
Linguistic Features in
Data-driven Dependency
Parsing of Norwegian

Miriam Næss Jørstad
Master’s Thesis Autumn 2014





Acknowledgements

First, I would like to express my deepest gratitude to my supervisors
Lilja Øvrelid and Arne Skjærholt for their patience and the guidance and
encouragement which made the completion of this thesis possible. I am
honored for having the opportunity to work with them.

My gratitude goes also to my fellow students, the program committee
for Informatics: Language and Communication (P:ISK) and the staff of
the Language Technology Group at the University of Oslo for creating a
great and including learning environment.

I would also like to thank the developers of MaltParser and the Norwe-
gian Dependency Treebank. I would like to give a special thank to Per
Erik Solberg for answering all my questions about the treebank.

I am immensely grateful to my family, who have been great support.

Last, but not least, my gratitude goes to Ivar, for keeping me sane and for
having a positive attitude through out the process.





Contents

Contents i

List of Tables iii

List of Figures vi

1 Introduction 1
1.1 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Dependency grammar . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Norwegian Dependency Treebank . . . . . . . . . . . 10

2.2.1 Annotation . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Dependency parsing & MaltParser . . . . . . . . . . . . . . 16

2.3.1 Data-driven dependency parsing . . . . . . . . . . 16
2.3.2 Deterministic parsing . . . . . . . . . . . . . . . . . 20
2.3.3 History-based feature models . . . . . . . . . . . . 23
2.3.4 Discriminative machine learning . . . . . . . . . . 24
2.3.5 Pseudo-projective parsing . . . . . . . . . . . . . . 25
2.3.6 MaltOptimizer . . . . . . . . . . . . . . . . . . . . . 27

3 Baseline experiments 29
3.1 Experimental protocol . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Baseline experiments & error analysis . . . . . . . . . . . . 31
3.3 MaltOptimizer . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Linguistic features 47
4.1 Extended part-of-speech tags . . . . . . . . . . . . . . . . . 48
4.2 Morphological features . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Morphological features . . . . . . . . . . . . . . . . 55

i



Contents

4.3 Linguistic features . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Type, animacy & combinations of features . . . . . 60
4.3.2 Finiteness . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Final evaluation . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Domain sensitivity . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusion 75
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A Table of morphosyntactic tags for the Oslo-Bergen Tagger 81

B Data format 83
B.1 CoNLL data format . . . . . . . . . . . . . . . . . . . . . . 83
B.2 Reformatting the Norwegian Dependency Treebank . . . . 84

ii



List of Tables

2.1 Text sources for NDT. . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Results from training and testing different parsers on the NDT
(Solberg et al. 2014) . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 LAS and UAS from the initial experiments . . . . . . . . . . . 32
3.3 Average precision and recall of binned head distance in the

initial experiments . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 The number of tokens in the sentences with the highest num-

ber of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Bokmål: the ten most frequent error types in the initial exper-

iments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Nynorsk: the ten most frequent error types in the initial ex-

periments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Errors and their distribution over POSTAGs . . . . . . . . . . 37
3.8 Bokmål: results from the initial experiments with MaltOpt-

imizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9 Nynorsk: results from the initial experiments with MaltOpt-

imizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.10 Average precision and recall of binned head distance in the

experiments with MaltOptimizer. . . . . . . . . . . . . . . . . 41
3.11 The percentage of non-projective trees in the NDT . . . . . . 43
3.12 Bokmål: the ten most frequent error types in the experiments

with MaltOptimizer. . . . . . . . . . . . . . . . . . . . . . . . . 44
3.13 Nynorsk: the ten most frequent error types in the experiments

with MaltOptimizer. . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Bokmål: the frequency of the top five words were the most
errors occur in the experiments with MaltOptimizer. . . . . . 49

4.2 Nynorsk: the frequency of the top five words were the most
errors occur in the experiments with MaltOptimizer. . . . . . 50

iii



List of Tables

4.3 Bokmål: results from merging the part-of-speech tag or depend-
ency relation with the lemma or form of the prepositions in
the NDT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Nynorsk: results from merging the part-of-speech tag or depend-
ency relation with the lemma or form of the prepositions in
the NDT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Bokmål: results from the experiments with morphological fea-
tures merged with a part-of-speech tag. . . . . . . . . . . . . . 53

4.6 Nynorsk: results from the experiments with morphological
features merged with a part-of-speech tag. . . . . . . . . . . . 53

4.7 Morphosyntactic tags from the Oslo-Bergen Tagger. . . . . . . 54
4.8 Bokmål: the effect of the individual features. . . . . . . . . . . 57
4.9 Nynorsk: the effect of the individual features. . . . . . . . . . 57
4.10 Bokmål: the effect of removing one feature at the time on

parsing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.11 Nynorsk: the effect of removing one feature at the time on

parsing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.12 Results from the experiments with type . . . . . . . . . . . . 61
4.13 Bokmål: experiments with morphological features combined 62
4.14 Nynorsk: experiments with morphological features combined 62
4.15 Results from the experiments with the hum tag . . . . . . . . 63
4.16 Experiments with agreement . . . . . . . . . . . . . . . . . . . 64
4.17 Bokmål: experiments with morphological features combined

with agreement. . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.18 Nynorsk: experiments with morphological features combined

with agreement. . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.19 Experiments with finiteness. . . . . . . . . . . . . . . . . . . . 67
4.20 Bokmål: dependency parsing results with our feature models. 68
4.21 Nynorsk: dependency parsing results with our feature models 68
4.22 Bokmål: dependency parsing results with a final feature model

and the final held-out test set . . . . . . . . . . . . . . . . . . 69
4.23 Nynorsk: dependency parsing results with a final feature model

and the final held-out test set . . . . . . . . . . . . . . . . . . 69
4.24 Learning time from the models tested on the final held-out

data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.25 Parsing time from the models tested on the final held-out data

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.26 Bokmål: experiments with domain sensitivity . . . . . . . . . 72
4.27 Nynorsk: experiments with domain sensitivity . . . . . . . . 72

5.1 Bokmål: a summary of the best results. . . . . . . . . . . . . . 77

iv



List of Tables

5.2 Nynorsk: a summary of the best results. . . . . . . . . . . . . 78

A.1 Table of morphosyntactic tags for the Oslo-Bergen Tagger. . . 82

B.1 The Norwegian Dependency Treebank represented in ConLL
format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.2 An example of a sentence from the Norwegian Dependency
Treebank represented in ConLL format . . . . . . . . . . . . . 85

v



List of Figures

2.1 An example of a phrase structure tree. . . . . . . . . . . . . . 6
2.2 An example of a dependency structure. . . . . . . . . . . . . . 7
2.3 A non-projective dependency tree from the NDT. . . . . . . . 10
2.4 Relation between determiner and noun in the NDT. . . . . . . 15
2.5 Relation between determiner and noun from the Danish Tree-

bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Coordination from the NDT . . . . . . . . . . . . . . . . . . . 15
2.7 Pseudo-projective parsing: a non-projective dependency tree. 26
2.8 Pseudo-projective parsing: a projectivized dependency tree. . 26

3.1 An example of the confusion of attachment and dependency
relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B.1 An example a sentence from the Norwegian Dependency Tree-
bank represented as a dependency graph. . . . . . . . . . . . 84

B.2 The CoNLL data format specification file taken from the Malt-
Parser user guide . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



Chapter 1

Introduction

There are currently 7,106 living languages in the world (Lewis et al.
2014). Any speaker of a language knows tens of thousand of words and
can create and understand an infinite number of sentences. At the same
time anyone can learn thousands of words in a language without know-
ing or understanding the language. Words are an important part of lin-
guistic knowledge and of our mental grammar. Each word we know in-
cludes information about its sound, meaning and grammatical category.
Unless we have this kind of knowledge of a word, we would not have
the ability to form grammatical sentences or recognize ungrammatical
ones. This knowledge is what we know as grammar. Grammar can be
described as the set of rules on the composition of clauses, phrases, and
words in a natural language. Grammar is also the study of these rules
and consists of several structural subfields such as morphology, syntax,
phonology, phonetics, semantics, and pragmatics.

For most of us, the word grammar might be something we associate with
primary school. We all know the properties of the different lexical cat-
egories. In our mental lexicon we know that nouns describe things, ei-
ther abstract or concrete, such as people, places or ideas. We know that
words describing things you can do are verbs. We know that adjectives
are words that describe the noun and that adverbs describe verbs. That
all of these words and their categories have different sets of properties
and features, and an internal, rule-governed structure is a basic part of
language learning. Words are combined with other words to form sen-
tences and the relations between the words creates the meaning of a sen-
tence.
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1. Introduction

In our daily life we use our knowledge of grammar unconsciously when
we speak a language fluently. In the field of Natural Language Processing
(NLP), where the focus is on the interactions between computers and
human languages, the knowledge of grammar is an essential tool. In
order to gain a greater understanding of the interaction between humans
and computers and to optimize this interaction, one often try to mimic
parts of human cognition through different processing tasks. Grammar,
such as morphology and syntax helps us create programs we use in order
to get a better understanding of “who did what to whom”. This again
enables us to come closer to an understanding of the patterns we can
expect to find in the grammatical sentences of a language.

In January 2014 the National Library in Norway released a treebank for
Norwegian, the Norwegian Dependency Treebank (NDT), where the syn-
tactical analysis in the texts is based on dependency grammar. Depend-
ency grammar is based on the idea that the syntactic structure of a sen-
tence can be described in terms of the words in the sentence and binary
asymmetric relations between these words. Treebanks like this exist for
many other languages and has provided the resources necessary to gain
a better understanding of the methods in NLP, however it is the first of
its kind for Norwegian. This treebank provide the opportunity to create
dependency parsers for Norwegian.

1.1 Thesis

In this thesis we have studied data-driven dependency parsing for Nor-
wegian and the effect of linguistic features on parsing accuracy. Data-
driven dependency parsing is increasingly popular and this has led to
the development of a range of parsing systems, where we have used the
MaltParser system. Out focus has been directed towards gaining a better
understanding how different linguistic features, such as person, gender
and tense, influence the parsing performance. This kind of knowledge
exists for most Scandinavian languages, but not for Norwegian, and we
used the existing knowledge as a guide. To understand how to best use
these features during parsing of Norwegian we conducted several exper-
iments using lexicalization, morphological features and other linguistic
features available in the NDT.

2



1.2. Thesis outline

1.2 Thesis outline

Chapter 2 describes the theoretical background, concepts and systems
used in this thesis. We will give an introduction to the theory of depend-
ency grammar and explain the concepts of data-driven dependency pars-
ing. We will also present the MaltParser system, MaltOptimizer, the sys-
tem for MaltParser optimization, and the Norwegian Dependency Tree-
bank (NDT).

Chapter 3 begins with a precise description of the experimental proto-
col for the experiments conducted in this thesis. Then we introduce our
initial experiments where we use the MaltParser system with its default
settings and present an error analysis performed. Finally, we present the
results from running MaltOptimizer with the NDT.

Chapter 4 describes the experiments performed while working with this
thesis and the results we obtained. We will first cover our experiments
with extended part-of-speech tags before we present the experiments
with morphological features. After that we present experiments per-
formed with various linguistic features. Finally, we will present a fi-
nal evaluation performed on a held-out test set and and an experiment
where we investigate domain sensitivity.

Chapter 5 sums up the outcomes of our experiments and we present our
main findings. We briefly discuss the work we have done and consider
the possibilities for future work.
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Chapter 2

Background

In this chapter we describe the theoretical background and concepts of
this thesis and give an introduction to the systems and the resources
used for the experiments presented in the following chapters. We begin
by introducing the theory of dependency grammar and the Norwegian
Dependency Treebank. After that we introduce data-driven dependency
parsing and explain this approach in more detail by presenting Malt-
Parser, the system used for data-driven dependency parsing in this the-
sis. We will then give a brief introduction to the MaltOptimizer system
for MaltParser optimization.

2.1 Dependency grammar

There are several well-known theories of dependency grammar and its
roots can be traced back to Panini’s grammar of Sanskrit from the 6th
century B.C. For a long time the tradition was been given little attention
in both linguistics and NLP, but during the last decades there has been an
increased interest in the tradition. The modern theoretical traditions of
dependency grammar are primarily based on the dependency grammar
developed by Lucien Tesnière. Nivre (2005) translates Tesnière’s descrip-
tion of the idea behind dependency grammar:

“The sentence is an organized whole, the constituent el-
ements of which are words. Every word that belongs to a
sentence ceases by itself to be isolated as in the dictionary.
Between the word and its neighbors, the mind perceives con-
nections, the totality of which forms the structure of the sen-
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2. Background

tence. The structural connections establish dependency rela-
tions between the words. Each connection in principle unites
a superior term and an inferior term. The superior term re-
ceives the name governor. The inferior term receives the name
subordinate. Thus, in the sentence Alfred parle [. . . ], parle is
the governor and Alfred the subordinate.”

This grammar representation differs a lot from the most influential gram-
mar formalism in the field, phrase structure grammar by Chomsky (1957).
In this formalism the idea is that a set of phrase structure rules can rep-
resent the hierarchical and linear order of a sentence, which is presented
by a syntactic tree. In the syntactic tree the words in the sentence are the
terminal nodes which are grouped together forming phrases.

S

PU

.

VP

NP

PP

NP

NNS

markets

JJ

financial

IN

on

NP

NN

effect

JJ

little

VBD

had

NP

NN

news

JJ

Economic

Figure 2.1: An example of a phrase structure tree for an English sentence
taken from the Penn Treebank (Nivre 2005).

An example of a phrase structure can bee seen in figure 2.1. Here we see
that the words “Economic new had little effect on financial markets.” are
the terminal nodes combined into non-terminal nodes representing the
phrase structure.

Dependency grammar on the other hand represents syntactic structure
as words linked by binary, asymmetrical relations called dependency re-
lations or just dependencies. A dependency relation holds between a su-

6



2.1. Dependency grammar

JJ NN VDB JJ NN IN JJ NNS PU
Economic news had little effect on financial markets .

NMOD
SBJ

P

OBJ

NMOD NMOD

PMOD

NMOD

Figure 2.2: An example of a dependency structure for an English sen-
tence taken from the Penn Treebank (Nivre 2005) .

perior word called the head (the governor) and its subordinates, named
dependents (or governed) (Nivre 2005).

Figure 2.2 is an example of a dependency structure, and we can see that
the dependencies are between words and not between phrases as in fig-
ure 2.1. The relations are represented by arrows pointing from the head
to its dependents. Each arrow is given a label indicating the syntactic
category of the dependency relation.

Even though the syntactic relations in dependency grammar are between
the words in a sentence, and not between phrases such as in phrase struc-
ture grammar, the difference between these two formalisms only concern
what is encoded in the different representations. Phrases can be distin-
guished in a dependency structure and a we can identify functional rela-
tions such as subjects and objects in phrase structures. However, (Kübler
et al. 2009) stress that parts of the task of converting from one type of
representation to the other is non-trivial. Some theories use a combina-
tion of dependency structure and phrase structures so even though they
might seem very different they are not mutually exclusive approaches to
natural language syntax.

To determine which is the head and which is the dependent in a relation,
several criteria have been suggested, both syntactic and semantic. Based
on the work of (Zwicky 1985) and (Hudson 1990), Nivre (2005) suggest
the following criteria for identifying the syntactic relation between the
head H and the dependent D in a construction C:

7



2. Background

1. H determines the syntactic category of C and can often replace C.

2. H determines the semantic category of C; D gives semantic specifi-
cation.

3. H is obligatory; D may be optional.

4. H selects D and determines whether Dis obligatory or optional.

5. The form of D depends on H (agreement or government).

6. The linear position of D is specified with reference to H.

For example in figure 2.2, we find that the verb had decides the posi-
tion and the semantic category of both news and effect because it requires
something to be had and something to have. By relying on the property
of valency we find it to be the head of both news and effect. Another
example of the criteria in use is the direction in the relation between fi-
nancial and markets. By using the first criteria in the list above, we can
remove Financial without disrupting the syntactic structure, but is not
the case for the relation between news and had.

A dependency structure can be represented as a labeled directed graph,
due to it consisting of lexical elements linked by binary asymmetrical
relations. A labeled directed graph is a graph where the nodes are con-
nected by labeled arcs that have a direction associated with them. The
set of lexical elements can be represented as the nodes, and the labeled
arcs can represent the dependency relations from the heads to their de-
pendents. In figure 2.2 we can see that the arc between the words had
and news carries the label SBJ, indicating that news is the subject of the
sentence. We represent the dependency relation between two nodes i and
j with the arc (i, j), where i is the head and j is the dependent of the arch
(i, j). i→ j is used to represent that there is an arc connecting i and j.
The notation i→∗ j is used to represent the reflexive and transitive clo-
sure of an arc relation, meaning i→∗ j iff i = j or there is a path of arcs
connecting i to j (Nivre et al. 2007).

In most formalisms of dependency grammar we find some basic con-
straints supporting this notion of representing the dependency graph as
a rooted tree. These are constraints regarding:

1. Connectedness.

8



2.1. Dependency grammar

2. Acyclicity.

3. The number of heads.

The constraints regarding connectedness comes from the need of every
node being related to at least one other node in order to create a complete
syntactic analysis of a sentence.

There is also a common assumption that the graph should not contain
any cycles. This is captured by the acyclic constraint, meaning that a
word can not be both the head of and dependent on the same word. For-
mally, if we let i be the head in a relation and j is the dependent, then if
i→ j then not j→∗ i (Nivre et al. 2007).

Most theories also assume that each node has only one head, this is called
the single-head constraint. Meaning, that each node has at most one head.
Usually, the only node without a head is the root node. Formally, every
node in the graph G, except the root node, has one head, meaning if i→ j
then there is no node k such that k , i and k → j. Looking at figure 2.2
we can see that each node in the tree is connected to at least one other
node. It is also easy to see that there are no cycles in the representation
and each node has at most one head with the exception of the root had.
These constraints are assumed by most theories of dependency grammar,
but some theories, such as the word grammar theory by Hudson allow
multiple heads and cyclic graphs (Nivre 2005).

The formal representation of dependency grammar is one of the most de-
bated issues in the field, namely how to represent the relation between
dependency structure and word order. Nivre (2005) explains that while
dependency relations have a structural order, strings of words have a
linear order. Most theories in dependency grammar assumes what Tes-
nière proposed, that “the nodes of a dependency structure are not lin-
early ordered in themselves but only in relation to a particular surface
realization of this structure”(Nivre 2005).

This takes us to the projectivity constraint. A dependency graph is pro-
jective if, when we put the words in their linear order, “preceded by the
root, the edges can be drawn above the words without crossing, or equiv-
alently, a word and its descendants form a contiguous substring of the
sentence” (McDonald et al. 2005). Formally, Nivre et al. (2007) explains

9



2. Background

that a graph is projective “if i→ j then i→∗ k, for every node k such that
i < k < j or j < k < i”.

Hvilket sted drømmer du om å reise til ?

DET

SUBJ

ADV

IP

PUTFYLL INFV

ADV

PUTFYLL

FINV

Figure 2.3: A non-projective dependency tree from the NDT that as-
sumes non-projectivity (Kinn et al. 2013).

In figure 2.3, the word sted is separated from the head til. A dependency
tree for this sentence can, as we can see from figure 2.3, only be drawn
with edges crossing each other. In Norwegian grammar projectivity is an
issue when topicalization occur and with sentences that contain multi-
ple clauses (Kinn et al. 2013). The distinction between projective and
non-projective dependency grammar comes down to whether the con-
straint of projectivity is assumed or not. Most theoretical formulations
of dependency grammar consider projectivity as the norm, but also rec-
ognize the need for non-projective representations. Most also consider
the constraint of projectivity to be too rigid for the description of lan-
guages with free word order (Nivre 2005).

2.2 The Norwegian Dependency Treebank

The Norwegian Dependency Treebank (NDT) is a so-called gold standard
corpus. It is the result of a project by Språkbanken at the Norwegian Na-
tional Library in collaboration with the Text Laboratory and the Depart-
ment of Informatics at the University of Oslo. The Treebank is a syntactic
treebank divided into two parts since there are two written standards of
Norwegian — bokmål and nynorsk. The version in bokmål consists of
311 000 tokens while the version in nynorsk consist of 303 000 tokens
(Solberg et al. 2014). Like comparable treebanks for other languages
such as the Prague Dependency Treebank and the TIGER Corpus, the
NDT consist mainly of newspaper text. In addition to this source, it also
contains text from government reports and transcripts from parliament
debates, in addition to selected posts from individual bloggers.
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2.2. The Norwegian Dependency Treebank

Bokmål Nynorsk

Newspapers

Bergens Tidende Firda
Dagbladet Vest-Telemark Blad

Klassekampen Klassekampen
Sunnmørsposten

Verdens Gang

Blogs

Pias Verden Interessert? (Hallvards blogg)
Frøken Makeløs Alt godt

Hc Svnt Dracones Pur Glede
Kongen av Briskeby
Breddefotballfrue
Her på sandaker

Government reports

NOU 2006:2, chapter 1 St. meld. nr. 35 (2007-2008), chapter 1
NOU 2006:2„chapter2 St. meld. nr. 35 (2007-2008),chapter 2
NOU 1999:2, chapter 3 St. meld. nr. 35 (2007-2008), chapter 3

NOU 1999:2, chapter 11

Parliament debates

Møte onsdag den 12. januar kl. 10 Møte mandag den 6. oktober 2008 kl. 10.05
Møte onsdag den 19. januar kl. 10 Møte torsdag den 12. desember kl. 10
Møte onsdag den 22. mars kl. 10 Forhandlinger i Stortinget nr. 74

Table 2.1: Text sources for NDT (Solberg 2013)

In table 2.1 we can see the different sources of text1. The newspaper text
is taken from the The Norwegian Newspaper Corpus (NNC) 2. The blog
texts were acquired with permission from the individual bloggers, who
represent a great variety in blog themes and genres. The NDT is avail-
able in both CoNLL format 3, and in Prague Markup Language (Solberg
2013).

1Parliament debates: Not all of the text on these pages were used.
2http://avis.uib.no/avis/om-aviskorpuset/english
3For more information regarding the CoNLL format and the reformatting of the

treebank see appendix B.
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2. Background

Each token in the corpus contains information about morphological fea-
tures, syntactic functions and hierarchical structure. The morphological
analysis in the corpora follows Faarlund (1997), while the syntactic anal-
ysis is based on dependency grammar as described above. The annotat-
ion guidelines was developed by the annotators of the treebank (Solberg
et al. 2014) and the annotation was manually done by trained linguists.
In order to reduce inconsistencies, parts of the text were syntactically an-
notated by two annotators. A set of experiments done to validate consis-
tency of the annotations shows that the agreement of the treebank gives a
score of an α of about 98%, which is extremely high (Solberg et al. 2014).
Before annotating the text, part-of-speech tags were added automatically
and the text was syntactically parsed. This is a standard practice when
annotating syntactic corpora, and the method has been proven to be ef-
fective and to provide high quality annotation (Solberg et al. 2014). Af-
ter the morphological annotation was checked and corrected manually,
it was preprocessed by a dependency parser and imported into TrEd, an
annotation tool used to correct output from the syntactic preprocessing
and create a final treebank (Solberg et al. 2014).

2.2.1 Annotation

As mentioned above, the NDT contains both morphological and syntactic
annotation. The annotators of the treebank followed four fundamental
principles when creating the annotation guidelines:

1. The annotation should be as linguistically adequate as possible

2. The annotators must be able to to implement the analyses consis-
tently.

3. It must be possible for the annotators to annotate quickly.

4. It must be simple to retrieve specific constructions after annotation.

The morphological annotation follow the Oslo-Bergen Tagger, with some
additional morphological tags. The lemmas are taken either from Norsk
Ordbank, a lexicographic database for Norwegian, or generated by the
Oslo-Bergen Tagger. The morphological tagset of the Oslo-Bergen tagger
contains information regarding features related to the inflection of words
and whether a token belongs to a certain sub-class of a part-of-speech.
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2.2. The Norwegian Dependency Treebank

An example of the last is that pronouns are marked as demonstrative,
personal, reflexive, etc. while determiners are marked as demonstrative,
possessive, etc. There is no distinction between the coarse-grained and
fine-grained part-of-speech tags. When the spelling or inflectional form
of a token in the corpus does not comply with the official norm of either
bokmål or nynorsk, the annotators added the lemma manually and pro-
vided the correct tags in addition to the morphological tag unorm (short
for unormert, translates to non-standard) (Solberg 2013), (Solberg et al.
2014). This was also the procedure if a non-compound did not exist as
an entry in Norsk Ordbank.

The syntactic annotation guidelines were developed specifically for this
treebank by the annotators as an iterative process during the beginning
of the project. The annotations of dependencies were to a large extent
influenced by choices made in the construction of similar treebanks, such
as the Swedish treebank (Talbanken) and the treebank of the old Indo-
European languages (PROIEL) (Solberg et al. 2014).

As mentioned earlier the theories agree about some fundamental proper-
ties of dependency, but they disagree whether the notion of dependency
is sufficient for the analysis of syntactic structures in natural language
(Nivre 2005). One issue that divides the different theories is whether
they use single-layer or multi-layer frameworks. Single-layer frameworks
are found in theories that rely on a single syntactic representation. Multi-
layer frameworks are found in theories that use several layers of repre-
sentation. Most theories of dependency grammar are multi-layer accord-
ing to Nivre (2005), at least if they consider semantic representations
to be a layer. Another distinction between the theories of dependency
grammar is the dependency types, that is, the functional categories that
are used to label the arcs between the relations in the representation.
Most theories use a set of surface-oriented grammatical functions, such
as subject, object and adverbial. The NDT is an example of a corpus
where the dependency types are based on such grammatical functions
(Kinn et al. 2013). Other theories posit sets of semantically oriented
types from the tradition of case roles or thematic roles, such as agent, pa-
tient and goal. Multi-layer theories often combine these two dependency
types, while other theories combine numerical indices and descriptive
labels (Nivre 2005).

In dependency grammar there are no unique answers to how relation-
ships such as the head-dependent relationship between complementizers
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and verbs, or between function words and lexical words, should be rep-
resented. There are several suggestions about what the criteria should be,
and this has led to a number of different theories. Some suggest that the
concept of head has a prototype structure, while others focus on the need
to distinguish between different kinds of dependency relations. One dis-
agreement between the theories is whether a functional word can take
the role as a head of lexical word or if it should be the other way around
(Kinn et al. 2013). A lexical head belongs to one of the categories noun,
verb, adjective and sometimes adverb. These are words that carry mean-
ing. A functional head on the other hand will often be a function word
such as a determiner or inflections (Falk 2001).

In the annotation standards from Stanford the lexical word will be given
the head-status whenever that is possible. The standard CoNLL con-
version of the Penn Treebank on the other hand varies between giving
the head-status to the lexical word and function words. In Norwegian
complementizers are frequently dropped and therefore, in the NDT, the
verb is the head of the complementizer, making the complementizer de-
pendent on the verb. The same principle goes for the noun-determiner
relation and for coordination; if possible, the lexical word will be the
head. Nouns take determiners as dependents with the function DET.
There are of course exceptions. A well-known case where the function
word is given the head-status is when a sentence has a finite auxiliary
and a lexical verb. In this case the finite auxiliary will be the head of the
lexical word, which will be given the function INFV (Solberg et al. 2014).

As an example of a different approaches to determine what should be
head and what should be dependents is the distinction between the Dan-
ish Treebank and the NDT. A relation between a determiner and a noun
will by the NDT’s annotation give the noun the role as the head, making
it the head, and the determiner will take the role as the dependent, as
shown in figure 2.4 (Kinn et al. 2013). The annotation of the Danish
Treebank on the other hand, allows the determiner to take the role as the
head of a noun, as you can see in figure 2.5 (Kromann and Lynge 2004).

Another problematic construction in dependency grammar is coordina-
tion. Coordination is a symmetrical relation, while dependencies, by def-
inition, are asymmetric. Theorists solve this issue in different ways and
the annotators of the NDT has solved the issue of coordination by mak-
ing the first conjunct the head. It also carries the grammatical function
for the entire coordinated structure. Conjuncts that are dependent on the

14



2.2. The Norwegian Dependency Treebank

en flink mann
a nice man

ATR

DET

Figure 2.4: Relation between determiner and noun based on the annotat-
ion of the NDT.

en flink mand
PI AN NC
a nice man

MOD

NOBJ

Figure 2.5: Relation between determiner and noun from the Danish Tree-
bank (Kromann and Lynge 2004).

Per og Kari kjøper epler .

SUBJ

IP

DOBJ

KOORD

KONJ

FINV

Figure 2.6: Coordination from the NDT (Kinn et al. 2013).

first will receive the function KOORD, while the conjunctions being de-
pendent on the closest conjunct to the right are given the function KONJ.
Figure 2.6 is an example of coordination where the relation between Per
og Kari (Per and Kari) is symmetric.

Unlike other treebanks the annotators of the NDT decided to opt for a
relatively shallow analysis of adverbials, therefore, regardless of type,
and whether or not they are selected, all adverbials are given the depend-
ency relation ADV. One reasons for this is that a higher level of linguis-
tic detail would make it more difficult for the annotators to implement
the analyses consistently and it would also make the annotation pro-
cess more time consuming. Another reason is that a more fine-grained
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analysis of adverbials could make it difficult to infer grammatical pat-
terns and extract meaningful information. This due to the distinction
between different types of adverbials often being based on semantic or
pragmatic considerations, and not on the difference in syntactic struc-
ture. Other constructions given the function ADV are dependents mod-
ifying the verb, such as prepositions, adverbs, subordinate clauses and
adjectives. E.g. when a verb requires a prepositional phrase, the prepo-
sition will be given the ADV function. ADV is also used on construction
which modifies adjectives, determiners, adverbs and again, prepositional
phrases. Nouns will usually not take ADV dependents, with the excep-
tion of constructions where we assume that a verb is omitted.

The tag used for descriptive dependents of nouns is the ATR function.
Together with DET, ATR is a descriptor and a determiner. The DET func-
tion is mostly used for determiners while the ATR function is primarily
a descriptor. When dependents on noun, determiners will usually be an-
alyzed as DET, while adjectives will be analyzed as ATR. ATR can also
be supplemental information, age specification or prepositions. When it
comes to prepositions, it can be difficult to determine whether it should
be ATR on a noun or ADV on a verb. We can see this being a problem
from the table of errors on page 35. ATR is also used on relative clauses
being dependent on nouns/pronouns and for particles following a noun.
Kinn et al. (2013) stress in the annotation guidelines that a preposition
will be analyzed as ATR on the determiner in the cases where a deter-
miner is followed by the preposition av (’of’) and its dependent express a
partitive relation.

2.3 Dependency parsing & MaltParser

2.3.1 Data-driven dependency parsing

Parsing is the process of deriving a syntactic structure from an input
string and dependency parsing is the process of automatically analyzing
the dependency structure of a given input string. Nivre (2006) distin-
guishes between two different notions of parsing, grammar parsing and
text parsing. Grammar parsing can be described as parsing using formal
grammars, while text parsing on the other hand, can be described as pars-
ing an unrestricted text in natural language L. Nivre (2006) uses this def-
inition of the parsing task: Given a text T = {x1, . . . ,xn} in L, derive the
correct analysis for every sentence xi ∈ T .
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In the field of text parsing Nivre (2006) distinguishes between two com-
plementary but quite different methodological strategies; a grammar-
driven approach and a data-driven approach.

The grammar-driven approach to text parsing is based on the idea that a
language natural L can be defined by a formal grammar G. The assump-
tion is that by parsing the language L(G) we will get a class of analyses in
return for each string in the language. A crucial assumption, according
to Nivre (2006), in this approach, is that the language L(G) is a reason-
able approximation of the language L that we desire to process. We will
not go into more details about this approach in this thesis since our focus
is the other approach, namely data-driven text parsing.

Data-driven text parsing needs no formal grammar. In this approach the
mapping from the input strings to the analyses is done by an inductive
mechanism applied to a text T = {x1, . . . ,xn}, also called the training data,
from the language L to be analyzed. The approach consists of three main
components which Nivre (2006) describes like this:

1. A formal model M which defines the possible analyses for the sen-
tences in L.

2. A sample of text T = {x1, . . . ,xn} from L. It may or may not be anno-
tated with representations satisfying the constraints of M.

3. An inductive inference scheme I which defines the actual analyses
for the sentences in a text T = {x1, . . . ,xn} in L, relative to M and T4.

The system used for the experiments presented in this thesis, MaltParser,
is a system for data-driven dependency parsing and has obtained good
results5 across a variety of languages without any language-specific en-
hancements. We will give a short introduction to the system and the
method before we explain this approach to parsing and the components
of the MaltParser system in more details.

The methodology of the MaltParser is based on three components:

4I is usually based on supervised machine learning if T is annotated. If T consists of
raw text one can use unsupervised machine learning.

5A dependency accuracy in the range of 80-90 %
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1. Deterministic parsing algorithms used to construct dependency graphs.

2. History-based feature models used to predicting the next action of
the parser.

3. Discriminative machine learning, mapping decisions made in the
past to parser actions.

The system learns from sets of data, dependency treebanks, and from
this information it derives a syntactic analysis for each given sentence.
Being a deterministic parser it derives only a single analysis for each
input string. MaltParser uses the information it acquires as a guide when
it runs into non-deterministic choice-points (Nivre et al. 2007). In order
to perform disambiguation deterministically MaltParser uses a classifier
trained on a gold standard treebank. This approach is very different from
many other approaches in statistical parsing, which are based on non-
deterministic parsing techniques.

MaltParser is a what we call a transition-based parsing system, using a
greedy parsing algorithm where the search is based on a series of locally
optimal decisions that approximate the optimal solution. An example
of a contrasting system, MSTParser, a global graph-based parsing sys-
tem that uses a near exhaustive search (McDonald and Nivre 2007). In
other words, MaltParser uses a greedy search algorithm that determines
the best parsing decision based on the trained classifier and the current
parser history, whereas MSTParser uses an exhaustive search algorithm
that chooses the best dependency graph out of all possible combinations.
The exhaustive search might lead to more accurate parsing results than
the greedy search, but the greedy search algorithm performs with a lower
complexity.

With Nivre’s algorithm, MaltParser is guaranteed to terminate in O(n),
where MSTParser’s exhaustive search algorithms gives it a time com-
plexity of at least O(n2). Another advantage of MaltParser is that it en-
ables the use previously predicted dependency relations as features to
predict the current relation. However, this can also be a disadvantage
leading to error propagation. Due to the exhaustive inference MSTParser
can only use the score of features of one or two close parsing decisions
(Zhang and Clark 2008). One last advantage of deterministic parsers is
that although the accuracy of more complex statistical models trained on
large amounts of data is a bit higher than the accuracy of a deterministic
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parser, the deterministic parser will often have a steeper learning curve
and can give a higher accuracy when training on small data sets (Nivre
et al. 2007).

As mentioned above, the syntactic analysis of a sentence in dependency
parsing is represented by a dependency graph. The dependency graph is
a labeled directed graph where each node corresponds to a token in the
sentence. Given a set R = {r0, r1, . . . , rm} of arc labels (possible dependency
relation types) and a sentence x = (wi , . . . ,wn), a dependency graph G is a
directed graph G = (V ,A,L) where:

1. V = {wi , . . . ,wn}

2. A ⊆ V ×V

3. L : A→ R

In each sentence, a token index i represents the node corresponding to
wi . There is also a special node 0, the root of the dependency graph. The
set V consist of the nodes, while the set A represents the arcs for a set
of ordered pairs (i, j), where i is the head in the relation and j is the de-
pendent. As mentioned earlier,Nivre et al. (2007) use the notion i→ j to
represent the arc connecting i and j ((i, j) ∈ A). Kübler et al. (2009, p. 12)
illustrates the definition of a dependency graph using figure 2.2 such:
V = Vx = {Economic, news, had, little, effect, on, financial, markets, .} and
A = { (had, SBJ, news), (had, OBJ, effect), (had, P, .), (news, NMOD, Eco-
nomic), (effect, NMOD, little), (effect, NMOD, on), (on, PMOD, markets),
(markets, NMOD, financial)} L is a function that assigns a dependency
type (arc label) r ∈ R to each arc a ∈ A, the notation i

r→ j represent the
arc label r connecting i to j.

MaltParser assumes that a well-formed dependency graph G for a sen-
tence x have the following properties:

1. The node 0 is the root node.

2. The graph G is connected.

3. Every node, except the root node, in the graph G has one head.
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4. The graph G is acyclic.

5. The graph G is projective if the algorithm used is limited to projec-
tive dependency structures.

2.3.2 Deterministic parsing

The most common algorithms used for dependency parsing are different
variants of the shift-reduce algorithm. These are bottom-up algorithms
analyzing an input sentence from left to right using a queue of input
tokens and a stack to store the partially processed tokens. Kübler et al.
(2009, p. 21) describes the process of deterministic dependency parsing
as creating a valid dependency graph for a given sentence by “complex
configurations with internal structure [. . . ] and transitions that corre-
spond to the steps in the derivation of a dependency graph”. The process
of deriving the dependency graph is a sequence of transitions, starting
in the initial configuration for the sentence, and ending in a terminal
configuration.

Nivre et al. (2007) stress that most of the algorithms used for practi-
cal dependency parsing are restricted to projective dependency graphs,
but all deterministic parsing algorithms can be added to the MaltParser
system if they are compatible with the system’s architecture (Hall et al.
2012). The latest version of MaltParser (1.7.2) at the time when we con-
ducted our experiments implements three types of parsing algorithms:

1. Nivre: A linear-time algorithm limited to projective dependency
structures. It exists in an arc-eager and an arc-standard version.

2. Covington: A “quadratic-time algorithm for unrestricted depend-
ency structures” (Hall et al. 2012). It allows both projective depend-
ency and non-projective (but acyclic) structures.

3. Stack: Algorithms similar to Nivre’s algorithm, but are able to de-
rive non-projective dependency trees.

As an example, we will describe Nivre’s arc-eager algorithm in detail.
This algorithm is just one of the algorithms available, we use it to illus-
trate the general principles. To explain the parsing algorithm we first
define its parser configuration for a sentence x = (w1, . . . ,wn) relative to
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R = {r0, r1, . . . , rm}, the set of dependency types. Given x and R, Nivre
et al. (2007) define the parser configuration c = (STACK, INPUT,H,D) for
x is like this:

1. STACK is a stack of token nodes i (1 ≤ i ≤ j for some j ≤ n).

2. INPUT is a sorted sequence of token nodes i (j < i ≤ n).

3. H is a function from token nodes to nodes.

4. D is a function from token nodes to dependency types.

5. For every token node i in the token nodes, D(i) = r0 iff D(i) = 0.

A parser configuration represents a partial analysis of the given input
sentence. When the parser passes from left to right over the sentence the
remaining input tokens will be stored in INPUT, while STACK contains
the partially processed token nodes. The functions H and D represents
the dependency graph for the sentence. The parser is initialized with all
the nodes of the given sentence yet to be processed, at this point the stack
is empty. In the dependency graph all the token nodes are dependents of
the root node while the arcs all carry the default label r0. The parser will
conduct one left-to-right pass over the sentence, which will leave the list
of input tokens empty, resulting in the termination of the parser. Nivre
et al. (2007) describes the way of connecting the configurations and the
dependency graphs such:

The configuration c = (STACK, INPUT,H,D) for x = (w1, . . . ,wn) will de-
fine the dependency graph Gc = (Vx,Ac,Lc), where

1. Ac = {(i, j)|H(j) = i}.

2. Lc = {((i, j), r)|H(j) = i,D(j) = r}

A configuration c for x = (w1, . . . ,wn) is initial if it has the form c = (ε,
(1, . . . ,n), H0,D0) where H0(i) = 0 for every i ∈ Vx and D0(i) = r0 for every
i ∈ Vx The configuration c is terminal if it has the form c = (STACK,ε,D,H)
for arbitrary STACK, H and D.
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The set C represents all the possible configurations relative to the set R
of dependency types. A transition, which is a partial function, maps non-
terminal configurations to new configurations. Nivre’s parsing algorithm
uses four transitions. The possible transitions for every r ∈ R, given a set
of dependency types R is by Nivre et al. (2007) described as:

Left-Arc(r) is the transition applying a dependency type r to the relation
between the top token i on STACK and the first token j in INPUT, j

r→ i.
It also pops the stack if token i is complete with respect to the left and
right dependents. Both STACK and INPUT must be non-empty and i can
not be the root for this transition to be applied.

The transition Right-Arc(r) also add a dependency type r to the relation
between the top token i on STACK and the first token j in INPUT, i

r→ j.
It then pops the stack and replaces j by i in the top of the INPUT. At this
point j will be complete with respect to its left dependents but it might
need new dependents to the right. This transition will only be applied if
both STACK and INPUT are non-empty.

Reduce pops the stack. The system depends on this transition to pop
nodes that were pushed in a Right-Arc(r) transition, and are complete in
terms of its right dependents.

The Shift transition on the other hand pushes the next token i into the
stack. The transition is needed to process the nodes that have their heads
to the right and those nodes still attached to the root node (as when ini-
tialized).

This transition system is non-deterministic since most of the time there
is more than one transition possible for a configuration. In order to make
the system deterministic it is implemented with a mechanism which pre-
dicts the next transition at each non-deterministic choice point. The
mechanism is also used to to choose a dependency type r for the Left-
Arc(r) and Right-Arc(r) transitions. Nivre et al. (2007) calls this mech-
anism an oracle. There are several alternative algorithms for the oracle,
for both projective and non-projective parsing.

22



2.3. Dependency parsing & MaltParser

2.3.3 History-based feature models

As Kübler et al. (2009) writes “Of course, oracles are hard to come by in
real life, so in order to build practical parsing systems, we need to find
some other mechanism that we can use to approximate the oracle well
enough to make accurate parsing feasible.” In the case of MaltParser,
the oracle is a classifier. The oracle uses history-based feature models
and discriminative machine learning to decide the next action when con-
structing a dependency graph. That is, it use the features of a partially
built dependency structure with combined with the features of the in-
put string to predict the next action when deriving a dependency struc-
ture. History-based models are widely used for part-of-speech tagging
and syntactic parsing and was first introduced to natural language pro-
cessing by Black et al. (1992). During the last decade it has completely
replaced grammar for a large number of parsers (Nivre et al. 2007).

The basic idea behind history-based models in natural language mod-
els is to make a pair (x,y) of an input string x and an analysis y. Each
pair (x,y) is mapped to a sequence of decisions D = (di , . . . ,di−1). Because
MaltParser uses a deterministic parsing strategy this requires only that
we estimate the mode of each conditional distribution. The history is
the conditioning context for each di , (d1, . . . ,di−1), corresponding to the
transitions in the case of MaltParser. Feature vectors are distinct parser
histories represented as series of attributes, and a feature model is a se-
quence of feature functions where all relevant features of the history is
identified by a function. Nivre et al. (2007) describe the most impor-
tant features in dependency parsing as the attributes of the input to-
kens, such as dependency type, part of speech and word form. These
attributes are either static or dynamic. Static attributes (POS, word form,
etc.) are the same during the parsing of a sentence, while dynamic at-
tributes (dependency types) on the other hand are defined by the par-
tially built dependency graph.

When we define complex history-based feature models, we refer to “at-
tributes of arbitrary tokens in the parser history, represented by the cur-
rent parser configuration” (Nivre et al. 2007). To do so we must first
introduce a set of address functions: Given a sentence x = {w0,w1, . . . ,wn}
and a parser configuration (STACK, INPUT,H,D) for x:

1. STACKi , is the ith token from the top of the STACK .
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2. INPUTi , is the ith token in the remaining input.

3. Hi , is the head of a token i in the graph defined by H .

4. l(i), is the leftmost child of token i in the graph defined by H .

5. r(i), is the rightmost child of token i in the graph defined by H .

MaltParser defines complex feature models by applying attribute func-
tions, functions selecting specific attributes of a token, to combinations
of address functions, where we typically use part-of-speech features and
lexical features with dependency type features. In inductive dependency
parsing the feature models used will usually combine static features and
lexical features with dynamic dependency features.

2.3.4 Discriminative machine learning

The system uses discriminative learning methods, meaning that it opti-
mize the mapping from input in x ∈ X to output in y ∈ Y by estimating
the conditional probability distribution P (X |Y ). This is done instead of
estimating a full generative model for the joint distribution of X and Y .
Together with the deterministic parsing strategy, the learning problem
becomes, as mentioned earlier, a classification problem, taking the his-
tories (feature vectors) as input and returning the parsing decisions in
classes (Nivre et al. 2007).

The learner relies on training data, which is dependency graphs gener-
ated from gold standard treebanks, such as the NDT. From the graphs
it can reconstruct the correct transitions and extract the correct feature
vectors for each configuration, as explained earlier in this chapter. The
training data consist of pairs of parser configuration defined by the fea-
ture model and the correct transition.

Nivre et al. (2007) mentions that the learning problem posed by induc-
tive dependency parsing can be solved by any learning algorithm capable
of inducing a classifier from labeled training data, however most of the
work in this area has been based on support vector machines (SVM) and
memory-based learning (MBL). MaltParser provides two built-in learn-
ers LIBSVM and LIBLINEAR. LIBSVM is a software for classification by
support vector machines with different kernels. It usually obtain the best
accuracy of the two learners but its time complexity is O(n2) or O(n3).
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LIBLINEAR only has a time complexity of O(n) due to using linear clas-
sification.

2.3.5 Pseudo-projective parsing

Nivre’s algorithm is, like most algorithms for dependency parsing, re-
stricted to projective dependency graphs. Meaning that it should be com-
bined with algorithms for pseudo-projective parsing if it were to be used
for a treebank with non-projective dependency relations. As mentioned
earlier one of the criteria for a well-formed dependency graph is that it
is projective. Most theories of dependency grammar consider projectivity
as the norm, but understand the need for non-projective representations,
particularly for languages with a free word order where the constraint of
projectivity is too rigid for the description of the language (Nivre 2005).
Some claim that one of the advantages of dependency grammar is that it
is more suitable to represent languages of free word order. This means
that systems for dependency parsing must handle non-projective struc-
tures in order to come closer in the task of reaching the full potential of
dependency-based syntactic parsing (Nilsson and Nivre 2005).

MaltParser is implemented with a system for pseudo-projective parsing,
which allow us to derive non-projective graphs even when the algorithms
are restricted to projective structures. The system operates in 4 steps:

1. The system projectivizes the dependency graph in the data set used
for training and encodes the information about any transforma-
tions in arc labels.

2. The parser is trained using the training set.

3. The projective parser parses new sentences.

4. The system deprojectivizes the output generated by the projective
parser, guided by the information in arc labels.

In other words, the system transforms a non-projective dependency graph
to a projective dependency graph by replacing every non-projective arc
(i, r, j) by an arc ANC(i), r’, j) where ANC(i) represents the ancestor of i so
that the new arc is projective. When creating a projective arc, the system
will, in order to transform the non-projective graph as as little as possi-
ble, let ANC(i) be the nearest ancestor from its original head i. In figure
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Root A hearing was scheduled on the issue today .

PRED

ATT

ATT

SBJ

PU

VC

TMP

PC

ATT

Figure 2.7: A non-projective dependency tree from Kübler et al. (2009).

Root A hearing was scheduled on the issue today .

PRED

ATT
SBJ:ATT

SBJ

PU

VC

VC:TMP

PC

ATT

Figure 2.8: A projectivized dependency tree from Kübler et al. (2009).

2.7 from Kübler et al. (2009), we find that the relation hearing→ onwith
the dependency type ATT and the relation scheduled → today with the
dependency type TMP, are both non-projective. In figure 2.8 we can see
the graph after it has been transformed, we see that some of the arc la-
bels (dependency types) now contains additional information about its
original head.

Since the projectivization modifies the data in the training set, the parser
can be trained and tested as usual, using algorithms restricted to projec-
tive structures. For each new sentence being parsed, a projective depend-
ency graph will be generated and the arcs that needs to be replaced in
order to reconstruct the non-projective graph are labeled with special
argument labels. The transition from a pseudo-projective graph back
to a non-projective graph is done by replacing each arc of the form (i,
HEAD:DEP, j) by an arc (DESC(i), DEP, j), where DESC(i) is the descen-
dant of i with an ingoing arc labeled HEAD. The algorithm is a breadth-
first going from left-to-right. This is a simple algorithm, but it is able
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to correctly recover more than 90 % of all non-projective dependencies
found in the tested languages (Kübler et al. 2009).

2.3.6 MaltOptimizer

MaltOptimizer is a system for MaltParser optimization. Ballesteros and
Nivre (2014) explain that the idea behind the system is to provide a
tool for automatic optimization for MaltParser and and other transition-
based dependency parsers. The system uses training data to generate
an optimal model for the held out data for the parser. The training
data must consist of sentences annotated with dependency graphs in the
CoNLL data format. To derive the most optimal settings for MaltParser
the system trains MaltParser models with a variety of hyper-parameter
settings, one at the time, and then evaluate them on a held-out data set.
We used MaltOptimizer as a part of our initial experiments to give us a
pinpoint to which features might be worth looking into. The optimiza-
tion process consist of three phases:

1. Validation of the data, data analysis and initial optimization.

2. Parsing algorithm selection

3. Feature selection and LIBLINEAR optimization.

In phase 1 the training data is analyzed as a preparation for the next
steps in the optimization process. In this phase the system will gather
information regarding the size of the data set, how many non-projective
graphs it contains, the number of root nodes covered by a dependency
arc and the number of dependency labels used for the root nodes. It
will identify the CPOSTAGs and POSTAGs and determine whether the
FEATS and LEMMA columns are empty or not. The system will optimize
some initial parameters and suggest the most optimal validation strategy
based on the size of the data set.

In phase 2 the system will use the result of the analysis from phase 1 to
test the parsing algorithms in the MaltParser system with the default fea-
ture models and parameters. When deciding on the optimal algorithm it
tunes the specific options of each parsing algorithm.
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Phase 3 is the final phase and now MaltOptimizer will optimize the fea-
ture model for the selected parsing algorithm. Then as a final step the
hyper-parameter of the LIBLINEAR classifier is tuned.
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Chapter 3

Baseline experiments

In this chapter we will first give a precise description of the experimental
protocol and the evaluation metrics used for the experiments presented
in this and the following chapter. Then we describe our initial experi-
ments were we use the MaltParser system, as described in the previous
chapter, with its default settings. We will also present the results from
these experiments together with an error analysis. At the end of the chap-
ter we present the experiments and the results we obtained from running
MaltOptimizer with the NDT.

3.1 Experimental protocol

The experiments on the NDT was conducted on the final version released
2014-01-03. The treebank is divided into two partitions, one in bokmål
and one in nynorsk. We divided each partition into sets for training, de-
velopment, testing and final evaluation. The training set was, naturally,
used for training the parser, the test set was used for testing during the
development and experimentation with the parser. The development set
was used with the training set to tune MaltOptimizer, and the final held-
out test set was used for the final evaluation presented in the end of this
thesis.

The data was divided using two different methods as a mean to observe
the resilience of the parser. Each of the partitions was divided into ten
non-overlapping parts and then seven of them were used for training,
one was used for for development, one for testing and the last part was
kept as a held-out final test set. One set was created by placing the first
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sentence in the first part, the second in the second part, and so on up to
sentence ten, after that we started over, placing sentence eleven in the
first part and so on. We call this the round-robin data set, named after
the approached being called round-robin. The other data set was created
using the first 70 % of the sentences in each source from table 2.1, and
then combining them to the training set. The development set is made
out of the next 10 % of the sentences in each source. The test set was
then created by combining the next 10 % of the sentences in each source,
and the held-out test set consists of the remaining 10 % of the sentences.
This set is referred to as the split data set in the thesis.

3.1.1 Evaluation

For evaluation we mainly used the standard evaluation metrics in depend-
ency parsing, unlabeled and labeled attachment score. Labeled attach-
ment score (LAS) is an evaluation metric giving us the percentage of
tokens the system has assigned both the correct head and the correct
dependency relation. The other evaluation metric, the unlabeled attach-
ment score (UAS) is the percentage of tokens which are assigned the cor-
rect head by the system. Some of the results are however presented with
scores for precision and recall. Precision is a measure of how many de-
pendencies of a given type returned by the parser that are correct. We
define this as:

Precision =
Number of correct dependencies of a given type returned by the parser

Number of dependencies of a given type returned by the parser

Recall on the other hand is a measure of how many of correct dependen-
cies of a given type the parser was able to extract from the text. Meaning,
it is:

Recall =
Number of correct dependencies of a given type given by the parser

Number of correct dependencies of a given type in the text

The scores were found using the CoNLL-X evaluation script, eval.pl and
the MaltEval system. The eval.pl script was created by the organizers of
the first CoNLL shared task (Nilsson and Nivre 2008), and evaluates the
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output from our system with respect to a gold standard. From the eval-
uation we receive information about the errors according to their type
and context1. MaltEval is a relatively new evaluation tool for depend-
ency parsing, and is based on eval.pl. The system combines quantitative
and qualitative evaluation of data in the CoNLL format, and facilitates
the visualization of the dependency structures. Nilsson and Nivre (2008)
stress that this system is more flexible that eval.pl since it is implemented
with a range of features that are lacking in eval.pl, and can easily be mod-
ified by adding a variety of parameters.

3.2 Baseline experiments & error analysis

The first published results from using MaltParser with the NDT gave
Solberg et al. (2014) a labeled attachment score of 84.57 % for bokmål
and 83.59 % for nynorsk. The unlabeled attachment score from the same
parser was 88.02 % for bokmål and 87.09 % for nynorsk.

Bokmål Nynorsk
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Malt default 84.57 88.02 83.59 87.09
Malt optimized 89.61 91.96 89.41 91.53
MST 88.37 91.97 87.64 91.23
Bohnet-2010 90.41 92.84 89.54 92.12
Bohnet&Nivre-2012 87.74 90.68 85.90 89.85

Table 3.1: Results from training and testing different parsers on the
NDT by Solberg et al. (2014)

Solberg et al. (2014) also used the treebank on other parsers as we can
see from table 3.1. The parser in their experiment which obtained the
best results was the Bohnet parser (Solberg et al. 2014)2.

In this section we will present results from our initial experiments and
an error analysis, which will be used as a baseline for further experi-
ments. The presentation of our results from these experiments and the

1http://ilk.uvt.nl/conll/software.html#eval
2The Bohnet&Nivre system is a system for joint part-of-speech tagging and labeled

non-projective dependency parsing. Therefore, the results from the Bohnet&Nivre sys-
tem are not comparable with the results from the other systems.

31

http://ilk.uvt.nl/conll/software.html#eval
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error analysis will be presented for both of the data sets, in bokmål and
nynorsk.

Data set LAS ( %) UAS ( %)

Bokmål (Split) 83.15 86.76
Bokmål (Round-robin) 85.14 88.47
Nynorsk (Split) 83.56 87.60
Nynorsk (Round-robin) 83.82 87.44

Table 3.2: Results from our initial experiments
where we trained and tested the NDT using
MaltParser’s default settings

In table 3.2 we find the results from our initial experiments where we
trained and tested the NDT with MaltParser’s default settings. When
running with default settings MaltParser use Nivre’s arc-eager parsing
algorithm and the Liblinear learner. The root label is set to ROOT and
no pseudo-projective transformation is performed. From table 3.2 we
find that the results are, not surprisingly, quite similar to the results the
presented by Solberg et al. (2014) in table 3.1.

Our results for the labeled attachment score on the split data set for bok-
mål is 1.42 % lower than what Solberg et al. (2014) obtained, while the
labeled attachment score of the round-robin data set is 0.57 % higher
than the results for bokmål in table 3.1. The labeled attachment score on
the split data set for nynorsk is basically the same as in Solberg et al.
(2014), only 0.03 % lower. The difference between the scores of the
round-robin data set in nynorsk and the results for nynorsk in table 3.1 is
also minor, with the score for the round-robin data set being only 0.23 %
higher.

The unlabeled attachment score from our experiments did not bring any
surprising differences from the scores obtained by Solberg et al. (2014).
The unlabeled attachment score on the split data set for bokmål is 1.26 %
lower than Solberg et al. (2014) while the unlabeled attachment score of
the round-robin data set is 0.45 % higher than the results for bokmål in
the same table. For nynorsk we found that the scores from our experi-
ments were slightly higher, but the differences are minor. The score for
the split data set is 0.51 % higher than in Solberg et al. (2014), while the
scores from the round-robin data set is only 0.35 % higher.
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These variations might be explained by the differences in the partitioning
of the data sets, Solberg et al. (2014) divided the treebank (both bokmål
and nynorsk) into 80-10-10 train, development and test sets. From the
data we find that MaltParser gets a slightly lower score when parsing
the round-robin data set, compared to the results we get from training
and testing the parser on the split data set. Differences between the two
variations of written Norwegian can partly be explained by the difference
in the size of the data sets, the one in bokmål being slightly larger than
the one in nynorsk. The versions of Norwegian are quite similar when it
comes to syntax, but small variations might contribute to the difference
in the results.

Distance Recall ( %) Precision ( %)

to root 95.86 71.71
1 96.19 94.50
2 87.34 90.84
3-6 75.47 86.56
7 -... 67.42 75.48

Table 3.3: Average precision and recall
of binned head distance in the initial ex-
periments

Table 3.3 shows the average precision and recall of binned head distance
in the initial experiments. That is, how far away from the head is the
dependent. From table 3.3 we find that when using MaltParser’s default
settings, both recall and precision is best when distance to head is 1, then
it decreases when the distance to the head increases. We also see that the
lowest precision with the default settings is the results for head distance
being to root. This is a result of using MaltParser’s default settings for
root label, parsing algorithm and the marking strategy. With the default
settings the root label is set to ROOT, which is not the root tag used in the
NDT. This causes MaltParser apply the wrong root node, and in addition
to this, all unattached nodes which will be attached to the (wrong) root
node at the end of parsing each sentence.

From McDonald and Nivre (2007) we learn that a problem with Malt-
Parser, due to the greedy parsing strategy, is that it is more likely to have
problems with error propagation. A common problem with parsing sys-
tems is that their accuracy tends to be lower for longer sentences. In
an analysis by McDonald and Nivre (2007) on errors when parsing with
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Data set Nr. of tokens Average sentence length

Bokmål (Split) 21 15.70
Bokmål (Round-robin) 58 15.45
Nynorsk (Split) 68 17.33
Nynorsk (Round-robin) 68 17.26

Table 3.4: The number of tokens in the sentences with the highest
number of errors (both word, head and dependency errors), when
training and testing MaltParser on the NDT. Followed by the average
sentence length (number of tokens / sentences) in each data set of
The NDT

MSTParser and MaltParser, we see that MaltParser tends to have a higher
accuracy on short sentences. This can be explained by the greedy pars-
ing algorithm having to make fewer decisions, giving it a lower chance
of error propagation. This can also explain why MaltParser tends to per-
form better for shorter dependency arcs, since shorter arcs are created
before the long arcs, the chances of making an error is smaller. Malt-
Parser usually constructs the arcs further away from the root early, and
therefore the precision usually increases when the arc’s distance to the
root increases.

From the initial experiments we found that the sentences with the high-
est number of errors were particularly long. Table 3.4 gives us informa-
tion regarding the average number of tokens in a sentence in the NDT.
The average sentence length is between 15-17 tokens. Where the split set
has a shorter average sentence length of 15.6 tokens, and the round-robin
data set seems to contain slightly longer sentences, with an average sen-
tence length of 17,29 tokens. In the examples of the sentences with the
highest number of errors we find that the sentences in the split data set
are shorter than the ones in the round-robin data set, particularly for the
split data set in bokmål. In the round-robin data set the average sentence
length of those sentences with the highest amount of errors contained 68
tokens, while the same measure for the split data set was only 58 tokens.
Some of the errors with longer sentences might be due to the sentence
length, but there are certainly other features that cause errors as well.

Table 3.5 and table 3.6 contains information regarding the ten most fre-
quent errors done by the system when applying a dependency type to a
relation. The tables describe the frequency of each error and what the
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Split Round-robin
Frequency Gold System Frequency Gold System

368 ADV ATR 348 ADV ATR
255 IP ROOT 260 ATR ADV
255 ADV ROOT 253 ADV ROOT
241 ATR ADV 201 IP ROOT
155 FINV ROOT 119 FINV ROOT
76 SUBJ ROOT 83 SUBJ FSUBJ
71 ADV PUTFYLL 69 ADV DOBJ
69 SBU ROOT 61 SBU ROOT
65 ADV DOBJ 58 PUTFYLL DET
61 SPRED ADV 58 SPRED ADV

Table 3.5: Bokmål: the ten most frequent error types in the initial
experiments.

Split Round-robin
Frequency Gold System Frequency Gold System

370 ADV ATR 378 ADV ATR
235 ADV ROOT 286 ADV ROOT
228 ATR ADV 236 ATR ADV
197 IP ROOT 213 IP ROOT
133 FINV ROOT 132 FINV ROOT
84 SUBJ FSUBJ 75 SBU ROOT
75 ADV PUTFYLL 74 ADV PUTFYLL
63 SUBJ ROOT 67 SUBJ ROOT
61 ADV SPRED 59 ADV SPRED
59 SBU ROOT 56 INFV SPRED

Table 3.6: Nynorsk: the ten most frequent error types in the initial
experiments.
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dependency type is in the gold standard test set. With MaltParser’s de-
fault settings, the root label is set to ROOT, while in the NDT annotation,
the main root is labeled with either FINV (finite verb), INTERJ (interjec-
tion) or FRAG (fragment) (Kinn et al. 2013). The root label is mostly
FINV (finite verb) due to the rule stating that if the sentence is a main
clause the finite verb is the head of the sentence. From the results pre-
sented in table 3.5 and 3.6 we see that a lot of errors in the initial ex-
periments were caused by these alternative root tag in the annotation of
the NDT. Another cause of the errors is as mentioned that MaltParser
attaches all nodes it fails to attach as modifiers to the root node.

McDonald and Nivre (2007) stress the importance of relating linguis-
tic categories to system accuracy. Linguistic categories in their analyses
are parts-of-speech and dependency types. For part-of-speech, McDon-
ald and Nivre (2007) distinguish verbs, nouns, pronouns, adjectives, ad-
verbs, adpositions and conjuncts, while for dependency types they dis-
tinguish between a root category, a subject category, an object category
and several categories related to coordination. The length of a depend-
ency from word wi to word wj is the same as |i − j |. Long dependencies
usually represent the main verb in a sentence or the modifiers of the root.
Modifiers of nouns such as determiners, adjectives and pronouns often
represent short dependencies. In the study they find that MaltParser has
a slightly higher accuracy for nouns and pronouns compared to the MST-
Parser, but a lower accuracy on other categories (McDonald and Nivre
2007). This is due to the greedy parsing procedure of MaltParser creating
the shorter arcs before longer arcs, and as mentioned above are shorter
dependencies less prone to error propagation.

This made us curious to see if there was any difference in accuracy re-
garding the linguistic features when applying MaltParser on the NDT.
The finding are presented in table 3.7 which gives us the percentage of
errors for each linguistic category in each data set. From table 3.7 we
find that the results from McDonald and Nivre (2007)’s study are valid
for the accuracy of the linguistic categories in Norwegian too. We find
that adjectives (adj), pronouns (pron) and determiners (det) have a lower
error rate than prepositions (prep) or adverbs (adv). This can be linked
to the results mentioned above due to the fact that nouns (subst) and
pronouns (pron) are usually attached to verbs, which makes them occur
lower in the graph, with shorter distance. MaltParser tends to have a
lower precision for arcs that are predicted with more siblings, which can
explain why it has a lower accuracy on adverbs, which tend to have a
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Bokmål Nynorsk
Part-of-speech Split ( %) Round-robin ( %) Split ( %) Round-robin ( %)

subst 11 9 9 8
verb 11 9 10 11
prep 17 16 17 16
adj 7 6 8 8
det 3 3 4 3
pron 4 3 4 5
adv 13 13 11 14
konj 4 4 5 6
sbu 8 6 7 8
inf-merke 8 7 7 8
ukjent 13 2 1 2
clb 10 6 14 13
interj 12 25 3 3

Table 3.7: Errors and their distribution over POSTAGs

high number of siblings.

We wanted to focus a bit on the errors concerning dependency labels, and
we see from table 3.5 and table 3.6 that the parser frequently confuse the
ADV function and the ATR function. As mentioned in chapter 2, all ad-
verbials are given the dependency relation ADV, and so are other depen-
dents modifying the verb, (prepositions, adverbs, subordinate clauses
and adjectives). ADV is also used on construction which modifies adjec-
tives, determiners, adverbs and prepositional phrases (Kinn et al. 2013).

Nouns will usually not take ADV dependents, but there are exceptions,
such as when a verb is omitted, for example in elliptical constructions.
The tag used for descriptive dependents of a noun is the ATR function.
Adjectives being dependent of a noun will be analyzed as ATR, but ATR
is also used on prepositions when it is dependent on an elided noun. In
addition, the ATR function will be applied when relative clauses are de-
pendent on nouns or pronouns and for particles following a noun. The
PP-attachment problem, one of the most frequent ambiguities in the pro-
cessing of natural languages, occur when a system is trying to make the
correct attachment of prepositional phrases. This is one of the big is-
sues with computer systems for Natural Language Processing, and we
find, not surprisingly, that the task of determining whether a preposi-
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verb prep subst prep pron adj det adv verb verb
... skrev i kommentarfeltet her noe mange andre også har sagt...

ADV
PUTFYLL

ADV

ATR

ATR

DOBJ

ADV
SUBJ ADV

ATR

INFV

PUTFYLL

Figure 3.1: An example of the confusion of attachment and dependency
relations.

tion should be ATR on a noun or ADV on a verb (Kinn et al. 2013) is
a problem with the NDT. There is also a confusion regarding PUTFYLL
(preposisjonsutfylling, prepositional complement) and ADV. PUTFYLL is
used for the relation between a transitive preposition and its comple-
ment when the complement is a nominal, a clause, an adverb or another
preposition. This is another example where there is ambiguity surround-
ing the prepositional attachment.

An example of the issue is illustrated in figure 3.1 which is a long sen-
tence (58 tokens!) from the test set in bokmål where the errors mentioned
above occur, together with other errors. The figure represent just parts
of the sentence, due to the length of the sentence, the entire graph would
be to big to fit on a page3. The black arcs above the sentence in figure
3.1 represents the gold standard analysis of the text, while the red arcs
below illustrates the errors made by MaltParser when parsing the sen-
tence. The ADV/ATR confusion is illustrated with the arc between the
word mange (adj) and andre (det), where the adjective is the dependent of

3This is the entire sentence in Norwegian: “Jeg fikk noen fine tilbakemeldinger på det,
blant annet lurte Mammadamen på om jeg ønsket meg en bloggplakat og Ylvalia skrev i kom-
mentarfeltet her noe mange andre også har sagt andre steder; enhver får ta ansvar for seg
selv, hvis man får dårlig selvbilde av å lese om andres lykke er det ens eget problem.”. Which
translates to something like this: “I got some great feedback on it, including Mam-
madamen wondered if I wanted a blog poster and Ylvalia wrote in the comment field
here something many others have said elsewhere; everyone must take responsibility for
themselves, if you get bad self-esteem by reading about other people’s happiness, it is
your own problem.”.
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the determiner, with the function ADV, since it is a construction which
modifies the determiner. MaltParser on the other hand analyzed this re-
lation as an ATR function. The other two arcs showing errors made by
MaltParser shows how it not only applies the wrong label to relations,
but also makes errors regarding the head and dependent relation. The
word skrev (verb) is the head of the word noe (pron), with the relation
DOBJ (direct object), but MaltParser did an entirely different analysis.
In MaltParser’s analysis skrev is the head of the preposition her, and the
relation is given the label ADV, and the word noe is the dependent of her.

Norwegian is, like most Scandinavian languages, a V2-language mean-
ing, the finite verb is the second constituent in a declarative main clause.
The canonical word order in Norwegian is SVO, but when topicalization
occurs, the word order changes to xVSO. The sentence-initial position
can be occupied by pretty much any constituent, but nominals are the
most common. The annotation of the NDT distinguishes between three
different types of subjects, and also between referential subjects and non-
referential subjects. Referential subjects are subjects in the subject posi-
tion and are given the tag SUBJ. Non-referential subjects in subject po-
sition will be given other function such as FSUBJ or PSUBJ. The subject
is defined using word order criteria: In main clauses the subject will be
positioned right before or after the finite verb. In subordinate clauses on
the other hand, the subject will appear before the finite verb4.

Formal subjects (FSUBJ) have no clear reference and are described as se-
mantically empty elements by Kinn et al. (2013). Their mission is to
fulfill the requirement that finite sentences are required to have an overt
subject. Some of the errors made by the system when applying the FSUBJ
relation rather than the SUBJ relation can be caused by the fact that a lot
of sentences starts with the word det (that or it), which is a formal subject,
while it is positioned like a subject.

Another cause for confusion regarding the subject (SUBJ) are the poten-
tial subjects. Potential subjects (PSUBJ) occur together with formal sub-
ject in presentational sentences. Unlike the other subjects mentioned
above, a potential subject does not occur in the usual subject position.
It will appear in the position where we usually find the object, while
the formal subject is found in the subject position. Kinn et al. (2013)

4Not necessarily immediately before — the subject and the finite verb can be sepa-
rated by an adverbial
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mention that it might be difficult to distinguish a potential subject from
adverbials and subject predicates. The errors we see MaltParser making
regarding subjects might be caused by the different forms of subject and
the way they are positioned.

3.3 MaltOptimizer

The initial experiments and the error analysis gave us an indication of
the most frequent errors which occur when training and testing the NDT
with MaltParser. The results from the experiments and the errors we
found in the analysis made us curious to what the automated system
for MaltParser optimization, MaltOptimizer, could improve and what
choices it would make regarding the settings and the use of linguistic
features. We were also curious too see which issues would be solved by
MaltOptimizer and which would prove harder to solve. The data pre-
sented in this section was found testing and tuning each data set with
the MaltOptimizer system described in chapter 2. After the training and
tuning, we trained and tested MaltParser with each data set just as in the
baseline experiments, but we modified MaltParser with the settings sug-
gested by MaltOptimizer. We will present the changes MaltOptimizer
suggested to the settings and some of the most interesting findings from
training and tuning with MaltOptimizer.

Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.15 86.76 85.14 88.47
Malt Optimizeda 89.61 91.96 89.61 91.96
Malt Optimized 88.69 91.14 89.89 92.18
a Solberg et al. (2014)

Table 3.8: Bokmål: results from our initial experiments where
we trained and tuned the NDT using MaltOptimizer before pars-
ing it with MaltParser supplemented with new settings

Tables 3.8 and 3.9 show us the results from the training and testing of
MaltParser with the NDT and the optimized settings compared to the re-
sults from the baseline experiments. It also contains the results from the
experiments Solberg et al. (2014) did with MaltOptimizer. We find that
the optimized settings suggested by MaltOptimizer increased both the
labeled attachment score and unlabeled attachment score for both bok-
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Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.56 87.60 83.82 87.44
Malt Optimizeda 89.41 91.53 89.41 91.53
Malt Optimized 88.93 91.58 89.45 91.80
a Solberg et al. (2014)

Table 3.9: Nynorsk: results from our initial experiments where
we trained and tuned the NDT using MaltOptimizer before pars-
ing it with MaltParser supplemented with new settings

mål and nynorsk compared to the results from the baseline experiments.
When we compare our scores to those in the baseline experiments we see
an increase in the labeled attachment score by 5.54 % for the split data set
in bokmål and a 4.75 % increase for the round-robin data set in bokmål.
For nynorsk we find a 5.37 % increase of the labeled attachment score for
the split data set, and an increase of 5.63 % with the round-robin data set.
The unlabeled attachment score increased by 4.38 % for the split data set
and 3.71 % for the round-robin data set in bokmål. When we compare
our scores with the scores from Solberg et al. (2014) we see that there
are minor differences between the results from the round-robin data set
and Solberg et al. (2014), while the split data set obtains slightly lower
scores.

MaltOptimizer Baseline
Distance Recall ( %) Precision ( %) Recall ( %) Precision ( %)

to root 96.71 95.86 95.86 71.71
1 97.06 95.89 96.19 94.50
2 93.02 92.75 87.34 90.84
3-6 85.03 88.96 75.47 86.56
7 -... 79.20 80.17 67.42 75.48

Table 3.10: Average precision and recall of binned head distance in
the experiments with MaltOptimizer.

As in the baseline experiments, we wanted to see if the optimization pro-
cess had an effect on the precision and recall of binned head distance.
Table 3.10 shows the average precision and recall from the experiments
with MaltOptimizer compared to the results from the baseline experi-
ments. In the table we find that both precision and recall still decreases
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as we get further away from the root, however both recall and precision
is higher than the scores from the baseline experiments. The recall for
distance being “to root” is only slightly higher, 0.85 %, than the base-
line results. Precision for the same distance is on the other hand much
more noteworthy with an increase in of 24.15 % from the baseline exper-
iments.

As in the baseline experiments, the scores are highest when the distance
is one, giving us a recall of 97.06 % in the experiments with MaltOpt-
imizer, while the precision is at 95.89 %. The recall drops from 97.06 %
to 93.02 % and the precision decreases from 95.89 % to 92.75 % when
the distance is two. This is a drop in recall of 4.04 % and a drop of
3.11 % in precision. However, this drop in recall and precision when
the distance increased from one to two is much lower than in the base-
line experiments. When the distance is between three and six the recall
decreases to 85.03 % and the precision decreases to 88.96 %. When the
distance is seven or higher, the recall decreases down to 79.20 %, which
is 11.78 % higher than the recall on the same distance in the baseline
experiments. The precision also decreases when the distance becomes
this high and our analysis show an average precision of 80.17 %, which
is 4.69 % higher than in the baseline experiments.

The increase in precision in the “to root” results might be explained by
the choice of root label, parsing algorithm, the marking strategy and fea-
ture models. These differ a lot from the settings in the baseline exper-
iments. In the experiments with MaltOptimizer the root label was set
to FINV rather than ROOT, as it was in the baseline experiments. The
default parsing algorithm in MaltParser is Nivre’s arc-eager parsing al-
gorithm and was used in the baseline experiments. MaltOptimizer sug-
gested we should continue to use Nivre’s arc-eager algorithm for the split
data set. For the round-robin set it opted for the projective Stack algo-
rithm. MaltOptimizer suggest we use the Stack Projective parsing algo-
rithm and Nivre’s arc-eager parsing algorithm, which are both restricted
to projective dependency structures and will therefore require the use of
the projectivize feature in MaltParser to create pseudo-projective struc-
tures.

This due to the analysis made by MaltOptimizer on the training data re-
vealing that the data set in bokmål consist of approximately 18.5 % non-
projective trees, while the data set in nynorsk contains approximately
20.5 % non-projective trees. The exact numbers are presented in ta-
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3.3. MaltOptimizer

Data set Non-projective trees

Bokmål (Split) 18.8065
Bokmål (Round-robin) 18.2776
Nynorsk (Split) 20.3641
Nynorsk (Round-robin) 20.8901

Table 3.11: The percentage of non-projective
trees in each data set of The NDT

ble 3.11. MaltOptimizer therefore set the marking strategy for pseudo-
projective transformation from being none in the baseline experiments,
to head.

MaltOptimizer also suggested other feature models than MaltParser’s de-
fault model5. In the experiments presented later in this thesis we there-
fore use the feature models which MaltOptimizer suggested. For the split
data sets we use the same model for both bokmål and nynorsk, while for
the round-robin data sets we use two other feature models, one model
for the set in bokmål and another one for the set in nynorsk. The differ-
ence in the settings indicates that even though bokmål and nynorsk are
syntactically similar, the two variation might need different settings to
achieve optimal parsing results.

We also wanted to look at what the changes in the settings of MaltParser
would result in when it came to type confusion, just as we looked at in
the baseline experiments. The results are presented in table 3.12 and
3.13 which presents the wrong type applied by MaltParser, the correct
type taken from the gold standard test set and the frequency of the given
confusion in each data set. From the results presented in table 3.12 and
3.13 we find that the errors caused by the alternative root tag as seen
in initial experiments are reduced due to giving the right root label as a
parameter when training and parsing with MaltParser. We also see the
most frequent error is still the distinction between the ATR function and
the ADV function. In the split data set for bokmål MaltParser applies
the ATR function 310 times when is was supposed to be the ADV func-
tion. And the system labels a relation as an ADV relation when the gold
standard analysis is an ATR relation 277 times for the same set.

5The feature models suggested by MaltOptimizer came with the MaltOptimizer sys-
tem.
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Split Round-robin
Frequency Gold System Frequency Gold System

310 ADV ATR 322 ADV ATR
277 ATR ADV 236 ATR ADV
56 ADV SPRED 75 SUBJ FSUBJ
53 SPRED ADV 66 ADV DOBJ
51 SUBJ FSUBJ 59 ADV PUTFYLL
51 ADV PUTFYLL 48 ADV SPRED
45 ADV DOBJ 43 PUTFYLL ADV
43 FRAG FINV 40 SPRED ADV
35 ATR FLAT 33 PSUBJ SPRED
33 SUBJ DOBJ 31 SUBJ DOBJ

Table 3.12: Bokmål: the ten most frequent error types in the experiments
with MaltOptimizer.

Split Round-robin
Frequency Gold System Frequency Gold System

322 ADV ATR 355 ADV ATR
221 ATR ADV 245 ATR ADV
73 SUBJ FSUBJ 73 ADV PUTFYLL
47 ADV SPRED 60 PUTFYLL ADV
46 SPRED ADV 54 SUBJ FSUBJ
45 ADV PUTFYLL 53 ADV SPRED
41 ADV DOBJ 43 SUBJ DOBJ
41 DOBJ ADV 37 DOBJ PUTFYLL
36 PSUBJ SPRED 36 ADV DOBJ
33 SUBJ DOBJ 32 SPRED ADV

Table 3.13: Nynorsk: the ten most frequent error types in the experiments
with MaltOptimizer.
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3.3. MaltOptimizer

The system also confuses the ADV and PUTFYLL function. On aver-
age the system analyze a relation as a PUTFYLL relation when it is an
ADV function 57 times, which is much lower than the ADV/ATR confu-
sion. The confusion between ADV and PUTFYLL can partly be explained
by the prepositional attachment problem mentioned in the previous sec-
tion. In general we see that other analysis related to ADV is troublesome,
27 of the 40 errors presented in the tables are related to confusion be-
tween the ADV function and other types. Another common error is the
subject (SUBJ) being analyzed as a formal subject (FSUBJ) as we saw in the
error analysis. We also see that there is a confusion between the subject
(SUBJ) and direct object (DOBJ) relation. This is again most likely from
the property of Scandinavian where the object can hold the sentence-
initial position as a result of topicalization. This will result in a change
in the word order, shifting from the canonical SVO to OVS.
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Chapter 4

Linguistic features

In this chapter we present the experiments conducted with focus on the
effect of linguistic features when parsing Norwegian. We will briefly in-
troduce some of the research carried out this field which has given us
inspiration and cues to the design of each experiment. We will also de-
scribe how the experiments were conducted, what kind of results we
obtained and briefly discuss these findings. We start by presenting the
experiments focusing on extended part-of-speech tags and dependency
relations, followed by the experiments conducted with focus on morpho-
logical features. After that we will present the experiments where we
made use of other linguistic features or combinations of features. Fi-
nally, we present how well the system perform when we apply a final
held-out test set and an how well it adapts to an unfamiliar domain.

The experiments carried out in this chapter are constructed with the pur-
pose of investigating the effect of linguistically motivated features on
parsing accuracy for Norwegian. We used the settings and the feature
models suggested by MaltOptimizer as a base for our experiments. Apart
from the feature models and the parsing algorithm, all the experiments
in this chapter use the same settings. The split data set used a differ-
ent parsing algorithm than the round-robin data set, however, both in
combination with pseudo-projective transformation. The marking strat-
egy for the pseudo-projective transformation was at all times set to head,
meaning that the parser projectivized the input data with head encod-
ing for labels. The root label was set to FINV (finite verb), while the
attachment strategy for covered roots was set to none, making the parser
treat covered roots as any other node. The only parameter we changed in
the experiments were the feature models, and in those we mostly made
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4. Linguistic features

variations regarding the features involving the FEATS column.

For the split data sets we used the same feature model for both the data
set in bokmål and the one in nynorsk. The parsing algorithm used was
Nivre’s arc eager parsing algorithm, and the feature model we used as our
base can be found in the MaltOptimizer-1.0.3 distribution. The feature
model allow MaltParser to gather information and learn from the featu-
res of the first and the second token in the input list, and the features of
the token on top of the stack.

The round-robin data sets used the Stack projective parsing algorithm.
The data set in bokmål used one model as a base, while the feature model
used for the data set in nynorsk is based on another model. The differ-
ence between these two feature models is minor. The main difference is
an additional feature where the POSTAG of the top two tokens on stack
and the the FORM of the third token on stack are merged into a feature.
In both models MaltParser extracts information about the features of the
first and the second token on stack, and the features of the two first to-
kens from the start of the lookahead buffer.

4.1 Extended part-of-speech tags

In this section we describe the process and the results of our experiments
conducted with the intention of understanding the use of part-of-speech
tags and dependency relations as features in dependency parsing. We
will first introduce some concepts and thoughts regarding the theme be-
fore we present the experiments and the results.

The tagset in the NDT is quite similar to the universal tagset constructed
by Petrov et al. (2012). They propose a universal tagset consisting of
twelve part-of-speech categories based on the idea that there is a set
of syntactic part-of-speech categories in similar form across most lan-
guages. The part-of-speech tagset in the NDT also consists of twelve
categories, a limited amount compared to other tagsets such as the one
for the Penn Treebank. The part-of-speech tagset of the NDT are made
up from the basic word classes: adj (adjective), adv (adverb), det (deter-
miner), inf-merke (infinitive marker), interj (interjection), konj (conjunc-
tion), prep (preposition), pron (pronoun), sbu (subjunction), subst (noun),
ukjent (unknown) and verb (verb).
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4.1. Extended part-of-speech tags

Split Round-robin

Focus words Frequency Focus words Frequency

i (in)/ prep 217 i (in)/ prep 212
på (on)/ prep 108 til (to)/ prep 95
til (to)/ prep 93 på (on)/ prep 87
for (for)/ prep 79 det (that)/ pron 78
som (as)/ prep 69 for (for)/ prep 77

Table 4.1: Bokmål: the frequency of the top five words
were the most errors occur in the experiments with MaltOpt-
imizer.

As we can see from this list, the part-of-speech tags in the NDT does
not hold any information regarding inflection etc. In the NDT, a verb
can only carry the part-of-speech tag verb, whereas a verb annotated by
the Penn Treebank annotation will be given one of these tags: VB (base
form), VBD (past tense), VBG (gerund or present participle), VBN (past
participle), VBP (non-3rd person singular present) or VBZ (3rd person
singular present). This made us wonder if a more detailed set of part-of-
speech tags would reduce the need for including morphological features.
We worried that the limited part-of-speech tagset in the NDT would be
to coarse for dependency parsing, however Petrov et al. (2012) found in
their experiments that the accuracy of an English dependency parser de-
creased only 0.6 % when they used the twelve universal POS tags instead
the forty-five tags from PennTreebank which it used originally. Extract-
ing and adding more information to a data set will also often have a
negative impact on efficiency. A small, and preferably universal part-of-
speech tagset would make it easier to evaluate parsers across languages,
and would also make the task of cross-linguistic parsing easier.

Still, we wondered if a more detailed set of part-of-speech tags could
increase the parsing accuracy while it decreased time spent on prepro-
cessing, training and parsing. If so, this is a method that would require
less resources than feature extraction of morphological features.

Experiments with part-of-speech tags and prepositions

The initial experiments shows that prepositions are difficult to get right
for the parser, which is a common problem in NLP.
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4. Linguistic features

Split Round-robin

Focus words Frequency Focus words Frequency

i (in)/ prep 219 i (in)/ prep 242
på (on)/ prep 87 til (to)/ prep 112
til (to)/ prep 84 på (on)/ prep 98
det (that)/ pron 77 det (that)/ pron 75
med (with)/ prep 60 for (for)/ prep 68

Table 4.2: Nynorsk: the frequency of the top five words were
the most errors occur in the experiments with MaltOptimizer.

In table 4.1 and 4.2 showing the frequency top five words were the most
errors occur, most of the words are prepositions. The word which the
parser seems to struggle the most with is the preposition i (in), with an
error frequency between 212 and 242. As mentioned earlier, getting a
parser to make the correct attachment of prepositional phrases is one
of the big issues with computer systems for NLP. There are no simple
formal rules for the use of each particular prepositions in Norwegian
and the choice of preposition is often determined by the context and not
the grammatical properties. Therefore it can be difficult to determine
whether a preposition should be ATR on a noun or ADV on a verb, and
the high frequency of errors made in the distinction between ADV and
ATR shown in chapter 3 might be linked to the lack of morphological
information for prepositions.

Since prepositions are not inflected, and they carry no morphosyntactic
tags to be used for parsing in the NDT. This made us curious to see if
more fine-grained part-of-speech tags for preposition would reduce the
problems MaltParser encountered with this class of words. To see if we
could get an improvement on the accuracy of parsing prepositions we
opted to see if we would get any promising result with part-of-speech
tags and lexicalization.

In our first experiments with part-of-speech tags we merged the form
with the part-of-speech tag for every preposition in the training data
for each data set. In addition to this we did a very similar experiment
where we merged the lemma, rather than form, of each preposition with
the part-of-speech tags. After those experiments we decided we wanted
to try merging the the dependency relations with the lemma and the
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4.1. Extended part-of-speech tags

Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.15 86.76 85.14 88.47

POS + FORM 87.06 89.82 88.69 91.26
POS + LEMMA 87.10 89.85 88.73 91.28
DEPREL + FORM 86.99 89.81 88.47 91.09
DEPREL + LEMMA 87.01 89.81 88.51 91.09

Table 4.3: Bokmål: results from merging the part-of-speech tag or
dependency relation with the lemma or form of the prepositions in
the NDT.

form of the prepositions to see if we would get different results. Our
first experiments with merging lemma or form with dependency rela-
tions caused a quite substantial decrease in the labeled attachment scores
compared to the scores from the baseline experiments. The average la-
beled attachment score obtained by the experiments was at first 77.59 %
for bokmål and 76.48 % for nynorsk. At the same time as the scores
for the labeled attachment dropped, the unlabeled attachment score in-
creased quite a lot. The baseline labeled attachment score was in the
range 83.15 - 85.14 %, while merging dependency label and lemma gave
an unlabeled attachment score between 91.34 - 91.93 %. This was prob-
ably caused by us creating a larger output set, due to the dependency
relation being a category in the output format of MaltParser. When we
changed the dependency relation tags in the synthetic data set back to
the original dependency tags we got the results presented below.

The reformatting of the data was done using a system we wrote that
checks the part-of-speech tag for each token in the data set given as in-
put. For each preposition (prep) it found, it merged the part-of-speech
tag or dependency label with the form or lemma of the token and wrote
this to a new output file. All the lines where the token was not altered,
due to not being a preposition, were simply written to the output file. We
made additions to the feature models used for these experiments, how-
ever, in order to evaluate the impact of this change in isolation from any
morphological features, MaltParser did not make any use of the morpho-
logical information in the FEATS column.

The results from training and testing with the more fine grained part-of-
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4. Linguistic features

Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.56 87.60 83.82 87.44

POS + FORM 87.59 90.54 87.98 90.78
POS + LEMMA 87.59 90.54 88.01 90.78
DEPREL + FORM 87.30 90.45 87.81 90.62
DEPREL + LEMMA 87.36 90.48 87.78 90.60

Table 4.4: Nynorsk: results from merging the part-of-speech tag or
dependency relation with the lemma or form of the prepositions in
the NDT.

speech tags or dependency relations are presented in table 4.3 and 4.4
together with the results from the baseline experiments. The unlabeled
attachment score increased with 2.81 - 3.34 %, while the labeled attach-
ment score increased with 3.59 - 4.19 % . These results are a bit lower
then the the ones obtained using MaltOptimizer, but it is worth noting
that an increase of 4.19 % is quite a lot considering that we made no use
of morphological features. We also found that there does not seem to be
any difference regarding the use of lemma or form. This is due to prepo-
sition not being inflected. What surprised us a bit was that there was no
substantial change in the numbers of errors made regarding the five fo-
cus words where most of the errors occur seen in table 4.1 and 4.2. From
table 4.3 and 4.4 we find that the merging of the form or lemma with
the dependency relation resulted in a slightly lower accuracy than the
experiments were lemma or form were merged with the part-of-speech
tag.

Experiments with part-of-speech and morphological features

The previous experiments made us curious to what effect the different
morphological features combined with a part-of-speech tag could have
on parsing accuracy. If this proved successful it might be a solution
which is more cost efficient, both in training and parsing time due to
the simple feature model, and that less work would have to be used on
feature engineering. We mostly used the same procedure as in the exper-
iments above. However, this time we merged the part-of-speech tag with
the morphological tags rather than the form or lemma of the token. For
each experiment in this section we merged the morphological tag, e.g. for
case the tag would be nom, akk or gen, with the part-of-speech tag. If no
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4.1. Extended part-of-speech tags

Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.15 86.76 85.14 88.47

POS + case 86.92 89.57 88.56 91.03
POS + definiteness 88.34 90.95 89.29 91.71
POS + gender 87.51 90.31 89.12 91.56
POS + number 88.16 90.78 89.39 91.77
POS + person 86.88 89.52 88.48 90.99
POS + tense 86.85 89.58 88.79 91.26

Table 4.5: Bokmål: results from the experiments with morpholog-
ical features merged with a part-of-speech tag.

Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.56 87.60 83.82 87.44

POS + case 87.94 90.76 87.87 90.55
POS + definiteness 88.26 91.24 88.54 91.18
POS + gender 87.72 90.67 87.78 90.58
POS + number 88.27 91.18 88.23 90.93
POS + person 87.57 90.59 87.62 90.35
POS + tense 87.74 90.75 87.67 90.28

Table 4.6: Nynorsk: results from the experiments with morpho-
logical features merged with a part-of-speech tag.

tag were found for the given token, no merging would be performed and
therefore we would not alter the part-of-speech tag. The feature models
used in these experiments are the same models as those applied on the
experiments in the section above.

The results from the experiments can bee seen in table 4.5 for bokmål
and in table 4.6 for nynorsk. Both the labeled attachment score and the
unlabeled attachment score are better than baseline, and in some cases
slightly higher than the scores from the experiments with part-of-speech
tags merged with the lemma or form of prepositions. What we found
interesting is that some morphological features seem to have a larger im-
pact on parsing accuracy than others. Those features that might prove
more important when parsing Norwegian are definiteness, number and
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Part-of-speech Morphosyntactic tags

Adjective gender, number, type, definiteness and degree
Determinative gender, number, type and definiteness
Conjunction type
Pronoun gender, number, type, person and degree
Complementizer type
Noun gender, number, type, definiteness and case
Verb tense

Table 4.7: Morphosyntactic tags from the Oslo-Bergen Tagger.
For more information see appendix A

gender for bokmål. Definiteness, number and case for nynorsk. The differ-
ence in the features effect on parsing might be due to the amount of infor-
mation carried by these tags. The different morphological types contains
different amount of information and some features, and therefore the
tags, are more frequent than other. For more information about this see
appendix A where information regarding the morphological tagset from
the Oslo-Bergen tagger is presented.

4.2 Morphological features

The experiments presented in this section was designed with the inten-
tion of gaining a better understanding of the effect of morphological fea-
tures on parsing accuracy. We based the following experiments on our
findings in the previous section and on research on morphological featu-
res in field of dependency parsing for Scandinavian languages.

The Norwegian Dependency Treebank implements some morphological
information as you can see in table 4.7. In order to better understand the
effect of each individual feature presented in table 4.7 on parser accuracy
we constructed the experiments by modifying the corpus and the feature
models suggested by MaltOptimizer so that MaltParser would only look
at a single morphological feature at the time. Further in this section we
will give a brief explanations to the different morphological features be-
fore we present the results from our experiments. We will also explain
how we proceeded with further experimentation with the morphologi-
cal features based on our finding and information regarding what others
have accomplished using morphological features in dependency parsing.
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4.2.1 Morphological features

Gender Bender (2013) writes “in all languages with grammatical gender,
all nouns are assigned to a particular noun class, and this class is reflected
in morphological properties of other elements in the sentence that agree with
nouns” Gender is in many languages, such as in Norwegian, a grammati-
cal property associated with nouns. In Norwegian, all nouns have a cor-
respondence to a grammatical gender. Words related to a noun agree
with the gender of the noun, i.g. fin bygning (nice building), fint hus (nice
house). Norwegian has a three-class gender system, where the classes
are masculine (hankjønn in Norwegian), feminine (hunkjønn/hokjønn in
Norwegian bokmål/nynorsk) and neuter (intetkjønn/inkjekjønn in Nor-
wegian bokmål/nynorsk) (Faarlund 1997).

Number Bender (2013) explains that the property of number is “re-
lated to the cardinality of the set picked out by the referent”. A singular
noun phrase refers to a single individual, e.g. Here is a small car, while
a plural noun phrase refers to a set with zero or more than one individ-
ual. Number is either singular (entall in Norwegian, ent. in the NDT)
and plural (flertall in Norwegian, fl. in the NDT). Words in singular are
equal to their lemma while the plural form is usually obtained by adding
a suffix to the singular form of the word (Faarlund 1997). As we can see
from table 4.7, determiners, adjectives, pronouns and nouns carry mor-
phosyntactic information regarding number.

Definiteness In the Norwegian Dependency Treebank nouns, adjec-
tives and determiners are inflected or declined in definiteness (ubestemt
indefinite and bestemt definite). Definiteness in Norwegian can be ex-
pressed in two ways. One is through a definite article, or through a suf-
fix expressing definiteness, which changes in gender and number in ac-
cordance with the word it is attached to. One example taken from the
Faarlund (1997) is båt + en (masculine, singular, definite) (the boat). Def-
initeness can also be expressed through inflection of adjectives.

Tense Tense is commonly used as an indicator of temporal relationships
and gives us information about grammatical location in time (Bender
2013). Tense is grammatical property frequently used to mark temporal
information via verbs. In the Norwegian Dependency Treebank the only
class marked with morphological tense is verb.
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Person In the Norwegian Dependency Treebank person is a grammati-
cal category only for pronouns. Person refers to participants in an event.
We can say that first person is a reference referring to the acting agent,
while second person refer to the patient. Third person is used to refer-
ence someone who is neither agent nor patient.

Case Case is in many languages an important grammatical property in
the relationship between a noun and the sentence it appears in. In Nor-
wegian the use of case is marginal. Nominative case is usually preferred
when the pronoun is modified. In the Norwegian Dependency Treebank
nouns distinguish only genitive case. Pronouns are marked for nomina-
tive or accusative case.

Degree In Norwegian only adjectives are declined in comparison (pos-
itive, comparative or superlative). Positive is expressed by the root form of
the word (en grønn drage, a green dragon), while the two other are ex-
pressed by an additional suffix (en grønnere drage, den grønneste dragen, a
greener dragon, the greenest dragon).

For our experiments we reformatted the treebank quite a bit. We used the
information in the FEATS column and distributed those features over ten
new columns that were added to the data format specification file. We
created new columns for each morphosyntactic tag in the tagset of the
Oslo-Bergen tagger; gender, number, type, tense, definiteness, person,
case and degree. We also created a separate column for a hum tag and an
additional column carrying information about whether a verb is finite or
infinite, we will describe this in more details later in the thesis. A table
of the morphosyntactic tags in the Oslo-Bergen tagset can be viewed in
appendix A. In these experiments the feature models were altered so that
MaltParser would look at a individual feature, rather than all the features
at once such as in the base models. An example of this reformatting is
in the feature model for the round-robin data set in nynorsk, were we
altered the features regarding FEATS from looking at all the features for
the top two tokens on stack and lookahead, to only look at e.g. number
or gender for the tokens in the same positions. In the end we created
additional feature models so that MaltParser would gather information
from all the features at once.

From table 4.8 and table 4.9 and we can see the effect of the individual
features when testing and training MaltParser on the reformatted data
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Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.15 86.76 85.14 88.47

Gender 87.58 90.30 89.14 91.55
Number 87.89 90.58 89.12 91.56
Definiteness 87.85 90.50 89.17 91.63
Tense 87.03 89.64 88.78 91.19
Person 87.32 90.00 88.51 90.98
Case 86.89 89.63 88.54 91.01
Degree 86.97 89.70 88.60 91.05

All 88.30 90.81 89.76 92.05

Table 4.8: Bokmål: the effect of the individual features.

Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.56 87.60 83.82 87.44

Gender 87.99 90.92 87.85 90.55
Number 88.17 91.11 88.15 90.77
Definiteness 88.24 91.13 88.19 90.83
Tense 87.65 90.63 87.88 90.52
Person 87.40 90.19 87.54 90.25
Case 87.67 90.61 87.50 90.22
Degree 87.65 90.59 87.83 90.44

All 88.88 91.52 89.19 91.60

Table 4.9: Nynorsk: the effect of the individual features.
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Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.15 86.76 85.14 88.47
All 88.30 90.81 89.76 92.05

Gender 88.13 90.78 89.47 91.80
Number 88.06 90.70 89.57 91.89
Definiteness 88.17 90.81 89.56 91.88
Tense 88.04 90.75 89.33 91.74
Person 88.10 90.70 89.58 91.91
Case 88.15 90.74 89.58 91.88
Degree 88.16 90.76 89.51 91.84

Table 4.10: Bokmål: the effect of removing one feature at
the time on parsing accuracy

sets. As we can see the individual features affect the two written varia-
tions of Norwegian and the splits a bit different. From our results we find
that the features with the most effect on parsing accuracy are the same
as those we found in the experiments with part-of-speech tags. That is,
the most prominent features over all are gender, number and definiteness.
When we combine all of the features, the scores are quite close to those
in the experiments with MaltOptimizer.

Further we wondered how parsing accuracy would be affected if we com-
bined the features in the table above. We therefore decided to do an ab-
lation study where we removed one feature at the time to see how much
this feature influenced the parsing accuracy. We used the feature model
used to obtain the results for All in table 4.8 and table 4.9. We then
conducted a series of experiments were one feature was removed while
we kept all the others, and then we trained and tested MaltParser with
this model. After the training and testing with one feature missing, we
would put the feature back in the model and remove another feature,
and then repeat the training and testing. E.g., when we removed the
columns that used information regarding gender from the model, but
kept the columns for all the other features, then we tested and trained
MaltParser on this model. Afterward the information regarding gender
would be put back into the model, and information regarding another
features would be removed.
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Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.56 87.60 83.82 87.44
All 88.88 91.52 89.19 91.60

Gender 88.64 91.38 88.89 91.28
Number 88.54 91.30 88.85 91.39
Definiteness 88.57 91.34 88.80 91.31
Tense 88.63 91.35 88.59 91.10
Person 88.72 91.40 88.92 91.37
Case 88.67 91.38 88.92 91.41
Degree 88.56 91.25 88.61 91.21

Table 4.11: Nynorsk: the effect of removing one feature at
the time on parsing accuracy

The results are presented in table 4.10 and table 4.11 and indicate that
removing only one feature does not impact the parsing accuracy much.
The scores when removing one feature were all a bit lower then the scores
obtained by combining all the features, but there were no feature that
seemed to have such big impact on parsing accuracy that it would cause
a big drop in accuracy if removed.

4.3 Linguistic features

In this section we will present our further experimentation with linguis-
tic features. They are based on the information gained from the experi-
ments in the previous section, the available information in the NDT and
again, inspired by the work on dependency parsing done by others.

Swedish is a language relatively similar to Norwegian and in the field
of dependency parsing, a lot more research has been done on the Swed-
ish Talbanken051. Øvrelid and Nivre (2007) use additional linguistically
motivated features to target specific error types, leading to substantial
improvements on both specific grammatical functions and overall pars-
ing accuracy when parsing Swedish using MaltParser. Their initial error
analysis showed that the most frequent errors involved adverbial rela-
tions, this due to the PP-attachment problems, which we also found in

1http://stp.lingfil.uu.se/~nivre/research/Talbanken05.html
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our error analysis. The parser also, just as we found with Norwegian,
consistently confused subject and object constituents. This was caused
by ambiguities in the word order and morphological marking. To re-
solve these ambiguities they examined grammatical features in addition
to syntactic categories and linear word order. They focused on properties
of animacy, definiteness, person, case, finiteness and voice, in addition
to information on pronoun type, and experimented with combinations
of these features. The final experiment resulted in an error reduction of
about 50 % for the errors specifically targeted following the initial er-
ror analysis. Unlike the NDT, Talbanken05 contains information about
animacy for nominals, voice and multiple tags for the various adverbs.

Inspired by the work of Øvrelid and Nivre (2007) we decided to inves-
tigate the effect of morphological agreement and finiteness of verbs on
parsing accuracy. In addition to this we decided to see how the pars-
ing accuracy would be affected by the type feature and the hum tag for
pronouns.

4.3.1 Type, animacy & combinations of features

Type

This category contains information regarding whether or not a token be-
longs to a certain sub-class, meaning, determiners will carry information
about whether it is possessive (possesiv), demonstrative (demonstrativ)
etc., while pronouns will be marked as demonstrative, quantifying, per-
sonal, reflexive etc. This is not a morphological feature as such and we
therefore decided to look at this linguistic feature separately from the
other morphological features. We decided to run the same experiments
with the type feature as we have done previously with the other morpho-
logical features in order to compare its effect on parsing accuracy. We
reused the feature models from the previous experiments, but altered
them to apply for the type tag when necessary.

The results are presented in table 4.12, the POS + type shows the results
from merging the part-of-speech tag with the type information, while the
Type(individual) is the result of looking at the effect the type tag has on
parsing accuracy. We find that the scores from our experiments with type
(Type (individual) in table 4.12) and its effect on parsing accuracy is close
to the highest scores in our experiments where we looked at the effect of
the individual morphological features. The results from combining type
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Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Bokmål

Baseline 83.15 86.76 85.14 88.47

POS + type 88.33 90.88 89.51 91.98
Type (individual) 87.98 90.74 89.43 91.84

Nynorsk

Baseline 83.56 87.60 83.82 87.44

POS + type 88.86 91.64 88.73 91.25
Type (individual) 88.55 91.43 88.87 91.34

Table 4.12: Results from the experiments with type

(POS + Type in table 4.12) with part-of-speech, such as in table 4.5 and
4.6, are also similar to the best results obtained in the experiments with
morphological features merged with part-of-speech tags.

From previous experiments we found that the morphological features
giving the highest scores overall was gender, number and definiteness,
though number and definiteness seemed to have a bigger impact on parser
accuracy than gender. From the experiments with type we found that
this feature also seemed to have a bit higher impact on parsing accuracy
than other features. Therefore it felt like a natural thing to investigate
the effect of number (N), definiteness (D) and type (T) together. We also
wanted to see if adding gender (G) to this combination of features would
have an effect on the parsing. For the experiments we constructed feature
models making MaltParser extract information only about these features.
Other than that, these experiments were conducted in the same way as
previous experiments.

We found that the combination of number, type and definiteness (in table
4.13 and 4.14 it is presented as N + T + D) gave an overall increase in
parsing accuracy for both bokmål and nynorsk. The combination of gen-
der, number, type and definiteness (in table 4.13 and 4.14 it is presented as
G + N + T + D) gave a very minor increase in accuracy compared to the
combination of number, type and definiteness. These results are to us quite
interesting since they are close to the results we got in the experiments
with morphological features were we combined all the morphological
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Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.15 86.76 85.14 88.47

N + T + D 88.29 90.91 88.94 91.35
G + N + T + D 88.45 90.99 88.96 91.39

Table 4.13: Bokmål: experiments with morphological features
combined

Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.56 87.60 83.82 87.44

N + T + D 88.46 91.18 88.26 90.81
G + N + T + D 88.62 91.26 88.29 91.10

Table 4.14: Nynorsk: experiments with morphological featu-
res combined

features.

Animacy: Hum

Øvrelid (2005) describes animacy as an inherent property of the referents
of nouns, indicating how alive the referent is. It is a semantic property in
Norwegian, and for some languages it is considered a grammatical prop-
erty as well. In NLP animacy is usually a binary property (animate vs.
inanimate). Animacy is known as an influencing factor in a range of dif-
ferent grammatical phenomena in various languages and it seems to be
correlated with important linguistic concepts such as agentivity and dis-
course salience. Animacy of a noun is thought to be relevant for several
different kinds of Natural Language Processing applications such as con-
ference resolution, parsing and generation. Øvrelid (2005) investigates
animacy by looking at classification based on morphosyntactic corpus
frequencies with Norwegian nouns. Unlike us, Øvrelid (2005) extracts
information about animacy for a set of Norwegian nouns and experi-
mented with automatic classification using decision-tree classifiers. The
only morphological tag indicating animacy in the Norwegian Depend-
ency Treebank is the hum tag for pronouns, indicating whether or not
the pronoun’s antecedent is human. We decided to include this as an
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Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Bokmål

Baseline 83.15 86.76 85.14 88.47

POS + hum 86.85 89.53 88.47 91.02
Hum (individual) 86.91 89.63 88.55 91.01

Nynorsk

Baseline 83.56 87.60 83.82 87.44

POS + hum 87.64 90.61 87.56 90.30
Hum (individual) 87.53 90.53 87.62 90.28

Table 4.15: Results from the experiments with the hum tag

individual feature and look into the effect of the hum tag on parsing.
The experiments were conducted using the same methods as those for
type, however, this time we changed the feature models from the previ-
ous experiments looking at individual features, to apply for the column
containing information regarding hum.

From table 4.15 we find that the hum tag does have a positive effect on
parsing accuracy compared to the baseline experiments, but it does not
obtain quite as good results as the type tag in table 4.12. The highest
labeled attachment score for the hum tag in the experiments looking at
the effect individual features (Hum (individual)) on parsing accuracy is
88.55 % in the round-robin data set for bokmål, while the highest score
for type is 89.43 %, also in the round-robin data set for bokmål. The
unlabeled attachment score for the hum tag is also lower than the score
for type, while type obtained an unlabeled attachment score of 91.84 %
in the round-robin data set for bokmål, the highest UAS for the hum tag
is 91.01 % for the same data set.

Agreement

Almost all languages, although to a varying degree, show some morpho-
logical agreement via the inflection of noun, adjectives, verbs, and de-
terminers (Hohensee and Bender 2012). Norwegian shows some degree
of morphological agreement between nouns and adjectives. The adjec-
tive can be positioned both before and after the noun it agrees with, and
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Agreement Baseline
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Bokmål (Split) 88.16 90.83 83.15 86.76
Bokmål (Round-robin) 89.50 91.89 85.14 88.47
Nynorsk (Split) 88.48 91.38 83.56 87.60
Nynorsk (Round-robin) 88.93 91.43 83.82 87.44

Table 4.16: Result from experiments done with the intention of captur-
ing agreement using gender, number and definiteness on a token and
its head.

will agree in gender and number with the noun. There is also agreement
between verbs in the perfect participle acting as adjectives for a noun.
In the Norwegian Dependency Treebank nouns, adjectives and deter-
miners are tagged with information regarding gender, number and defi-
niteness, while pronouns are marked with information regarding gender
and number. Inspired by the results obtained by Hohensee and Bender
(2012), we wanted to see if we could capture agreement by only altering
the feature models, and if this would have an impact on the parsing accu-
racy. We decided to find out if we could capture the effect of agreement
using gender, number and definiteness and part-of-speech.

The feature model in these experiments were designed so that MaltParser
would look at the features mentioned for each token. At the same time
the system was asked to look at the same features for the head of the
given token. To capture agreement we experimented with combining
features for a token and its head into one feature using the feature map
functions merge and merge3 in MaltParser. That is, the features were con-
structed by nesting merge functions so that we would look at both the
definiteness, gender and number of a token at the same time as we looked
at definiteness, gender and number of the tokens head.

The results from a series of experiments are presented in table 4.16. As
we can see from table 4.16, the experiments resulted in an increase in
parsing accuracy. In table 4.16 the results from our experiments are pre-
sented along side the results from the baseline experiments. Our effort
to capture agreement gave us an increase in labeled attachment score of
5.01 % for the split data set in bokmål, and the unlabeled attachment
score increased with 4.07 % for the same data set, which to us is quite
a great improvement. We got a slightly lower increase of 4.36 % in the
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Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.15 86.76 85.14 88.47

N + T + D 88.14 90.72 89.55 91.94
G + N + T + D 88.12 90.79 89.55 91.93

Table 4.17: Bokmål: experiments with morphological features
combined with agreement. N + T + D = Agreement using
number, type and definiteness. G + N + T + D = agreement
using gender, number, type and definiteness.

labeled attachment score for the round-robin data set in bokmål. In the
data sets in nynorsk the labeled attachment score increased by 4.92 % in
the split data set, and by 5.11 % in the round-robin data set. The unla-
beled attachment score increased by 3.78 % for the split data set and we
also see an increase in the score for the round-robin data set of 3.99 %.
We were a bit surprised to find an increase of more than 5 % in the la-
beled attachment score, which we think a quite substantial increase.

We further wanted to see if we could use the feature models from the
experiments with agreement in combination with other features too see
if this would obtain an even greater increase in parsing accuracy or not.
From the experiments combining type with morphological features we
found that the combination of number, type and definiteness (in table 4.13
and 4.14) gave an overall increase in parsing accuracy for both bokmål
and nynorsk. The combination of gender, number, type and definiteness
(in table 4.13 and 4.14 it is presented as G + N + T + D) gave a small
increase in accuracy compared to the combination of number, type and
definiteness. In these experiments we combined the feature models from
the experiments with agreement, and the experiments with combination
of the features mentioned above. This resulted in feature models where
we looked at the features individually, but also where we merged the
features into new features. When merging the features into new featu-
res, we combined that with looking at the same features in the head of
the features we merged. E.g. when creating a feature looking at number,
gender, definiteness, and type for the top token on the stack, we com-
bined, using the merge option, that with looking at the same features on
the head of the top token on stack.
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Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.56 87.60 83.82 87.44

N + T + D 88.53 91.36 88.75 91.28
G + N + T + D 88.47 91.36 88.91 91.46

Table 4.18: Nynorsk: experiments with morphological featu-
res combined with agreement. N + T + D = Agreement using
number, type and definiteness. G + N + T + D = agreement
using gender, number, type and definiteness.

The combination of gender, number, type, definiteness and agreement gave
us an increase in both labeled and unlabeled attachment score compared
to the score from the baseline experiments as we can see in table 4.17
and 4.18. However, compared to the results from the experiments with
agreement, seen in table 4.16 the additional morphological information
hardly made any difference to the scores. When we compare the results
to the experiments only looking at the features gender, number, type and
definiteness presented in table 4.13 and 4.14 we only see a slight increase
in the scores.

4.3.2 Finiteness

Øvrelid (2008) investigates the effect of verbal features on data-driven
dependency parsing of Swedish. The paper illustrates how information
on the morphosyntactic properties of tense (present, past, imperative,
subjunctive, infinitive and supine) and voice (active or passive) for all
verbs can give significant improvements in the analysis of syntactic ar-
guments. To test the extent to which tense may be reduced to finiteness,
she mapped the tense features to features expressing the binary category
of finiteness, which resulted in improvement on accuracy.

In the NDT verbs carry information about tense. In Norwegian we divide
conjugated forms of verbs in five categories, which can be either finite or
infinite. The finite forms of the verb is present tense, past tense and im-
perative, while infinitive and past participle are infinite forms of the verb.
We made some experiments where used information about finiteness of
verbs. As mentioned earlier, we created a separate column in the refor-
matted treebank for information regarding finiteness. The only morpho-
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Finiteness Baseline
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Bokmål (Split) 86.76 89.54 83.15 86.76
Bokmål (Round-robin) 88.47 90.98 85.14 88.47
Nynorsk (Split) 87.44 90.52 83.56 87.60
Nynorsk (Round-robin) 87.62 90.29 83.82 87.44

Table 4.19: Result from experiments done with the intention of captur-
ing finiteness of verbs.

logical feature used in this experiment is the the information from this
column. The settings for MaltParser is as mentioned the same as in the
other experiments.

This resulted in a slight increase of parsing accuracy as we can see from
table 4.19. Compared to the results from the baseline experiments, we
see an increase in both labeled and unlabeled attachment score, but these
score are lower the those from our previous experiments.

4.4 Final evaluation

We wanted to see if we could create a feature model using the combi-
nation of the features that gave us the best result from the experiments
presented above. We found that merging the form of a preposition with
its part of speech tag gave quite a high increase in parsing accuracy. We
also found that the combination of the features gender, number, type and
definiteness had a positive effect on parsing accuracy without using the
same amount of resources as one would if we combined all the features.
We also obtained fairly good results from our experiments trying to cap-
ture agreement. Therefore, we decided to combine the feature models
from these experiments to see if we could obtain a higher parsing accu-
racy than what we have been able to obtain in the previous experiments.
During the entire process of experimenting with linguistic features we
used three different feature models. The split data set used the same
feature model for both bokmål and nynorsk. The round-robin data set
used different feature models for bokmål and nynorsk. While the feature
models for the split data set used Nivre’s arc eager algorithm, the round-
robin data sets both used the Stack projective algorithm. We wanted to
investigate if we had found the best feature models for the data sets, or
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Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Split 88.83 91.30 89.03 91.63
Round-robin BM 89.06 91.58 89.31 91.76
Round-robin NN 89.05 91.64 89.24 91.69

Table 4.20: Bokmål: Dependency Parsing results with our fea-
ture models. Round-robin BM: the round-robin feature model
for the data set in bokmål. Round-robin NN: the feature model
used for the round-robin data set in nynorsk

Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Split 88.66 91.07 89.21 91.81
Round-robin BM 89.00 91.32 89.36 91.97
Round-robin NN 88.97 91.33 89.43 92.03

Table 4.21: Nynorsk: Dependency Parsing results with our fea-
ture models. Round-robin BM: the round-robin feature model
for the data set in bokmål. Round-robin NN: the feature model
used for the round-robin data set in nynorsk

if one model would give the best results for all the data sets. We decided
to test the models with the final held-out test set.

The results are presented in table 4.20 and table 4.21. Based on our result
it seems like the best choice for parsing nynorsk might be the round-
robin feature model used for the experiments in nynorsk combined with
the stack projective algorithm. Based on our results we see that one of the
round-robin feature models together with the stack projective algorithm
is the best choice also when parsing bokmål.

We then decided to test MaltParser with the default settings used in the
baseline experiments, the models from the experiments with MaltOpt-
imizer, and our models from the experiments above, in order to compare
our models to something. The results are presented in table 4.22 and
table 4.23. The model from the baseline experiments was partly able to
obtain a better result then it obtained in the baseline experiments. The
settings and models from the experiments with MaltOptimizer resulted
in score that were close to the score we got in the initial experiments with
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Split Round-robin
Model LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 84.32 87.80 84.15 87.75
MaltOptimized 89.30 91.74 89.65 91.98
Our 88.80 91.30 89.32 91.73

Table 4.22: Bokmål: Dependency Parsing results with the final
held-out test set.

Split Round-robin
Model LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.42 86.94 84.11 87.84
MaltOptimized 89.25 91.41 89.36 91.89
Our 88.66 91.02 89.43 92.03

Table 4.23: Nynorsk: Dependency Parsing results with the final
held-out test set.

Split Round-robin
Model BM (ms) NN (ms) BM (ms) NN (ms)

Baseline 53561 65971 58828 50752
MaltOptimizer 183871 208354 121326 143390
Our 325257 343827 192834 198042

Table 4.24: Learning time from the models tested on the final
held-out data sets. BM = bokmål. NN = nynorsk.

MaltOptimizer. The scores from our models was on one occasion higher
than the scores from the experiments with MaltOptimizer, other than
than our score were a bit lower. The labeled attachment score for our
models were 88.80 % and 89.32 % for bokmål and 88.66 % and 89.43 %
for nynorsk. The unlabeled attachment score for bokmål is 91.30 % and
91.73 %, while it is 91.02 % and 92.03 %.

In this thesis we have mentioned time and efficiency of the parser on sev-
eral occasions. How much time used for training and testing a parser is
to many important, and we all wish to have efficient systems that require
a minimum of resources. Below we present the time MaltParser used for
training and parsing the models from the experiments above.
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Split Round-robin
Model BM (ms) NN (ms) BM (ms) NN (ms)

Baseline 4912 4833 5222 4887
MaltOptimizer 9055 9176 10527 8519
Our 14607 12641 15239 10567

Table 4.25: Parsing time from the models tested on the final
held-out data sets. BM = bokmål. NN = nynorsk.

From table 4.24 we find that our models take a lot more time learning
than the models used for the baseline experiments and the experiments
with MaltOptimizer. Our models are much bigger and more detailed, so
this comes as no surprise. In table and 4.25 we can see that our models
also use more time testing than the other models.

4.5 Domain sensitivity

Domain adaption is the task where the goal is to adapt parser from a
source domain (usually with a large amount of available data) to a target
domain of interest (which usually has a small amount of available re-
sources). The most common training material used in dependency pars-
ing is newspaper articles, and for this domain parsers often obtain more
than 90 % accuracy for English. However, we see a drop in parsing accu-
racy for the same parsers when parsing out-of-domain text such as blogs
or web pages. That indicates that most dependency parser are still not
robust enough for practical use in Natural Language Applications such
as machine translation or relation extraction.

In 2007 the Shared Task organized by The annual Conference on Compu-
tational Natural Learning (CoNLL) was, as in 2006, multilingual depend-
ency parsing, but the task from previous year was extended by adding
a second track for domain adaptation (monolingual). The task was to
adapt a parser for English news text to other domains. The participants
could use unlabeled data from the target domains, which was biomed-
ical, chemical abstracts and parent-child dialogs. There were both a
closed class and an open class. In the closed class the parser had to be
trained using the English training set for the multilingual track. The
open class allowed for the parser to be trained on any external resources.
The best results on this task was a labeled attachment score of 81.1 % on
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the test set of chemical abstracts, from a parser who got labeled attach-
ment score of 89.0 % for the English test set in the multilingual track2

(Nivre 2007).

Domain adaptation is an aspect of parser robustness. Hassel et al. (2011)
studies the effect of using an existing parser, pre-trained on general Swed-
ish, to parse clinical text in Swedish. Since syntactic parsers that are
tailored to accommodate for the distinctive properties of clinical lan-
guage are both time consuming and costly to build, it is interesting to
see whether a pre-trained model is directly transferable to a new domain.
Clinical text differs from general text in terms of both language, vocab-
ulary and content. The main finding in this paper is that the morpho-
logical characteristics of Swedish clinical language do not differ greatly
from general language. They therefore conclude that existing tools can
be used successfully when it comes to PoS information.

Plank and Søgaard (2012) stress the fact that sampling training and test
data from similar sources (same domain or genre), may cause us to over-
fit our models. This will again lead to an over-adaption of our parser,
which in turn will cause a drop in parsing accuracy when the parser is
tested on a different domain.

Just as clinical text differ from general text, newspaper text differ from le-
gal documents and blog posts, which is what the NDT consists of. Using
the settings from previous experiments, we wanted to investigate if the
parser was sensitivity to different domains in the Norwegian Depend-
ency Treebank. We decided to use the text from newspapers and legal
documents as training data, and then use the blog text as test data. Blogs
are user generated content and usually very different from newspaper
text and legal documents, that is, they can be considered to belong to
different domains. In these experiments we divided the data from the
NDT based on source. We used the blog texts as test data and the train-
ing set was constructed by combining the texts from newspapers and
legal documents. The feature model (Our models) constructed for this
experiments combined the settings giving us the highest score in the ex-
periments mentioned earlier in this chapter. We also tested the model we
got from the experiments with MaltOptimizer and the baseline model, so
that we would have something reasonable to compare our result with.

2It is worth mentioning that the biggest issue when adapting existing parsers to a
new domain was not necessary the domain, but the mapping from the native annotation
used of the parser to the annotation provided in the data set used in the shared task.
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Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.15 86.76 85.14 88.47

Baseline D 79.82 87.03 79.54 83.90
MaltOptimized 86.36 91.09 83.84 87.34
Our models 84.33 89.97 84.07 88.07

Table 4.26: Bokmål: experiments with domain sensitivity.
Baseline = the results from our baseline experiments. Baseline
D = the model and settings used in the baseline experiments,
trained and tested on the domain data sets. MaltOptimized =
the model and settings used in the experiments with MaltOpt-
imizer, trained and tested on the domain data set. Our models
= Our models trained and tested on the domain data sets.

Split Round-robin
LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.56 87.60 83.82 87.44

Baseline D 77.06 82.21 77.97 83.40
MaltOptimized 82.36 85.80 80.22 84.41
Our models 80.34 84.30 79.98 83.94

Table 4.27: Nynorsk: experiments with domain sensitivity.
Baseline = the results from our baseline experiments. Baseline
D = the model and settings used in the baseline experiments,
trained and tested on the domain data sets. MaltOptimized =
the model and settings used in the experiments with MaltOpt-
imizer, trained and tested on the domain data set. Our models
= Our models trained and tested on the domain data sets.

The results from the experiments with domain sensitivity is presented in
table 4.26 and table 4.27. From the experiments we found a reduction in
parsing accuracy for all the data sets in both nynorsk and bokmål. When
we tested the baseline model on the blog text the labeled attachment
score decreased from 83.15-85.15 % to 77.07-79.82 %. The labeled at-
tachment score which was between 86.76 % and 88.47 % in the baseline
experiments, decreased to 82.21-87.03 %.

The models from the MaltOptimizer experiments handled the new do-
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main better than the baseline model. The labeled attachment score for
bokmål is 86.36 % for the split data set, and 83.84 % for the round-robin
data set. The unlabeled attachment score for the split data set is 91.09 %,
while it score for the round-robin data set is 87.34 %. In nynorsk, we
got slightly lower scores where the split data set got a labeled attach-
ment score of 82.36 % and a unlabeled attachment score of 85.80 %. The
round robin data set in nynorsk obtained a labeled attachment score of
80.22 %, while the unlabeled attachment score is at 84.41 %.

The results for the model constructed by us is mostly a bit lower than the
scores obtained by the MaltOptimizer models. For bokmål the labeled
attachment score ended at 84.33 % for the split data set and 84.07 % for
the round-robin data set. The unlabeled attachment score for the split
data set is 89.97 % and the score for the round-robin data set is 88.07 %.
The data sets in nynorsk got lower scores in the domain experiments with
our model as well. The split data set got a labeled attachment score of
80.34 % and an unlabeled attachment score of 84.30 %. The round-robin
data set obtained a labeled attachment score of 79.98 % and an unlabeled
attachment score of 83.94 %.
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Chapter 5

Conclusion

This thesis and the work done during the production of it was made with
the intention of gaining a better understanding of the effect linguistically
motivated features can have on data-driven dependency parsing for Nor-
wegian. The study of linguistically motivated features and their effect on
parsing accuracy in dependency parsing has been studied in a range of
different languages, but since there has been no dependency treebanks
like the NDT this has not been done for Norwegian. In this thesis we
have worked with the new dependency treebank for Norwegian, NDT,
and MaltParser. Chapter 2 gave an introduction to both the treebank
and data-driven dependency parsing with MaltParser. In chapter 3 we
presented the first results from running MaltParser and MaltOptimizer
with the NDT, combined with an error analysis. This gave us resources
we used when conducting the experiments presented in chapter 4 where
we experimented with extended part-of-speech tags, various linguistic
features and domain sensitivity. In this chapter we will first sum up our
main findings from the experiments and briefly discuss the work we have
done. Finally, we will consider the opportunities for future work.

5.1 Conclusion

From the initial experiments and the error analysis we found that com-
mon problems in NLP for Scandinavian languages are, not surprisingly,
valid for parsing Norwegian. The PP-attachment problem is one of the
issues and so are the problems regarding word order confusion. The er-
ror analysis revealed that MaltParser’s default settings were not ideal for
parsing Norwegian. The results from testing and tuning the NDT with
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MaltOptimizer revealed that there might be differences between parsing
nynorsk and bokmål.

When working on the initial experiments and the experiments with lin-
guistic features we noticed that the split data set in bokmål tended to
obtain lower scores than the round-robin data set in bokmål. We no-
ticed the same in the data sets for nynorsk, but here the differences were
smaller. However, this tendency was weaker in the final evaluation. In
the experiments on domain sensitivity on the other hand, the split data
set scored higher than the round-robin data set. This is interesting and
can be seen as an indication of the importance of dividing the data right,
and also a reminder that that a corpus can only be an approximation of
a language.

From the experiments with linguistic features we found that using part-
of-speech tags combined with the form of prepositions gave quite a high
increase in both labeled and unlabeled attachment score, while this met-
hod required very little preprocessing and no need for morphological
features. We also found that the most prominent morphosyntactic fea-
tures for parsing accuracy seem to be definiteness, number, gender and
type. Definiteness, number and gender are the features we used to cap-
ture agreement between a token and its head, which improved the la-
beled and unlabeled attachment scores quite a bit. All of these features
combined gave us final results that were very close to those obtained
when using the MaltOptimizer system, as we can see in table 5.1 and 5.2
which gives an overview of the best results from our experiments com-
pared to the baseline experiments.

We found that features such as case which are seen as important for pars-
ing accuracy, did not have a great impact on parsing Norwegian. This is
most likely due to the fact that the use of case in Norwegian is marginal.
We did not obtain good results with features capturing animacy or finite-
ness either. This is probably due to the hum tag in the NDT not really
representing animacy but rather being an indication of whether or not
the pronoun’s antecedent is human. Our experiments with finiteness
were quite shallow due to the lack of morphological information regard-
ing verbs. If one were to extract more information regarding verbs, one
could possibly find this to be a more important feature for parsing accu-
racy.

The merging of prepositions with its part-of-speech tag, and the use
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5.1. Conclusion

Split Round-robin
Model LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.15 86.76 85.14 88.47
Malt Optimized 88.69 91.14 89.89 92.18

POS + FORM 87.06 89.82 88.69 91.26
Number 87.89 90.58 89.12 91.56
Definiteness 87.85 90.50 89.17 91.63
Type 87.98 90.74 89.43 91.84

Final evaluation

Baseline 84.32 87.80 84.15 87.75
MaltOptimized 89.30 91.74 89.65 91.98
Our 88.80 91.30 89.32 91.73

Table 5.1: Bokmål: a summary of the best results.

of the linguistic features definiteness, number, gender and type combined
with the features used to capture agreement improved the accuracy when
parsing Norwegian compared to MaltParser’s default model. When test-
ing on the final held-out data set our model obtained results comparable
to those obtained by MaltOptimizer.

In our final evaluation, the model made from the results of our experi-
ment obtained a labeled attachment score for the split data set in bokmål
which was 4.48 % higher than the score obtained by the baseline model.
The unlabeled attachment score for this data set had the lowest increase
from the baseline model with an increase of 3.5 %. The round robin data
set in bokmål obtained a labeled attachment score which was 5.17 %
higher than that of the baseline model, while the unlabeled attachment
score increased by 3.90 %.

For the data sets in nynorsk the increase in labeled attachment score for
the split data set was 5.24 % from the baseline model and the unlabeled
attachment score for the same data set increased by 4.08 %. The biggest
increase in both labeled and unlabeled attachment score was obtained by
the round-robin data set for nynorsk. This set obtained a labeled attach-
ment score which was 5.32 % higher than the baseline and the unlabeled
attachment score increased by 4.19 %.
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5. Conclusion

Split Round-robin
Model LAS ( %) UAS ( %) LAS ( %) UAS ( %)

Baseline 83.56 87.60 83.82 87.44
Malt Optimized 88.93 91.58 89.45 91.80

POS + FORM 87.59 90.54 87.98 90.78
Number 88.17 91.11 88.15 90.77
Definiteness 88.24 91.13 88.19 90.83
Type 88.55 91.43 88.87 91.34

Final Evaluation

Baseline 83.42 86.94 84.11 87.84
MaltOptimized 89.25 91.41 89.36 91.89
Our 88.66 91.02 89.43 92.03

Table 5.2: Nynorsk: a summary of the best results.

Something common to ask oneself at the end of a research project is
whether or not one focused on the right things and if one measured what
one intended to measure. In this thesis we decided to mainly use the
resources available in the NDT rather than use a lot of time and effort
on preprocessing. The consequences of this choice is of course that sev-
eral features that have been proven important in NLP have been left un-
explored, partially or completely. These are features such as animacy,
finiteness and voice. However, the advantage of doing less preprocess-
ing is that it will be easier for others to remodel our experiments, and
this increases the reliability of our our research. We believe that our ex-
periments did indeed capture the linguistic phenomena we intended to
capture, but again, this should always be verified by someone else. What
is worth thinking about when it comes to the evaluation of our experi-
ments is that there is a discussion regarding whether or not labeled and
unlabeled attachment scores are actually suitable measure of accuracy.
Labeled and unlabeled attachment scores are as mentioned, the tradi-
tional evaluation metrics in dependency parsing and are the evaluation
scores mainly used in this thesis. However, Tsarfaty et al. (2011) argue
that these evaluation methods might not be good enough. The say that:

As it turns out, however, such evaluation procedures are
sensitive to the annotation choices in the data on which the
parser was trained. [. . . ] The consequence of such annotation
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5.2. Future work

discrepancies is that when we compare parsing results across
different experiments, even ones that use the same parser and
the same set of sentences, the gap between results in different
experiments may not reflect a true gap in performance, but
rather a difference in the annotation decisions made in the
respective treebanks.

Several methods have been proposed to resolve this issue, but they have
a number of disadvantages. They suggest a procedure for comparing
dependency parsing results for different experiments based on the idea
of converting dependency trees to functional trees, generalizing func-
tional trees and using distance-based metrics (Tsarfaty et al. 2011). This
system has been produced and is named TedEval1. The disadvantages
of labeled and unlabeled attachment score could have an effect on the
results presented in this thesis and is something that affects the validity
of our results.

5.2 Future work

The opportunities for future work on dependency parsing for Norwegian
seem to us at this point never ending. There is the possibility to process
the NDT to extract more information regarding morphological features
and in that way enrich the treebank. Øvrelid and Nivre (2007) investi-
gate the exact influence of features on the parsing accuracy for specific
linguistic constructions in Swedish. By looking at features for animacy,
definiteness, person, case, finiteness, voice, tense and pronoun type, and
combinations of these features. In the final experiment they obtained an
error reduction of about 50 % for the errors specifically targeted. The
errors found in their error analysis are similar to those we found in the
baseline experiments and we think it would be interesting to replicate
the experiments they did, targeting the effect of features on specific con-
structions using the NDT. However, this will require some feature extrac-
tion and additions to the corpus since the annotation of the NDT is less
detailed than the Swedish Talbanken05.

There are also a lot options available in MaltParser that have been un-
explored. It would be interesting to see the effect of using other parsing
algorithms, we did not find the time to explore the Covington algorithm.

1http://www.tsarfaty.com/unipar/
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5. Conclusion

Kübler et al. (2009, p. 36) suggest the use of Yamada’s algorithm which
“performs multiple passes over the input while still exploring only a
single path through the transition system in each pass”, rather than the
single-pass strategy in Nivre’s algorithms. It would also be interesting to
use beam search in combination with MaltParser which is a competitive
approach to dependency parsing as shown by Zhang and Clark (2008).
It would also be interesting to evaluate contrasting parsers on the NDT
since there are constantly being developed new techniques for depend-
ency parsing. I find the dependency parsing systems using perceptrons
and beam search to be particularly interesting.

Another field in dependency parsing is the use of semantic features, but
this again would require more resources. Extracting semantic informa-
tion would have been interesting to look into since dependency relations
often resembles semantic relations and semantic information have been
proved to increase the parsing accuracy in dependency parsing.
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Appendix A

Table of morphosyntactic tags for
the Oslo-Bergen Tagger

The Oslo-Bergen tagger (OBT) is a morphological and syntactic tagger. It
was developed by the University of Oslo and Uni Computing in Bergen.
The OBT basically consists of a preprocessor with multitagger (uses the
lexicon Norsk ordbank) combined with a compound analyser, a gram-
mar module used to solve morphological and/or syntactic disambigua-
tion and a statistical module to remove remaining morphological ambi-
guity (University of Oslo and Uni Computing in Bergen and University
of Southern Denmark, Odense ). The table A.1 show most of the mor-
phosyntactic tags used in the NDT.
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A. Table of morphosyntactic tags for the Oslo-Bergen Tagger

Morphosyntactic tags
Adj
Gender m/f, nøyt, fem
Number enf, fl
Type <adv>, <ordenstall>, <perf-part> <pres-part>, fork
Definiteness ub, be
Degree pos, kom, sup

Adv

Det
Gender mask, nøyt, fem
Number enf, fl
Type dem, dem <adj>, <adj> forst, <adj> kvant, kvant, poss, poss res,

poss høflig, sp, forst
Definiteness ub, be

Inf-merke

Interj

Konj
Type <adv>, clb

Prep

Pron
Gender fem, mask, nøyt, mask fem
Number enf, fl
Type hum res, hum sp, pers, pers hum, pers høflig, poss hum sp, refl, sp, res
Definiteness ub, be
Person 1, 2, 3
Case nom, akk

Sbu
Type <spørreartikkel>

Subst
Gender mask, nøyt, fem
Number enf, fl
Type appell, prop, fork
Definiteness ub, be

Ukjent

Verb
Tense pres inf pass inf, pres, pret, perf-part, imp, pass

Table A.1: Table of morphosyntactic tags for the Oslo-Bergen Tagger.
Taken from http://tekstlab.uio.no/obt-ny/english/tags.html
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Appendix B

Data format

B.1 CoNLL data format

As mentioned in the thesis, Maltparser use treebanks in CoNLL format
as input. A treebank is a large collection of annotated dependency trees
like the one shown in the B.1. CoNLL is a format used for dependency
treebanks.

Table B.1 is a representation of parts of the sentence Det sies at men-
neskets rettferdighetsfølelse er medfødt. from the Norwegian Dependency
Treebank in CoNLL format, while figure B.1 show the representation of
the same sentence as a dependency structure. The CONLL format is a
10 column tab-separated table. Each line in the table represents a token.
The columns (from left to right) consists of a token index (ID), word form
(FORM), lemma (LEMMA), coarse-grained part-of-speech tag (CPOS) ,
fine-grained part-of-speech tag (POS), morphological features (FEATS),
index of the head (HEAD), dependency relation (DEPREL), projective
head (PHEAD) and projective dependency relation (PDEPREL). The two
final columns are left blank in the Norwegian Dependency Treebank and

ID FORM LEMMA CPOS POS FEATS HEAD DEPREL

1 Det det pron pron nøyt|ent|pers|3 2 FSUBJ
2 sies si verb verb pres|pass 0 FINV
3 at at sbu sbu _ 6 SBU

Table B.1: An example of a sentence from the Norwegian Dependency
Treebank represented in ConLL format
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B. Data format

pron verb sbu subst subst verb adj clb
It is said that the human sence of justice is innate .
Det sies at menneskets rettferdighetsfølelse er medfødt .

FSUBJ

SBU

DET

SUBJ

DOBJ

SPRED

IP

Figure B.1: An example a sentence from the Norwegian Dependency
Treebank represented as a dependency graph.

are therefore not presented in the table.

B.2 Reformatting the Norwegian Dependency
Treebank

As we can see from tableB.1 all the morphological features of a token
is merged into one column. MaltParser does not include a functionality
to look at one individual feature at the time. So, in order to investigate
the effect of the different morphological features on parsing accuracy we
had to reformat the treebank. MaltParser comes with the opportunity to
change the input format. The files specifying the data format is a quite
simple XML file. The file has one data format element with the attribute
name. This element has one or more column attributes, containing all
the information of each column. We can see an example of the default
XML file in figure B.2.

In order to reformat the treebank, we used the information in the FEATS
column and distributed those features over ten new columns that were
added to the data format specification file. We created new columns for
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B.2. Reformatting the Norwegian Dependency Treebank

<?xml version="1.0" encoding="UTF-8"?>

<dataformat name="conllx">

<column name="ID" category="INPUT" type="INTEGER"/>

<column name="FORM" category="INPUT" type="STRING"/>

<column name="LEMMA" category="INPUT" type="STRING"/>

<column name="CPOSTAG" category="INPUT" type="STRING"/>

<column name="POSTAG" category="INPUT" type="STRING"/>

<column name="FEATS" category="INPUT" type="STRING"/>

<column name="HEAD" category="HEAD" type="INTEGER"/>

<column name="DEPREL" category="DEPENDENCY_EDGE_LABEL"

type="STRING"/>

<column name="PHEAD" category="IGNORE" type="INTEGER"

default="_"/>

<column name="PDEPREL" category="IGNORE" type="STRING"

default="_"/>

</dataformat>

Figure B.2: The CoNLL data format specification file taken from the
MaltParser user guide

ID FORM . . . GENDER NUMBER TYPE . . .
1 Det . . . nøyt ent pers . . .
2 sies . . . _ _ _ . . .
3 at . . . _ _ _ . . .

Table B.2: An example of a sentence from the Norwegian Dependency
Treebank represented in ConLL format

each morphosyntactic tag; gender, number, type, definiteness, person,
case and degree. We also created a separate column for the hum tag
and an additional column carrying information about whether a verb
being finite or infinite. Table B.2 gives us an idea of how the files in the
treebank ended up looking. In the experiments regarding part of speech
tags we added the form or lemma of each token to the part of speech tag.
A part of speech tag e.g. pron would end up looking like this pron-Det if
the token was Det. This was done using a similar system as the one we
used to create the additional columns.

We created a system for the reformatting, written in Python. Since we
wanted to measure the effect of individual features on parsing accuracy,
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B. Data format

we had to create a system that converts the extended version of the cor-
pus back to its original format. To validate the reformatting we used the
validation system facilitated by MaltOptimizer, validateFormat.py. As a
part of the experiments we modified each feature model so that we could
control which feature MaltParser looked at.
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