ALGEBRAIC K-THEORY OF TOPOLOGICAL K-THEORY

CHRISTIAN AUSONI AND JOHN ROGNES

ABSTRACT. Let £, be the p-complete connective Adams summand of topological K-
theory, with coeflicient ring (£p)+ = Zp[v1], and let V(1) be the Smith—Toda complex,
with BP,(V (1)) = BP,/(p,v1). For p > 5 we explicitly compute the V(1)-homotopy
of the algebraic K-theory spectrum of £, denoted V(1). K (£,). In particular we
find that it is a free finitely generated module over the polynomial algebra P(vs),
except for a sporadic class in degree 2p — 3. Thus also in this case algebraic K-
theory increases chromatic complexity by one. The proof uses the cyclotomic trace
map from algebraic K-theory to topological cyclic homology, and the calculation is
actually made in the V(1)-homotopy of the topological cyclic homology of £,.
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INTRODUCTION

We are interested in the arithmetic of ring spectra.

To make sense of this we must work with structured ring spectra, such as S-
algebras [EKMM)], symmetric ring spectra [HSS] or I'-rings [Ly]. We will refer to
these as S-algebras. The commutative objects are then commutative S-algebras.

The category of rings is embedded in the category of S-algebras by the Eilenberg-
Mac Lane functor R — H R. We may therefore view an S-algebra as a generalization
of a ring in the algebraic sense. The added flexibility of S-algebras provides room
for new examples and constructions, which may eventually also shed light upon the
category of rings itself.

In algebraic number theory the arithmetic of the ring of integers in a number field
is largely captured by its Picard group, its unit group and its Brauer group. These
are in turn reflected in the algebraic K-theory of the ring of integers. Algebraic
K-theory is defined also in the generality of S-algebras. We can thus view the
algebraic K-theory of an S-algebra as a carrier of some of its arithmetic properties.

Typeset by ApS-TEX
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The algebraic K-theory of (connective) S-algebras can be closely approximated
by diagrams built from the algebraic K-theory of rings [Du|. Hence we expect that
global structural properties enjoyed by algebraic K-theory as a functor of rings
should also have an analogue for algebraic K-theory as a functor of S-algebras.

We have in mind, in particular, the étale descent property of algebraic K-theory
conjectured by Lichtenbaum [Li] and Quillen [Qu], which has been established for
several classes of commutative rings [V], [RW], [HM2]. We are thus led to ask when
a map of commutative S-algebras A — B should be considered as an étale covering
with Galois group G. In such a situation we may further ask whether the natural
map K(A) — K(B)"*Y to the homotopy fixed point spectrum for G acting on K (B)
induces an isomorphism on homotopy in sufficiently high degrees. These questions
will be considered in more detail in [Ro2].

One aim of this line of inquiry is to find a conceptual description of the alge-

braic K-theory of the sphere spectrum, K (S?) = A(*), which coincides with Wald-
hausen’s algebraic K-theory of the one-point space *. In [Rol] the second author
computed the mod 2 spectrum cohomology of A(*) as a module over the Steenrod
algebra, providing a very explicit description of this homotopy type. However, this
result is achieved by indirect computation and comparison with topological cyclic
homology, rather than by a structural property of the algebraic K-theory functor.
What we are searching for here is a more memorable intrinsic explanation for the
homotopy type appearing as the algebraic K-theory of an S-algebra.
- More generally, for a simplicial group G with classifying space X = BG there is
an S-algebra S°[G], which can be thought of as a group ring over the sphere spec-
trum, and K(S°[G]) = A(X) is Waldhausen’s algebraic K-theory of the space X.
When X has the homotopy type of a manifold, A(X) carries information about
the geometric topology of that manifold. Hence an étale descent description of
K(S°[G]) will be of significant interest in geometric topology, reaching beyond al-
gebraic K-theory itself.

In the present paper we initiate a computational exploration of this ‘brave new
world’ of ring spectra and their arithmetic.

We begin by considering some interesting examples of (pro-)étale coverings in
the category of commutative S-algebras. For convenience we will choose to work
locally, with S-algebras that are complete at a prime p. For the purpose of algebraic
K-theory this is less of a restriction than it may seem at first. What we have in
mind here is that the square diagram

K(A) ———= K(A,)

L

I{(ﬂ'oA) —_— I{(TK'QAP)

is homotopy cartesian after p-adic completion [Du], when A is a connective S-
algebra, A, its p-completion, mo A its ring of path components and mo(A4p) = (19 A),.
This reduces the p-adic comparison of K(A) and K(A,) to the p-adic comparison
of K(mgA) and K(moA,), i.e., to a question about ordinary rings, which we view
as a simpler question, or at least as one lying in better explored territory.

This leads us to study p-complete S-algebras, or algebras over the p-complete
sphere spectrum S’S . This spectrum is approximated in the category of commutative
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S-algebras (or Eo ring spectra) by a tower of chromatic localizations [Ral]

Sy == LpSy =+ = L1S) — LoSy = HQ, .
Here L, = Lg(y) is Bousfield’s localization functor [Bo], [EKMM] with respect to
the nth Johnson-Wilson theory with coefficient ring E(n)s = Zy)[v1, ... ,vn, v, '],
By the Hopkins-Ravenel chromatic convergence theorem [Ra3, §8], the natural map
SS — holim,, Ln.S'g is a homotopy equivalence. For each n > 1 there is a further
map of commutative S-algebras LnSS — L K(n)Sg to the Bousfield localization with
respect to the nth Morava K-theory with coefficient ring K(n). = Fp[v,, v, ]. This
is an equivalence for n = 0, and LK(I)Sg ~ J, is the non-connective p-complete
image-of-J spectrum.

There is a highly interesting sequence of commutative S-algebras E,, constructed
by Morava as spectra [Mo], by Hopkins and Miller [Re] as S-algebras (or Ay ring
spectra) and by Goerss and Hopkins [GH] as commutative S-algebras (or Eo ring
spectra). The coefficient ring of E,, is (Ep)s & WFpn[[u1,. .., un-1]][u,ut]. Asa
special case Fy ~ KU, is the p-complete complex topological K-theory spectrum.

The cited authors also construct a group action on F, through commutative S-
algebra maps, by a semidirect product G, = S, X Cp, where Sy, is the nth (profinite)
Morava stabilizer group [Mo] and Cj, = Gal(Fy» /F;) is the cyclic group of order n.
There is a homotopy equivalence L K(n)SS ~ E!Gn where the homotopy fixed point
spectrum is formed in a continuous sense [DH], which reflects the Morava change
of rings theorem [Mo].

Furthermore, the space of self equivalences of F, in the category of commu-
tative S-algebras is weakly equivalent to its group of path components, which is
precisely G,. In fact the extension L K(n)Sg — E, qualifies as a pro-étale covering
in the category of commutative S-algebras, with Galois group weakly equivalent to
Grn. The weak contractibility of each path component of the space of self equiv-
“alences of E, (over either Sg or LK(n)SS) serves as the commutative S-algebra
version of the unique lifting property for étale coverings. Also the natural map
¢: E, - THH(E,) is a K(n)-equivalence, cf. [MS1, 5.1}, implying that the space
of relative Kahler differentials of B, over Lk(y)Sy is contractible. See [Ro2] for
further discussion.

There are further étale coverings of E,. For example there is one with coeffi-
cient ring WFpm [[u1,...,un—1]][u,u"] for each multiple m of n. Let E7" be the
colimit of these, with BT = W, [[u1,...,un—1]][u,u™"]. Then Gal(E}"/Li(n)Sy)
is weakly equivalent to an extension of Sy, by the profinite integers Z = Gal(F, /F,).
Let E, be a maximal pro-étale covering of E,, and thus of Lx(n) 5'3. What is the
absolute Galois group Gal(En/LK(n)Sg) of Ly(n)Sy ?

The tower of commutative S-algebras induces a tower of algebraic K-theory spec-
tra

K(S9) =+ = K(LpSp) = -+ = K(Jp) = K(Qp)

studied in the p-local case by Waldhausen [Wa2]. The natural map K(Sp) —
holim,, K (Ln,S'g )} may well be an equivalence, see [MS2]. We are thus led to study
the spectra K (L,S)), and their relatives K(Lg(n)Sy). (More precisely, Waldhausen
studied finite localization functors L characterized by their behavior on finite CW-
spectra. However, for n = 1 the localization functors L; and L{ agree, and this is
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the case that we will explore in the body of this paper. Hence we will suppress this
distinction in the present discussion.)

Granting that L K(n)SS — E, qualifies as an étale covering in the category of
commutative S-algebras, the descent question concerns whether the natural map

hGy,
(0.1) K(Lg(n)Sy) = K(En)

is a p-adic homotopy equivalence in sufficiently high dimensions. We conjecture
that it does.

To analyze K(E,) we expect to use a localization sequence in algebraic K-theory
to reduce to the algebraic K-theory of connective commutative S-algebras, and
to use the Bokstedt—Hsiang-Madsen cyclotomic trace map to topological cyclic
homology to compute these [BHM]. The ring spectra E, and E(n), are closely
related, and for n > 1 we expect that there is a cofiber sequence of spectra

(0.2) K(BP(n - 1),) = K(BP(n),) — K(E(n),)

analogous to the localization sequence K (F,) = K(Z,) — K(Q,) in the case n = 0.
Something similar should work for E,.
The cyclotomic trace map

trc: K(BP(n)p) = TC(BP(n)p;p) ~ TC(BP(n);p)

induces a p-adic homotopy equivalence upon replacing the target with its connective
cover [HM1]. Hence a calculation of TC(BP(n);p) is as good as a calculation of
K(BP(n),), after p-adic completion. In this paper we present computational tech-
niques which are well suited for calculating TC(BP(n); p), at least when BP(n),
is a commutative S-algebra and the Smith-Toda complex V(n) exists as a ring
spectrum. In the algebraic case n = 0, with BP(0) = HZ,), these techniques si-
multaneously provide a simplification of the argument in [BM1], [BM2] computing
TC(Z;p) and K(Zp) for p > 3. Presumably the simplification is related to that
appearing in different generality in [HM2].

It is also plausible that variations on these techniques apply when replacing V(n)
by another finite type n + 1 ring spectrum, and the desired commutative S-algebra
structure on BP(n), is weakened to the existence of an S-algebra map from a
related commutative S-algebra, such as MU or BP.

The first non-algebraic case occurs for n = 1. Then E; ~ KU, has an action by
Gi=Z;=2TxA Here Zy 2T =1+4+pZy CZ,,Z[/(p—1) =2 ACZ; and k € Z
acts on Fj like the p-adic Adams operation 1* on KU,.

Let L, = EM be the p-complete Adams summand with coefficient ring (Lp). =
Zp[v1,vi'], s0 Ly =~ E(1),. Then I acts continuously on L, with J, ~ LT, Let £,
be the p-complete connective Adams summand with coefficient ring (£,), = Zp[v1],
so £, ~ BP(1),. We expect that there is a cofiber sequence of spectra

K(Z,) = K(£,) = K(L,).

The previous calculation of TC(Z; p) [BM1], [BM2], and the calculation of T'C(¢; p)
presented in this paper, identify the p-adic completions of K(Z,) and K(¢p), re-
spectively. Given an evaluation of the transfer map between them, this identifies
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K(Lp). The homotopy fixed points for the I-action on K(L,) induced by the
Adams operations y* for k € 1 + pZ, should then model K(J,) = K(Lk1)Sy).

This brings us to the contents of the present paper. In §1 we produce two useful
classes AEX and A in the algebraic K-theory of 2,. In §2 we compute the V(1)-
homotopy of the topological Hochschild homology of £, simplifying the argument
of [MS1]. In §3 we present notation concerning topological cyclic homology and
the cyclotomic trace map of [BHM]. In §4 we make preparatory calculations in
the spectrum homology of the S'-homotopy fixed points of THH(£). These are
applied in §5 to prove that the canonical map from the Cy» fixed points to the Cpn
homotopy fixed points of TH H(¢) induces an equivalence on V(1)-homotopy above
dimension (2p — 2), using [Ts]. In §6 we inductively compute the V(1)-homotopy
of all these (homotopy) fixed point spectra, and their homotopy limit T'F(¥;p).
The action of the restriction map on this limit is then identified in §7. The pieces
of the calculation are brought together in Theorem 8.4 of §8, yielding an explicit
computation of the V(1)-homotopy of T'C(¢; p):

Theorem 0.3. Let p > 5. There is an isomorphism of E(A1, \2) ® P(vq)-modules

V(1)«TC(¢;p) = E(A1, A2, 0) @ P(v2)
@E()\Q)@ P(’Ug) ®1Fp{/\1te I OD<ec p}
EBE()\l) ®P(’02) ®Fp{)\2tep | O<e <p}

with |M| =2p—1, [A2] =2p® — 1, |vo| = 2p? — 2, 0] = —1 and |t| = ~2.

The p-completed cyclotomic trace map K(£p), — T'C(£p; p) ~ T'C(¥; p) identifies
K(¢,)p, with the connective cover of TC(¢;p). This yields the following expression
for the V(1)-homotopy of K(£,), given in Theorem 9.1 of §9:

Theorem 0.4. Let p > 5. There is an ezact sequence of E(A1, A2) ® P(vg)-modules
0 — £273F, — V(1).K(¢,) =% V(1) TC(¢;p) = S7'F, — 0

taking the degree 2p — 3 generator in L*P 73 HTF, to a class a € V(1)2p—3K(£,), and
taking the class 8 in V(1)_1TC(¢; p) to the degree —1 generator in X1 HF,.

The V(1)-homotopy of any spectrum is a P(vg)-module, but we emphasize that
V(1).TC(¢;p) is a free finitely generated P(vz)-module, and V(1),K(¢,) is free
and finitely generated except for the summand F,{a} in degree 2p — 3. Hence both
K(4p)p, and TC(¢;p) are fp-spectra in the sense of [MR], with finitely presented
mod p cohomology as a module over the Steenrod algebra. They both have fp-
type 2, because V(1)K (¢,) is infinite while V(2),K(¢p) is finite, and similarly for
TC(¢;p). In particular, K(€,) is closely related to elliptic cohomology.

More generally, at least if BP(n), is a commutative S-algebra and V(n) exists
as a ring spectrum, similar calculations to those presented in this paper show that
V(n)«TC(BP({n);p) is a free P(vp41)-module on 2°%? + 27(n + 1)(p — 1) genera-
tors. So algebraic K-theory takes such fp-type n commutative S-algebras to fp-type
(n + 1) commutative S-algebras. If our ideas about localization sequences are cor-
rect then also K(E,), will be of fp-type (n + 1), and if étale descent holds in
algebraic K-theory for Ly(n)Sy — En with edy(Grn) < oo then also K(Lg(r)Sp)p
will be of {p-type (n 4+ 1). The moral is that algebraic K-theory in many cases
increments chromatic complexity by one, i.e., it produces a constant red-shift in
stable homotopy theory.
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Notations and conventions. Foran [, vector space V, let E(V), P(V) and I'(V)
be the exterior algebra, polynomial algebra and divided power algebra on V, respec-
tively. When V has a basis {z1,...,2,}, we write E(zy,...,2n), P(z1,...,2n) and -
I'(z1,...,zn) for these algebras. So I'(z) = Fp{vy;(z) | 7 = 0} with ~v;(z) - v;(z) =
(3,7)7i+;(z). Let Pr(z) = P(z)/(z" = 0) be the truncated polynomial algebra of
height h. For a < b < oo let PX(z) = F,{z* | a < k < b} as a P(z)-module.

By an infinite cycle in a spectral sequence we mean a class x such that d"(z) =0
for all r. By a permanent cycle we mean an infinite cycle which is not a boundary,
i.e., a class that survives to represent a nonzero class at £°°, Differentials are often
only given up to multiplication by a unit.

1. CLASSES IN ALGEBRAIC K-THEORY

1.1. Ey ring spectrum models. Let p be an odd prime. Let £ = BP(1) be the
Adams summand of p-local connective topological K-theory. Its homotopy groups
are £y = Zpylv1], with |vi| =q¢=2p—2.

Its p-completion ¢, with £, =2 Z,[v1] admits a model as an E4 ring spectrum,
which can be constructed as the algebraic K-theory spectrum of a perfect field
k'. Let g be a prime power topologically generating the p-adic units and let k' =
colimy>o Fypm C k be a Z y-extension of k = F,. Then £, = K(k'), is an FE, ring
spectrum model for the p-completed Adams summand.

Likewise j, = K(k), and ku, = K(k), are Eo ring spectrum models for the
p-completed image-of-J spectrum and the p-completed connective topological K-
theory spectrum, respectively. The Frobenius automorphism o4(z) = ¢ induces
the Adams operation 3¢ on both ¢, and ku,. Then k is the fixed field of o, and
Jp is the connective cover of the homotopy fixed point spectrum for ¢ acting on
either one of £, or kup.

The E., ring spectrum maps Sg — 3p = £, = kup = HZ, induce E, ring
spectrum maps on algebraic K-theory:

K(S8)) = K(jp) = K(£p) — K(kup) — K(Zy).

In particular these are Hy ring spectrum maps.

1.2. A first class in algebraic K-theory. The Bokstedt trace map tr: K(Zy)
THH(Z,) maps onto the first p-torsion in the image, which is THHap_1(Zp)
Z/p{e} [BM1]. Let e € Ka,_1(Z,) be a class with tr(ef) = e.

There is a (2p — 2)-connected linearization map £, —+ HZ, of E., ring spectra,
which induces a (2p — 1)-connected map K (¢,) — K(Zp).

R 4

Definition 1.3. Let A € K5,_;(£,) be a chosen class mapping to e¥ € Kop_1(Zp)
under the map induced by linearization £, — HZ,.

The image tr(M<) € THHy,—1(¢,) of this class under the trace map tr: K(£,) —
THH(¢,) will map under linearization to e € THHqp_1(Zp).

Remark 1.4. The class M € Kyp_1(€y) does not lift further back to Kzp_1(Sy),
since ¢ has a nonzero image in m;,_5 of the homotopy fiber of K(Sp) — K(Zj)
[Wal]. Thus AX does also not lift to Kzp_1(jp), because the map Sy — jp is
(pg — 2)-connected. It is not clear if the induced action of %9 on K (£,) leaves AK
invariant.
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1.5. Homotopy and homology operations. For a spectrum X, let D, X =
EY, xz, X"? be its pth extended power. Part of the structure defining an Ho,
ring spectrum E is a map {: D,E — E. Then a mod p homotopy class § €
Tm (DpS™; Fp) determines a mod p homotopy operation

0" : mn(E) — mm(E;Fp)

natural for maps of H, ring spectra E. Its value on the homotopy class represented
by a map a: S™ — E is the image of 6 under the composite map

Tm(DpS™; Fp) Dp—m)> Tm(DpE; Fp) £> m(E;Fp).

Likewise the Hurewicz image h(6) € Hp(D,S™; F,) induces a homology operation
h(0)*: Hy(E;Fp) — Hn(E;Fp),

and the two operations are compatible under the Hurewicz homomorphisms.

For S™ with n = 2k —1 an odd dimensional sphere the bottom two cells of D, 5"
are in dimensions pn + (p — 2) and pn + (p — 1), and are connected by a mod p
Bockstein. Hence the bottom two mod p homotopy classes of D,S™ are in these
two dimensions, and are called SP* and P¥, respectively. Their Hurewicz images
induce the Dyer-Lashof operations denoted $Q* and @* in homology, cf. [Br].

1.6. A second class in algebraic K-theory. We use the H,, ring spectrum
structure on K (£,) to produce a further element in its mod p homotopy.

Definition 1.7. Let \X = (PP)*(M) € Kyp2_1(6,;F,) be the image under the

mod p homotopy operation
(PP)*: Kyp_1(£p) = Kap2_1(€p; Fp)

of \K € Kyp_1(L,) .

Since the trace map tr: K(¢,) — THH({,) is an E ring spectrum map, it fol-
lows that tr(\) € THHqp2_1(£p;F,) equals the image of tr(A) € THHzp_1(¢p)
under the mod p homotopy operation (PP)*. We shall identify this image in the
next section.

Remark 1.8. It is not clear whether AL lifts to an integral homotopy class in
Kyp2—1(€p). The image of e € Kyp_1(Zy) in Kop_1(Qp; Fp) is vidlog p for a class
dlogp € K1(Qp; Fp) mapping to the generator of Ko(Fp;Fp) in the K-theory local-
ization sequence for Z,, [HM2]. It appears that the image of A¥ in V/(1)ap2_1(Lp) is
vadlog vy for a class dlog vy € V(1)1 K(L,) mapping to the generator of V' (0)o K (Z,)
in the expected K-theory localization sequence for £,. The classes M and A are
therefore related to logarithmic differentials for poles at p and wvi, respectively,
which partially motivates the choice of the letter ‘\’.

2. ToPOLOGICAL HOCHSCHILD HOMOLOGY

The topological Hochschild homology functor THH(—), as well as its refined
versions THH(—)"S1 , THH(-)%" , TF(—;p) and TC(—;p), preserve p-adic equiv-
alences. Hence we will tend to write THH(Z) and THH(¢) in place of THH(Zp)
and TH H(¢p), and similarly for the other related functors.
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2.1. Homology of THH({). The ring spectrum map £ — HIF, induces an injec-
tion on mod p homology, identifying H,(¢;F,) with the subalgebra

HL(6F,) = B(5, | k > 2) @ P(é | k > 1)

of the dual Steenrod algebra A,.
There is a Bokstedt spectral sequence

(2.2) E?, = HH(H.(4F,)) = H,(THH(¢)F,)

with
B, =H,(;F,)®@T(om | k> 2)® E(ok |k >1).

Here oz € HH;(—) is represented by 1 ® z in degree 1 of the Hochschild complex.
It corresponds to the map o: ¥4 — T'HH(£) induced by the S* action on THH (¢)
and the inclusion of 0-simplices £ — T'HH ().

By naturality with respect to the map £ — HIF,, the differentials

AP~ (y(07k)) = 0€kt1 - Vj-p(0Tk)

for 5 > p, found in the Bokstedt spectral sequence for TH H(IF,), lift to the spectral
sequence (2.2) above. Hence

EP, = Ho(6;F,) @ Py(o7y | k > 2) ® E(0y,08)

and this equals the E*°-term for bidegree reasons.
In H.(THH({);F,) there are Dyer—Lashof operations acting, and (o7¢)? =

Qr" (oTk) = a(QPk (Tk)) = 0T+ for all k£ > 2 [St]. Thus as an algebra
(23)  H(THH()F,) = H(6F,) © Ew, ) @ P()

where A1, A2 and p are represented by ofy, o, and o7, respectively, in the
Bokstedt spectral sequence. Here [Mi| = 2p — 1, |X2] = 2p? — 1 and |u| = 2p*.
Furthermore QP(\) = QP(c&i) = o(Q?(&1)) = o&s, so we may assume that we
have chosen Ay = @QP(A1).

2.4. V(1)-homotopy of THH(¢). Let V(n) be the nth Smith-Toda complex,
with homology H.(V(n);F,) & E(%o,...,7a). Thus V(-1) = 5% V(0) is the
mod p Moore spectrum, and V(1) is the cofiber of the multiplication by v;-map
21V (0) — V(0). There are cofiber sequences

50 2y 50 o, () L2 g1

and

SV (0) 2 V(0) 25 V(1) & £y (0)

defining the maps labeled 19, jo, i1 and j;. When p > 5, V(1) is a commutative
ring spectrum [Ok].

For a spectrum X the rth (partially defined) vi-Bockstein homomorphism S ,
is defined on the classes z € V(1).(X) with ji(z) € V(0).(X) divisible by v] ™.
Then for y € V(0).(X) with v]™! -y = j1(z) let B1,-(z) = 41(y) € V(1)+(X). So
f1,r decreases degrees by rq + 1.
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Definition 2.5. Let r(n) = 0for n <0, and let r(n) = p™ +r(n—2) foralln > 1.
Thus r(2n — 1) = p?»~1 +... 4+ p (n odd powers of p) and r(2n) = p*" +--- +p? (n
even powers of p). Note that (p? — 1)r(2n — 1) = p?™*! — p, while (p? — 1)r(2n) =

p2nt? 52

Proposition 2.6 (McClure—Staffeldt). There is an algebra isomorphism
V(1)THH(L) =2 E(A1,A2) ® P(u)

with M| =2p—1, [\z] = 2p% — 1 and |u| = 2p®. There are vy-Bocksteins By (1) =
A, B p2(pP) = A2 and generally ﬁl,,«(n)(,upn_l) #0 forn > 1.

Proof. One proof proceeds as follows, leaving the v;-Bockstein structure to the
more detailed work of [MS1].
H.(THH(¢);F,) is an A«-comodule algebra. The coaction

v: H.(THH(¢);Fp) - A, @ H.(THH(¢);F,)

agrees with the coproduct ¢: A, — A, ® A, when both are restricted to the
subalgebra H,(¢;F,) C A.. Furthermore v(oz) = (1 ® 0)¥(z), so v(A1) =1 ® Ay,
v(Ag)=1@ X and v(u) =1Q u+ To ® As.

There are change-of-rings isomorphisms of A,-comodule algebras

Ho(V(1) ATHE(D); By) = (4O (65,)Fp) © (Ha (6F,) © B\, As) ® (1)
= AOm, ox,) (H(6F,) @ E(M, A2) ® P(u))

The homology classes 1A A1, 1AM and 1A pu—To AX2 in H (V1) ATHH(2);F,)
are primitive, and correspond to the classes A\;, Ay and p under the isomorphisms
above. Hence these three homology classes are in the Hurewicz image from spherical
classes Ay € V(1)ap—1THH(L), A2 € V(1)gp21THH({) and p € V(1)g,2THH (),
respectively. ([

Proposition 2.7. The classes MK € Kyp_1(€,) and N € Kop2_1(£,;F,) map
under the trace map to integral and mod p lifts of M1 € V(1)op—1THH(L) and
A2 € V(1)gp2_1THH(L), respectively.

Proof. The linearized image in V(1)op—1 THH(Z) of \y € V(1)2p—1THH(£) equals
the mod p and v; reduction i110(e) of the class e € TH Hyp—1(Z), since both classes
have the same Hurewicz image 1 A 0y in Hop_1(V(1) ATHH(Z);F,). Thus the
mod p and v; reduction of the trace image tr(A) equals \;.

The Hurewicz image in Hype_; (THH(£);Fp) of tr(Af) = (PP)*(tr(AK)) equals
the image of the homology operation QP on the Hurewicz image Ay = o€y in
Hyp 1 (THH(£);Fp) of tr(/\f(). This is QP(0éy) = UQP(El) = o€y = Ay. So the
mod v; image in V(1)gp2_ 1 THH(E) of tr(A) equals \;, since both classes have
the same Hurewicz image 1 A Ag in Hopa 1 (V(1) ATHH(£);F,). O

3. TOPOLOGICAL CYCLOTOMY

We now review some terminology and notation concerning topological cyclic
homology and the cyclotomic trace map.
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3.1. Frobenius, restriction, Verschiebung. As already indicated, THH({) is
an S'-equivariant spectrum. Let C,» C S! be the cyclic group of order p®. The

Frobenius maps F': THH(£)®»" — THH(£)“"~ are the usual inclusions of fixed
point spectra that forget part of the invariance. Their homotopy limit defines

TF(£;p) = holim THH(£)%"

There are also restriction maps R: THH(£)C» — THH(£)®"=* defined using
the cyclotomic structure of TH H(£), cf. [HM1]. They commute with the Frobenius
maps, and thus induce a self map R: TF({;p) — TF(¢;p). Its homotopy equal-

izer with the identity map defines the topological cyclic homology of £, which was
introduced in [BHM]:

R
TC(t;p) ——=TF(t;p) == TF((;p).

Hence there is a cofiber sequence
NTITF(¢p) 5 TC(6p) & TF(tp) = TF(4p),

which we shall use to compute V(1).,TC(4;p). There are also Verschiebung maps
V: THH(K)CPn_l — THH(£)®", defined up to homotopy in terms of the S!-

equivariant transfer.

3.2. The cyclotomic trace map. The Bokstedt trace map admits lifts
tro: K(4,) — THH(£)%"

for all n > 0, with ¢r = trg, which commute with the Frobenius maps and homotopy
commute with the restriction maps up to preferred homotopy. Hence the limiting
map trg: K(¢,) — TF({;p) homotopy equalizes R and the identity map, and the

resulting lift
tre: K(£,) — T'C(¢; p)

is the Bokstedt—Hsiang—Madsen cyclotomic trace map [BHM].

3.3. The norm-restriction sequences. For each n > 1 there is a homotopy
commutative diagram

K(¢,)
\
trn
(3.4) THH(O)no,n —> THH(£)Cr» —L—> THH(2)Com
T

h h ~
THH()ne,» —— THH ()" L= f(C,n, THH(Y)).

The lower part is the map of cofiber sequences that arises by smashing the S
equivariant cofiber sequence ES&L — S% — ES' with the S'-equivariant map
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THH(¢) — F(ESY,THH({)) and taking Cpn fixed point spectra. For closed
subgroups G C S* recall that THH (0)"¢ = F(ESY, THH(£))% is the G homotopy
fixed point spectrum of THH(¢), and H(G, THH (L)) = [ES' A F(ESL, THH(£)|®
is the G Tate construction on THH(#). The remaining terms of the diagram are
then identified by the homotopy equivalences

THH (o, ~ [ESY ATHH(£)]" ~ [ES} A F(ESY, THH(£))]|¢"

and

THH(0)%-1 ~ [ES' A THH(£)]%" .

We call N, R, N* and R"* the norm, restriction, homotopy norm and homotopy re-
striction maps, respectively. We call '), and I',, the canonical maps. The middle and
lower cofiber sequences are the norm-restriction and homotopy norm-restriction se-
quences, respectively.

By passage to homotopy limits over Frobenius maps, there is also a limiting
diagram

K(¢)
trp
irg
(3.5) STHH(O)ps1 —~—> TF(¢;p) —2— = TF(¢; )

h

£)
h ~
STHH() st ——= THH(0)' 2> [I(S', THH(¢)).
Implicit here are the p-adic homotopy equivalences

ETHH(f)hsq ~ hgl}vm THH(Z)hCP,,
THH(O)"' ~ holim T'H H(£)"“»"

H(S*, THH(£)) ~ holim H(Cpn, THH(Z)).

4. CIRCLE HOMOTOPY FIXED POINTS

4.1. The circle trace map. The circle trace map
trgs =Totrp: K() — THH()* = F(ESL, THH(£))S

is a preferred lift of the trace map tr: K(£,) — THH(¢). We take S as our model
for ES*. Let

T" = F(S°°/S* X THH(0))®

for n > 0, so that there is a descending filtration {T™}, on T° = THH ()5, with
layers T™ /T = F(S2n+1/8%n=1 THH(())S = D-2"THH({).
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4.2. The homology spectral sequence. Placing 7" in filtration s = —2n and
applying homology, we obtain a (not necessarily convergent) homology spectral
sequence

(4.3) E?, = H*(S', H(THH(();F,)) = H,1(THH()"S';F,)

with
Here ¢ has bidegree (—2,0) while the other generators are located on the verti-

cal axis. (No confusion should arise from the double usage of ¢ as a polynomial
cohomology class and the vertical degree in this or other spectral sequences.)

Proposition 4.4. There are differentials (1) = th, d*(&3) = thy, d* () = tu
and d?P(&F) = tP )y in the spectral sequence (4.3).

Proof. The d?-differential
dos: By 2= H(THH(C);Fp){1} — B2y 41 = Hepa(THH(L); Fy ){t}

is adjoint to the S'-action on THH(¢), hence restricts to o on Hy(¢;F,). Thus
d*(&;) = to€; = t); for i = 1 and 2, and d*(%) = tom, = tp.

Write ¢ = 2p—2 and let z € Cy(T°, T*; F,) be a chain representing the differential
d?(€1) = t)\y, i.e.,  maps to a cycle representing & in H,(THH(L);F,) = E§ 5p—a;
and has boundary dz € C,—;(T%;F,) mapping to a cycle representing t\; in
Hy (S7*THH(¢);F,) = E?,,, ;. Let £: D,T° — T° be the pth Heo struc-
ture map for T° = THH(@)”SI, and form the chain &,(eo ® z®P) € Cpy(T°, TP; Fp).
It maps to a cycle representing 7 in H,,(THH(();F,) = Eg,2p2—2p7 and has bound-
ary &«(eo ® d(z®?)) € Cpy—1(T?;F,). By a chain level calculation [Br, 3.4] in the
extended pth power of the pair (D?P~%, §2P~3) this boundary is homologous to
a unit multiple of &.(e,—1 ® (dz)®?), representing QP ~1(t\1) = tPQP(\1) = tP )y
in Hpy—1(S"*THH(();F,) = E32p,2p2—1' Hence there is a nontrivial differential

d?P(EP) = tP )\, in the spectral sequence above. [

4.5. The V(1)-homotopy spectral sequence. Applying V(1)-homotopy to the
filtration {T™},, in place of homology, we obtain a conditionally convergent V(1)-
homotopy spectral sequence
(4.6) B2,(SY) = H™*(S,; V(1).THH(£)) = V(1) THH(()"'
with

EZL(SY) = P(t) ® B(M, \2) @ P(p).
Again t has bidegree (—2,0) while the other generators are located on the vertical
axis.

Definition 4.7. Let
a1 € map—3(S°), By € map2_gp—1V(0) and v € mpp2_, V(1)

be the classes represented in their respective Adams spectral sequences by the
cobar cycles hig = [£1], hi1 = [€]] and [72]. So ji(ve) = A1 and jo(B]) = B1 €
7T2p2_2p_2(50).

Consider the unit map S° — K (¢,) — THH(£)*S' | which is well defined after

p-adic completion.
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Proposition 4.8. The classes i1ig(a1) € map—3V (1), 11(B1) € Top2—2,—1V (1) and
vy € Mop2_3V (1) map under the unit map V(1),5° — V(lr)*TH];I(E)"S"1 to classes
represented in E(SY) by tA1, tPAy and tu, respectively.

Proof. Consider first the filtration subquotient T°/T? = F(S3,THH (E))Sl. The
unit map V(1) — V(1) A (T°/T?) induces a map of Adams spectral sequences,
taking the permanent cycles [€;] and [%;] in the source Adams spectral sequence
to infinite cycles with the same cobar names in the target Adams spectral se-
quence. These are not boundaries in the cobar complex for the A,-comodule
H,(T°/T? F,), because of the differentials d*>(£;) = tA; and d*(7;) = tu that
are present in the two-column spectral sequence converging to H,(T°/T?;F,). In
detail, Hyp—o(T°/T%;F,) = 0 and Hype(T°/T%;F,) is spanned by the primitives
Ag and /\16_{’ .

Thus [¢1] and [7;] are nonzero infinite cycles in the target Adams F,-term. They
have Adams filtration one, hence cannot be boundaries. Thus they are permanent
cycles, and the classes ¢1i9(1) and v, have nonzero images under the composite
V(D) = V(1)«(T°) — V(1).(T°/T?). Thus they are also detected in V(1).(T7),
in filtration s > —2. For bidegree reasons the only possibility is that i1ig(c1) is
detected in the V(1)-homotopy spectral sequence E*°(S?) as t)1, and v, is detected
as tu.

Next consider the filtration subquotient 7°/T?Pt! = F (S’ip 1 THH(0)S". The
unit map V(1) — V(1) A (T°/T?*?) again induces a map of Adams spectral se-
quences, taking the permanent cycle [£]] in the source Adams spectral sequence
to an infinite cycle with the same name. Again this is not a boundary in the
cobar complex for the A,-comodule H,(T°/T?*1;F,), because of the differential
d??(£F) = tP )\, that is present in the (p + 1) column spectral sequence converging
to H (T°/TP+L; ).

Thus [£?] is a nonzero infinite cycle in the target Adams FEs-term, of Adams
filtration one. . Hence the class 1;(f;) has a nonzero image under the composite
V(1) = V(1)(T°) — V(1)«(T°/TP*1). Thus it is also detected in V(1),(7°) in
filtration s > —2p. Again for bidegree reasons the only possibility is that i1(f]) is
detected in the V(1)-homotopy spectral sequence E>(S') as tPA;. O

5. THE HOMOTOPY LIMIT PROPERTY

5.1. Homotopy fixed point and Tate spectral sequences. For closed sub-
groups G C S! we will consider the (second quadrant) G homotopy fixed point
spectral sequence

E;(G) = H*(G,V(1);THH(())
= V(1)s THH()"C .

We also consider the (upper half plane) G Tate spectral sequence

B} (G) = H™*(G,V(1);THH(£))
— V(1) H(G, THH(()).

When G = S! we have
E:*(Sl) = E(/\l,/\Z) ®P(t):u’)




14 CHRISTIAN AUSONI AND JOHN ROGNES
since H*(S';F,) = P(t), and
E2(8") = BE(\, 20) @ P(4,¢74, 1)
since I;[*(SI;FP) = P(t,t7!). When G = Cyn» we have
EZ,(Cpn) = E(un, M1, A2) ® P, 1)
since H*(Cpn; Fp) = E(un) @ P(t), while
B2,(Cyn) = Blun, M1, )a) ® P8, 7, 1)

since H*(Cpn;F,) = E(uy) @ P(t,t~1).
The homotopy restriction map R"* induces a map of spectral sequences

E*(R"): E*(Q) = E*(G),

which on E%-terms identifies E2(G) with the restriction of E?(G) to the second
quadrant.

The Frobenius and Verschiebung maps F' and V are compatible under I';, and
['n—1 with homotopy Frobenius and Verschiebung maps F* and V" that induce
maps of homotopy fixed point spectral sequences

E*(F"): E*(Cpn) = E*(Cpn-1)

and

E*(VP): E*(Cpn-1) = E*(Cypn).

Here E2(F") maps the even columns isomorphically and the odd columns trivially.
On the other hand, E*(V*) maps the odd columns isomorphically and the even
columns trivially. This pattern persists to higher E"-terms, until a differential
of odd length appears in either spectral sequence. Thus the spectral sequences
E*(Cpr) and E*(Cpn-1) are abstractly isomorphic up to and including the E"-
term, where r is the length of the first odd differential in either spectral sequence.
The same remarks apply for the Tate spectral sequences.

5.2. Input for Tsalidis’ theorem.

Definition 5.3. A map A, — B, of graded groups is k-coconnected if it is an
isomorphism in all dimensions > k and injective in dimension k.

Theorem 5.4. The canonical map
I'y: THH(¢) — H(C,, THH(())

induces a (2p — 2)-coconnected map on V(1)-homotopy.

Proof. Consider diagram (3.4) in the case n = 1. The classes 11i0(1), 11(f;) and
vy in V(1), map through V(1)«K(£,) and Ty o try to classes in V(1) THH(£)"“»
that are detected by tA;, A2 and tu in E®(C,), respectively. Continuing by R"
to V(1),H(Cp, THH (L)) these classes factor through V(1),THH(£), where they

pass through zero groups. Hence the images of tA;, tPA2 and iy in E“(Cp) must
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be zero, i.e., these infinite cycles in E%(C}) are boundaries. For dimension reasons
the only possibilities are

11

dzp(tl—P)
d2p (tp p® )
d2p +1(u - P’ )

The classes i1io(AF) and 13 (M) in V(l)*K(fp) map by I'; o tr; to classes in
V(1)«THH(£)*°r that have Frobenius images A1 and Az in V(1),THH({), and

hence survive as permanent cycles in EGS,(Cp). Thus their images A; and Az in

tP Ay

H

- E*(C,) are infinite cycles.
Hence the various E"-terms of the €, Tate spectral sequence are:

E*(C,) = E(u1, M1, \2) ® P(t, ¢t tp)
E2PFYC,) = B(ug, M, Ag) @ P(t2,17P )
EPP*H(CL) = B(ug, A, A2) ® P(£27,6777 tp)

E#™(Cy) = B(M, M) @ P(#7,477).

II

p

For bidegree reasons there are no further differentials, so E2P"+2(C,) = E>(C,)

and the classes A1, A2 and +£7° are permanent cycles.

The map I'y: THH({) — H(C,, THH(£)) induces on V(1)-homotopy the homo-
morphism

E(M,\2) ® P(1) — E(M\, Ag) @ P(t?,+77")

that maps A1 — A1, Ao —= A9 and p— +=P°. For the classes i150( M) and i3 (AK)
in V(1).K(£,) map by tr to A\; and Ay in V(1),THH({), and by R" o I'y o try
to the classes in V(1).H(Cp, THH (L)) represented by A; and A;. The class
in V(1),THH(¢) must have nonzero image in V(1),H(Cp, THH(£)), since its pth
vi-Bockstein 1 ,(p) = A1 has nonzero image there. Thus p maps to the class
represented by t_i"z, up to a unit multiple which we ignore. So V(l)*f‘l is an
isomorphism in dimensions greater than |\ Aztp2| = 2p — 2, and is injective in
dimension 2p — 2. O

5.5. The homotopy limit property.
Theorem 5.6. The canonical maps
T,: THH(£)C" — THH(£)"C
I'n: THH(L) " — H(Cpn, THH(Y))
and
I': TF(4p) » THH(OMS
I': TF(¢;p) — H(SY, THH(())
all induce (2p — 2)-coconnected maps on V(1)-homotopy.

Proof. The claims for I'y, and I, follows from 5.4 and a theorem of Tsalidis [Ts].
The claims for I' and I follow by passage to homotopy limits, using the p-adic
homotopy equivalence THH (ﬁ)hs1 ~ holim, r THH(£)*»" and its analogue for
the Tate constructions. {J
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6. HIGHER FIXED POINTS

Let [k] = 1 when k is odd, and [k] = 2 when k is even. Let /\fk] = Alk+1), S0 that
{/\[k]’/\fk]} = {A1, A2} for all k. We write v, (k) for the p-valuation of k, i.e., the
exponent of the greatest power of p that divides k. By convention, v,(0) = +oo.
Recall the integers r(n) from 2.5.

Theorem 6.1. In the Cpn Tate spectral sequence E*(Cpn) there are differentials
QT i /\[k]tp"‘l(w)r(k—Z)
for all1 <k <2n, and

2r(2n)+1 —p™y _ r(2n—2)+1
d (unt™?"") = (1) .

The classes A1, A2 and tu are infinite cycles.

We shall prove this by induction on n, the case n = 1 being settled in the previous
section. Hence we assume the theorem holds for one n > 1 and we will establish its
assertions for n + 1.

The terms of the Tate spectral sequence are

B2 TGy ) = Blun, My o) @ P, 777, )

& P E(un, \jg) ® Pri—z)(t1) ® Fp{Aigt* | vp(6) =k — 1}
k=3

for 1 <m < 2n. Next

2n

,IE2r(2n)+2(Cpn) = E(/\l, Az) ® PT(ZTL—‘?)-FI(U"‘) ® P(tpzn 3 t_P )
2n

& P E(un, Nyg) ® Prgimzy (1) @ Fp {Apigt’ | vp (i) =k — 1}
k=3

For bidegree reasons the remaining differentials are zero, so E2"?™+2(C.) =
Ew(CPn), and the classes 1" are permanent cycles.

Proposition 6.2. The associated graded of V(l)*lﬂ[(C’ n, THH(?)) s

A 2n

B (Cpr) = E(M, M) ® Pranya(tp) ® Pt ,t77)
2n

® EB E(un,/\fk]) ® Pr(r—2)(tp) ® IE‘p{)‘[k]ti |vp(i) =k —1}.

k=3

Comparing E*(Cpn) with E*(Cpn) via the homotopy restriction map R", we
obtain the following:

Proposition 6.3. In the Cpn homotopy fized point spectral sequence E*(Cpn) there

are differentials
k—1

2R (") = Ayt T ()
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for all1 <k < 2n, and

2r(2n)+1 _ 7" r(2n—2)+1
d (ug) =t7 (tp) .

The classes A1, Ay and tu are infinite cycles.

We also consider the p-inverted spectral sequences =1 E*(G) for G closed in S*,
obtained by inverting tu in E*(G) and restricting to the left half plane. The E2-
term p ! E?(G) is obtained from E%(G) by inverting u. At each term, the natural
map E*(G) — p~'E*(G) is an isomorphism in total degrees greater than 2p — 2,
and an injection in total degree 2p — 2.

Proposition 6.4. In the u-inverted spectral sequence p~'E*(Cyn) there are dif-

ferentials
k—1

k_ k=1 r -
B (") = A (b)) P P
for alll <k <2n, and

d2r(2n)+1(un’up2") _ (t,u)’"(2n)+1 '

The classes A1, A2 and tu are infinite cycles.

The terms of the p-inverted spectral sequence are
u_1E2T(m)+1(C'pn) = E(tin, A1, A2) ® P(/_me,/_L_pm,tM)

& D E(un, Agg) ® Priy (1) ® Fp {Ayps? | vp(5) =k — 1}
k=1

for 1 <m < 2n. Next

2n

uT ERCMA(Cyn) = E(M, A2) @ Pranya(tp) ® P(u?,p7? )
2n

® @) Blun, Nyg) © Prry (t1) © By Dhgigae? | 0(3) = k — 13,

k=1

Again p~1E?CM+2(CL.) = p~ E%(Cpn) for bidegree reasons, and the classes
:I:p2'n
L

Proposition 6.5. The associated graded E®(Cyn) of V(1).THH(£)*C?" maps by
a (2p — 2)-coconnected map to

are permanent cycles.

HTLES(Cpr) = E(M, 22) @ Pranya(tp) @ P, u7?")

2n
® €D E(un, Ay) ® Priy (1) ® By {pgps? | vp(5) = b — 13
k=1

Proof of Theorem 6.1. By our inductive hypothesis, the abutment p=' E°°(C)yn)
contains summands

Prgn-1) () {A1p” " b Priany (tp){A2ps® " } and Pr(zn)+1(tpu){p? n}
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representing elements in V(1),THH(¢)°"". By inspection there are no perma-
nent cycles in the same total degree and of lower s-filtration in p~1E%(Cpn) than
(t'u’)r(Zn—l) ) /\1'up tu)r(2n) , /\2/11)2"_1
three homotopy classes represented by A\ ,upzn_z, /\2uP2n— and /.Lp2" are vy-torsion
classes of orders precisely r(2n — 1), 7(2n) and r(2n) 4 1, respectively.

Consider the commutative diagram

2%2, ( and (t,u)r@")"'1 -,up2n, respectively. So the

1

f‘n-}-l
e

THH(0)Cr <= THH(£)C B(Cyts, THH(0))

THH(() <~ THH(l) ——> H(C,, THH(2)).

Here F™ is the n-fold Frobenius map forgetting Cpn-invariance. The right hand
diagram commutes because f‘n+1 is constructed as the Cyn-invariant part of an
St-equivariant model for f‘l.

The above three homotopy classes in V(1),THH(£)%?" map by the middle F"
to homotopy classes in V(1),TH H(£) with the same names, and by I'; to homotopy
classes in V(1),H(C,, THH(£)) represented by AtP" At " and ¢ in
EW(CP), respectively. Hence they map by I'ny1 to permanent cycles in E*(Cpn+1)
with these images under the right hand F™.

By comparison over homotopy Frobenius and Verschiebung maps, there are iso-
morphisms E"(Cpn) & E”"(C'pn+1) for all » < 2r(2n) + 1, taking up t0 up41. This
determines the d"-differentials and E"-terms of E*(Cpn+1) up to and including the
E"-term with r = 2r(2n) + L

»E27‘(2n).+‘1(0pn+1) — E(Un+1, )\1,)\2) ® P(tPQH,t_pzn,t,Ll,)
2n

® (D E(unt1, M) ® Prge—z (t1e) ® By {Agt’ | vp(6) =k — 1}
k=3

By inspection there are no permanent cycles in the same total degree and of higher

s-filtration in E'*(Cpn+1) than A\t~ At~?"" and t”P2n+2, respectively. So
also the equivalence f’n+1I‘; ! takes the homotopy classes represented by Ay /.l,p2n_2,

A p2'n—1 2n+41
2/1’211-}-2 .
t~P 7, respectively.
Since I',+1'; ! induces an isomorphism on V(1)-homotopy in dimensions > (2p—
+1tn P
2), it preserves the vy-torsion order of these classes. Thus the infinite cycles

and ,up% to homotopy classes represented by /\1t_1’2n, Agt™P and

2n+4-1 2n+42

(b)) @D X\t ()T AP and ()T 4P
are all boundaries in E*(Cpn+1). These are all tu-periodic classes in ET(CPn+1) for
r = 2r(2n) + 1, hence cannot be hit by differentials on the tu-torsion classes in this
E7-term.

This leaves the tu-periodic part E(unt1,A1,A2) ® P(tp2",t_1’2",tu), where all
the generators above the horizontal axis are infinite cycles. Hence the differentials
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hitting (¢tp)7?=1 . AtP" (tp)m (2 At™?" ™ and (tp)T 2+ 777" must
originate on the horizontal axis, and the only possibilities are

_m2n+41

d2r(2n+1)(t__p2n P ) — (t'u)r(2n—1) . )\lt—pzn

2n42 2n41

d2r(2n+2)(t~pz"+1—p ) = (m)r(%) Mgt ™P

r(2n _m2nt2
) = (tp) @A g2

d21’(2n+2)+1 (un+1t_2p2n+2

The algebra structure on E*(Cpn+1) allows us to rewrite these differentials as the
remaining differentials asserted by case n + 1 of 6.1. [

Passing to the limit over the Frobenius maps, we obtain:

Theorem 6.6. The associated graded of V(1) H(S', THH({)) is

E=(S") = E(\1, ) ® P(th)

&P E(y) ® Prk—n) (1) @ Fp (At | vp(6) =k — 1}
k>3

Theorem 6.7. The associated graded E*(S') of V(1),'KTZU'171:‘T(E)"S1 maps by a
(2p — 2)-coconnected map to
WTIB=(S") = B\, \2) ® P(th)
& D Eg) © Pty (1) © By Dus? 1vp(s) = k1),

k>1

Each of these E* terms compute V(1).TF(¢;p) in dimensions > (2p — 2), by
way of the (2p — 2)-coconnected maps I' and T', respectively.
7. 'THE RESTRICTION MAP

We now evaluate the homomorphism
R.: V(1).TF(¢;p) = V(1) TF(¢;p)

induced on V(1)-homotopy by the restriction map R, in dimensions > (2p — 2).
The source and target are both identified with V(1),THH(£)"S' via T',. Then
R, is identified with the composite homomorphism (I'I'~1), o R?, where R" is the
homotopy restriction map. The latter induces a map of spectral sequences

E*(RM): E*(S?) — E*(SY),

where the E*° terms are given in 6.6 and 6.7.
Proposition 7.1. In dimensions > (2p — 2) the homomorphism E*(R") maps:
(a) E(M\, \2)@P(tu) in E>(S) tsomorphically to E(Ai, \2)@P(tu) in E(Sh).
—eph—1 . )
(6) E(\t)) @ Prry (1) @Fp {\igu ™" } in E*°(S) onto E(Ajy) ® Pr(s—2)(tn)®
Fp (At} in E(SY), for k>3 and 0 < e < p.
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(¢) the remaining terms in E*°(S') to zero.

Proof. Case (a) is clear. For (b) and (c) note that E°°(R") maps the term

k—1

E(Mig) @ Prgy(t1) @ Fp A ™"}

in E*®(S') to the term

1

k-
E(Mip) ® Prr—2)(tn) @ Fp { At}

in Ew(Sl). Here e is prime to p. For e > p the source and target are in negative
dimensions, while for e < 0 the source and target are concentrated in disjoint
dimensions. The cases 0 < e < p remain, when the map is a surjection since

r(k) —epFt >r(k—2). O
This identifies the image of R*, by the following lemma from [BM1, §2].

Lemma 7.2. The representatives in E®(S) of the kernel of R* equal the kernel
of E*(R"). Hence the image of R is isomorphic to the image of E®(R").

The composite equivalence I'T"! does not induce a map of spectral sequences.
Nonetheless it induces an isomorphism of E(A1,A2) ® P(vz)-modules on V(1)-
homotopy in dimensions > (2p — 2). Here vy acts by multiplication in V(1),,
while multiplications by A; and ), are realized by the images of A and M\¥, since
both I and I' are ring spectrum maps.

Proposition 7.3. In dimensions > (2p — 2) the composite equivalence I'T~1 in-
duces an 1somorphism

V(l)*H(Sl,THH(f)) o V(l)*THH(K)hsl

of P(vy)-modules, taking all classes represented by AJ*A2(tp)™t! in E*®(5Y) to
classes represented by AP 52 (t)™p? in E°°(S) withi+p%j = 0. Here 0 < €1, €3 <
1 and m > 0.
Proof. Let T = H(Cp, THH(£)). The S'-equivariant map I'y: THH(¢) — T in-
duces a map of S! homotopy fixed points, which realizes the localization homo-
morphism E*(S?) — pu~2E*(S') on the level of spectral sequences. It follows that
there is a homotopy equivalence V(1) ATI(SY, THH(£)) ~ V(1) AT*5" which agrees
with TT~! on (2p — 2)-connected covers.

The vy-indivisible elements in V (1), H(SY, THH(¢)) are represented in E°(S1)
by the classes

E=(SY)/(tp) = E(A1, \2)

® P ENg) ® Fp{ At | vp() =k — 1}
k>3

The vy-indivisible elements in V(1),7"S" are represented in p~'E>(S!) by the
classes

pTES(SY)/ () = E(M, o)

® @E()‘fk]) ® ]Fp{/\[k]#j | vp(s) =k —1}.
k>1
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The asserted homotopy equivalence induces an isomorphism between these two
terms, which by a dimension count must be given by

ANy AL )2

with 7 4+ p?j = 0. Hence the same formulas hold modulo mﬁltiples of v on V(1)-
homotopy. Taking the P(vq)-module structure into account, the corresponding
formulas including factors (¢x)™ also hold, and express the isomorphism

V(1),H(SY, THH(0)) = V (1), T4

which agrees with I'T~! in dimensions > (2p —2). O
Definition 7.4. Let A = E(Aq,\2) ® P(tp),

Bi = E(\g) ® Py (t1) @ By {Apgpe ™" |0 < e < p}

and B = @, Bx. Let C be the span of the remaining monomial terms in
p~1E*(S1). Then E*(S') = A® B @ C in dimensions > (2p — 2).

Theorem 7.5. In dimensions > (2p—2) there are subgroups A= E(M,\2)QP(v2),
By and C of V(1) TF(4;p) represented by A, By and C in E®(SY), respectively,
such that _

(a) R« is the identity on A.

(b) Ry maps §k+2 onto By for allk > 1.

(¢) Ry 1s zero on ﬁl, B, and C.
In these dimensions V(1),TF(l;p) = A® B@® C, with B = ITisy B.

Proof. At the level of E*(S1), the composite map It o E%°(R") is the identity
on A, maps By onto By for all K > 1 and is zero on By, By and C, by 7.1 and 7.3.
The task is to find lifts of these groups to V(1).TF(¢; p) such that R, has similar
properties.

Let A = E(A1, \2) ® P(v2) C V(1),TF(£;p) be the subalgebra generated by the
images of the classes A, M and vy in V(1)K (€,). Then A lifts A and consists of
classes in the image from V(1).K(¢,;). Hence R, is the identity on A

By 7.1 we have C' C ker E®(R"). Thus by 7.2 there is a subgroup C in ker(R,) =

ker(R") represented by C. Then R, is zero on C.

Note that im(R,) and ker(R.) span V(1) T F({; p). For by 7.1 the representatives
of im(R,) span A @ B, and the representatives of the subgroup C in ker(R,) span
C. Thus the classes in im(R,) and ker(R,) have representatives spanning E°°(S?),
and therefore span all of V(1),TF({;p). Hence the image of R, on V(1).TF(¢;p)
equals the image of its restriction to im(R.,).

Consider the subgroup

BY = By, Nker E®(R")
-1

r(k)— —ep®
= E(Afk]) ® Pr((k12)1+epk—1(t/‘) %4 IF;D{/\[]C]'u "
0<e<p

This can be lifted to im(R,) by 7.1, and to ker(R.) by 7.2. By an argument
using the strong convergence of the spectral sequence E*(S') (exercise !), it can be
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simultaneously lifted to a subgroup of im(R,)Nker(R,). Let §2 C im(R,)Nker(Ry)
be such a lift.
Inductively for n > 1 let B} C Bgtan C E®(S?) be the subgroup generated by

the monomials mapped by E®(R") and I'T~! to the monomials generating By L.
Then By is the span of all B}_,,, for n > 0.

Suppose inductively that we have chosen a lift g,’: C im(Ry) of B} which maps
by R. to §2-1 for n > 1 and to zero for n = 0. Then choose classes in im(Ry)
mapping by R, to generators of ﬁz and let EZ'H be the subgroup they generate.
Then E?‘H is a lift of B""’1 by 7.1 and 7.3.

Let By C V(1)«TF(¢;p) be the span of all Bk on for n > 0. Then By is

represented by all of By, R, maps Bk+2 onto Bk for k > 1, and B1 and Bg lie in
ker(R,). O

8. TOPOLOGICAL CYCLIC HOMOLOGY
Recall from 3.1 the long exact sequence

8.1) ... BV TCEp) S VQ).TFEp) =5 V(1).TF(p) >

Proposition 8.2. In dimensions > (2p — 2) there are isomorphisms

ker(R« — 1) = E(M\,A2) ® P(v2)
@E(/\Q) ®P(’l)2) ®]Fp{>\1te | O<ex p}
@E(/\l) ®P(’U2) ®FP{A2tep I I<e< p}

and

COk( —1) = ()\1,/\2)®P(’02).

Proof. By 7.5 the homomorphism R, — 1 is zero on A = E(M,)2) ® P(vg) and an
isomorphism on C. The remainder of V(1),TF(¢; p) decomposes as

§:H§k® Hgk

k odd k even

and R, takes §k+2 to Ek for k > 1, forming two sequential limit systems. Hence
there is an exact sequence

.o Rl
0— khorgld B, — kqu klld Bp — hm Bk —0

and a corresponding one for k even. The right derived limit vanishes since each By
has finite type. Hence it remains to prove that in dimensions > (2p — 2),

Jlim, Br 2 E()\;) ® P(v2) @ F, {\1#° | 0 < e < p}
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and

lim By = E(\)® P(vy) @ Fp {22t | 0 < e < p}.

k even

Each By & By is a sum of (2p — 2) finite cyclic P(vz)-modules. The restriction
homomorphisms R, respect this sum decomposition, and map each cyclic module
surjectively onto the next. Hence their limit is a sum of (2p — 2) cyclic modules,
and it remains to check that these are infinite cyclic, i.e., not bounded above.

For k odd the ‘top’ class A1 A2 (t,u)r(k)_l/,L‘epk—1 in By is in dimension 2p*+! (p— e)
For k even the corresponding class in By is in dimension 2p*+1(p — €) + 2p — 2p°.
In both cases the dimension grows to 4+oco for 0 < e < p as k grows.

For k odd each infinite cyclic P(vg)-module contains a class in non-negative
degree with nonzero image in El & B;, namely the classes A1t¢ and A{Aqt€ for
0 < e < p. Hence we take these as generators for limg o044 Bk Likewise there are
generators in non-negative degrees for limg ¢ven B ¢ with nonzero image in B2 = B,
namely the classes A\2t®? and A\ Agt®? for 0 <e<p. O

Let e € mo,_1T'C(Z; p) be the image of e¥ € Kyp_1(Z,), andlet 8 € m_1TC(Z;p)
be the image of 1 € moTF(Z; p) under 9: L~ TF(Z;p) — T'C(Z; p). We recall from
[BM1], [BM2] the calculation of the mod p homotopy of TC(Z; p).

Theorem 8.3 (Bokstedt—Madsen).
V(0).TC(Z;p) = E(e,0) ® P(v1) @ P(v1) ® Fp{et' | 0 < i < p}.

Hence

V(1).TC(Z;p) = E(e,8) ®Fp{et’ | 0 < i < p}.

The (2p — 2)-connected map ¢, — HZ, induces a (2p — 1)-connected map
K(¢,) — K(Zp), and thus a (2p — 1)-connected map TC(¢;p) — TC(Z;p) after
p-adic completion, by [Du]. This brings us to our main theorem.

Theorem 8.4. There is an isomorphism of E(A1,A2) ® P(v2)-modules

V(l)*TC(ﬁ,p) = E()\l,)\g,a) ® P(’Uz)
® E(\2)® P(v2) @ Fp{\t°| 0 < e < p}
®E(M)®P(v2) @ Fp {12t | 0 < e < p}

with M| = 2p — 1, |A2| = 2p? — 1, |va| = 2p% — 2, |0] = —1 and |t| = —2.

Proof. This follows in dimensions > (2p —2) from 8.2 and the exact sequence (8.1).
It follows in dimensions < (2p — 2) from 8.3 and the (2p — 1)-connected map
V(1).TC(¢;p) = V(1)«TC(Z;p). It remains to check that the module structures
are compatible for multiplications crossing dimension (2p — 2).

The classes E(A\)@F,{\1t° | 0 < e < p} in V(1) TC(¢; p) map to E(e)®F,{et’ |
0 <i< p}in V(1),TC(Z;p), and map by I' o 7 to classes with the same names
in the S! homotopy fixed point spectral sequence for THH(Z). By naturality,
the given classes in V(1),T'C(¢;p) map by I' o m to classes with the same names
in E*(S1). Here these classes generate free E()q) ® P(tu)-modules. For degree
reasons multiplication by \; is zero on each \;t¢. Hence the E(A1,\2) ® P(vz)-
module structure on the given classes is as claimed.
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Finally the class 0 in V(1)_1TC(¢; p) is the image under the connecting homo-
morphism 8 of the class 1 in V(1).TF(¢; p), which generates the free E(A\, A2) ®

P(vq)-module cok(R. — 1) of 8.2. Hence also the module structure on 0 and A0 is
as claimed. [

A very important feature of this calculational result is that V(1).TC(¢;p) is
a finitely generated free P(vq;)-module. Thus TC(4;p) is a fp-spectrum of fp-
type 2 in the sense of [MR]. Notice that V(1).TF(¢;p) is not a free P(vz)-module.
On the other hand we have the following calculation for the companion functor
TR(¢;p) = holim, g THH(£)%", showing that V(1),TR({;p) is a free but not
finitely generated P(v3)-module.

Theorem 8.5. There 1s an isomorphism of E(A1,A2) ® P(vq)-modules

V(1):TR(¢;p) = E(A1, A2) @ P(vz)
& P E(u, 1s) ® P(v2) @ Fp{\1t° | 0 < e < p}
n>1

& P E(u, 1) ® P(vy) @ F {2t | 0 < e < p}.
n>1

The nth summand classes uAit¢ and ulqyt®? for 0 < § <1 and 0 < e < p are
detected in V(1),THH(£)" by the classes representing ul \it® and udAt°? in
E>®(Cpn), respectively.

We omit the proof.

9. ALGEBRAIC K-THEORY

“We are now in a position to describe the V(1)-homotopy of the algebraic K-
theory spectrum of the p-completed Adams summand of connective topological
K-theory, i.e., V(1) K(£y). We use the cyclotomic trace map to largely identify
it with the corresponding topological cyclic homology. Hence we will identify the
algebraic K-theory classes M and A with their cyclotomic trace images A\ and
A2, in this section.

Theorem 9.1. There is an ezact sequence of E(A1, Az) ® P(v2)-modules
0= 223K, — V(1),K(4) =5 V(1).TC(4;p) — Z7F, — 0

taking the degree 2p — 3 generator in L*P 3 HF, to a class a € V(1)2p—3K(€p), and
taking the class 8 in V(1)_1TC(£; p) to the degree —1 generator in £~ HIF,. Hence

V(D)«K(£p) 2 E ()\1,/\2) ® P(vq)
P(v3) ® B, {01, Bvz, OXy, DMy Ao}
@ E(/\z) ® P(v2) @ Fp{\1t° | 0 < e <p}
E(M) ® P(vy) @ Fp{A2tP° | 0 < e < p}
@F {a}.




ALGEBRAIC K-THEORY OF TOPOLOGICAL K-THEORY 25

Proof. By [HM1] the map £, — HZ, induces a map of horizontal cofiber sequences
of p-complete spectra:

K(lp)p —> TC(4p) —= X HZ,

| |

K(Z,)p —~TC(Z;p) — L~ HZ,.

Here V(1),X71HZ, is F, in degrees —1 and 2p — 2, and 0 otherwise. Clearly 0
in V(1),TC(¢; p) maps to the generator in degree —1, since K (£p), is a connective
spectrum. The connecting map in V(1)-homotopy for the lower cofiber sequence
takes the generator in degree (2p—2) to the nonzero class 11 (0v1) in V(1)2p—3 K (Zp).
By naturality it factors through V(1)2,—3K(¢p), where we let a be its image. [

Hence also K(¢,)p is an fp-spectrum of fp-type 2. By [MR, 3.2] its mod p
spectrum cohomology is finitely presented as a module over the Steenrod algebra,
hence is induced up from a finite module over a finite subalgebra of the Steenrod
algebra. In particular, K(¢;) is closely related to elliptic cohomology.

We conclude with some comments on the v1-Bockstein spectral sequence leading
from the V(1)-homotopy of K(£,) to its V(0)-homotopy, i.e., its mod p homotopy.
For any X, classes in the image of i1 : V(0).X — V(1).X are called mod p classes,
while classes in the image of 1110 T« X, — V(1),X are called integral classes.

Lemma 9.2. The classes 1, OX1, A\ and M\t® for 0 < e < p are integral classes
both in V(1) K(£p) and V(1).TC(¢4;p). Also O is integral in V(1) TC(4;p), while
a is integral in V (1), K(€p).

The classes ONg, Az, OM1 A2, A1)dg, A1 Agt®, Agt®P and A Aqt®? for 0 < e < p are
mod p classes in both V(1)K (£,) and V(1),TC(¢; p).

We are not excluding the possibility that some of the mod p classes are actually
integral classes.

Proof. Each vy-Bockstein (;  lands in a trivial group when applied to the classes
9,1, aand \t® for 0 < e < pin V(1)K (¢p) or V(1).TC(4; p). Hence these are at
least mod p classes.

Since 1 maps to an element of infinite order in myT'C(Z;p) = Z, and the other
classes sit in odd degrees, all mod p" Bocksteins on these classes are zero. Hence
they are integral classes. The class Ay is integral by construction, hence so is the
product O)\;.

The mod p homotopy operation (PP~¢)* takes A\11® in integral homotopy to AP
in mod p homotopy, for 0 < e < p. Hence these are all mod p classes, as is Ay by
construction. The remaining classes listed are then products of established integral
and mod p classes, and are therefore mod p classes. [

The classes listed in this lemma generate V(1).K(¢,) and V(1),TC(¢;p) as
P(vz)-modules. But v, itself is not a mod p class.

Lemma 9.3. Let z be a mod p (or integral) class of V(1)K (£p) or V(1) TC(¢; p)
and lett > 0. Then

Bra(vh z) =tk tii(6]) - .
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In particular 11(0]) - 1 = tP Xy and 11(07) - A1 = tP A1 Aa.

We expect that i1(5]) PP ), = 0\g and 11 (01) APTTPAL Ny = O\ A2, by sym-
metry considerations.

Proof. The vi-Bockstein f1,1 = ¢1j1 acts as a derivation by [Ok]. By definition
J1(v2) = By = [h11), which is detected as t?\; by 4.8. Clearly j1(z) = 0 for mod p
classes z. [

In V(1), the powers v} support nonzero differentials B 1(vs) = tvi i1 (8]) for
p{t. The first nonzero differential on v is (1 p:

Lemma 9.4. ,Bl,p(vg) = [hlz] ;é 0 in V(l)*
We refer to [Ra2, §4.4] for background for the following calculation.

Proof. In the BP-based Adams—Novikov spectral sequence for V(0) the relation
Ji(vh) = oP /p holds, where B, is the class represented by h1s + vf2_ph11 in
degree 1 of the cobar complex. Its integral image 3/, = Jjo (,H]’J /p) is represented by
b11, and supports the Toda differential dz,—1(8,/p) = a1Y. This differential lifts to
dap—1 (,6’;/?) = v; 7 in the Adams—Novikov spectral sequence for V(0). Consider the
image of ﬁ}') /p under i; in the Adams—Novikov spectral sequence for V (1), which is
represented by hyz in the cobar complex. Then dzp_l(il(ﬂ]’)/p)) =11(v107) =0. By
sparseness and the vanishing line there are no further differentials, and i1(5,,,) =
[h12] represents a nonzero element of V(1),. Hence B4 5(v2) = [h12), as claimed. O

Remark 9.5. We would like to obtain the mod p homotopy groups V(0).7'C(¢; p) by
means of the vi-Bockstein spectral sequence. This requires, first, that we compute
the product with 81 1(v2) = 11(f1) in the remaining V(1)-homotopy groups. Next
we must identify the image of 81 ,(v}) = [hi2] in V(1) TC(4; p). Imaginably there is
a homology differential in (4.3) on [€P%] hitting (t,u)P/\ltpz, if (sz)*(/\z) = (tu)P 1.
Then most likely [h12] is detected by (tu)P Mt in V(1) TF(¢; p), which is identified
under R with the class (tu)?A\1p~! generating V(1).TC(¢; p) in this degree. The
general picture appears to be complicated.
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