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Abstract

The strong Euler scheme for stochastic differential equations is the stochastic
analog of the Fuler scheme for ordinary differential equations. If 7 is a
partition with mesh(7)< § and Y? denotes the approximation of X, where
X denotes the solution of the SDE, then under some moment conditions we
show that E[|X(T)—Y*(T)]] < C-83. Le the strong Euler scheme converges

with order %




1 Introduction

Lévy processes arises in a wide variety of different areas such as laser physics,
mathematical finance and turbulence. This type of processes include familiar
processes such as the Brownian motion, the Poisson process and the stable
processes. Lévy processes posess a lot of properties which are desirable both
from a modelling and a mathematical point of view. '

In the case where the Lévy process is the Brownian motion the stochastic
Fuler scheme and higher order schemes are treated extensively in [2]. The
weak Euler scheme for Lévy processes has been treated by Taqqu and Protter
in [3]. This paper gives a treatment of the strong Euler scheme for Lévy
process.

We will consider stochastic differential equations of the form:

dXt = a(Xt)dt + b(Xt)st y XO = Tg (1)

where a and b are some deterministic functions and L is a Lévy process.
An explicit solution to differential equations of this type are hard to find,
if possible. Instead of finding an explicit solution one can try to find an
approximate solution. One common way to make such an approximation is
to discretesize the equation according to the so called Euler scheme. The
stochastic Euler scheme is the stochastic analog of the classic Euler method
for stochastic differential equations.

We say that Y™ converges to X strongly if Y™(7T') converges to X(7") in
L*(P). The Euler scheme algorithm for SDEs of the form (1) is given by
Y‘s(to) = g and

YO(te) = Yo(tpoa) + a(Y(tr 1)) Aty_y + (Y (t5_1)) ALy (2)

where Aty =ty —tg and ALy = L(tg41) — L(t). Since L is a Lévy process
ALy, is mutually independent of AL, for all & # m and all the A Lgs have the
same distribution. Often this distribution is known, for instance when the
Lévy process is a Brownian motion we know that A By is normal distributed.




2 Error bounds for truncated Ito-Taylor expan-
sions

The rate of convergence proof for the strong Euler scheme has several steps.
The first step is to obtain error bounds for truncated first order Ito-Taylor
approximation. The way we obtain these bounds are similar to the deter-
ministic case where one can obtain error bounds using Taylor expansion. In
the stochastic case the method is much the same, but istead of using Taylor’s
formula we use Ito’s formula. In this way we obtain an expression for the
approximation error we make for each time discretization.

For notational convenience we make the convention Ry = R\ {0}. Let
L be a square integrable Lévy process. Then the process can be written
Li = oB; + fRo z(p — m)(t,dz), where p is a Poisson random measure and
7 its compensator. In the Lévy process case this compensator is equal to
m(dt,dz) = v(dz)dt where v is the Lévy measure. The problem in this
section consists of attaining some error bound on the truncated Ito-Taylor
expansion of X. We start with a little lemma,

Lemma 1. Assume X; is any process adapted to the filtration generated by
the Lévy process Ly = o By + [ 2(p — m)(t,dz). Then

t

Elsup | [ f(X;)ds|’] <T*E[ sup |f(X,)["] (3)

0<t<T Jo 0<t<T
E [Oigng . f(X,)dB,|*] <ATE [Os<tt1p |F(Xo)] (4)
E sup | f(Xs, 2) (e — m)(ds, dz)] }
0<t<T Ro
<ar | Bl (G, etd) )

Proof. Inequality (3) is obtained by using the Cauchy-Schwarz inequality.
The second inequality (4) is obtained by first using Doob’s maximal inequal-
ity, and then the Ito isometry the following way:

t

E[sup | [ f(X,)dB,|’] §4E“/0 F(X,)dB,|?]

0<t<T Jo

- 4E[/0 |F(X,)[2ds] < ATE[ sup |F(X:)[]

0<t<T




Inequality (5) is obtained by using first Doob’s maximal inequality, then the
Ito isometry and finally Tonelli’s theorem the following way:

E|[ sup [ f(Xs, 2)(p — m)(ds, dz)*]
0<t<T Ro

§4E[| / [ 1 )= s, )

4E[/0 ; |F(Xs, 2)|Pv(dz)ds]
< AT /R0 E{ sup |f(Xy,2)[*]v(dz)

0<t<T
(]
Theorem 2. Assume a(-) and b(+) satisfy the Lipschitz conditions
la(2)] + [b(z)] < Ci(1 + |2]) (6)
la(z) — a(y)| + [b(z) — b(y)} < Calw -y (7)

that a',a",b',b" all are totally bounded, and that fz 1% ‘v(dz) < oco. Let

X denote the solution to equation (1) and assume that X1 has finite fourth
order moment. Then

B[ sup [X(t) ~ Tx(t)f] < OT° ®)

for some C not depending on T, where Ty(t) = « + a(z)t 4 b(z) L, is the first

non-trivial truncated Ito-Taylor expansion of X.

Proof. Let Sy = sup, [¢/(@)] , S = sup, |a"(2)] , S = sup, [6(x)] and
Sy = sup, |b"(z)|. The differential equation can be written,

X, = o + /0 ta(Xs)ds—l— /0 tab(Xs)st+ /0 t /R 0 b(Xs)z(u — m)(dt, dz) (9)




Ito’s formula gives us the following formulas for a(X;) and b(X,):

a(X:) = a(zo) —l—/o (a(X5)a'(Xs) + %a%z(Xs)a”(Xs))ds |

t

ob(X,)a'(X,)d B,

+

S~ o S—

t

+ [ ] (@l +(06)2) — a(X,) (1 — m)(ds, d2)

S

Ry

t/ (a(Xs + b(X5)z) — a(X;) — o' (X5)b(X;)2)w(ds, dz) (10)

Ry

+

and

o+

b(X,) = b(zo) + /0 (a(X, )b'(X)+30—2b2(X )8 (X,))ds
/tab(X \¥/(X,)dB, +/ /R (X, +5(Xs)2) = b(X.) (e — m)(ds, dz)
/ / b(X, + B(X,)z) — b(X,) — B(X,)b(X.))2n(ds, dZ) (1)

Applying (10) and (11) to a(X;) and b(X;) in equation 9 we get:

12

X, = 20 + a(@o)dt + b(zo) Ls + ZRi (12)
where -
Ry = /0 t /0 (a(X)d(X) + %a2bQ(X1)a”(Xl))dlds
o /0 t /O " b(X))a!(X,)dBuds
Ry = /Ot /0 (X0 + b(X0)2) — a(X) (s — m)(dl, dz)ds
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Ro = /0 /R 0 /0 s(a(X,)b’(X;)—l—%azb2(Xl)b”(X1))dlz(u—w)(ds,dz)

Rio = L t /R 0 /0 " ob( X)W (X)) dByz(s — 7)(ds, d2)

= [ 04 6002 = 5060 0 = )l )= e, )
Rys = /0 t /R 0 /0 s /R (B B)2) = (X) — H(XHX)2)

x m(dl,dz)z(p — m)(ds, d) (13)

Let r;(-,z) denote the kernel of R;. We now want to obtain bounds on
the r;’s. Starting with ry:

E[ sup |ri(Xs,2)|*]

0<t<T

= B[ sup 1a(X)a'(X) + 50 ()" (X
< Bl sup {2(a0Xa' (X)) + 204 (X" ()]
< (2ASw)E[ sup [a(X)[2] + 2ot (Sw)*E[ sup b(X)[4]) (14)

0<t<T 2 0<t<T

using first the Lipschitz condition, eq.(6), and then the assumption that X
has finite fourth moment,

< A(82)*(CL) E[ sup (1 + |X4|%)] 4 20*(San)?(C1) E[ sup (1 + [X:]*)?]
0<t<T 0<t<T
< Cp,

A bound for 7, is obtained by first using the Lipschitz condition eq.(6),
and then the assumptions about the moments of X,

E[ sup |T2|2] = E[ sup |ab(Xt)a'(Xt)‘2]
0<t<T 0<t<T

< 0*(Su)*2(C1)*E[ sup (1+ |Xi|*)]

0<t<T
< Ch,




Similarily we get a bound for r3 by first using the Lipschitz condition, eq.
(7), then the Lipschitz condition eq.(6) and finally the moment assumption
on X in the following way:

E[ sup |rs(Xa,2)] = B[ sup [a(X, +b(Xs)2) — a(X.)|?]
0<t<T 0<t<T
< C’zE[ sup |b(Xt)|2,z2]
0<I<T

< 22C2(Ch)*E[ sup (1 +|X,|?)]

sup
0<t<T
< 2*Ch,

We can by using the preceeding techniques obtain similar bounds on the
following r; terms:

E[ sup IT5(Xt>Z)[2] < CRs E[ sup |T6(Xtaz)l2} < CRe
0<t<T 0<t<T

E[ sup IT7(X17Z)’2] < Z2OR7 E[ sup |T9(Xtaz)|2] < CRg
0<t<T 0<t<T

E[ sup ]rlo(Xt>Z)|2] < CRm E[ sup |7"11(Xt,2)|2} < Z2CR11
0<t<T 0<t<T

Using Lemma 1 twice, we obtain the following bounds:

B sup |Raft] < Cn,T*

0<t<T

E[ sup |R2|2] < Cp,T°

0<t<T

E| sup |Rs*] < Cg, / 22(dz)T° < Cp,T°
0<tLT R

B[ sup |Rsl!] < CayT?

0<i<T

E[ sup |R’] < Cg,T?

0<t<T
E[ sup |R7|2] < C’R7/ 22v(d2)T?* < C~'137T2
0<t<T R

Bl sup 1ol < Cn,T°
0<t<T

E[ sup !R10|2] < Cg,T?
0<t<T

E[ sup |R11|2} < CRH(/ z2l/(dz))2T2 < CNVRMT2
R

0<t<T

7
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We want similar bounds on R4, IZg and Ri;. These terms are treated
separately since the bounds on these terms are obtained with a different
method. Since the bounds for Rs and R, are obtained in almost the same
way as the bound for Ry, we will only treat Ry. First we use Taylor’s formula
to expand a(-) around Xj,

all(y)

a(X; +b(X})z) = a(Xy) + o/ (X)b(Xy)z + b(Xy)?2*

for some y between X; and X; + b(X;)z. Hence

ra(Xor2) = a(Xo + b(X0)2) — a(X) — d(X)b(X0)z = W pix)22 (16)

Then we use the Schwarz inequality and (16),

[ sup |/ / 1(Xs, 2)v(dz)ds|?]
0<1<T Ro
< TQE[ sup | 1~4(Xs,z)1/(dz)|2}

0<t<T JR

"
<T?°E] sup | #b()(t)zzzv(dz)lﬂ
0<t<T  JRy

T Sau(/R 2°v(dz))*E| sup b(X:)?]

0<t<T

<

o~

Now using first the Lipschitz condition eq.(6), and then the moment assump-
tion on X we obtain

1
< 7(5u)¥( / Pu(d) TP A(C '] sup (14 X)) < CrT* (18)
R 0<t<T
Lemma 1 now yields the desired result, namely

E[ sup |R4[2] < Cp,T*
0<t<T

The bounds for Rg and K3 are similarily given by:
E[ sup [Rgm < Cgr1° E[ sup |R12[2] < Cr,T?

0<t<T 0<t<T

Finally by using the triangel inequality,

E[sup |X(t) — Tx(t)] [ sup IZRI ZE sup |Ri|*] < CT?

0<t<T 0<t<T 0<t<T

O




One of the assumptions in Theorem 2 is that the solution of the SDE
(1) has finite fourth order moment. Conditions concerning this can be found
in [1, pp. 144].

Corollary 3. Let R;, i=1,..,12 be the remainder terms in Theorem 2, then |
. 12
R = > R; admits the following representation:

=1
; t+8 t+6
R(t,t+6) = / 91(t,8)ds + / ga(t, s)dB;s
t s t
+ [ ] ot s)atn - m)(as, 2
¢ Ro
Where E[SUPtgsgt+5 |g:(t, 8)|2] < Cid for i=1,2 and 3, and some C; not de-

pending on 6.

Proof. From the proof -of the theorem we have that the kernels r; of the
remainder terms R; (equations (13)) satisfy

E[ sup |ri( X, 2)°] < K, (19)

0<t<T
for 1 €4{1,2,5,6,9,10} and some K; not depending on T. And

E[sup |ri(Xy,2)|"] <2°K, (20)

0<t<T

for 1 € {3,4,7,8,11,12} and some K, not depending on 7T'. The result then
follows by applying Lemma 1 to the remainder terms ;. O




3 The strong Euler scheme

Theorem 4. Let X denote the solution of eq. (1) and assume that the condi-
tions in Theorem 2 is satisfied. Let {1} be a random partition of the interval
[0,T), where P(|Tny1 — Tn] < &) =1 for all n. Define
Tn+1l Tn+1
Yo =Y, +/ a(Yn)ds —I—/ b(Yn)dLs, Yo =0 (21)
and set

Y(t) =Y, + / Cu(V)ds + / b(Y,)dLs (22)

Then

N~

E[|X(T) - Y(T)] < B[ sup |X(t) - Y($)]7 < C6

0<t<T
for some C not depending on §.

Proof. Define a stochastic process {X,} by
Tn+1l Tn41 »
KXoy1 =X, + / a(X,)ds + / b(Xn)dLs 4+ R(Tn, Tnti) (23)

where R = > R; is as in Corollary 2. By Corollary 3 R admits a representa-
tion,

Tnt1 Tn41
Rlrntost) = [ nirns)ds + [ ran, i,

Tn41 "
+/ /7am»vw—wxwda
Tn RO

where
B( sup [ s)?) < Clrp — ) (25)
Tn<5<Tntl
E( sup  |ra(1,8)*) < C(rapr — ) (26)
Tn<s<Tp41
E( sup  |rs(1a,8)[*)} < C(Tats — 70) (27)
Tn<Ss< Tl

for some C' not depending on §. We have the following expressions for X:

xo=ut [

Tn

Tn41

Tnt1
a(Xy,)ds + / b(Xn)dLs + R(7a,t) (28)

10




Xn—Xo =) (Xi— Xi1)
i=1
_Z/ Hds+/ b(Xie)dLs + R(rin, ) (29)
From which we obtain the following representation for X and Y respectively:
) =z + Z / Xi_1)ds + / b(X;-1)dLs) + /t a(X,)ds

+ / b(Xa)dL, + Z R(ri—1,m) + R(7u,t) (30)

n =1

YO+Z/ 1ds+/r:b(x )dLy)
+ /r:a(Yn)der /t b(Y,)dL, (31)

where n = n(t,w). Set Z(t) = E[ sup |X(s) — Y(s)|?] and define a function
0<s<t
p(t) = maz{n : 7, <t}. The next step is to find a bound on 7,

2(6)=Elsp (/" oXemt) = af¥ea)dl)

+/s a(X,) — a(Y, dl+Z/ — b(Y;_1)dLy)
+ [ sb(x,»~b<msz+ZR<n-1,m+R<Tn,s>m )

Then using the inequality (a + b + ¢)? < 3a® + 3% + 32,

s

<3E[sup | [ a(X,a) — a(Yy)dl|’]

0<s<t JO
+3E[8up| b(Xpa)) — (Vo) dLul]
0<s<t
+3E[sup | [ ri(p(l),0)dl
0<s<t 0

+/ dB,+/ /RO (p—m)(dl,dz)[’]  (33)

11




again using the inequality (a4 b+ ¢)? < 3a®+3b? 4+ 3¢? then Doob’s maximal
inequality and the Ito isometries,

<37 Ja(X) — oY)l
+ 240" B[( / b(Xp(r)) — b(Yor)dB)?]

+24B(( /0 /R (B(Xpwy) — b(Ypw))2(in — m)(dl, d2))?]

+ 9TE[/Ot Iri(p(1),1)|?dl] + 36E[/0 Ir2(p(1), 1)|dl]
+36/R z2z/(dz)E[/0 Ira(p(1),1)|2dl] (34)

Then we proceed by again using the Ito isometries
t
< 3T(Cr)"E| / | Xo) = Yo |dl]
0
¢
+240%(Co)" B / [Xp0) = Yoo *dl]
0

+24(Cy)? / 2u(d2) B /0 X0 — Yool’]

Ry

+ (9T + 72) /OtE[maX Iri(p(1),0)]?] dl

1<i<3

<d /t E[sup |X(1) = Y()*]ds + (97 + 72)TCS

0<I<s
t
0

where d; and dy are constants not depending on §. By Gronwall’s inequality
we then obtain the following bound on Z(¢):

t
2(t) < dad + dy / eh-d,6ds < dy(1 + dTeB TS < C5 (36)

0

Or, equivalently: E(SuPogtST IX(t) — Y(¢)|?) < C§. The proof is now com-
pleted by using the Cauchy-Schwarz inequality,

N[=

)

=
[S1C

E[sup [X(t)-Y(#)|] <E[suwp |X@t)-Y@®)]?<C

0<t<T 0<t<T

12
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