Entropy in type I algebras

by

S. Neshveyev and E. Størmer
Entropy in type I algebras

Sergey Neshveyev1)

B. Verkin Institute for Low Temperature Physics and Engineering,
47, Lenin Ave., 310164, Kharkov, Ukraine

and

Erling Størmer2)

Department of Mathematics, University of Oslo,
P.O. Box 1053, Blindern, 0316 Oslo, Norway

Abstract

It is shown that if \((M, \phi, \alpha)\) is a W*-dynamical system with \(M\) a type I von Neumann algebra then the entropy of \(\alpha\) w.r.t. \(\phi\) equals the entropy of the restriction of \(\alpha\) to the center of \(M\). If furthermore \((N, \psi, \beta)\) is a W*-dynamical system with \(N\) injective then \(h_{\phi \otimes \psi}(\alpha \otimes \beta) = h_{\phi}(\alpha) + h_{\psi}(\beta)\).

1 Introduction

In the theory of non-commutative entropy the attention has almost exclusively been concentrated on non type I algebras. We shall in the present paper remedy this situation by proving the basic facts on entropy of automorphisms of type I C*- and von Neumann-algebras. The results are as nice as one can hope. The CNT-entropy of an automorphism of a von Neumann algebra of type I with respect to an invariant normal state is the classical entropy of the restriction of the automorphism to the center of the algebra. If one factor of a tensor product of two von Neumann algebras is of type I and the other injective, then the entropy of a tensor product automorphism with respect to an invariant product state is the sum of the entropies. The results have obvious corollaries to type I C*-algebras. The main idea behind our proofs is the use of conditional expectations of finite index, as employed in [GN].

We shall use the notation \(h_{\phi}(\alpha)\) for the CNT-entropy of a C*-dynamical system as defined by Connes, Narnhofer and Thirring in [CNT], and \(h'_{\phi}(\alpha)\) for the ST-entropy defined by Sauvageot and Thouvenot in [ST].

2 Main results

We first prove a general result for the Sauvageot-Thouvenot entropy for the restriction of an automorphism to a globally invariant C*-subalgebra of finite index. Recall the definition of ST-entropy and its connection with CNT-entropy.

1) Partially supported by NATO grant SA (PST.CLG.976206)5273.

2) Partially supported by the Norwegian Research Council.
A stationary coupling of a C*-dynamical system \((A, \phi, \alpha)\) with a commutative system \((C, \mu, \beta)\) is an \(\alpha \otimes \beta\)-invariant state \(\lambda\) on \(A \otimes C\) such that \(\lambda|_A = \phi\) and \(\lambda|_C = \mu\). Given such a coupling and a finite-dimensional subalgebra \(P\) of \(C\) with atoms \(p_1, \ldots, p_n\), consider the quantity

\[
H_\mu(P|P^-) - H_\mu(P) + \sum_{i=1}^n \mu(p_i)S(\phi, \phi_i),
\]

where \(\phi_i(a) = \frac{1}{\mu(p_i)} \lambda(a \otimes p_i)\). By definition, the ST-entropy \(h_\phi'(\alpha)\) of the system \((A, \phi, \alpha)\) is the supremum of these quantities.

By [ST, Proposition 4.1], ST-entropy coincides with CNT-entropy for nuclear C*-algebras. In fact, the proof of the inequality \(h_\phi(\alpha) \leq h_\phi'(\alpha)\) does not use any assumptions on the algebra. On the other hand, given a coupling \(\lambda\) and an algebra \(P\) as above, for each \(m \in \mathbb{N}\) we can form the decomposition

\[
\phi = \sum_{i_1, \ldots, i_m=1}^n \phi_{i_1 \ldots i_m}(a) = \lambda(a \otimes p_1 \beta(p_{i_2}) \cdots k_{m-1}(p_{i_m})).
\]

If \(\gamma\) is a unital completely positive mapping of a finite-dimensional C*-algebra into \(A\), we can use these decompositions in computing the mutual entropy \(H_\phi(\gamma, \alpha \circ \gamma, \ldots, \alpha^{m-1} \circ \gamma)\) [CNT]. Indeed, since the atoms in \(\beta^j(P)\) are \(\beta^j(p_1), \ldots, \beta^j(p_n)\) we have by [CNT, III.3]

\[
H_\phi(\gamma, \alpha \circ \gamma, \ldots, \alpha^{m-1} \circ \gamma) \geq S\left(\mu \bigvee_{j=0}^{m-1} \beta^j(P)\right) - \sum_{j=0}^{m-1} S\left(\mu(\beta^j(P))\right)
\]

\[
+ \; \sum_{j}^{m-1} \sum_{i}^{m} \mu(\beta^j(p_i))S\left(\phi \circ \alpha^j \circ \gamma, \frac{\lambda((\alpha^j \circ \gamma)(\cdot) \otimes \beta^j(p_i))}{\mu(\beta^j(p_i))}\right).
\]

Hence by invariance of \(\phi, \mu\) and \(\lambda\) with respect to \(\alpha, \beta\) and \(\alpha \otimes \beta\) respectively

\[
\frac{1}{m} H_\phi(\gamma, \alpha \circ \gamma, \ldots, \alpha^{m-1} \circ \gamma) \geq \frac{1}{m} H_\mu\left(\bigvee_{j=0}^{m-1} \beta^j(P)\right) - H_\mu(P) + \sum_i \mu(p_i)S(\phi \circ \gamma, \phi_i \circ \gamma).\]

It follows that

\[
h_\phi(\alpha) \geq H_\mu(P|P^-) - H_\mu(P) + \sum_{i=1}^n \mu(p_i)S(\phi \circ \gamma, \phi_i \circ \gamma).\]

Thus what is really necessary for the coincidence of the entropies, is the existence of a net of unital completely positive mappings \(\gamma_i\) of finite-dimensional C*-algebras into \(A\) such that \(S(\phi, \psi) = \lim_i S(\phi \circ \gamma_i, \psi \circ \gamma_i)\) for any positive linear functional \(\psi\) on \(A\), \(\psi \leq \phi\). In particular, \(h_\phi(\alpha) = h_\phi'(\alpha)\) if \(A\) is an injective von Neumann algebra and \(\phi\) is a normal state on it.

Proposition 1 Let \((A, \phi, \alpha)\) be a unital C*-dynamical system. Let \(B \subset A\) be an \(\alpha\)-invariant C*-subalgebra (with 1 \(\in B\)). Suppose there exists a conditional expectation \(E : A \rightarrow B\) such that \(E \circ \alpha = \alpha \circ E\), \(\phi \circ E = \phi\) and \(E(x) \geq cx\) for all \(x \in A^+\) for some \(c > 0\). Then \(h_\phi'(\alpha) = h_\phi'(\alpha|B)\).

Proof. Let \((C, \mu, \beta)\) be a C*-dynamical system with \(C\) abelian. Using \(E\) we can lift any stationary coupling on \(B \otimes C\) to a stationary coupling on \(A \otimes C\). This, together with the property of monotonicity of relative entropy, shows that \(h_\phi'(\alpha) \geq h_\phi'(\alpha|B)\).

Conversely, suppose \(\lambda\) is a stationary coupling of \((A, \phi, \alpha)\) with \((C, \mu, \beta), \) \(P\) a finite-dimensional subalgebra of \(C\) with atoms \(p_1, \ldots, p_n\), and \(\phi_i(a) = \frac{1}{\mu(p_i)} \lambda(a \otimes p_i)\) for \(a \in A\). Since
\[\phi_i \leq \frac{1}{\mu(p)} \phi, \phi_i \text{ is normal in the GNS-representation of } \phi. \] Since \(E \) is \(\phi \)-invariant, it extends to a normal conditional expectation of the closure of \(A \) in the GNS-representation onto the closure of \(B \). Thus we can apply [OP, Theorem 5.15] to \(\phi \) and \(\phi_i \), and (as in the proof of Lemma 1.5 in [GN]) get

\[
\sum_{i=1}^{n} \mu(p_i) S(\phi, \phi_i) = \sum_{i=1}^{n} \mu(p_i) (S(\phi|B, \phi_i|B) + S(\phi_i \circ E, \phi_i)) \leq \sum_{i=1}^{n} \mu(p_i) S(\phi|B, \phi_i|B) - \log c.
\]

It follows that \(h'_\phi(\alpha) \leq h'_\phi(\alpha|B) - \log c \). Then for each \(m \in \mathbb{N} \)

\[
h'_\phi(\alpha) = \frac{1}{m} h'_\phi(\alpha^m) \leq \frac{1}{m} h'_\phi(\alpha^m|B) - \frac{1}{m} \log c = h'_\phi(\alpha|B) - \frac{1}{m} \log c.
\]

Thus \(h'_\phi(\alpha) \leq h'_\phi(\alpha|B) \).

Corollary 2 If in the above proposition \(A \) and \(B \) are injective von Neumann algebras and \(\phi \) is normal then \(h_\phi(\alpha) = h_\phi(\alpha|B) \).

To prove our main result we need also two simple lemmas. The first lemma is more or less well-known.

Lemma 3 Let \((M, \phi, \alpha)\) be a \(W^* \)-dynamical system. Then

(i) if \(p \) is an \(\alpha \)-invariant projection in \(M \) such that \(\text{supp } \phi \leq p \), then \(h_\phi(\alpha) = h_\phi(\alpha|\text{M}_p) \);

(ii) if \(\{p_i\}_{i \in I} \) is a set of mutually orthogonal \(\alpha \)-invariant central projections in \(M \), \(\sum_i p_i = 1 \), then

\[
h_\phi(\alpha) = \sum_i \phi(p_i) h_\phi(\alpha_i),
\]

where \(\phi_i = \frac{1}{\phi(p_i)} \phi \) is the normalized restriction of \(\phi \) to \(\text{M}_p \), and \(\alpha_i = \alpha|\text{M}_p_i \).

Proof. (i) easily follows from the definitions; (ii) follows from [CNT, VII.5(iii)], (i) and [SV, Lemma 3.3] applied to the subalgebras \(\text{M}(p_1 + \ldots + p_n) + C(1 - p_1 - \ldots - p_n) \).

The proof of the following lemma is left to the reader.

Lemma 4 Let \(T \) be an automorphism of a probability space \((X, \mu), f \in L^\infty(X, \mu) \) a \(T \)-invariant function such that \(f \geq 0 \) and \(\int_X f \, d\mu = 1 \). Let \(\mu_f \) be the measure on \(X \) such that \(d\mu_f / d\mu = f \). Then \(h_{\mu_f}(T) \leq ||f||_\infty h_\mu(T) \).

Theorem 5 Let \((M, \phi, \alpha)\) be a \(W^* \)-dynamical system with \(M \) a von Neumann algebra of type I. Let \(Z \) denote the center of \(M \). Then \(h_\phi(\alpha) = h_\phi(\alpha|Z) \).

Proof. By Lemma 3(i) we may suppose that \(\phi \) is faithful. Then \(M \) is a direct sum of homogeneous algebras of type \(I_n, n \in \mathbb{N} \cup \{\infty\} \). By Lemma 3(ii) we may assume that \(M \) is homogeneous of type \(I_n \). We first assume that \(n \in \mathbb{N} \). Then \(Z = L^\infty(X, \mu) \), where \((X, \mu)\) is a probability space and \(\phi|Z = \mu \). Thus

\[
M \cong Z \otimes \text{Mat}_n(\mathbb{C}) = L^\infty(X, \text{Mat}_n(\mathbb{C})), \quad \phi = \int_X \phi_x d\mu(x),
\]

where \(\phi_x = \text{Tr}(\cdot Q_x) \) is a state on \(\text{Mat}_n(\mathbb{C}) \), \(\text{Tr} \) the canonical trace on \(\text{Mat}_n(\mathbb{C}) \). We first assume \(Q_x \geq c > 0 \) for all \(x \).
If $s \in M^+$, s is a function in $L^\infty(X, \text{Mat}_n(\mathbb{C}))$. Define the ϕ-preserving conditional expectation $E: M \to Z$ by $E(s)(x) = \phi_x(s(x))$. Then

$$E(s)(x) = \text{Tr}(s(x)Q_x) \geq c\text{Tr}(s(x)) \geq cs(x),$$

so $E(s) \geq cs$, and it follows from Corollary 2 that $h_\phi(\alpha) = h_\phi(\alpha|Z)$.

If there is no $c > 0$ such that $Q_x \geq c$ for all x, let $X_c = \{x \in X \mid Q_x \geq c\}$, $(c > 0)$,

$$N_c = L^\infty(X_c, \text{Mat}_n(\mathbb{C})) \quad \text{and} \quad M_c = N_c + C\chi_{X \setminus X_c},$$

where $\chi_{X \setminus X_c}$ is the characteristic function of $X \setminus X_c$. Since ϕ is α-invariant so is M_c, so by the above argument and Lemma 3, letting $\phi_c = \frac{1}{\mu(X_c)}\phi|_{N_c}$ and $\mu_c = \frac{1}{\mu(X_c)}\mu|_{X_c}$, we obtain

$$h_\phi(\alpha|M_c) = \mu(X_c)h_\phi(\alpha|N_c) = \mu(X_c)h_{\mu_c}(T|_{X_c}) \leq h_{\mu}(T),$$

where T is the automorphism of (X, μ) induced by α. Letting $c \to 0$ and using [SV, Lemma 3.3] we obtain the Theorem when M is finite.

If M is homogeneous of type I$_{\infty}$, we have $M \cong L^\infty(X, \mu) \otimes B(H)$, where H is a separable Hilbert space. Let Tr denotes the canonical trace on $B(H)$. Write again

$$\phi = \int_X \phi_x d\mu(x), \quad \phi_x = \text{Tr}(\cdot Q_x),$$

and let $E_x(U)$ denote the spectral projection of Q_x corresponding to a Borel set U. Let $P_c \in M = L^\infty(X, B(H))$ be the projection defined by $P_c(x) = E_x([c, +\infty))$, where $c > 0$. Then P_c is an α-invariant finite projection. Let

$$M_c = P_cMP_c + C(1 - P_c).$$

Then M_c is a finite type I von Neumann algebra. Its center is isomorphic to $L^\infty(X_c, \mu_c) \otimes C$, and the restriction of ϕ to it is $\phi(P_c)\mu_c \otimes \phi(1 - P_c)$, where $X_c = \{x \in X \mid P_c(x) \neq 0\}$ and

$$\int_{X_c} f(x) d\mu_c(x) = \frac{1}{\phi(P_c)} \int_{X_c} f(x)\phi_x(P_c(x)) d\mu(x).$$

So we can apply the first part of the proof to M_c. Since $d\mu_c/d\mu \leq \frac{1}{\phi(P_c)}$, applying Lemma 4 we get

$$h_\phi(\alpha|M_c) = \phi(P_c)h_{\mu_c}(T|_{X_c}) \leq h_{\mu}(T).$$

Now letting $c \to 0$ we conclude that $h_\phi(\alpha) = h_{\mu}(T)$.

It should be remarked that in a special case the above theorem was proved in [GS, Proposition 2.4].

If A is a C^*-algebra and ϕ a state on A, the central measure μ_ϕ of ϕ is the measure on the spectrum \hat{A} of A defined by $\mu_\phi(F) = \phi(\chi_F)$, where ϕ is regarded as a normal state on A'', see [P, 4.7.5]. Thus by Theorem 5 and [P, 4.7.6] we have the following

Corollary 6 Let (A, ϕ, α) be a C^*-dynamical system with A a separable unital type I C^*-algebra. Then $h_\phi(\alpha) = h_{\mu_\phi}(\hat{\alpha})$, where $\hat{\alpha}$ is the automorphism of the measure space (\hat{A}, μ_ϕ) induced by α.

Since inner automorphisms act trivially on the center we have
Corollary 7 If \((M, \phi, \alpha)\) is a \(W^\ast\)-dynamical system with \(M\) of type I and \(\alpha\) an inner automorphism then \(h_\phi(\alpha) = 0\).

Note that in the finite case the above corollary also follows from a result of N. Brown [Br, Lemma 2.2].

The next result was shown in [S] when \(\phi\) is a trace.

Corollary 8 Let \(R\) denote the hyperfinite II\(_1\) factor. Let \(A\) be a Cartan subalgebra of \(R\) and \(u\) a unitary operator in \(A\). If \(\phi\) is a normal state such that \(u\) belongs to the centralizer of \(\phi\) then \(h_\phi(\Ad u) = 0\).

Proof. As in [S], it follows from [CFW] that there exists an increasing sequence of full matrix algebras \(N_1 \subset N_2 \subset \ldots\) with union weakly dense in \(R\) such that \(A \cong A_n \otimes B_n\), where \(A_n = N_n \cap A\) and \(B_n = (N_n' \cap R) \cap A\) for all \(n \in \mathbb{N}\). Let \(M_n = N_n \otimes B_n\). Then \(M_n\) is of type I and contains \(u\). Hence \(h_\phi(\Ad u|_{M_n}) = 0\). Since \((\cup_n M_n)\sim = R\), \(h_\phi(\Ad u) = 0\) by [SV, Lemma 3.3].

If \((A, \phi, \alpha)\) and \((B, \psi, \beta)\) are \(C^\ast\)-dynamical systems we always have

\[h_{\phi \otimes \psi}(\alpha \otimes \beta) \geq h_\phi(\alpha) + h_\psi(\beta),\]

see [SV, Lemma 3.4]. The equality does not always hold, see [NST] or [Sa]. However, we have

Theorem 9 Let \((A, \phi, \alpha)\) and \((B, \psi, \beta)\) be \(W^\ast\)-dynamical systems. Suppose that \(A\) is of type I, and \(B\) is injective. Then

\[h_{\phi \otimes \psi}(\alpha \otimes \beta) = h_\phi(\alpha) + h_\psi(\beta).\]

Proof. We shall rather prove that \(h_{\phi \otimes \psi}(\alpha \otimes \beta) = h_\phi(\alpha|_{\beta(A)}) + h_\psi(\beta)\). For this it suffices to consider the case when \(A\) is abelian; the general case will follow by the same arguments as in the proof of Theorem 5. (Note that the mapping \(x \mapsto \text{Tr}(x) - x\) on \(\text{Mat}_n(\mathbb{C})\) is not completely positive, but the mapping \(x \mapsto \text{Tr}(x) - \frac{1}{n}x\) is by the Pimsner-Popa inequality. Thus replacing \(M\) with \(M \otimes B\) and \(Z\) with \(Z \otimes B\) in the proof of Theorem 5 we have to replace the inequality \(E(s) \geq cs\) in the proof with \(E(s) \geq \frac{c}{s}\).

So suppose that \(A\) is abelian. It is clear that it suffices to prove that if \(A_1, \ldots, A_n\) are finite-dimensional subalgebras of \(A\), and \(B_1, \ldots, B_n\) are finite-dimensional subalgebras of \(B\), then

\[H_{\phi \otimes \psi}(A_1 \otimes B_1, \ldots, A_n \otimes B_n) = H_\phi(A_1, \ldots, A_n) + H_\psi(B_1, \ldots, B_n).\]

We always have the inequality "\(\geq\", [SV, Lemma 3.4]. To prove the opposite inequality consider a decomposition

\[
\phi \otimes \psi = \sum_{i_1, \ldots, i_n} \omega_{i_1 \ldots i_n}.
\]

Let \(H_{\phi \otimes \psi = \sum \omega_{i_1 \ldots i_n}}(A_1 \otimes B_1, \ldots, A_n \otimes B_n)\) be the entropy of the corresponding abelian model, so

\[H_{\phi \otimes \psi = \sum \omega_{i_1 \ldots i_n}}(A_1 \otimes B_1, \ldots, A_n \otimes B_n) = \sum_{i_1, \ldots, i_n} \eta \omega_{i_1 \ldots i_n}(1) + \sum_{k=1}^n S(\phi \otimes \psi|_{A_k \otimes B_k}, \sum_{i_k = i} \omega_{i_1 \ldots i_n}|A_k \otimes B_k).\]
Set $C = \sqrt{\sum_{k=1}^{n} A_k}$. Let p_1, \ldots, p_r be those atoms p of C for which $\phi(p) > 0$. Define positive linear functionals $\psi_{m,i_1 \ldots i_n}$ on B,

$$\psi_{m,i_1 \ldots i_n}(b) = \frac{\omega_{i_1 \ldots i_n}(p_m \otimes b)}{\phi(p_m)}.$$

Let also ϕ_m be the linear functional on C defined by the equality $\phi_m(a) = \phi(ap_m)$. Then

$$\omega_{i_1 \ldots i_n} = \sum_{m=1}^{r} \phi_m \otimes \psi_{m,i_1 \ldots i_n} \text{ on } C \otimes B,$$

and

$$\psi = \sum_{i_1,\ldots,i_n} \psi_{m,i_1 \ldots i_n} \text{ for } m = 1, \ldots, r.$$

Since the supports of the states ϕ_m are mutually orthogonal minimal projections in C, we have

$$\sum^n_{k=1} \sum_i S \left(\phi \otimes \psi|_{A_k \otimes B_k} \sum_{i_k=i} \omega_{i_1 \ldots i_n} |A_k \otimes B_k \right) \leq$$

$$\leq \sum^n_{k=1} \sum_i S \left(\phi \otimes \psi|_{C \otimes B_k} \sum_{i_k=i} \omega_{i_1 \ldots i_n} |C \otimes B_k \right)$$

$$= \sum^n_{k=1} \sum_i S \left(\phi \otimes \psi|_{C \otimes B_k} \sum_{m=1}^{r} \phi_m \otimes \left(\sum_{i_k=i} \psi_{m,i_1 \ldots i_n} \right) |C \otimes B_k \right)$$

$$= \sum^n_{k=1} \sum_i \sum_{m=1}^{r} \phi(p_m) S \left(\psi|_{B_k} \sum_{i_k=i} \psi_{m,i_1 \ldots i_n} |B_k \right).$$

If $a_i \geq 0$ and $\sum_i a_i \leq 1$ then $\eta(\sum_i a_i) \leq \sum_i \eta(a_i)$. Hence we have

$$\sum_{i_1,\ldots,i_n} \eta \omega_{i_1 \ldots i_n}(1) \leq \sum_{m=1}^{r} \sum_{i_1,\ldots,i_n} \eta(\phi_m \otimes \psi_{m,i_1 \ldots i_n})(1)$$

$$= \sum_{m=1}^{r} \eta \phi(p_m) \sum_{i_1,\ldots,i_n} \psi_{m,i_1 \ldots i_n}(1) + \sum_{m=1}^{r} \phi(p_m) \sum_{i_1,\ldots,i_n} \eta \psi_{m,i_1 \ldots i_n}(1)$$

$$= \sum_{m=1}^{r} \eta \phi(p_m) + \sum_{m=1}^{r} \phi(p_m) \sum_{i_1,\ldots,i_n} \eta \psi_{m,i_1 \ldots i_n}(1).$$

Thus

$$H_{\phi \otimes \psi = \sum \omega_{i_1 \ldots i_n}}(A_1 \otimes B_1, \ldots, A_n \otimes B_n) \leq$$

$$\leq \sum_{m=1}^{r} \eta \phi(p_m) + \sum_{m=1}^{r} \phi(p_m) H_{\psi = \sum \psi_{m,i_1 \ldots i_n}}(B_1, \ldots, B_n).$$

Since $\sum_m \eta \phi(p_m) = H_{\phi}(C) = H_{\phi}(A_1, \ldots, A_n)$, we conclude that

$$H_{\phi \otimes \psi}(A_1 \otimes B_1, \ldots, A_n \otimes B_n) \leq H_{\phi}(A_1, \ldots, A_n) + H_{\psi}(B_1, \ldots, B_n),$$

completing the proof of the Theorem.
References

