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Chapter 1

Introduction

Good understanding of fluid flow and behavior makes us able to design better equipment
that last for a longer time, it will save ass a lot of money and is better at performing the
task it is designed for. It will save as a lot of money by reducing construction cost (we
don’t need to scale design up to make it stronger). Therefor a well performed analysis of
the fluid motion is a good investment.

Unfortunately turbulent fluid flows which are ”chaotic ” in nature are much more
common in the physical world than the laminar ”well behaved” flows.

All fluid motions can be described by the Navier-Stokes equations. Unfortunately
there is no analytical solution to these equations at the present moment. And solving the
Navier-Stokes equations numerically has a high computational cost. Meaning that if you
want good accuracy you need a extremely fine mesh resolution.

So all of the points mentioned above, necessity of solving for turbulent flows, problems
with solving the Navier-Stokes equations, ..., resulted in the development of turbulence
models. Models that can describe and catch the main features for turbulent motion.
Several turbulence models have been developed for describing turbulent flows. I will hare
only mention two: RANS and LES. There is ups and downs with both models depending
on what kind of problem wee want to solve.

In this thesis we will be focusing on finding pressure fluctuations and velocity fields
in a bent pipe section with a short radius of curvature. We will be working alongside
a article written by Tanaka[] at the Japanese Atomic Energy Agency (JAEA). The bent
pipe section is a part of the cooling system of a new nuclear reactor design. You can see
a illustration of the reactor in Figure (1.1). The design has a two loop cooling system. In

Boundary Conditions for Numerical Simulations
Um [m/s] Re [-] dt [ms] Working Fluid Mesh

B4 9.2 3.7× 106 1.0 Water at 20◦C A
B7 9.2 3.7× 106 0.1 Water at 20◦C B
B8 3.08 1.2× 106 1.0 Water at 20◦C A
B9 0.8 0.3× 106 1.0 Water at 20◦C A
B10 9.2 8.0× 106 1.0 Water at 60◦C A
B11 9.2 1.4× 107 1.0 Sodium at 550◦C A
D0 9.2 4.2× 107 0.1 Sodium at 550◦C D

Table 1.1: Table of cases from TANAKA et al. [9]

1



2 CHAPTER 1. INTRODUCTION

each loop hot liquid sodium, which is the cooling liquid, will flow from the upper plenum
of the reactor vessel, through the bent pipe 1 and into a heat exchanger (IHX) where the
liquid will be cooled down. Finally the cold cooling liquid will be pumped back to bottom
of the reactor core through the two ”Cold-legs” and the cycle can restart.

At normal working capacity the averaged velocity of the cooling liquid at he beginning
of the ”Hot-pipe” elbow will be ∼ 9.2m/s with 5% turbulence intensity. And with a
temperature of ∼ 550◦C of the liquid sodium, we get a flow in the category of high
Reynolds numbers flows. A simple estimate of the Reynolds number for circular pipe flow
can be found by the formula

Re =
ρvD

µ
. (1.1)

Here ρ is the liquid density, v is the mean velocity, D is the pipe diameter and µ is the
dynamic viscosity. In our case we get that

Re ≈ .

Equation (9) can be found in most text books covering the subject turbulence.2 If we
next calculate the relative friction factor

ε

D
, (1.2)

and then look at the diagram in Figure (1.2), we see that our flow is well inside the
region for turbulent flows.

1Referred to as the hot-leg in TANAKA et al. [9]
2I found it at Wikipedia. http://en.wikipedia.org/wiki/Reynolds_number

http://en.wikipedia.org/wiki/Reynolds_number
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Figure 1.1: Japanese sodium-cooled fast reactor. The Figure is from Ono et al. [6].
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Figure 1.2: Moody Diagram. The Figure is from Wikipedia [2].



Chapter 2

Geometry and Mesh

In this chapter I am going to show how the different meshes, used for the simulations,
where implemented. I will here just mention four different meshes, but I made several
others. Most of them where for simple geometries like straight pipe sections and pipe
elbows. And they were used for testing flow simulation code, mesh element shapes and
other things. The main four meshes are:

• Mesh-A 2D is a 2D mesh for the test section, see Figure (2.1)

• Mesh-A is a 3D mesh for the test section

• Mesh-B is also a 3D for the test section,
but with is finer mesh resolution
then Mesh-A

• Mesh-D is a 3D mesh for the hot-leg piping, see Figure (2.2)

Meshes Mesh-A, Mesh-B and Mesh-D are similar to meshes Mesh-A, Mesh-B and Mesh-D
described in TANAKA et al. [9]. The difference is that each of my meshes has a slightly
finer mesh resolution then its counterpart in [9]. And this is because the information about
the meshes in [9] is not complete.

Most of the content in this chapter is referred back to the user manual of Gmsh1, witch
is a free meshing software.

2.1 Geometries

In the article by TANAKA et al. [9], meshes where made for two different geometries.
The first geometry was the hot-leg piping, witch is installed inside both primary cooling
systems2. The second geometry was the test pipe. A pipe installed in the ”1/3 scale water
test”. A experimental apparatus of the primary cooling system3.

I will here use the two geometries described in [9]. In Figure (2.1) and (2.2) you see
the geometries for the test pipe and the hot-leg piping.

1http://geuz.org/gmsh/doc/texinfo/gmsh.pdf
2See Figure (1.1)
3The experimental apparatus is a 1/3 scale model of the actual full size cooling system

5
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Figure 2.1: In this figure you see the geometry of the test pipe. (1)-(5) is the pipe section
labels and R is the radius of curvature. The origin (x = 0, z = 0) in this figure is at the
lower left corner of section (4). The vertical line between sections (3) and (4) is the pipe
elbow outlet.

2.2 Mesh

As mentioned above, the meshing software I used was Gmsh, which is a finite element
mesh generator.

2.2.1 Implementation of the meshes

You can implement meshes, using Gmsh, in several ways dependent of what you find
most comfortable. Gmsh is supplied with a graphical interface witch is easy to use. But
if you prefer working in a text-editor with source code, similar creating meshes with
blockMesh4, you can also do that. All the geometry and meshing information is stored in
a .geo file, witch is a instruction file you can edit manually . The .geo file is written in
Gmsh’s own scripting language. The complete .geo files for mesh Mesh-A can be found
in Appendix A.1. All the 3D meshes (Mesh-A, Mesh-B and Mesh-D) have the same basic
form. What’s different between the meshes is the mesh refinement, pipe section lengths
and pipe diameters.

I will here just walk you through the implementation of Mesh-A. Mesh-B and Mesh-D

is made using the same code as for Mesh-A, but with adjustments to the pipe diameters,
pipe section lengths and mesh refinement (in different directions) parameters. Take a look
at Table (2.1) for a overview of the different meshes.

We start at the pipe inlet. To create the same mesh arrangement as the meshes in

4 blockMesh is the mesh generator supplied with OpenFOAM. When implementing meshes using
blockMesh, you simply write all the mesh and geometry information (node positions, line segments, mesh
refinement, etc.) in a C++ dictionary class object file
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Figure 2.2: In this figure you see the geometry of the hot-leg piping. (1)-(5) is the pipe
section labels and R is the radius of curvature. The origin (x = 0, z = 0) in this figure is
at the lower left corner of section (4). The vertical line between sections (3) and (4) is the
pipe elbow outlet.
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Pipe radius
Inner radius

Inner octagon

Figure 2.3: Pipe cross-section
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A B

C

Figure 2.4: A illustration for the use of
Circle. Point A is the circle center, point
B is the arc starting point and point C is
the arc ending point.

TANAKA et al. [9], we have to do something special. Looking at the pipe outlet in Figure
(2.10), it is possible to divide the mesh in to two parts. A inner part, with a ”inner”
octagon, and a remaining ”outer” part from the octagon to the pipe radius. Take a look
at Figure (2.3). In the plane normal to the pipe center-axis position all the nodes/points
like in Figure (2.5a). In the .geo file you define nodes and node positions like this

Point (1) = {xs, ys, zs, 1.0};

Point (2) = {r1 + xs , ys, zs, 1.0};

The number inside the parenthesis (round brackets) is the point label. To the right for
the equality sign , inside the curly brackets, you have four values separated by commas.
The three first values are the x,y,z positions of the node and the fourth value is a local
mesh refinement parameter. The next step is to draw straight lines between the nodes.
The code for this in the .geo file will be as

// lines for inlet

Line (1) = {1, 2};

Line (2) = {1, 3};

The values to the right for the equality sign, inside the curly brackets, are references to
the specific nodes a line is drawn between. As an example, the first line segment Line

(1) is drawn between points Point (1) and Point (2). In Figure (2.5b) you see where
the straight line segments should be placed on the inlet surface.

The outer parts of the mesh (pipe wall) consists of ruled surfaces. And the ruled
surfaces are themselves made up of bent lines. The code for making circular arcs is

Circle (21) = {10, 1, 15};

Circle (22) = {15, 1, 11};

Inside the curly brackets, to the right for the equality sign, the numbers separated by
commas are references to points. The first value is the arc starting point, the second value
is the circle center and third value is the arch ending point. Take a look at Figure (2.4).
With the curved lines in place, we now have a inlet-surface looking like in Figure (2.5c).

All the lines on the inlet plane is now positioned, but we haven still defined the closed
curves as surfaces. This is done in two steps. First group a set of lines into a closed curve,
then define the area inside the closed curve as a surface. The code for this is
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// surfaces for inlet

Line Loop (29) = {1, 5, 6, -2};

Ruled Surface (30) = {29};

Line Loop (31) = {2, 7, 8, -3};

Ruled Surface (32) = {31};

Line Loop is your closed curve. The values inside the curly brackets are references to the
specific lines the closed curve is made of. The actual defining of the surface happens with
Ruled Surface, with the value inside the curly brackets being the reference to the specific
closed curve (Line Loop).

A plane normal to the pipe center-axis is the same no matter where along the pipe we
choose the plane. So we now basically need to make a continuous copy of the inlet-surface
along the pipe center-axis. This can be obtained with the Extrude statement.

Extrude {0, 0, l1} {

Surface {34, 32, 30, 36, 48, 46, 44, 42, 40, 38, 52, 50};

}

Above you see two curly brackets following each other after the Extrude keyword. The last
curly bracket containing a Surface array. The first curly bracket is the displacement vec-
tor, and the second curly bracket holds surfaces you want to copy along the displacement
vector.

One nice feature with Extrude is that, when you take a surface and ”extrude” it, the
Extrude statement will at the same time create volumes and volume surfaces. For a pipe
section, for example, the pipe volume and pipe walls will be also implemented.

The mesh refinement along the pipe center-axis is not the same everywhere. So we
need to divide the pipe into sections. As in [9] I have also divided the pipe into five
sections along the pipe center-axis. And this, in terms of writing code, means that we
have to use the Extrude statement five times. For each time, taking the newly created
plane surface and extruding it. For the bent pipe section which you can see in Figure
(2.6b), the Extrude statement has to be configured in a different way.

Extrude {{0, 1, 0}, {xs + R, 0, zs+l1+l2}, Pi/2} {

Surface {404, 338, 360, 382, 558, 580, 426, 448, 470, 492, 514, 536};

}

The first of the two ”outer” curly brackets contain within it, two other curly brackets and
a value (all separated by commas). Of these two curly brackets, the first is the axis which
the rotation is done about. The second curly bracket is the position of the rotational axis.
And the value is the degree of rotation. You can see the final pipe geometry in Figure
(2.6c).

After we have finished creating surfaces and volumes, we need to define patches. Their
is two types of patches, surface patches and volumes patches. A surface patch is simply
all the faces of elements in contact with a physical surface defined into a group. A volume
patch is a number of elements (with their faces) defined in to a group. Faces in a surface
patch is not included in volume patches. This ”marking” of element faces is used by the
CFD-software to applying the right boundary conditions to the right surfaces.

For a pipe you need to define three surface patches and one volume patch. The surface
patches are inlet, outlet, and fixedwall. The volume patch is internal. The code for
this is

Physical Surface("inlet") = {30, 36, 34, 32, 40, 38, 52, 50, 48, 46, 44,

42};
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(a) Node distribution on the inlet-surface. (b) Straight line segments on the inlet-surface.

(c) A picture of the inlet-surface with all the nodes and line segments in place. The single node
to the right in this picture is for implementation of the bent pipe section later on.

Figure 2.5: A picture of the inlet-surface. The inlet-surface is normal to the pipe center-
axis.
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(a) A pipe section created after using the
extrude function on the inlet-surface.

(b) A part of the pipe geometry with the bent
pipe section in place.

(c) The complete pipe geometry from the side (xz − plane).

Figure 2.6: The pictures illustrate the use of the extrude function in Gmsh. The
complete pipe consist of 5 sections with four being straight and one bent.
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The string inside the round brackets in the patch label. The numbers in side the curly
brackets, to the right for the equality sign, is references to surfaces. For a volume patch
you have to use the Physical Volume statement.

By default Gmsh will mesh with tetrahedral elements and the element distribution will
be uniform. For producing hexahedral elements and controlling their shapes and sizes, we
have use some of the more advanced algorithm supplied with Gmsh. For this task the
transfinite algorithm comes in handy.

// axis lines (first part)

Transfinite Line {236, 108, 104, 280, 258, 130, 152, 68, 59, 82, 214, 64,

148, 86, 60, 192, 170} = 41 Ê Using Progression 1;

The numbers inside the curly brackets are references to lines. The first value after the
equality sign is the number of mesh lines we want generate. Using Progression fallowed
by a second value Ê is for gradually increasing or decreasing the distances5 between mesh
lines as we move towards one of the end points of a Transfinite Line6. In the example
above all the mesh lines are equidistant. The transfinite algorithm needs explanation,
and I think it is easiest to illustrate the use with an example. There is math behind the
algorithm, but I won’t show it here. If we for example we have two line a certain distance
from each other, call them Reference line 1 and Reference line 2 . Take a look a Figure
(2.7a). And you want a uniform mesh splitting of X lines between Reference line 1 end
Reference line 2 . Then the transfinite algorithm will draw X lines (equidistant) between
Reference line 1 and Reference line 2 . The shapes and sizes of these X lines will
depend on how close to a specific Reference line we are. See Figure (2.7b). So basically
the transfinite algorithm sets up a set of lines and you have a gradual transformation in
the the shapes of these lines from Reference line 1 to Reference line 2 . For a closed
curve of four lines, two and two Reference lines are pared together with the transfinite
algorithm. The result becomes like in Figure (2.7c).

The meshing instruction code for lines in radial direction from the pipe ”inner” radius
to the pipe wall7 is

// ’outer’ radial lines

Transfinite Line {13, 14, 15, 16, 17, 18, 19, 20, 230, 208, 186, 164, 142,

-144, 274, 252, 406, -408, -430, -452, -474, -496, -518, -540, -694,

-716, -738, -760, -782, -804, 670, -672, -958, -980, -1002, -1024,

-1046, -1068, 934, -936, -1200, -1222, -1244, -1266, -1288, -1310,

-1332, 1198} = N2 Using Progression 0.9;

The minus sign in front of some numbers is for reversing the progression direction of the
transfinite algorithm. The progression direction depends on the how a line is defined. For
example if the line is defined as Line (1) = {1, 2} or Line (1) = {2, 1}.

The code for the ”inner” octagon lines Ë and lines from the pipe center and out to the
pipe ”inner” radius Ì is

// octave lines

Ë Transfinite Line {5, 6, 7, 8, 9, 10, 11, 12, 99, 100, 77, 78, 55, 56, 121,

122, 319, 320, 341, 342, 363, 364, 385, 386, 584, 605, 606, 627, 628,

649, 650, 583, 848, 869, 870, 891, 892, 913,914, 847, 1112, 1133, 1134,

1155, 1156, 1177, 1178, 1111} = N1 Using Progression 1;

// ’inner’ radial lines

5Increasing for value > 1 and decreasing value < 1
6 A line we have applied the transfinite algorithm on
7See Figure(2.3).
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1 2

(a) A illustration of Ref-
erence line 1 and Refer-
ence line 2 .

1 2

(b) The transfinite algo-
rithm used on one par of
Reference lines.

1 2

(c) The transfinite algo-
rithm used on two pars of
Reference lines.

Figure 2.7: Illustration of the transfinite algorithm.

Ì Transfinite Line {1, 2, 3, 4, 98, 76, 54, 57, 318, 321, 343, 365, 585, 607,

629, 582, 849, 871, 893, 846, 1113, 1135, 1157, 1110} = N1 Using

Progression 1;

And the last peace of code that you need to write is

Transfinite Surface "*";

Recombine Surface "*";

Transfinite Volume "*";

This is for applying the transfinite algorithm on all the surfaces and volumes. The multi-
plication sign surrounded by the quotation marks means all. And explaining very simply,
the Recombine command in this case, changes element shapes from tetrahedrals to hexa-
hedrals.

In Figures (2.9) and (2.10) you can see pictures of Mesh-A. Figure (2.11) and (2.12)
are pictures of Mesh-B. And in Figures (2.13) and (2.14) you see pictures of Mesh-D.

As mentioned above the .geo is only a instruction file and not a actual mesh file CFD
softwares use. The detailed mesh file Gmsh generates is a .msh file. So the final thing you
have to do is to generate and save this .msh file. This can be done trough the graphical
interface supplied Gmsh.
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Figure 2.8: In this Figure you see Mesh-A 2D. The mesh is composed of 12975 hexahedral
elements.

Figure 2.9: Mesh-A seen from the side. The mesh is composed of 392364 hexahedral
elements.
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Figure 2.10: In this Figure you see Mesh-A. The flat circular surface in the picture to
the left is the pipe outlet. The element mesh arrangement in radial direction is the same
along the pipe center-axis. Minimum element length in radial direction is ∼ 0.27mm for
elements at the wall.

Figure 2.11: Mesh-B seen from the side. The mesh is composed of 959804 hexahedral
elements.
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Figure 2.12: A picture of Mesh-B. Mesh-B has a higher density of elements in radial
direction compared to Mesh-A. Witch also means that Mesh-B has more elements along
the circumference of the pipe cross-section. The inner octagon is the same in Mesh-B and
Mesh-A. Minimum element length in radial direction is ∼ 0.27mm.

Figure 2.13: Mesh-D seen from the side. The mesh is composed of 1082880 hexahedral
elements.
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Figure 2.14: A picture of Mesh-D. The flat circular surface in the picture to the left is
the pipe outlet. Minimum element length in radial direction is ∼ 0.8mm for elements at
the wall.
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Chapter 3

Mathematical models

Instead of solving the full Navier-Stokes equations1, which is computationally heavy, I am
going to use to different turbulence models. The first model will be a U-RANS (Unsteady
Reynolds-Averaged Navier-Stokes) model and the second model will be a LES (Large-Eddy
Simulation) model. Both models are well-known and used a lot in mechanical engineering
communities today. So in this chapter I am going to give a short introduction to the
two models and explain how the work. Both models is implemented in OpenFOAM.
As mentioned earlier OpenFOAM is the software tool I am going to use for doing the
simulations.

Dependent on the complexity of the model, turbulent flows are divided into categories.
The complexity is graded after how many assumptions are done in the derivation of the
different models. Therefor toping a complexity list will be a ”real-life” flow with no
simplifications. And at the other end of this list will be something called homogeneous
isotropic flows. I have made a illustration that you can look at in Figure (3.1).

And finally before we start I want to inform you that the notation and content of this
chapter is based on lecture notes from a course2 in turbulence modeling at the University
of Oslo. The lecture notes themselves is again based on Durbin and Pettersson-Reif [4],
which is the course textbook.

3.1 U-RANS model

Let’s start with the Navier-Stokes and the continuity equations

∂tui + uj∂jui = −1

ρ
∂ip+ ν∂2

kkui, (3.1)

∂iui = 0. (3.2)

As you probably know, incompressible flows are governed by these two equations. There
is two things I want to inform the reader about before we continue. The first is that the
equations above are on the standard index notation form. I assume that the reader is

1Doing fluid flow simulations by solving the full Navier-Stokes equations is often called doing DNS
(Direct Numerical Simulations). DNS requires a very fine time and grid resolution refinement. Meaning
that all spatial and temporal scales must be solved

2 UNIK4900 - Advanced Turbulence Modeling and Simulations. http://www.uio.no/studier/emner/

matnat/math/UNIK4900/index-eng.html. I took the course autumn 2013

21

http://www.uio.no/studier/emner/matnat/math/UNIK4900/index-eng.html
http://www.uio.no/studier/emner/matnat/math/UNIK4900/index-eng.html
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Categories of turbulent flows

General turbulent flow 

Homogeneous Non-homogeneous

Anisotropic Parallel self-similar “Real-life”

Free shear flows, 
boundary layers

Isotropic

Increasing 
complexity

Figure 3.1: Categories of turbulent flows.

familiar with this notation type and will not explain the details of how it works here. And
the second, which you probably already have figured out, is the meaning of the partial
derivative terms:

∂t =
∂

∂t
, ∂i =

∂

∂xi
and ∂2

kj =
∂2

∂xk∂xj
. (3.3)

You have probably heard about RANS (Reynolds Averaged Navier-Stokes) equations.
So how is the U-RANS equations different from the RANS equations? Well, mathemat-
ically they aren’t! The equations used for a U-RANS model is the same as in RANS
model. The reason why the names are different has to do with the way the numerical
simulation is done. When doing a U-RANS type of simulation the transient term in the
RANS Equation (3.8):

∂tUi

is discretized and starting from the initial condition the program moves forward in time
using a small time step ∆t until it reaches a end time where you have a steady-state
solution. On the other hand when using e RANS model you jump directly to the final
steady state solution.

The first step consist of decomposing the instantaneous velocity and pressure into two
parts/components:

ui(x, t)︸ ︷︷ ︸
instantaneous component

= Ui(x, t)︸ ︷︷ ︸
mean component

+ u′i(x, t)︸ ︷︷ ︸
fluctuating component

, (3.4)
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p(x, t)︸ ︷︷ ︸
instantaneous component

= P (x, t)︸ ︷︷ ︸
mean component

+ p′(x, t)︸ ︷︷ ︸
fluctuating component

, (3.5)

where ”mean” = ensemble average and x = {x, y, z} is the spatial position. The decompo-
sition above is called a ’Reynolds decomposition’ and is named after Osbourne Reynolds
(1881). Next we substitute decomposed form of ui and p from Equations (3.4) and (3.5)
into Equations (3.1) and (3.2).

∂t(Ui + u′i) + (Uj + u′j)∂j(Ui + u′i) = −1

ρ
∂i(P + p′) + ν∂2

kk(Ui + u′i), (3.6)

∂i(Ui + u′i) = 0. (3.7)

To arrive at the RANS equations you have to take the ensemble average of Equations
(3.6) and (3.7). The detailed derivation of the RANS equations consists of several steps
where you have to use rules for ensemble averages of sums, derivatives and products. The
derivation is not very difficult, but may take little bit of time. I don’t see any point
in showing it here and will therefor just referee this to [2]3. Some literature covering
turbulence modeling include the detailed procedure of Reynolds-averaging the Navier-
Stokes and continuity equations.

Reynolds-averaged Navier–Stokes equations

∂tUi + Uj∂jUi = −1

ρ
∂iP + ν∂2

kkUi − ∂ju′iu′j , (3.8)

∂iUi = 0. (3.9)

u′iu
′
j = u′iu

′
j(x, t) in the last term of Equation (3.8) is called the Kinematic Reynolds

Stress Tensor. And if you extend this term with the fluid density ρ you get the Reynolds
Stress Tensor ρu′iu

′
j . Notice that the total number of unknowns in Equation (3.8) and

(3.9) equals ten. Three are the velocity components Ux Uy and Uz, you have the pressure P

and finally you have six unknowns from the Reynolds stress term u′iu
′
j . The total number

of equations, with Equation (3.8) being a vector equation, is four. So we have to many
unknowns compared to equations.

3.1.1 Eddy-viscosity based models

The u′iu
′
j term in RANS equation (3.8) has to be modeled. So the idea is that instead

of finding u′iu
′
j by solving a transport equation like Equation (3.14), we substitute u′iu

′
j

by a expression consisting of known variables. The variable of choice is the Mean Rate of
Strain:

Sij =
1

2
(∂iUj + ∂jUi).

Meaning that we want to replace the u′iu
′
j term by a function of Sij ,

u′iu
′
j = f(Sij). (3.10)

3The more exact location at Wikipedia is: http://en.wikipedia.org/wiki/Reynolds_stress

http://en.wikipedia.org/wiki/Reynolds_stress
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The dimension of u′iu
′
j is

[
m2

s2

]
=

[
m2

s

]
︸ ︷︷ ︸

(1)

·

(2)︷︸︸︷[
1

s

]
,

where term (1) has the same dimension as the kinematic viscosity ν and term (2) has the
same dimension as the Mean Rate of Strain Sij .

We continue by making an ansatz

u′iu
′
j = f(δij , Sij) = αδij + βSij + γδikSkj

= αδij + βSij . (3.11)

Above δij is the Kronecker delta defined as

δij =

{
1 if i = j

0 if i 6= j
,

and α and β are scalar variables that have to be decided. The last term γδikSkj on the

first line (in the function for u′iu
′
j) is redundant and therefor been included into the βSij

term.

Definition 1: Turbulence kinetic energy k

k =
1

2
u′iu
′
i =

1

2
(u

′2
1 + u

′2
2 + u

′2
3 )

Using the definition of the turbulence kinetic energy we can find a expression for for α
by setting Equation (3.11), for i = j, equal to 2k.

u′iu
′
i = αδii + βSii

2k = 3α+ β (∂1U1 + ∂2U2 + ∂3U3)︸ ︷︷ ︸
= 0, since we are work-

ing with incompressible

flows

,

resulting in α = 2/3k.

The handling of the β variable is done by substituting a expression for it. Since the
dimension of β is [m2/s], the same as the kinematic viscosity, the suggestion was to set

β = −2νT ,

where νT is the eddy viscosity.

u′iu
′
j =

2

3
kδij − 2νTSij (3.12)



3.1. U-RANS MODEL 25

3.1.2 Some exact transport equations

I here will just list up a set of equations governing the transport of the different variables,
and explain very short how you can derive them. The purpose of this list is for referencing.

Transport equations for different variables

Transport equation for the fluctuating velocity field u′i:

∂tu
′
i + Uk∂ku

′
i + u′k∂kUi + ∂k(u′ku

′
i + u′ku

′
i) = −1

ρ
∂ip
′ + ν∂2

kku
′
i (3.13)

The transport equations for the Reynolds stress tensor u′iu
′
j :

∂tu′iu
′
j + u′k∂ku

′
iu
′
j = −1

ρ
(u′j∂ip

′)− 1

ρ
(u′i∂jp

′)− 2ν(∂ku′i∂ku
′
j)

− ∂k(u′ku
′
iu
′
j)− u′ju′k∂kUi − u′iu′k∂kUj + ν∂2

kku
′
iu
′
j (3.14)

Transport equation for the Turbulence kinetic energy k:

∂tk + Ui∂ik = −1

ρ
∂iu′ip

′ − ν∂ku′i∂ku′i −
1

2
∂ku′ku

′
iu
′
i − u′iu′k∂kUi

+ ν∂2
iik (3.15)

Transport equation for the Mean kinetic energy K:

∂tK + Uj∂jK = −1

ρ
Ui∂iP + ν∂2

kkK + ν∂kUi∂kUi − ∂k(Uiu′ku
′
i)

+ u′ku
′
i∂kUi (3.16)

Denote Equations (3.1) and (3.8) as

L(ui) = 0 (Navier-Stokes eq.) and L(Ui) = 0 (RANS eq.), (3.17)

then the transport equation for the fluctuation velocity field can be derived as

L(u′i) = L(ui)− L(Ui). (3.18)

The full equation is Equation (3.13). For arriving at the Reynolds stress transport equation
you have to set

L(u′iu
′
j) = u′jL(u′i) + u′iL(u′j) (3.19)

and then take the average of the right hand side of the equality sign.,

L(u′iu
′
j) = u′jL(u′i) + u′iL(u′j). (3.20)

Getting Equation (3.14). Using Definition (3.1.1) the transport equation for the turbulence
kinetic energy can be derived from Equation (3.19) by setting i = j and then dividing by
2. Equation (3.15) is the full form.
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3.1.2.1 The k - ε turbulence model

The k - ε model is one of the eddy-viscosity based models. Their are other models, but the
the k - ε model is by far the most famous one. It is the most widely used general purpose
turbulence model there is, and the ”standard” k - ε model was introduced by Jones &
Launder in 1977.

A often used approximation for the eddy viscosity is

νT = Cµ
k2

ε
(3.21)

where ε is the rate of viscous dissipation of turbulence kinetic energy k4 and Cµ is a

constant. So in order to decide νT , and u′iu
′
j , we need to find the k and ε fields. We have

the exact transport equation for k, Equation (3.15). But rather then working with it, we
will derive a template witch can be used to make new transport equations for k and ε.
This is done roughly in four steps:

1 Rewrite

∂

∂t

(
k

ε

)
=

1

ε
∂tk −

k

ε2
∂tε (3.22)

2 Set Equation (3.22) equal to 0 and
get

∂tε =
ε

k
∂tk (3.23)

3 Insert for ∂tk = Pk−ε5 into Equation
(3.23)

∂ε

∂t
=
Pk − ε
k/ε

(3.24)

(Pk is the production of turbulence
kinetic energy)

4 Use Equation (3.24) as a template

Equation (3.28) and (3.29) are the new model equations for k and ε.

We have now arrived at the k-ε model. In the standard k-ε model there is six equations,
Equations (3.25)-(3.30). You also have six unknowns that need initial and boundary
conditions. And there is some model constant that have standard values.

Finally one little comment for the model equation of Pk, Equation (3.30). Pk is actually
the fourth term, to the right for the equality sign, in Equation (3.15). To arrive at the
form that you can see in Equation (3.30), you have to use that the flow is incompressible.

4 The choice of approximation for the eddy viscosity is partially based on dimensional arguments. The
dimension of k is [m2/s2] and the dimension of ε is [m2/s3]

5 ∂tk = Pk − ε simply says that the change in turbulence kinetic energy is equal to the production of
k minus the amount of k turn into heat
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Cε1 Cε2 σε Cµ
1.44 1.92 1.30 0.09

Table 3.1: k - ε model coefficients.

Standard k - ε model

∂tUi + Uj∂jUi = −1

ρ
∂iP + ν∂2

kkUi − ∂ju′iu′j , (3.25)

u′iu
′
j =

2

3
k − νT 2Sij (3.26)

νT = Cµ
k2

ε
(3.27)

Dk

Dt
= Pk − ε− ν∂2

jjk + ∂m [νT∂k] (3.28)

Dε

Dt
=
ε

k
(Cε1Pk − Cε2ε) + ν∂2

jjε+ ∂j [νT∂jε] (3.29)

Pk = 2νTSijSij (3.30)

The values of the model constants in Table (3.1) is based on results arrived from
experiments on a wide range of turbulent flows.

3.2 LES model

The LES (Large Eddy Simulation) mathematical turbulence model was first introduced in
1963 by Joseph Smagorinsky. It is, like the RANS model, a very popular turbulence model
and used on a wide arrange of problems were you need to model turbulent fluid motion.
Examples are combustion, acoustics, and simulations of the atmospheric boundary layer.

When doing DNS you resolve all the different length scales, making the simulation a
very time-consuming and heavy procedure6. So the main idea behind LES modeling is
to resolve length scales down to a certain size and model the remaining (smaller) length
scales. And in this way get a simulation which is much smaller in size. Take a look at
Figure (3.2)7, maybe it makes things more clear.

The removing of these smaller length scales happen by using something called a low-
pass filter. You can preform a filtering operation in time (temporal filtering), space (spacial

6By ”heavy” I mean that the total number of calculations, because of a very fine mesh resolution, is
very big

7The images are taken from Wikipedia: http://en.wikipedia.org/wiki/Large_eddy_simulation

http://en.wikipedia.org/wiki/Large_eddy_simulation


28 CHAPTER 3. MATHEMATICAL MODELS

(a) A velocity field produced
by Direct Numerical Simula-
tion (DNS).

(b) The same DNS velocity
field filtered using a box filter
with ∆ = L/32.

(c) The same DNS velocity
field filtered using a box filter
with ∆ = L/16.

Figure 3.2: Three pictures of the same velocity field. No low-pass filters have been used
in Figure (3.2a). In Figure (3.2b) a filter removing the smallest and most high frequent
velocity fluctuations have been used. And as you can see in Figure (3.2c) even lower
frequencies of velocity fluctuations are removed (compared to Figure (3.2b)).

filtering), or both. But since I’m only going to use a spacial filtering in this thesis, I will
only list up the definition for that:

Definition 2: Spatial filtering operation by means of a filter function
G(x,x′,∆)

φ̄(x, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

G(x,x′,∆)φ(x′, t) dx′1dx
′
2dx
′
3,

where G(x,x′,∆) is the filter kernel (filter function), φ̄(x, t) is the filtered function,
φ(x, t) is the unfiltered function and ∆ is the cutoff width.

The way filters preform the selection, of what is kept and what is removed, is by using
something called a cutoff width ∆. For a turbulent flow containing eddies 8, the size of
these eddies are check against ∆. If the size of a certain eddie is smaller then ∆, then this
eddie will be removed. So after the filtering process is done, only eddies of ”desirable”
sizes are left. The way the filter is implemented is by filtering the whole Navier-Stokes
and continuity equations

∂tui + uj∂jui = −1

ρ
∂ip+ ν∂2

kkui, (3.31)

∂iui = 0. (3.32)

There are many types of filtering functions with there own special area of use. Some
good for theoretical and analysis work, while others are good for certain types of numerical
methods, like for example the finite volume- and spectral methods. For the finite volume
method with LES we need to use something called box filter defined as:

8Eddies are vortex like structures
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Definition 3: Box filter (top hat filter)

G(x,x′,∆) =

{
1/∆3 |x− x′| ≤ ∆/2

0 |x− x′| > ∆/2

With Definition (??) it is know possible to preform a splitting of the pressure p and
velocity ui fields

ui(x, t)︸ ︷︷ ︸
original velocity

= ui(x, t)︸ ︷︷ ︸
retained velocity

+ u′i(x, t)︸ ︷︷ ︸
rejected velocity

, (3.33)

p(x, t)︸ ︷︷ ︸
original pressure

= p(x, t)︸ ︷︷ ︸
retained pressure

+ p′(x, t)︸ ︷︷ ︸
rejected pressure

, (3.34)

Almost like the Reynolds decomposition in Section (3.1).
The eddies kind of ”depend” on each other. And by that I mean eddies of all sizes

interact. The interaction happens by one eddie affecting surrounding eddies and other flow
structures with forces, stresses, etc..So when filtering out the eddies which are smaller in
size then ∆, we get a problem. The problem is that we are missing the interaction between
eddies on the two sides of ∆. The missing interaction must be replaced some how. The
effect of the eddies smaller in size then ∆ has to modeled. And here is where the SGS
(sub-grid-scale stresses) models come in.

3.3 Formulas for internal fields and boundaries

Below I have listed up some useful formulas that can be used for deciding internal and
boundary values of different variables. Several of the formulas are only approximations
and not exact definitions.

I found the formulas at a website of University of California Davis: http://aerojet.
engr.ucdavis.edu/fluenthelp/html/ug/node217.htm

The turbulence intensity is defined as

I =
u′

uavg
= 0.16Re

−1/8
DH

, (3.35)

where uavg is the mean flow velocity and ReDH
is the Reynolds number based on the pipe

hydraulic diameter9. For single phase circular pipe flows, DH is the same as the pipe
diameter D.

Next we have

l = 0.07L. (3.36)

The turbulence length scale, l, is a physical quantity related to the size of the large eddies
that you can find in turbulent flows. L is the relevant dimension of the pipe10.

The modified viscosity ν̃ can be calculated as

ν̃ =

√
3

2
uavgIl. (3.37)

9 ReDH
= ρvDH/µ. See: http://en.wikipedia.org/wiki/Reynolds_number

10For in my simulations L = D

http://aerojet.engr.ucdavis.edu/fluenthelp/html/ug/node217.htm
http://aerojet.engr.ucdavis.edu/fluenthelp/html/ug/node217.htm
http://en.wikipedia.org/wiki/Reynolds_number
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And finally some formulas for the kinetic energy k and rate of viscous dissipation ε
with the variables mentioned above

k =
3

2
(uavgI)2 and ε = Cµ

k3/2

l
.

Cµ is one of the four model coefficients in the k-ε turbulence model, See Table (3.1).
Some CFD software uses and another definition for the viscous dissipation

ε = C3/4
µ

(
k3/2

l

)
. (3.38)



Chapter 4

Numerical methods

4.1 The finite volume method

In this chapter I am going to give a short introduction to the finite volume method. The
finite volume method is simply a method for finding approximate solutions to differential
equations and other mathematical problems.

This is the method I am going to use in this thesis for finding a solution to the set of
PDE’s governing the behavior of turbulent fluid motion. The method is implemented in
through the software OpenFOAM1 .

The examples and content in the different sections below is referred to Versteeg and
Malalasekera [11].

φA = Constant φB = Constant

W w P e E

Figure 4.1: A one-dimensional domain divided into 5 control volumes. The blue square
represents a general control volume with a node P at its center. W and E represent
neighbor nodes and the lower case letters w and e represents control volume faces.

4.1.1 The finite volume method for 1D problems

To illustrate how the finite volume method works in one-dimensional space we will start by
looking at a simple ordinary differential equation (ODE) governing the diffusion of some
scalar function φ. Choosing the domain along the x-axis a diffusion equation would look

1OpenFOAM is a open-source computational fluid dynamics software implemented with the finite
volume method. www.openfoam.org

31
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like
d

dx

(
γ
d

dx
(φ)

)
+ S = 0, (4.1)

where γ will be the diffusion coefficient and S is a source term. It is quite usual with
source terms in differential equations for diffusion and I have chosen to include one in
this example. To get a boundary value problem we need to decide the domain and the
value of φ at the boundaries of the domain. So accompanying Equation (4.1) is a par of
boundary conditions which we will call φA and φB . The subscript A represents the west
(left) boundary and B the east (right) boundary. In Figure (4.1) you can see a illustration
of the domain and boundary conditions.

4.1.1.1 Grid generation

The first step in the finite volume method is to divide the domain into a number of control
volumes2, like in Figure (4.1). In Figure (4.1) you see an example of a one-dimensional
domain which is divided into 5 pieces. The blue square is a general control volume and the
solid vertical lines represent the control volume faces (boundaries). It is very usual that
the size and shape of the control volumes vary over the domain3, but in this example the
control volumes will be of uniform length (∆x). In the middle of each control volume we
will place a node. Looking just at a general control volume (blue square) the center node
for this control volume will be denoted as P and the neighbor nodes as W (west) and E
(east). The lower case letters w (west) and e (east) represent the control volume faces.
Also notice that the distant between to adjacent nodes is ∆x and the distance between a
control volume node and one of it’s faces is ∆x/2.

4.1.1.2 Formal integration

The key step in the finite volume method is the control volume integration. When doing
the integration we simply integrate the governing equations over each control volume in
our domain. In this example the control volume integration of equation (4.1) becomes

∫
Vc

d

dx

(
γ
d

dx
(φ)

)
+ S dV =

∫
Vc

d

dx

(
γ
d

dx
(φ)

)
dV +

∫
Vc

S dV

= dydz

[
γ
d

dx
(φ)

]w
e

+ S̄∆V

= dydz γ
d

dx
(φ)

∣∣∣∣
w︸ ︷︷ ︸

(1)

−dydz γ d

dx
(φ)

∣∣∣∣
e︸ ︷︷ ︸

(2)

+ S̄∆V︸ ︷︷ ︸
(3)

(4.2)

where dydz is the cross-section area, ∆V is the ”volume” of the control volume and S̄ is
the average of the source over the control volume.

4.1.1.3 Discretization

The next step is the discretization of Equation (4.2). When doing the discretization we turn
the governing equations into a useful form which makes us able to solve them numerically.

2In some literature control volumes are referred to as elements or cells
3Often in fluid flow problems it is normal to have higher mesh resolution close to domain boundaries

like e.g. solid walls
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In Equation (4.2) we need to find a substitution for terms (1) and (2). Assuming also that
the diffusion coefficient γ is a function of x, the value of γ at the control volume faces w
and e can be replaced by

γw =
γW + γP

∆x
, (4.3)

γe =
γP + γE

∆x
. (4.4)

The equations above are simple linear approximation, but it is also possible to use other
type of approximations like for example a cubic approximation witch has a 3 node config-
uration.

For the gradient terms

dφ

dx

∣∣∣∣
w

and
dφ

dx

∣∣∣∣
e

, (4.5)

we will use central differencing. When using central differencing we basically set the
gradient equal to the difference of φ at two adjacent nodes divided by the distance between
the nodes. In our example we get that

dφ

dx

∣∣∣∣
w

=
φE − φP

∆x
and

dφ

dx

∣∣∣∣
e

=
φP − φW

∆x
. (4.6)

For term (3) we can either be kept as S̄∆V or be approximated as a linear form

S̄ = Su + SpφP (4.7)

Finally we substitute Equations (4.3), (4.4), (4.6) and (4.7) into Equation (4.2)

γedydz

(
φE − φP

∆x

)
− γwdydz

(
φP − φW

∆x

)
+ Su + SpφP = 0, (4.8)

and rearrange to get

( γe
∆x

dydz +
γw
∆x

dydz − Sp
)

︸ ︷︷ ︸
aP

φP =
( γw

∆x
dydz

)
︸ ︷︷ ︸

aW

φW +
( γe

∆x
dydz

)
︸ ︷︷ ︸

aE

φE + Su (4.9)

4.1.1.4 Solution of equations

Finally the discretized equation(s) is applied to each control volume in our domain, re-
sulting in a linear system of algebraic equations. For control volumes adjacent with the
domain boundaries, the boundary conditions incorporated into the discretized equation.

4.1.2 The finite volume method for 2D and 3D problems

The same four steps:

• grid generation

• discretization

• control volume integration
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φB

φD

φC

φA

P E

S

W

N

w e

n

s

Figure 4.2: A two-dimensional domain. The blue square represents a general control
volume with a node P at its center. W (west), E (east), S (south) and N (north) represent
neighbor nodes and the lower case letters w, e, s and n represents control volume faces.
φA, φB , φC and φD are the boundary conditions.

• solution of equations

used for solving ODE’s (ordinary differential equations) in one-dimensional space is used
for solving two-dimensional problems.

A two-dimensional steady state diffusion equation is given by

∂

∂x

(
γ
∂

∂x
(φ)

)
+

∂

∂y

(
γ
∂

∂y
(φ)

)
+ S = 0, (4.10)

where again γ is the diffusion coefficient, φ is some scalar function and S is the source
term. Unlike the one-dimensional problem here γ, φ and S can be functions of x and y.
In Figure (4.2) you see a example of a two-dimensional domain and grid. The difference
compared to a one-dimensional problem is that a general control volume with a node P
at it’s center is has neighbor nodes and faces also in the y-direction. The extra nodes are
denoted as N (north) and S (south) and the extra faces with lower case letters as n (north)
and s (south). The grid refinement in the y-direction and the distance between nodes and
faces is similar to that of the previous one-dimensional example. Meaning that the distance
between two adjacent nodes in y-direction will be ∆y and the distance between a node
and one of it’s faces is ∆y/2. Below I will just list up the results, because the there is no
need for much explantion. The calculations, discretization and substitutions are straight
forward to do.∫

Vc

∂

∂x

(
γ
∂

∂x
(φ)

)
dV +

∫
Vc

∂

∂y

(
γ
∂

∂y
(φ)

)
dV +

∫
Vc

S dV = 0 (4.11)
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[
γe∆y

(
∂φ

∂x

)
e

− γw∆y

(
∂φ

∂x

)
w

]
+

[
γn∆x

(
∂φ

∂y

)
n

− γs∆x
(
∂φ

∂y

)
s

]
+ S̄∆V = 0 (4.12)

γw∆y
∂φ

∂x

∣∣∣∣
w

= γw∆y
(φP − φW )

∆x
and γe∆y

∂φ

∂x

∣∣∣∣
e

= γe∆y
(φE − φP )

∆x
(4.13)

γs∆x
∂φ

∂y

∣∣∣∣
s

= γs∆x
(φP − φS)

∆y
and γn∆x

∂φ

∂x

∣∣∣∣
n

= γn∆x
(φN − φP )

∆y
(4.14)

γe∆y
(φE − φP )

∆x
− γw∆y

(φP − φW )

∆x
+ γn∆x

(φN − φP )

∆y
− γs∆x

(φP − φS)

∆y

+ S̄∆V = 0 (4.15)

S̄∆V = Su + SpφP (4.16)

(
γw∆y

∆x
+
γe∆y

∆x
+
γs∆x

∆y
+
γn∆x

∆y
− Sp

)
︸ ︷︷ ︸

aP

φP =

(
γw∆y

∆x

)
︸ ︷︷ ︸

aW

φW +

(
γe∆y

∆x

)
︸ ︷︷ ︸

aE

φE

+

(
γs∆x

∆y

)
︸ ︷︷ ︸

aS

φS +

(
γn∆x

∆y

)
︸ ︷︷ ︸

aN

φN + Su (4.17)

∂

∂x

(
γ
∂φ

∂x

)
+

∂

∂y

(
γ
∂φ

∂y

)
+

∂

∂z

(
γ
∂φ

∂z

)
+ S = 0 (4.18)

[
γeAe

(
∂φ

∂x

)
e

− γwAw
(
∂φ

∂x

)
w

]
+

[
γnAn

(
∂φ

∂y

)
n

− γsAs
(
∂φ

∂y

)
s

]
+

[
γtAt

(
∂φ

∂z

)
t

− γbAb
(
∂φ

∂z

)
b

]
+ S̄∆V = 0 (4.19)

[
γeAe

φE − φP
∆x

− γwAw
φP − φW

∆x

]
+

[
γnAn

φN − φP
∆y

−γsAs
φP − φS

∆y

]
+

[
γtAt

φT − φP
∆z

− γbAb
φP − φB

∆z

]
+ (Su + SPφP ) = 0 (4.20)

aPφP = awφW + aEφE + aSφS + aNφN + aBφB + aTφT + Su
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y

z x

sn

e

w

P

b

t

N S

E

W

B

T

Figure 4.3: Here you see an example of a three dimensional control volume with a node
P at its center. W (west), E (east), S (south), N (north), B (bottom) and T (top) are
neighbor nodes and the lower case letters w, e, s, n, b and t are the control volume faces.



Chapter 5

OpenFOAM implementation

In OpenFOAM a simulation is run by making a <case> directory, then starting the sim-
ulation by executing a series of statements in a terminal window1.

A general <case> directory for a incompressible flow looks like in Figure (5.1). The
<case> directory has a tree structure with subdirectories and files. The information2 you
have to set in order to preform the simulation, are organized into these files3.

When implementing a new OpenFOAM <case>, it is normal practice to copy a existing
tutorial <case>4 and make changes to it. Meaning that you change the <case> files, by
commenting out the parts don’t want and add new code, rather then make and write all
the folders and files from scratch. So note that when looking through files, in one of the
cases I’ve run, you find more code then what’s written personally by me.

A short overview over initial and boundary conditions, for different cases I’ve imple-
mented, can bee seen in Tables (5.1)-(5.5). Detailed information5 about each case setup
can be found in the Master-/cases folder at my Github account: https://github.com/
sayedn/Master-. All the sub-folders are cases I’ve done simulations with.

You can roughly divide my simulations into two parts. The first part is a set of test
cases with the k-ε turbulence model. The second part is two sets of LES simulations,
see Table (5.6). The different between the two sets is implementation of the boundary
conditions. Cases having a -u ending, like for example Case-B4-u belong to the first
set of LES simulations. While cases having a -u a ending belong to second set of LES
simulations.

In Figure (5.3) and (5.2) you see the case directory structure for a U-RANS simulation
and a LES simulation.

1There is no graphical interface
2The information is things like initial and boundary conditions, fluid properties, discretization of gov-

erning equations and etc.
3All the files are written in C++
4 OpenFOAM is supplied with a tutorial containing complete cases for different simulations types
5By detailed information I mean thing like discretization of therms in the governing equations, values

set for turbulence model, etc.
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<case>

0

system

controlDict

fvShemes

fvSolution

constant

Properties ...

polyMesh

points

cells

faces

boundary

...

time directories

Figure 5.1: General case
directory structure.
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system

controlDict
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fvSolution

decomposeParDict

constant

RASProperties

transportPro.
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faces

boundary

...

time directories

Figure 5.2: Case direc-
tory structure for LES sim-
ulations.

<case>

0

U

p

epsilon

nut

nuTilda
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system

controlDict

fvShemes

fvSolution

decomposeParDict

constant

LESProperties

transportPro.

turbulencePro.
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sets

points

cells

faces

...

time directories

Figure 5.3: Case direc-
tory structure for U-RANS
simulations.

5.1 Starting and running a OpenFOAM <case>

In OpenFOAM, preforming different tasks is done by executing statements and functions
in a terminal window. To do this you have to first be located inside a OpenFoam <case>

directory or one of its subdirectories. All the commands listed bellow is executed from the
<case> directory.

Normally the first thing you do is to generate your mesh. And since I made my meshes
using Gmsh, I need to generate a mesh compatible with OpenFOAM. The new mesh is
based on the information in the .msh file. This is done with the command

escapeinside

$ gmshToFoam *.msh

*.msh is some .msh file. The new mesh and mesh data will be stored in files in the
constant/polyMesh directory. See Figure (5.1).

As a optional thing, it is recommended to check the mesh for flaws. You can do this
with

escapeinside

$ checkMesh

checkMesh tests different things like geometry and topology.
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My main LES simulations
Case Mesh Working fluid ∆t [s] Um [m/s]

First set /
part

Case-B4-u Mesh-A Water at 20◦ 0.25e-03 9.2
Case-B7-u Mesh-B Water at 20◦ 0.25e-04 9.2
Case-B8-u Mesh-A Water at 20◦ 0.25e-03 3.08
Case-B9-u Mesh-A Water at 20◦ 0.25e-03 0.8
Case-B10-u Mesh-A Water at 60◦ 0.25e-03 9.2
Case-B11-u Mesh-A Sodium at 550◦ 0.25e-03 9.2
Case-D0-u Mesh-D Sodium at 550◦ 0.25e-04 9.2

Second set /
part

Case-B4-u a Mesh-A Water at 20◦ 0.25e-03 9.2
Case-B7-u a Mesh-B Water at 20◦ 0.25e-04 9.2
Case-B8-u a Mesh-A Water at 20◦ 0.25e-03 3.08
Case-B9-u a Mesh-A Water at 20◦ 0.25e-03 0.8
Case-B10-u a Mesh-A Water at 60◦ 0.25e-03 9.2
Case-B11-u a Mesh-A Sodium at 550◦ 0.25e-03 9.2
Case-D0-u a Mesh-D Sodium at 550◦ 0.25e-04 9.2

Table 5.6: In this table you see a list over all the cases I plane to preform LES simulations
with. The cases that have a -u ending has the setup in Table (5.1), while cases with a
-u a ending has the setup in Table (5.4). For all the cases the simulation time length is 5
seconds.

We are know ready to start the simulation. In the <case> directory type the name of
the solver 6 and press enter.

escapeinside

$ pisoFoam

As the program is running, folders for different time steps will be created inside the
<case> directory. Inside these time folder7 will be files containing field information. The
time step between each ”writing” is set in the system/controlDict file.

The command above was for doing the simulation with a single processing unit. For
doing the simulation in parallel, with several CPU’s, you have to first split the mesh into
peaces. Each processing units will be assigned a mesh peace and a processor* folder 8

will be created for that processing unit. Inside the processor* folder, simulation results
at different time steps will be saved. These results are just for the mesh area assigned a
specific processing unit. The first of two commands you have to execute is

escapeinside

$ decomposePar

decomposePar does the mesh splitting and creates the processor* folders. The second
command is for starting the simulation

escapeinside

$ mpirun -np 4 pisoFoam -parallel

If you have done the simulation in parallel, the final thing you have to do is to ”glue”
together results from all the processor* folders. The execution command for this is

6You have to use same solver as defined in the system/controlDict file. See Figure (5.1)
7These time folders are for example named as 0, 0.1 and so on, if the result ”writing” is set to 0.1
8 These folders are named as processor0, processor1, ...
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escapeinside

$ reconstructPar

The visualization of the results and post-processing is done mainly with ParaView9.
And if you like working with VTK files, you can generate them with

escapeinside

$ foamToVTK

5.2 Simulations on The Abel Computer Cluster

I will here really fast explain how you preform a simulation with OpenFOAM using Abel,
short for The Abel Computer Cluster. The way described bellow is one way of of doing
this and the way I did it. The content of this section is refereed back to the user-manual
of Abel [10].

All communication with Abel, like sending and receiving files, running programs, etc.,
is done over the Internet using a secure network connection like ssh.

Every person who has a user-account on Abel get their own separate disk space. This
disk space, witch is the users personal home directory, is where he/she can save files, install
programs and do other similar tasks.

The way you preform a ”job” on Abel is by applying simple four step:

1 starting your program by sourcing the program functions

2 next copy relevant files and folders to a special work area, which is on a faster file
system

3 their run your simulation

4 and finally copy back the simulation results to your user home directory

All the steps above is preformed by Abel, but you have to handover the information and
instructions in a shell script.

Say now you have OpenFOAM installed in your user home directory at Abel, the
same way you have it installed on your personal computer. You log on to Abel, enter
your OpenFOAM folder and move down to the subdirectory containing your finished
OpenFOAM <case>10, create the shell script mentioned above, and submit it to Abel.

The commands and functions you would have executed in a terminal window for run-
ning a simulation with OpenFOAM, on your home computer, has to now be placed inside
this shell script. This shell script , called a job script, has in addition to the OpenFOAM
statements a set of other instructions. These additional instructions can be roughly di-
vided in to 3 categories. The first category is the computational resources11 needed for
the task. The second category is what files and folders you want to copy to the scratch
area, and what results and other material you want to copy back to the folder where you
submitted the job script. And the final third category is basic shell commands for moving
between folders, compressing files, etc. In Appendix (A.2.2) you see a example of a job
scripts. This job script was made for Case-B4.

9

10By finished I mean that OpenFOAM <case> is ready to be run. Everything like initial and boundary
conditions, solver type, etc., is set

11By computational resources I mean number of processing units you want to use, maximum simulation
time, memory usage per CPU, etc.

http://www.paraview.org/


Chapter 6

Results

I didn’t finished preforming simulations with all the cases I had planed to work on.
Case-B7-u, Case-B7-u a, Case-D0-u and Case-D0-u a has large meshes, with fine mesh
refinement close to wall boundary areas, that requires a small time step ∆t. A full five
second simulation will take more then 96 hours and I didn’t have the time for that. So
I haven’t produced any results for them and their not a part of the discussion in this
chapter.

All the results I have will be compared against results in TANAKA et al. [9].

6.1 The U-RANS simulations

In TANAKA et al. [9] U-RANS simulations, with the k-ε turbulence model, where pre-
formed on a set of different cases, varying mesh refinement, the simulation time-step and
working fluids. For all the cases, the simulations converged towards a ”repeated” solution
where you have a flow field that produces the same flow structures at regular time intervals.
The flow structure of importance in [9] was horseshoe shaped eddy’s that where shedding
from the pipe wall bottom in the area right after the pipe elbow outlet. The shedding was
happening at a frequency of 20Hz and the movement of the eddy’s was not only straight
forwards towards the pipe outlet, but the eddy’s where also oscillating slightly from side
to side. And the effect of this was a pressure field, in the area close to the pipe bottom
wall, that was fluctuating.

The results from my U-RANS simulations became very different then the results in
[9]. None of my simulations converged to a ”repeated” solution. There where no sign of
vortex shedding in any of the test cases I preformed. There where no flow structures that
where fluctuating or rotating. From a initial stat, with no fluid movement, the flow fields
gradually changes to a steady state like the one you see in Figure (6.3a).

In Figure (6.3) you see pictures of a steady state solution from one test case where I
was trying to reproduce Case-B4 in [9]. If you look closer at the U field in Figure (6.3a),
you see that in the area after the pipe elbow outlet, the fluid velocity will increase as we
move from the pipe bottom to the pipe top. In Figure (6.2) you see the velocity profile
for the ux component at three different position after the pipe elbow outlet. Compared
to any of the velocity profiles you find in [9], my velocity profiles are different in shape
and velocity magnitude. Their is also no area with back flow in positions x/D = 0.18 for
z/D < 0.2.

43
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(a) In this picture you see how I have defined the
angles on the horizontal pipe sections of both the
test pipe and the hot-leg piping. This is the same
as in [9].

(b) The picture is from TANAKA et al. [8]

Since I have a steady state pressure field it is difficult to make a comparison to the
instantaneous fields you find in [9]. One thing that indicates a difference between my
pressure fields and the ones in [9], is the range of pressure magnitudes. The range in [9]
extends much further both in positive and negative direction.

Different test cases produced other solutions then the ones you see in Figure (6.3), but
the end result of all the cases was a steady state solution. Take a look at these movies
from couple of the test cases

• https://github.com/sayedn/Master-/blob/master/mov/u-rans_CK.ogv

• https://github.com/sayedn/Master-/blob/master/mov/u-rans_movie.ogv

All the U-RANS simulations where preformed in 2D, and never extended to 3D since
I couldn’t get pass the steady state solutions.

6.2 The LES simulations

The reason why I did the LES simulations was because all my U-RANS simulations resulted
in steady state solutions. My main LES simulations is divided into two sets, see Table
(5.6). The discussion in this section will only be for the result of the main simulations,
and not for any the preliminary test cases conducted.

6.2.1 The first set of LES simulations

I couldn’t find horseshoe shaped eddy’s in any of the cases in the first set of LES sim-
ulations. In Figure (6.4) you see instantaneous pictures of iso-surface contours defined
by

Q = (WijWij −DijDij)/2, (6.1)

https://github.com/sayedn/Master-/blob/master/mov/u-rans_CK.ogv
https://github.com/sayedn/Master-/blob/master/mov/u-rans_movie.ogv
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x/D = 0.18, position (II)
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Figure 6.2: Time-averaged velocity profile of ux component at three different positions
downstream of pipe elbow outlet, see Figure (6.1b). This is for one of the U-RANS
simulations, and at these positions ux is parallel to the pipe walls.
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(a) (b)

(c) (d)

(e)

Figure 6.3: In this Figure you see the different fields from a two dimensional U-RANS
simulation at t = 5 s. This is a steady state solution.
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where

Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
and Wij =

(
∂ui
∂xj
− ∂uj
∂ui

)
.

This type of iso-surfaces was used in TANAKA et al. [9] to illustrate eddy’s. For all the
cases I plotted Q over a wide range of different values, but didn’t find any horseshoe shaped
eddy’s as described in [9]. Here is a movie of the iso-surface contours, with Q = 5000s−2,
for Case-B4-u.

• https://github.com/sayedn/Master-/blob/master/mov/iso_B4.ogv

In Figure (6.5) you see time-averaged velocity profiles of the velocity component parallel
to the the pipe-center axis. There is three plots in the figure, at three different positions
down stream of the pipe elbow outlet. These are the same measuring positions as in
[9]. None of my velocity profiles look as their counterpart in [9]. At x/D = 0.18 and
x/D = 0.62 the difference between my velocity profiles and the velocity profiles in [9] is
big. The main difference is in the region z/D < 0.6, where the profiles in [9] has a bigger
velocity magnitude. Also another thing is that I don’t have any back flow in the region
z/D < 0.2 at x/D = 0.18.

Here is a movie of the velocity field in Case-B4-u

• https://github.com/sayedn/Master-/blob/master/mov/Case-B4-u-LES_

3D_2.ogv

There was a problem with the pressure data for all the cases in this set. Take a look
at the movie

• https://github.com/sayedn/Master-/blob/master/mov/les_mixed.ogv

The pressure data is ruined. So I can’t do a comparison against the pressure results in [9].
In Figure (6.6) you see the velocity magnitudes for the first set of LES simulations.

6.2.2 The second set of LES simulations

Let’s again start with the iso-surface contours. In Figure (6.7) you can see a selection of
surfaces for the different cases in the second set of LES simulations. Like with the first
set of LES simulations, I plotted Q over a wide range of different values, but did not find
any horseshoe shaped eddy’s. The flow structures in Figure (6.7e) is the closest thing to
a horseshoe shaped eddy I could find.

In Figure (6.8) you see velocity profiles of cases in the second set of LES simulations.
Again there is a big difference between my velocity profiles and the velocity profiles in [9].
As with the first set of LES simulations the biggest difference is in the area z/D < 0.6 at
x/D = 0.18 and x/D = 0.62. The velocity profiles at x/D = 1.12 is closer to the ones you
find in [9], then the profiles at x/D = 0.18 and x/D = 0.62.

In Figure (6.9) and (6.10) you see frequency analysis of pressure fluctuations at two
different positions 0.5D downstream of the pipe elbow outlet. The sampling of the pressure
is done at 100Hz over a period of 5 seconds. At both positions, 150◦ and 180◦, there is
a peak at St = 1 (20Hz). The frequency analysis in [9] showed two peaks, one at St = 1
and one at St = 0.5 (10Hz). My plots don’t have a peak at St = 0.5. Also notice that
the magnitude of my PSD plots is smaller the ones in [9]. Here is a movie of the pressure
fluctuations on the pipe wall for Case-B-u a

• https://github.com/sayedn/Master-/blob/master/mov/Case-B4-u_a-LES_

3D.ogv

https://github.com/sayedn/Master-/blob/master/mov/iso_B4.ogv
https://github.com/sayedn/Master-/blob/master/mov/Case-B4-u-LES_3D_2.ogv
https://github.com/sayedn/Master-/blob/master/mov/Case-B4-u-LES_3D_2.ogv
https://github.com/sayedn/Master-/blob/master/mov/les_mixed.ogv
https://github.com/sayedn/Master-/blob/master/mov/Case-B4-u_a-LES_3D.ogv
https://github.com/sayedn/Master-/blob/master/mov/Case-B4-u_a-LES_3D.ogv
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Figure 6.5: Time-averaged velocity profile of ux component at three different positions
downstream of pipe elbow outlet, see Figure (6.1b). This is for the first set of LES
simulations, and at these positions ux is parallel to the pipe walls.
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Figure 6.8: Time-averaged velocity profile of ux component at three different positions
downstream of pipe elbow outlet, see Figure (6.1b). This is for the second set of LES
simulations, and at these positions ux is parallel to the pipe walls.



6.2. THE LES SIMULATIONS 53

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

10−9

10−8

10−7

10−6

St = fD/Um

P
S
D

[(
k
P

a
)2

s]

Case-B4-u a
Case-B10-u a
Case-B11-u a

Figure 6.9: Frequency analysis of pressure fluctuations at 150◦ (on the pipe wall), see
Figure (6.1a). The distance from the pipe elbow outlet is 0.5D.
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Figure 6.10: Frequency analysis of pressure fluctuations at 180◦ (on the pipe wall), see
Figure (6.1a). The distance from the pipe elbow outlet is 0.5D.
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In Figure (6.11) you see the velocity magnitudes for the second set of LES simulations.
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Chapter 7

Conclusions

I didn’t manage to reproduce the results in TANAKA et al. [9] and I didn’t manage to
make my k-ε turbulence model work properly. These are the two main down point of my
master thesis project.

After having a discussion with my main supervisor Mikael Mortensen, he pointed out
that maybe I need to change the discretization of some terms in the governing equations.
Specially going up to higher order types of discretization both in time and space.

The choice to use LES modeling on this type of flows is problematic. Article [9] is one of
many articles, in a series of publications, for finding a numerical method that can be used
for studying the flow conditions inside the full scale hot-leg piping of JSFR. LES modeling
was tested in earlier publications, but didn’t manage to produce very good results.

A suggestion to improving the LES simulations is use a much finer mesh refinement
in the pipe elbow section. And like with the U-RANS simulations trying different types
discretization for the terms in the governing equations.

Other thing I could have done differently is the sampling of data. I for example
extracted the pressure data from the files saved when preforming the simulation, while I
could have placed out sampling probes and mange to pick up more frequencies of pressure
fluctuations.

57
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Appendix A

Source code

A.1 Gmsh code

A.1.1 .geo file for Mesh-A

1// pipe diameter

D = 0.41;

3

// inlet center point

5xs = -0.4; ys = 0; zs = -2.532;

7// lenght of first pipe section

l1 = 4.7*D;

9

// length of second pipe section

11l2 = 1*D;

13// Radius of curvature for third pipe

section

R = 0.4233;

15

// length of fourth pipe section

17l4 = 1*D;

19// length fifth pipe section

l5 = 7.9*D;

21

// radius for outer circle

23r = D/2.0;

25// "radius" for inner octave points

r1 = (165/205)*r;

27

mid1 = Sqrt((r1*r1)/2.0);

29

N1 = 10;

31

N2 = 28;

33

mid2 = Sqrt((r*r)/2.0);

35

Point (1) = {xs, ys, zs , 1.0};

37Point (2) = {r1 + xs , ys, zs, 1.0};

Point (3) = {xs, ys - r1, zs, 1.0};

39Point (4) = {xs - r1 , ys, zs, 1.0};

Point (5) = {xs, r1 + ys , zs ,1.0};

41

Point (6) = {mid1 + xs, mid1 + ys , zs , 1.0};

43Point (7) = {mid1 + xs, ys - mid1 , zs , 1.0};

Point (8) = {xs - mid1 , ys - mid1 , zs , 1.0};

45Point (9) = {xs - mid1 , ys + mid1 , zs , 1.0};

47Point (10) = {r + xs , ys, zs, 1.0};

Point (11) = {xs, ys - r, zs, 1.0};

49Point (12) = {xs - r, ys, zs, 1.0};

Point (13) = {xs, r + ys , zs , 1.0};

51

Point (14) = {mid2 + xs, mid2 + ys , zs, 1.0};

53Point (15) = {mid2 + xs, ys - mid2 , zs, 1.0};

Point (16) = {xs - mid2 , ys - mid2 , zs, 1.0};

55Point (17) = {xs - mid2 , ys + mid2 , zs, 1.0};

Point (18) = {xs + R, 0, zs + l1 + l2, 1.0};

57

// lines for inlet

59Line (1) = {1, 2};

Line (2) = {1, 3};

61Line (3) = {1, 4};

Line (4) = {1, 5};

63

Line (5) = {2, 7};

65Line (6) = {7, 3};

Line (7) = {3, 8};

67Line (8) = {8, 4};

Line (9) = {4, 9};

69Line (10) = {9, 5};

Line (11) = {5, 6};

71Line (12) = {6, 2};

73/*

Circle (5) = {2, 1, 7};

75Circle (6) = {7, 1, 3};

Circle (7) = {3, 1, 8};

77Circle (8) = {8, 1, 4};

Circle (9) = {4, 1, 9};

59
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79Circle (10) = {9, 1, 5};

Circle (11) = {5, 1, 6};

81Circle (12) = {6, 1, 2};

*/

83

Line (13) = {2, 10};

85Line (14) = {7, 15};

Line (15) = {3, 11};

87Line (16) = {8, 16};

Line (17) = {4, 12};

89Line (18) = {9, 17};

Line (19) = {5, 13};

91Line (20) = {6, 14};

93Circle (21) = {10, 1, 15};

Circle (22) = {15, 1, 11};

95Circle (23) = {11, 1, 16};

Circle (24) = {16, 1, 12};

97Circle (25) = {12, 1, 17};

Circle (26) = {17, 1, 13};

99Circle (27) = {13, 1, 14};

Circle (28) = {14, 1, 10};

101

// surfaces for inlet

103Line Loop (29) = {1, 5, 6, -2};

Ruled Surface (30) = {29};

105Line Loop (31) = {2, 7, 8, -3};

Ruled Surface (32) = {31};

107Line Loop (33) = {3, 9, 10, -4};

Ruled Surface (34) = {33};

109Line Loop (35) = {4, 11, 12, -1};

Ruled Surface (36) = {35};

111Line Loop (37) = {13, 21, -14, -5};

Ruled Surface (38) = {37};

113Line Loop (39) = {14, 22, -15, -6};

Ruled Surface (40) = {39};

115Line Loop (41) = {15, 23, -16, -7};

Ruled Surface (42) = {41};

117Line Loop (43) = {16, 24, -17, -8};

Ruled Surface (44) = {43};

119Line Loop (45) = {17, 25, -18, -9};

Ruled Surface (46) = {45};

121Line Loop (47) = {18, 26, -19, -10};

Ruled Surface (48) = {47};

123Line Loop (49) = {19, 27, -20, -11};

Ruled Surface (50) = {49};

125Line Loop (51) = {20, 28, -13, -12};

Ruled Surface (52) = {51};

127

Extrude {0, 0, l1} {

129Surface {34, 32, 30, 36, 48, 46, 44, 42,

40, 38, 52, 50};

}

131

Extrude {0, 0, l2} {

133Surface {118, 96, 74, 140, 272, 250, 228,

206, 184, 162, 316, 294};

}

135

Extrude {{0, 1, 0}, {xs + R, 0, zs+l1+l2},

Pi/2} {

137Surface {404, 338, 360, 382, 558, 580, 426,

448, 470, 492, 514, 536};

}

139Extrude {l4, 0, 0} {

Surface {602, 624, 646, 668, 690, 712, 734,

756, 778, 800, 822, 844};

141}

Extrude {l5, 0, 0} {

143Surface {866, 888, 910, 932, 954, 976, 998,

1020, 1042, 1064, 1086, 1108};

}

145

Physical Surface("inlet") = {30, 36, 34, 32,

40, 38, 52, 50, 48, 46, 44, 42};

147

Physical Surface("fixedwall") = {241, 263,

285, 307, 153, 175, 197, 219, 439, 417,

571, 549, 527, 505, 483, 461, 791, 769,

747, 725, 703, 681, 835, 813, 945, 967,

989, 1011, 1033, 1055, 1077, 1099, 1231,

1253, 1297, 1275, 1319, 1341, 1363,

1209};

149

Physical Surface("outlet") = {1130, 1152,

1174, 1196, 1218, 1240, 1262, 1284,

1306, 1328, 1350, 1372};

151

Physical Volume("internal") = {1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

56, 57, 58, 59, 60};

153

// axis lines (first part)

155Transfinite Line {236, 108, 104, 280, 258,

130, 152, 68, 59, 82, 214, 64, 148, 86,

60, 192, 170} = 41 Using Progression 1;

157// axis lines (second part)

Transfinite Line {548, 412, 394, 324, 416,

328, 526, 376, 323, 332, 438, 372, 504,

350, 354, 460, 482} = 21 Using

Progression 1;

159

// axis lines (third part)

161Transfinite Line {724, 746, 746, 746, 614,

618, 702, 596, 768, 768, 636, 587, 592,

592, 680, 640, 790, 588, 676, 658, 812}

= 34 Using Progression 1;

163// axis lines (fourth part)

Transfinite Line {988, 878, 1010, 966, 860,

882, 851, 1032, 856, 944, 1032, 1032,

900, 904, 1054, 852, 922, 940, 1076} =

21 Using Progression 1;

165

// axis lines (fifth part)

167Transfinite Line {1252, 1230, 1142, 1124,

1274, 1146, 1208, 1120, 1115, 1164,

1296, 1116, 1204, 1168, 1186, 1318,
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1340} = 61 Using Progression 1;

169// circular lines

Transfinite Line {28, 21, 22, 23, 24, 25,

26, 27, 231, 209, 187, 165, 143, 297,

275, 253, 451, 473, 495, 517, 539, 561,

407, 429, 671, 693, 715, 737, 759, 781,

803, 825, 935, 957, 979, 1001, 1023,

1045, 1067, 1089, 1199, 1221, 1243,

1265, 1287, 1309, 1331, 1353} = N1 Using

Progression 1;

171

// ’outer’ radial lines

173Transfinite Line {13, 14, 15, 16, 17, 18,

19, 20, 230, 208, 186, 164, 142, -144,

274, 252, 406, -408, -430, -452, -474,

-496, -518, -540, -694, -716, -738,

-760, -782, -804, 670, -672, -958, -980,

-1002, -1024, -1046, -1068, 934, -936,

-1200, -1222, -1244, -1266, -1288,

-1310, -1332, 1198} = N2 Using

Progression 0.9;

175// octave lines

Transfinite Line {5, 6, 7, 8, 9, 10, 11, 12,

99, 100, 77, 78, 55, 56, 121, 122, 319,

320, 341, 342, 363, 364, 385, 386, 584,

605, 606, 627, 628, 649, 650, 583, 848,

869, 870, 891, 892, 913, 914, 847,

1112, 1133, 1134, 1155, 1156, 1177,

1178, 1111} = N1 Using Progression 1;

177

// ’inner’ radial lines

179Transfinite Line {1, 2, 3, 4, 98, 76, 54,

57, 318, 321, 343, 365, 585, 607, 629,

582, 849, 871, 893, 846, 1113, 1135,

1157, 1110} = N1 Using Progression 1;

181Transfinite Surface "*";

Recombine Surface "*";

183Transfinite Volume "*";

A.2 Abel Computing Cluster
Job Scripts

A.2.1 Simple Serial Job

#!/bin/bash

2

# Job name:

4#SBATCH --job -name=test01

#

6# Project:

#SBATCH --account=uio

8#

# Wall clock limit:

10#SBATCH --time =00:01:00

#

12# Max memory usage:

#SBATCH --mem -per -cpu =1000M

14

## Set up job environment

16source /cluster/bin/jobsetup

18## Source run functions

source $HOME /. bashrc

20

## Copy input files to the work directory:

22cp -r /usit/abel/u1/sayedn/OpenFOAM/sayedn

-2.1.1/ run/tutorials/incompressible/

icoFoam/cavity/ $SCRATCH

24## Make sure the results are copied back to

the submit directory (see Work Directory

below):

cleanup "cp -r $SCRATCH/cavity /0.*

$SUBMITDIR/cavity/"

26

## Do some work:

28cd $SCRATCH/cavity

blockMesh

30icoFoam

A.2.2 Parallel Job

#!/bin/bash

2# Job name:

#SBATCH --job -name=test

4#

# Project:

6#SBATCH --account=uio

#

8# Wall clock limit:

#SBATCH --time =12:00:00

10#

# Max memory usage per core (MB):

12#SBATCH --mem -per -cpu=1G

#

14# Number of tasks (cores):

#SBATCH --ntasks =12 # Number of cores:

16

## Set up job environment

18source /cluster/bin/jobsetup

20## module load openmpi.gnu /1.8.1

export OMPI_MCA_mpi_warn_on_fork =0

22

## Source run functions

24source $HOME /. bashrc

26## Copy input files to the work directory:

cp -r /usit/abel/u1/sayedn/OpenFOAM/sayedn

-2.1.1/ run/tutorials/incompressible/

pisoFoam/les/Case -B4-u/ $SCRATCH

28

## Make sure the results are copied back to

the submit directory (see Work Directory

below):



62 APPENDIX A. SOURCE CODE

30cleanup "cp -r $SCRATCH/Case -B4 -u/processor

*.zip $SUBMITDIR/Case -B4 -u/"

32## Run command

cd $SCRATCH/Case -B4 -u/

34

## (For non -OpenMP -programs , you must

control the number of threads manually ,

using $OMP_NUM_THREADS .)

36decomposePar

mpirun -np 12 pisoFoam -parallel

38

mpirun -np 1 zip -r processor0.zip

processor0 : \

40-np 1 zip -r processor1.zip processor1 : \

-np 1 zip -r processor2.zip processor2 : \

42-np 1 zip -r processor3.zip processor3 : \

-np 1 zip -r processor4.zip processor4 : \

44-np 1 zip -r processor5.zip processor5 : \

-np 1 zip -r processor6.zip processor6 : \

46-np 1 zip -r processor7.zip processor7 : \

-np 1 zip -r processor8.zip processor8 : \

48-np 1 zip -r processor9.zip processor9 : \

-np 1 zip -r processor10.zip processor10 : \

50-np 1 zip -r processor11.zip processor11

A.3 OpenFoam code

A.3.1 Case-B4-u decomposeParDict -file

FoamFile

2{

version 2.0;

4format ascii;

class dictionary;

6object decomposeParDict;

}

8

numberOfSubdomains 12;

10

method scotch;

A.3.2 Case-B4-u fvShemes -file

1FoamFile

{

3version 2.0;

format ascii;

5class dictionary;

location "system";

7object fvSchemes;

}

9

ddtSchemes

11{

default backward;

13}

15gradSchemes

{

17default Gauss linear;

}

19

divSchemes

21{

default none;

23div(phi ,U) Gauss linear;

div(phi ,k) Gauss limitedLinear 1;

25div(phi ,B) Gauss limitedLinear 1;

div(phi ,nuTilda) Gauss limitedLinear 1;

27div(B) Gauss linear;

div((nuEff*dev(T(grad(U))))) Gauss

linear;

29}

31laplacianSchemes

{

33default Gauss linear corrected;

}

35

interpolationSchemes

37{

default linear;

39}

41snGradSchemes

{

43default corrected;

}

45

fluxRequired

47{

default no;

49p ;

}

A.3.3 Case-B4-u fvSolution -file

FoamFile

2{

version 2.0;

4format ascii;

class dictionary;

6location "system";

object fvSolution;

8}

10solvers

{

12p

{

14solver GAMG;

tolerance 1e-06;

16relTol 0.1;

smoother GaussSeidel;

18nPreSweeps 0;
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nPostSweeps 2;

20cacheAgglomeration on;

agglomerator faceAreaPair;

22nCellsInCoarsestLevel 10;

mergeLevels 1;

24}

26pFinal

{

28$p;

smoother DICGaussSeidel;

30tolerance 1e-06;

relTol 0;

32}

34"(U|k|B|nuTilda)"

{

36solver smoothSolver;

smoother GaussSeidel;

38tolerance 1e-05;

relTol 0;

40}

}

42

PISO

44{

nCorrectors 2;

46nNonOrthogonalCorrectors 0;

}

A.3.4 Case-B4-u LESProperties -file

1FoamFile

{

3version 2.0;

format ascii;

5class dictionary;

location "constant";

7object LESProperties;

}

9

LESModel oneEqEddy;

11

delta cubeRootVol;

13

printCoeffs on;

15

cubeRootVolCoeffs

17{

deltaCoeff 1;

19}

21PrandtlCoeffs

{

23delta cubeRootVol;

cubeRootVolCoeffs

25{

deltaCoeff 1;

27}

29smoothCoeffs

{

31delta cubeRootVol;

cubeRootVolCoeffs

33{

deltaCoeff 1;

35}

37maxDeltaRatio 1.1;

}

39

Cdelta 0.158;

41}

43vanDriestCoeffs

{

45delta cubeRootVol;

cubeRootVolCoeffs

47{

deltaCoeff 1;

49}

51smoothCoeffs

{

53delta cubeRootVol;

cubeRootVolCoeffs

55{

deltaCoeff 1;

57}

59maxDeltaRatio 1.1;

}

61

Aplus 26;

63Cdelta 0.158;

}

65

smoothCoeffs

67{

delta cubeRootVol;

69cubeRootVolCoeffs

{

71deltaCoeff 1;

}

73

maxDeltaRatio 1.1;

75}/

A.3.5 Case-B4-u transportProperties

-file

1FoamFile

{

3version 2.0;

format ascii;

5class dictionary;

location "constant";

7object transportProperties;

}
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9

transportModel Newtonian;

11

nu nu [ 0 2 -1 0 0 0 0 ] 1.004e

-06;

13

CrossPowerLawCoeffs

15{

nu0 nu0 [ 0 2 -1 0 0 0 0 ] 1

e-06;

17nuInf nuInf [ 0 2 -1 0 0 0 0 ]

1e-06;

m m [ 0 0 1 0 0 0 0 ] 1;

19n n [ 0 0 0 0 0 0 0 ] 1;

}

21

BirdCarreauCoeffs

23{

nu0 nu0 [ 0 2 -1 0 0 0 0 ] 1

e-06;

25nuInf nuInf [ 0 2 -1 0 0 0 0 ]

1e-06;

k k [ 0 0 1 0 0 0 0 ] 0;

27n n [ 0 0 0 0 0 0 0 ] 1;

}

A.3.6 Case-B4-u turbulenceProperties

-file

FoamFile

2{

version 2.0;

4format ascii;

class dictionary;

6location "constant";

object turbulenceProperties;

8}

10simulationType LESModel;

A.4 Python code

A.4.1 Program for finding the Power
Spectral Density (PSD)

from scipy import signal , fftpack

2import matplotlib.pyplot as plt

import csv

4

D = 0.41 # Pipe diameter

6Um = 9.2 # Mean velocity

fs = 100 # Sampling frequency

8

10# Open and read pressure file

data = csv.reader(open("Case -B11 -u_a_p1800

.0. csv","rb"), delimiter=",")

12

column1 = []

14column2 = []

16firstline = True

18for row in data:

20if firstline: #skip first line

firstline = False

22continue

24column1.append(float(row [0]) /1000.0)

column2.append(float(row [2]))

26

# Find PSD and frequencies

28f, Pxx_den = signal.welch(column1 , fs)

St = [(x*D)/Um for x in f]

30

l = len(St)

32

# Write to new file

34out = open(’Case -B11 -u_a_pds180.csv’, ’w’)

out.write(’"St","Pxx_den" \n’)

36

for i in range(l):

38out.write(’%.16f,%.16f’ % (St[i],

Pxx_den[i]))

out.write(’\n’)

40out.close()

A.4.2 Program for calculating initial
and boundary conditions for
different field variables

from math import *

2

# Mean velocity

4U = 9.2

6# Pipe diameter

D = 0.41

8

# Characteristic length scale

10L = D

12C_nu = 0.09

14l = 0.07*L

16# Kinematic viscosity

nu = 1.004*10**( -6)

18

# Density of fluid

20rho = 1000

22# Reynolds number
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Re_DH = (U*D)/nu

24

print

26print "Re_DH = %f" % Re_DH

print

28# Turbulence intensity

Re_DH = 50000

30I = 0.16*( Re_DH)**( -1.0/8)

32print "I = %f" % I

print

34# Turbulence kinematic energy at different

boundarys

print "

--------------------------------------"

36print " k’s "

print "

--------------------------------------"

38k_i = (3.0/2) *(0*I)**2

print "k_i = %f" % k_i

40k_wall = (3.0/2) *(0*I)**2

print "k_wall = %f" % k_wall

42k_out = (3.0/2) *(0*I)**2

print "k_out= %f" % k_out

44k_in = (3.0/2) *(U*I)**2

print"k_in = %f" % k_in

46

print "

--------------------------------------"

48print " Epsilon ’s

"

print "

--------------------------------------"

50Epsilon_i = (C_nu **(3.0/4))*((k_i **(3.0/2))/

l)

print "Epsilon_i = %f" % Epsilon_i

52Epsilon_wall = (C_nu **(3.0/4))*(( k_wall

**(3.0/2))/l)

print "Epsilon_wall = %f" % Epsilon_wall

54Epsilon_out = (C_nu **(3.0/4))*(( k_out

**(3.0/2))/l)

print "Epsilon_out = %f" % Epsilon_out

56Epsilon_in = (C_nu **(3.0/4))*(( k_in **(3.0/2)

)/l)

print "Epsilon_in = %f" % Epsilon_in

58

print "

--------------------------------------"

60print " nuTilda ’s

"

print "

--------------------------------------"

62nuTilda_in = sqrt (3.0/2)*U*I*l

print "nuTilda_in = %f" % nuTilda_in

64#Epsilon_wall = (C_nu **(3.0/4))*(( k_wall

**(3.0/2))/l)

#print "Epsilon_wall = %f" % Epsilon_wall

66#Epsilon_out = (C_nu **(3.0/4))*(( k_out

**(3.0/2))/l)

#print "Epsilon_out = %f" % Epsilon_out

68#Epsilon_in = (C_nu **(3.0/4))*(( k_in

**(3.0/2))/l)

#print "Epsilon_in = %f" % Epsilon_in

70

72print "

--------------------------------------"

print " nut’s

"

74print "

--------------------------------------"

nut_in = (C_nu*(k_in **2))/( Epsilon_in)

76print "nut_in = %f" % nut_in

#nut_i = (C_nu*(k_i **2))/( Epsilon_i)

78#print "nut_i = %f" % nut_i

#nut_wall = (C_nu*( k_wall **2))/( Epsilon_wall

)

80#print "nut_wall = %f" % nut_wall

#nut_out = (C_nu*(k_out **2))/( Epsilon_out)

82#print "nut_out = %f" % nut_out
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