be the basis of LZ(R%) consisting of tensor products of the Hermite functions

(2.2) n(z) = 17V (n— D) V2e " Ph, 1 (V22), neN zeR
where

2y d™ o
(2.3) hen(y) = (—1)™e¥ /2dy—m(e—y ), m=0,1,2,...,y€R

are the Hermite polynomials.

The symbol Z denotes the set of all multi-indices & = (as,...,an) where the a;’s are non-
negative integers and n € N. According to the chaos expansion theorem any f € L?(u) can be
written uniquely

(2.4) fw) =) aaHaw)

o€l
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(convergence in L?(u)) where a, € R and

(2.5) Ho(w) =[] hay ((w,ny)) if @ = (1,...,an) € T.
j=1
For —1< p <1 and q € Z we define the Kondratiev norms || - ||, by
(2.6) IF|,, =Y ak(ah)** (2N
a
if F' is the (formal) expansion
(2.7) Fw)=) aaHaw
€T

where (2N)?* = [T}, (25)%% if a = (ou,...,an) € L.
The corresponding Kondratiev Hilbert spaces are defined by

(2.8) (8)p,g ={F : IFllp,q <00}
The Kondratiev (stochastic) test function spaces are defined by (if 0 < p < 1)
(2.9) (S8), = ﬁ (S),,»» With the projective topology.
=1
The Kondratiev (stochastic) dist:"ibution spaces are defined by (if 0 < p <1)
(2.10) S)_,= D (S)_,,_r» with the inductive topology.
r=1

In particular, if we choose p = 0 in (2.9) we get the Hida test function spaces

(2.11) (8) = (8)o

and if we choose p = 0 in (2.10) we get the Hida distribution spaces
(2.12) (8)" =(S)_0

The (singular, d-parameter) white noise is defined by

(2.13) Zﬂk z)H . (

where € = (0,0,...,1,...) with 1 on the kth place. We easily verify that W (z, -) € (8)* for all

z by considering
LCRIED P ) ()12~

= an(-’ﬂ) 2k)™9 < oo for all ¢ > 1,
k
because

sup ( sup |nk(z)]) < oo.
k  zeRd4

, for all ¢ > 1 and in particular W(z, -) € (S)".

Hence W(z, -) € (S),._
)= Zael aqHy(w) € (S)_; we can associate the expansion

To each F(w
(2.14) HF(z) = Zaazo‘ for z = (21, 23,...) €CY
a€cl
where CV is the set of all sequences (z1, 22, . ..) of complex numbers z; and
2% =222 fa=(0q,as,...)

The function HF(z) is called the Hermite transform of F. One can characterize the elements of
(8)_, by means of their Hermite transforms as follows:
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Theorem 2.1. A formal expansion
Flw)= Z aoHq(w)
a€cl

belongs to (S)_; if and only if there exists ¢ < 0o such that

HF(z) = Z ag 2%

a€l

is a (uniformly convergent and) bounded analytic function on the infinite-dimensional ellipsoids
(2.15) Ko(R) = {(1, G2, ) €CV 2 Y [CP(2N)™ < R?}.
a#0

For a proof, see [6], Theorem 2.6.11.
The key to the solution of stochastic partial differential equations of the type (1.1)-(1.2) is the
following, which is a special case of Theorem 4.1.1 in [6].

Theorem 2.2. Suppose we seek a solution U(t,z) : G — (S)_; of a linear stochastic partial
differential equation of the form

(2.16) A(t, 2,04, Vs, U, W(z)) =0.
Suppose the Hermite transformed equation
(2.17) A(t,x,at,Vm,u,W(:v,z)) =0

has a (strong) solution u = u(t,z,z) for each value of the parameter z € Ky (R) for some q < oo,
R < 0. Moreover, suppose that u(t,z,z) and all its partial derivatives involved in (2.17) are
uniformly bounded for (t,z,z) € GxKy(R), continuous with respect to (t,z) € G for all z € Ky (R)
and analytic with respect to z € Ky (R) for all (t,z) € G.

Then there exists U(t,z) : G = (S)_, such that u(t,z,z) = HU(t,z,2) for dll (t,z,2) €
G x K, (R) and U(t,z) solves (in the strong sense in (S)_,) the equation (2.16).

3. SOLUTION OF THE STOCHASTIC NEUMANN BOUNDARY VALUE PROBLEM

Before we state and prove the main result of this paper we briefly review some results about
Skorohod stochastic differential equations and deterministic Neumann boundary value problems.

In the following we let D be a bounded domain in R? with a C? boundary. This means that
the boundary of D, 8D, is locally the graph of a C? function (a twice continuously differentiable
function). We assume that we are given Lipschitz continuous functions b: R* — R? and o: R? —
R%*4 and a C? function v : D — R? such that

(3.1) y(z) - v(z) > 0 for all z € 6D

where v(z) is the inward pointing unit normal at = € 0D.
Consider, as in (1.7), the following Skorohod stochastic differential equation (in the unknown
processes T¢, &)

(32) dzy = b(wt)dt + O'(CISt)d,Bt + ’y(d?t)dft, Tog =X € D

where we require that z;, & are adapted and

(3.3) xy € D forall t > 0.

(3.4) &; is continuous, nondecreasing and & increases only when z; € 9D.

The process z; is called the reflection at 8D of the process y; given by
(3.5) dys = b(y)dt + o (y:)dBs, yo=z€D

and &; is called the local time of x; at 0D.
The following result can be found in [1], Theorem 12.1:

Theorem 3.1. There exists a unique solution (s, &) of the Skorohod stochastic differential equa-
tion (3.2)-(3.4).
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We proceed to consider the connection to Neumann boudary value problems:
With b, o as above define

d Ou d 8%u
(3.6) Lu(z) = Zbi(x)% + > aij(x) S,
i=1 tog=1 t
where
(37) aij(a:) = %(UO’T)“(.’E) = %Zaik(x)akj(z).
k=1

Assume that L is uniformly elliptic, i.e., there exists an € > 0 such that
d

(3.8) > aij(@)yiy; > elyl®

4,j=1

for all y = (y1,...,yn) € R
Let f be a C? function on 8D and let ¢ be a C? function on D such that there exists € > 0 with

(3.9) c(z) > éfor all z € D.
The Neumann problem is to find a function u € C?(D) such that
(3.10) Lu(z) — ¢(z)u(z) =0 forz € D
and
(3.11) Vu(z) - y(z) = — f(z) for z € OD.
Recall that if h: G C R¢ — R is a given function and 0 < A < 1, we define the Holder norms
|h(y) — h(2)|

3.12 h = sup |h(y)| + sup ———+

(3.12) IAllox @) yeGl @l U =P

and

(3.13) IBllcz+r@y = D 10%hllora)

0<|a]<2
where the sum is taken over all multi-indices a = (ay,...,aq) with |a| = a1 4+ -+ g < 2 and
a1, .. H%d
50h = 0 e}

—F—F7h
ozt - - 0zg?

The following result can be obtained by combining Theorem 6.2 with the conclusion of Section
I11.7 in [1] (see also [3]):

Theorem 3.2. We have that

(i) Under the above assumptions there exists a unique solution u € C?*(D) of the Neumann
problem (3.10)—(3.11).

(ii) Moreover, the solution can be represented in the form
o] t
(3.14) ue) =B | [ e (= [ elwis) o
0 0

where (z, &), with probability law P, is the solution of the Skorohod equation (3.2)- (3.4)
and E® denotes expectation with respect to P®.
(iii) For all X € (0,1) there exists K < oo such that

(3.15) lullgz4xmy < K Nl fllcrom)-

We can now state and prove the main result of this paper:
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Theorem 3.3. Let D, b, o, v, L and c be as above. Then the stochastic Neumann problem

(3.16) LU(z) — c(z)U(z) =0 forz € D,
(3.17) v(z) - VU (z) = =W (z) for x € D,
where W (z) = W (z,w), w € Q, is the d- parameter white noise, has a unique solution
U:D— (8)"
given by
R o) t
(3.18) U(z) =U(z,w) = E° [/ exp ( —/ c(zs)ds) W (zg, w)dy |
0 0

where (x4,&;) solves the Skorohod equation (3.2)—(3.4).

Proof. The key to our method is Theorem 2.2. So we consider the Hermite transformed equation
(3.19) Lu(z, z) — c(z)u(z,z) =0 for x € D,

(3.20) v(z) - Vu(z, 2) = —W (z, 2) for z € D

where z = (21, 23,...) € C) (the set of finite sequences in CV). As before the differential operators
L and V act on the z-variable and z = (zl, 22, . ) € C) is to be regarded as a parameter. Fix

ze QY.

By considering separately the real and imaginary part of

D=3 m@)m
k=1

we get by Theorem 3.2 that the unique solution u(z, z) of (3.19)-(3.20) is given by

(3.21) u(z,z) = E* [/Ooo exp (— /Ot c(zs)ds)W (cct,z)dft]

where (z¢, &) solves the Skorohod equation (3.2)—(3.4). Moreover, u(z, z) and all its partial deriva-
tives up to order 2 are uniformly bounded for (z,z) € D x Ky (R) for all R < co. This follows by
(3.15) plus the fact that

IW (-, 2)llon@p) < SUP||77k||GA(aD) Z |2k ]
k=1

<M Z(%)“2 Z |2x [ (2K)*

k=1 k=1

oo
=M 3 |7 PN
k=1

< M, Z |za|2(2N)2oz
a#0
< MyR? if z € Ko (R)
and similar estimates for the partial derivatives. Similarly we see that u(z,z) is analytic with
respect to z € Ko (R) for all z € D. So by Theorem 2.2 there exists U(z) € (S)_; such that

u(z, z) = HU(z, 2)

for all (z,2) € D x Ky (R) and U(z) solves (in the strong sense) the stochastic Neumann equation
(3.16)~(3.17).
Finally we verify that U(z) € (S)*: Since U(z) has the expansion

Uz,w) = ng H, (W),
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with

gr(z) = E® [/OOO exp ( — /Ot c(zs)ds) ni () dé;

that
we see tha e -
sup {gr(z)e™1(2N) }= sup {gi(z)k?} < oo for all ¢ > 0.

A REMARK ABOUT THE SOLUTION

As pointed out in the introduction, our solution (3.18) is a stochastic distribution. This means
that — just like for ordinary deterministic distributions — it acts on its corresponding test function
space, which in this case is the space (S)* of Hida test functions. If we choose ¢ € (S), then the
action of U on v is given explicitly by

v, 4) = B* [ [T (- | o(ay)ds) (W (22, -),¢>d§s]

where
(W (e, ), 9) = 3 (s (Hoo ) = 3 @) (i) )
k=1 k=1

e

Mk (s) By [{w, ne)p(W)] -

£
I
—

then

~

In particular, if ¥(w) = ¥ (w) = (w,m

(U,y) = E* [/OOO exp (— /Ot c(:cs)ds)m(ms)dfs] .

We could regard this as the average of U with respect to the (Gaussian) stochastic weight function

Y (w)-
CONCLUDING REMARKS

The main purpose of this paper has been to illustrate how white noise analysis can be used
to solve stochastic partial differential equations by applying the method to stochastic Neumann
boundary value problems of the type (1.1)—(1.2).

By inspecting the proof we see that the same method applies to the more general equations

LU(z) — c(z)U(z) = —g(z) in D
v(z) - VU(z) — M=z)U(z) = — f(z) on 0D

where f: 8D — (S)* and g: D — (S)* are given (S)"-valued functions and A(z) > 0 is smooth.
Moreover, the conditions we have assumed on L, ¢, v, A and D can be relaxed. In fact, we do
not even need to assume uniform ellipticity if we allow ourselves to consider (S)*-valued solutions
U(z, -) which solve the equation in a week sense with respect to z.
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