AN OBSTRUCTION TO ISOMETRIC IMMERSIONS OF THE
THREE DIMENSIONAL HEISENBERG GROUP INTO R*

HANS JAKOB RIVERTZ

ABSTRACT. It is known that three dimeénsional Riemannian spaces of negative
curvature are not locally immersable into the Euclidean four-space R4, The
Heisenberg group with an arbitrary G-invariant metric does not have negative
curvature. In this paper we will prove that there are no local isometric im-
mersions of the three dimensional Heisenberg group into the Euclidean space
R4,

1. INTRODUCTION

A special case of a result, due to Otsuki [3] is that if the sectional curvature of a
Riemannian manifold is strictly negative, then any local isometric immersion of the
Riemannian manifold into an Euclidean space is of codimension at least one less
that the dimension of the manifold. As a special case, this result gives obstructions
on local isometric immersions to a wide class of Riemannian manifolds of dimension
three into R*.

The Heisenberg group equipped with some G-invariant Riemannian metric does
not have negative sectional curvature. The following theorem gives an obstruction
to the existence of local isometric immersion for all G-invariant metrics of the
Heisenberg group.

Let * denote the Hodge star operator, and let R : /\2 ™™ — /\2 TM denote
the curvature operator of a Riemannian manifold M. Let C' denote the covariant
derivative of R.

Theorem 1.1. The following formula is an invariant of local codimenston 1 iso-
metric immersion of a three dimensional Riemannian manifold M into Euclidean
space:

3
(1.1) F(R71,C) = (xo R7 o Calei), &),

i=1
where Cz(X) = (Vzx)R)(E(X) A X) and = is an endomorphism of V which
permuting two of the vectors and fizes the third vector in the basis {eq, e2,e3}. This
means that if R and C are the curvature tensor and its covariant derivative of an
immersed manifold of codimension 1 into Buclidean space, we have f(R™,C) = 0.
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Remark 1.2. In (1.1) we can replé,ce R~! with the transposed cofactor matrix of R
without violating theorem 1.1.

Theorem 1.3. There is no isometric immersion of the three dimensional Heisen-
berg group equipped with a G-invariant metric into the Buclidean space R

2. ON LOCAL ISOMETRIC IMMERSIONS

Let M denote a Riemannian manifold and let p be a fixed point in M. For
an eventual local isometric immersion, let a be the second fundamental form and
let 8 be its normal covariant derivative. Recall that by the Codazzi equation,
we have that § is symmetric. Define L and B by (L(X),Y) = (a(X,Y),€) and
(B(X,Y),Z2) = (B(X,Y, Z),£), where X, Y, Z € T,G are tangent vectors at e and
¢ € N.G is a normal vector of the immersion at e.

Proof of Theorem 1.1. The Gauss equation gives R~ = L™ A L™! and the pro-
longed Gauss-Codazzi equation is (Vo R) = L A B(T,e) + B(T,e) A L, (see [2].)
Thus, C=(X) = L(E(X)) A B(E(X), X) + B(E(X),E(X)) A L(X). Therefore,
BT 6 Ca(X) = 2(X) AL~ 0 B(E(X),X) + L~ o BE(X),E(X)) A X. Now,
since (x(X AY), Z) = det(X|Y|Z), we have

(2.1) (xo R™1oCg(X), X) = det(E(X)|L™! o B(E(X), X)|X)

+det(L™ o B(2(X), E(X))|X|X)
= det(L~) det(L(E(X)) | BE(X), X)[L(X)) +0
=det(L71)(x o R(E(X) A X), B(E(X), X)).

[1]

We can assume that = permutes e; and es. Therefore

(2.2) f(R7Y,0)
= det(L"l)(R(ez Ae1), Blea,e1)) + det(L"l)(R(el Aes), Bler,e2)) = 0.
O

3. ON THE CURVATURE OF THE HEISENBERG GROUP

3.1. On the Levi-Civita connection of homogeneous spaces. We recall some
facts about homogeneous manifolds.

Definition 3.1. A Riemannian space M is called homogeneous if the isometry
group acts transitively, i.e. for each pair of points of M there is an isometry which
takes one of the points to the other.

A homogeneous space can be modeled by a quotient G/H of Lie groups G D H,
where H is compact.

Definition 3.2. A homogeneous space is a reductive homogeneous space if there
exists a vector space decomposition g = b+ m of the Lie algebra g of G where m is
invariant under the action of . Without the metric data we will denote G/H as
an abstract homogeneous space.

Definition 3.3. If a Riemannian metric of G/H makes it to a homogeneous space,
the metric is said to be a homogeneous metric.
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Let M = G/H be an n-dimensional abstract reductive homogeneous space, and
let (,) be a H invariant metric on m. Then the metric induced by {,) is homoge-
neous. Let {Zf,...,Z}} be Killing fields on M which have linearly independent
values at the point 0 = eH in M, where e is the identity element of G. This makes
a local Killing frame in a neighborhood U, of 0. Define g;; = (2}, Zf). Let X* and
Y* be Killing fields on M.

Lemma 3.4. Let the data be as above. Then Vx:Y* =3 a'Z} where
] il * * *
@ = S VL) Y 2 X0) + (X, 51,
J
Proof. Let Vx.Y* =Y a'Z}. It is well known (see e.g. {1, Lemma 7.27 on page
183]) that if X*, Y*, and Z* are Killing fields, then
1
(1) (Txe ¥, 2% = (00 Y7L 20 4 (Y 2 X0 + (X7, 20, ¥ 7))
Therefore, we have
Zgijai = (szY*, Z;>
1
=5 {{IX", Y7, 25) + (V™. 251, X7) + ([, 251, Y )}
|

3.2. The Heisenberg Lie-algebra. The Lie-algebra of the three dimensional
Heisenberg group is known to be on the form shown in figure 1. It is not diffi-

[J|e1 ez e3
e | O 0 0
e 0 0 €1
€3 0 —e] 0

Ficure 1. Multiplication table of the Heisenberg group

cult to see that for any inner product on the Heisenberg Lie-algebra, we can do a
Gram-Schmidt process and obtain a new basis of perpendicular vectors satisfying
the same multiplication table in figure 1.

By implementing lemma 3.4 into a computer by using the algebraic programming
system Maple, we obtain the nonzero components of the curvature tensor and its
covariant derivative:

_ _1 3
Risiz = —g922911
1 3
Risis = —39s3911
3
Rasos = 3911
_ 1 3
Riseze = 5922911
_ 1 3
Rizess = 5933911

Remark 3.5. In the above expressions we have used as convention that the deter-
minant of the metric tensor is 1 at the identity.
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Let E be the endomorphism of the Heisenberg Lie-algebra which permute e; and
ez and fixes e3. Now, Cz(e1) = Rai2s.262 A €3, C=(e3) = 0 and Cz(es) = 0. Thus,

we have xo Rl o C'E(el) = R“12323R2123;2el. Thus f(R—l,C) = —%gzzgnz # 0.
This proves theorem 1.3.
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