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Abstract

Det matematisk-naturvitenskapelige fakultet

Institutt for Geofag

Master of Science

Development of photogrammetric methods for landslide analysis

by Greg Saunders

This thesis assesses the accuracy and repeatability different image capture and analytical

methods for photogrammetric analysis of landslides. An open source software called

MicMac was used to create point clouds and orthoimages. Data from two sets of aerial

surveys of a scree slope near Oslo, Norway act as the main data sets. The surveys took

place a year apart. Different cameras and image capture methods were used. Despite

the different methods, sub pixel accuracy was achieved when matching point clouds.

The orthoimages were similar, but not as accurate as the point clouds. The orthoimages

showed movement up to 31 cm/year in an area believed to be stable.

Grain size analysis was carried out to determine the quality of the orthoimages and

point clouds. A clear relation between image resolution and particle size distribution

was found. The higher the resolution the lower the particle size. A defined relationship

has not been defined as more data is needed. A workflow has been set up for automated

grain size analysis.

Preliminary surveys have been completed at a glacially dammed lake in the Fjaerland

region of Norway. These surveys serve as a possible next step for this project.

http://www.uio.no
http://www.mn.uio.no
http://www.mn.uio.no/geo
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Chapter 1

Introduction

This thesis is focused on creating an efficient and robust method for analyzing land-

slide characteristics with photogrammetric analysis. Photogrammetry is the process of

reconstructing 3-dimensional scenes from image data (Schenk, 2005). The drastic im-

provements in imaging and computer power in the recent years are opening up new

doorways for scientific analysis. Traditional methods of landslide analysis required the

acquisition of physical measurements in potentially harmful environments. The ability

to safely collect high-resolution topographic data at little to no cost is making it possible

to more accurately monitor the world around us.

Landslide research has benefited immensely from the advent of 3d modeling. More and

more studies on landslide movement use 3D maps to determine regions of movement

and potential hazard (Travelletti and Malet, 2010). Photogrammetry is not the only

method for creating 3 dimensional maps over selected regions. Methods such as range

imaging (Nitsche et al., 2013) and laser scanning (Bitelli et al. (2003),Heritage and Milan

(2009),Goor (2011)) are also common. Research done with these modeling techniques

gives insight into what is possible with photogrammetry. Unlike these methods; however,

photogrammetry requires little equipment and surveys can be completed with minimal

training.

Methods of landslide monitoring discussed in this thesis are based around grains size

analysis and reproducibility. The size and shape of grains in a scree slope can poten-

tially provide information on past slide dynamics. Temporal monitoring is extremely

important in landslide monitoring. By testing various cameras and capture methods

this study aims at finding limitations and advantages associated with photogrammetry.

Taking these limitations into account, the end goal is to create a repeatable workflow

for start to finish photogrammetric analysis.

1



Chapter 2

Background

This chapter will cover information needed for understanding the processes, methods,

and motivation for this thesis.

2.1 Landslides

2.1.1 Definition

Landslides are defined as the downward movement of rock or soil due to gravity. They

must also have a density at least 10% higher than the density of water (Blasio, 2011).

Studying landslides is important for safety and economic reasons. People build and live

in locations where sliding can and will occur. The risk is both in potential lives lost

and infrastructure damage (Varnes, 1984). Varnes (1984) set the total risk for a region

in terms of the vulnerability, natural hazard, specific risk and elements at risk. This

classification of risk has been used and adapted and modified ever since (Westen et al.,

2005). Understanding the processes and mechanics involved in landslide movement will

help create a more accurate risk assessment. Forecasting the time of failure and the

areas susceptible to damage is crucial in completing a proper risk analysis.

2.1.2 Basic mechanics

It is important to be able to classify the stability of a slope (Blasio, 2011). The factor

of safety (F) is used for this (Equation 2.1). Figure 2.1 illustrates the basic landslide

mechanical processes. The weight of the block is a vertical force. This force is broken

down into a normal force and a driving force. The normal force acts normal to the failure

plane and is used to calculate the friction (resisting force). In addition, cohesion and

2
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man-made devices can add to the resisting force. The driving force is the force parallel

to the slope as seen in Figure 2.1.

F =
resisting forces

driving forces
(2.1)

Figure 2.1: Simplified free body diagram of forces involved in landslides. The weight
of the block is divided into a normal force on the sliding plane and a driving force. The
normal force is used in calculating the frictional resisting force (shear resistance). The

tensile strength of the rock can also be a factor.

In a dynamic loading situation there is a point at which the resisting force becomes less

than the driving force and slope failure occurs. This is the same as a book beginning

to slide on an increasingly inclined table. There is no movement until a certain angle is

reached, after which failure occurs and the book begins to slide. However, in complex

slides this is not the case. Complex landslides can exhibit small movements known as

creep over a longer period of time (Blasio, 2011).

Detection of this creep has been the focus of numerous studies. Temporal data of

creep movement makes it possible to set an estimate for when a landslide may occur

(Komamura and Yamamori, 1988). Velocity exponentially increases as the slide begins

to fail (Fig. 2.2). Komamura and Yamamori (1988) monitored the increasing velocity

by using scaled laboratory experiments. Field monitoring of active slides by Petley

(2004) confirms the laboratory results, as well as illustrates the effect of pore pressure

on movement (Fig. 2.3). Further study of landslide creep presented in Petley et al.
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(2005) suggests four different stages of landslide movement (Fig. 2.2). The stages of

landslide movement can change from one landslide to another. Xu et al. (2011) suggest

three phases instead of four stages. The differences in nomenclature are apparent, but

both studies agree that movement accelerates up to the failure point.

Figure 2.2: Graph of landslide movement with respect to time from Petley et al.
(2005). The four ”Types” represent four distinct stages in landslide movement. This
curve represents the idealized movement of a landslide overtime. It was created from

monitoring lab experiments.

Research is currently being conducted on active slides around the world. One such

slide is the Aaknes slide in Norway (Oppikofer, 2009). The slide overlies the Tafjord

fjord. A failure of the rock-mass could potentially result in a deadly tsunami. State of

the art monitoring systems have been put in place to monitor this slide. With proper

forecasting, lives and infrastructure can be saved.

The occurrence of landslide and rockfall events around the world and the associated

hazards creates a need for research on the controlling mechanics and processes. Research

has been completed on both macro and micro scales. The techniques, as presented in

this thesis, are aimed at creating an accessible and repeatable method for monitoring

potential slide movement and extracting data from 3-dimensional models of debris and

landslide tracks.

2.2 Monitoring

In-field monitoring is crucial for determining the present state of a landslide (Angeli

et al., 2000). Movement must be monitored at different points of the active sliding area
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Figure 2.3: Graph of landslide movement with respect to time from Petley (2004).
The data show the same exponential growth seen in Figure. 2.2. 0 time represents the
initiation of pore pressure recharge in the environment. The lines represent data from
equally spaced inclinometers from the top (3) to the bottom (10) of a slope. Line 4

shows great variation due to non-discussed reasons (Petley, 2004).

to determine the general movement of the slide. Frequency and position of monitoring

stations proved important in field studies presented in Angeli et al. (2000). Cruden

and Masoumzadeh (1987) show the necessity of real-time monitoring in order to predict

failures of a coal mine. The positioning and coverage of physical monitoring stations

proved to be a problem in Angeli et al. (2000) due to weight and access issues.

Remote analysis of landslide features allows for safe data collection. One method of

acquiring remote data is by satellite as in Eckardt et al. (2009) and Pierrot-Deseilligny

and Paparoditis (2006). These papers describe the resolution and accuracy of satel-

lites for mapping surface features. A problem with this method can be the resolution.

While satellites may be good for covering large regions, they may not have high enough

resolution for accurately mapping small regions.

Abellán et al. (2009) discusses the advantages of terrestrial laser scanning (TLS) for

landslide monitoring by showing the detection of millimetric deformation. Photogram-

metric analysis of landslide events is proving to be capable of producing 3 dimensional

point-clouds as robust as laser scanning Bitelli et al. (2003). Point-cloud analysis meth-

ods associated with laser scanning can potentially be used with photogrammetric data

analysis. Comparison between the two methods has been an important part of numer-

ous articles in the last 10 years (Lato and Vöge (2012), Bitelli et al. (2003), Lato et al.

(2013), Corsini et al. (2009), Hodge et al. (2009), and Tonon and Kottenstette (2006)).
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Thus it is important to explain the applications and problems associated with laser scan-

ning to understand the potential power of photogrammetry. Physical monitoring must

also be discussed as non-intrusive methods such as photogrammetry and TLS cannot

completely replace physical measurements.

2.2.1 Physical monitoring

Measurement of landslide movement has long used physical monitoring systems. These

systems are placed on the active sliding area to monitor movements. Physical monitoring

of landslides provides immediate data relating to movement and size. The problem with

this is the need for numerous data points to obtain an overview of a landslide’s movement.

For each data point a separate monitoring system must be used. Dense data surveys

can become expensive. Additionally, the danger of physically placing the monitoring

systems must also be taken into account.

Typical instruments used to monitor landslide movements are extensometers, inclinome-

ters, and piezometers. Extensometers measure extension between a fixed point and a

point on the active slide. Inclinometers, which measure changes in inclination, need

to be installed in drill holes in the active slide. The data shows the slide dynamics at

depth. Piezometers are used to determine water content. The data from extensometers

and inclinometers can be determined using either TLS or photogrammetry. The data

from piezometers cannot be collected from non-intrusive methods (Wieczorek and Sny-

der, 2009). There are other monitoring techniques for monitoring landslides, but like

piezometers most other measurements require physical contact. This thesis focuses on

remotely captured data.

2.2.2 Satellite

ADD STUFF HERE SOOOOOON

2.2.3 Terrestrial laser scanning

TLS uses a laser scanner to determine accurate source to feature distances. The output

of a laser scan in a point-cloud composed of (x,y,z) coordinates. As noted by Abellán

et al. (2009), TLS provides a comprehensive method of categorizing landslide movement

and that further validation was required to ensure correct results. Other studies around

world have been completed using TLS as a data source (Abellán et al. (2011), Lato et al.

(2010), Buckley et al. (2008), and Heritage and Milan (2009)). This is a very short list
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of past TLS use in the geological setting. The main conclusion is that TLS provides an

accurate method to collect data on static field areas from a safe distance. This is crucial

as often physical measurements can be dangerous or difficult to complete (Lato et al.,

2010).

One drawback commonly associated with TLS is line of sight (Fig. 2.4). This is a

problem which occurs when the TLS scans a scene and misses data due to objects in the

foreground. This can be rectified by using multiple scan locations, but this additional

scanning takes time.

Figure 2.4: Diagram showing potential problems associated with a stationary scan-
ning position. The line on the right represents a cross-section of a surface to be scanned.
The varying darkness of the shading around the line represents data quality. For rough

surfaces the quality of data decreases. Figure from Lato et al. (2010)

TLS has advantages and disadvantages. Some advantages of TLS are: the immediate

construction of a point-cloud which can be directly analyzed, no lighting constraints on

scan locations or times, and the ability to ”see” through vegetation (Bitelli et al., 2003).

On the other hand, TLS systems are expensive to purchase or rent, heavy, and difficult

to transport over rough terrain. They also do not allow for easy creation of orthoimages.

Maximizing data coverage requires movement and the distance is limited by the specific

model (Tonon and Kottenstette, 2006).
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2.2.4 Photogrammetry

Photogrammetry is the process of gaining surface data from a region with use of image

analysis instead of direct physical contact (Schenk, 2005). Photogrammetry uses image

matching to create 3 dimensional scenes. The output is typically an orthoimage and

a point-cloud. The image matching is done by triangulating points and sources from

different images. The spatial relation of points between images allows for the calculation

of scale invariant distances (Lowe, 2004). The concept is similar to eyesight. Acting as

two cameras our eyes focus on one object. The slightly different angles of the ”images”

seen by out eyes allow us to estimate distance and see in 3D (Pandey, 1987).

2.2.4.1 History

Photogrammetry dates back to 1839. In the beginning, stereo photogrammetry was

used. Images were taken from offset positions and viewed with stereoscopic equipment.

With the invention of the airplane, this technique became more applicable. This was

fine-tuned until the invention of the computer. Computational photogrammetry allowed

for calculation of distances based on point matching algorithms (Schenk, 2005). The

invention of digital cameras and faster computers has created the present state of pho-

togrammetry. Processing techniques are speeding up and resolution and repeatability

are increasing. The stages of photogrammetry are seen in Figure 2.5.

Figure 2.5: Plot showing the invention and use of different photogrammetrical meth-
ods with respect to time. Important inventions related to photogrammetric innovations

are shown. Figure from Schenk (2005).

.
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2.2.4.2 Applications

Photogrammetric applications are not limited to a specific field. Innovative software

has been developed for various applications. Snavely et al. (2007) propose a method

with which to use georeferenced images from internet photo collections to ”model the

world”. This uses globally positioned images to reconstruct urban surface features.

Accuracy is not crucial in this application. On the other side of the spectrum Koch

and Kaehler (2009) describe a method of highly accurate surface reconstruction using

photogrammetry and laser scanning. This technique resulted in a resolution of +/- 1

mm over a multi-meter long wall.

In landslide monitoring, photogrammetry is mainly used for two things. First, monitor-

ing of landslide movement can use temporal photogrammetric data to track movement..

This is done by repeating surveys over time and comparing differences in the point-cloud

and orthoimages. This can be read about in Bitelli et al. (2003), Mora et al. (2003),

Niethammer et al. (2012), and Wieczorek and Snyder (2009). These studies cover dif-

ferent sized regions and image capture techniques. Second, photogrammetry is used

for determining fracture orientation. This involves planar feature analysis for insitu

rock faces (Lato et al. (2012),Lato et al. (2013), Wolter et al. (2014), and Collins and

Stock (2012)). These studies use plane fitting algorithms to define potentially problem-

atic joints, discontinuities, and slide planes (Collins and Stock, 2012). The advantages

of photogrammetric surveys are becoming clear for their ability to increase safety and

accuracy while limiting cost (Mart́ın et al., 2013).

2.2.4.3 Grain size analysis

Aside from studies directly relating to landslides there are plenty of other applications

for photogrammetric analysis in landslide-like environments. Tarolli (2014) mentions

how photogrammetry and LiDAR (Light detection and ranging) can be used to monitor

volcanoes, measure grain size, track morphogolical evolution, define landscapes, and

evaluate engineered landscapes. Trevisani et al. (2009) describe a method for using

LiDAR based digital terrain models (DTMs) to monitor surface feature characteristics

of scree slopes.

Grain size analysis of riverbeds has been crucial for determining flow dynamics. River

hydraulics are directly affected by grain size (Butler and Place, 2002). There are various

methods for extracting grain size. The physical method of measuring specific grains

in the field is time consuming. It is also difficult to gain sufficient spatial resolution.

Verdú et al. (2005) used photogrammetry to create orthoimages from which textural
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variables and semivariograms were used to define grain size. This was calibrated using

in-field measurements. The benefit of this type of study is the ability to extract accurate

data from low resolution images. Buscombe (2013) used images for grain size analysis

with a wavelet transform. This method does not separate specific grains, instead it uses

image variations. Butler and Place (2002) combined texture operators from a digital

elevation model ”DEM” and image thresholding from an orthoimage to define grain

boundaries. Bertin et al. (2014) used a 3D printed gravel bed with known geometry

to test photogrammetric methods. This study sets parameters for properly imaging an

area to get the best results.

Further work is being done with the grain size analysis of riverbeds with laser scanning

and range imaging (RIM) (Nitsche et al., 2013). With laser scanning it is possible only

to use the DEM as no orthoimage is created (Hodge et al., 2009). Shadowing (Fig. 2.4)

was present in this survey. The base has been set for grain size analysis of landslides and

debris fields. Further study in angularity of grains and application in landslide dynamics

is needed.

2.2.4.4 Structure from motion (SFM)

As mentioned above photogrammetric analysis began using analog photographs. With

a minimum of two images, stereo viewing is possible. Algorithms have been created

to analyze data from multiple images. The basis for these algorithms is the matching

of similar feature points between images (Butler et al., 1998). With digital imagery

and high power/low cost computers, research in refining these algorithms is common.

Initially ground coordinates and camera coordinates were used to set parameters for

image matching.

Current methods of photogrammetric bundle adjustment reconstruct scenes without the

need for ground control points or camera positions (Triggs et al., 2000). The data will be

scaleless The process begins with feature point selection (Pollefeys et al., 2001). Triggs

et al. (2000) argue against claims of bundle adjustment being slow. This innovation

makes it possible to reconstruct images from non-traditional field surveys. Analysis of

imagery from handheld and UAV surveys is now both practical and accurate (Turner

et al., 2012). The current use for accurate ground control points is geo-referencing to

pre-existing maps, as scale can be determined by measured features or in-camera GPS.

One of the main methods in SMF analysis has been the Scale Invariant Feature Trans-

form (SIFT) (Lowe, 2004). This method uses four steps for generating image features:

Scale-space extrema detection, keypoint localization, orientation assignment, and key-

point descriptor. In short, the method selects points, orients them based on gradient
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directions, and sets parameters for what the point looks like when viewed from different

viewpoints or illuminations (Fig. 2.6). Running systems like this can be very memory

intensive, thus images are scaled down. Using an iterative process of adding keypoints

and increasing resolution, position of points are determined (Lowe, 2004). When using

the photogrammetry software MicMac, a modified version of SIFT (sift++) is used for

extraction of tie points by default (Georgantas, 2012)

Figure 2.6: Diagram showing the effect of angular position on perceived image. The
ground has a even grid which looks distorted from various positions. (Schenk, 1997)

For the purpose of this thesis, the details surrounding photogrammetry and SFM analysis

will not be covered in great detail as it is the application of the tool which is the focus.
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Methods

3.1 Image capture

As mentioned in Section 2.2.4.2 there are different applications for photogrammetry.

The desired accuracy of results relies on both image capture and data processing.

Resolution of an ortho-photo and density of a point-cloud are important parameters

when selecting data capture and processing. Image scale is directly proportional to

focal length of the camera as seen in Equation 3.1 (Burns, 1993). As seen in figure 3.1

the variables are: S=scale, f=focal length, H=flying height above datum, h=average

terrain elevation, d=distance on photograph, and D=distance on ground (Burns, 1993)

. The result ”S” is the scale of the image. Scale is a ratio of image scale to actual

scale. Focal length is typically given in mm. With digital cameras, this information is

commonly stored in the exif data of an image (Snavely et al., 2007). Exif data is data

stored in the image file of most digital cameras. It holds information such as, camera

type, date, and time.

S =
f

H – h
=

d

D
(3.1)

If the desired resolution and focal length of the lens are known, the optimal imaging

distance can be calculated. The processing of photogrammetric images uses the distances

between tie points to triangulate the camera position and create a 3D model (Schenk,

1997). For this to work, the same points must be visible in multiple images. The

amount of overlap between images is an important factor. Triggs et al. (2000) suggest

that overlap between subsequent images (forward overlap) should be 50-70% and 10-20%

overlap between line of images (side overlap). Additional overlap will create more data

12
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Figure 3.1: Diagram showing the variables associated with equation 3.1. The camera
position is at the top of the triangle. The datum is selected by using a level lower than
the lowest point on in the study area. D=ground distance, d=distance on photograph,
H=height above datum, h=height of ground over datum, f=focal length. Figure from

Burns (1993)

.

to analyze and longer processing times. Figure 3.2 displays a potential overlap map if

both forward and side overlap were 75%

For stereo imaging, only two images are required. For digital photogrammetry analysis

with the structure from motion (SFM 2.2.4.4) program MicMac, a minimum of three

points must be visible in three images for georeferencing. Although this is the minimum,

it is not advised. Additional images will allow for more accurate geometry reconstruc-

tion. Shooting images in a line with 75% overlap will result in 4 times overlap (Fig.

3.2). This should be seen a the minimum overlap when setting up photo surveys. Other

studies use greater (Pierrot-deseilligny et al., 2011)-(80%) and lesser (Javernick et al.,

2014)-(60%) is required. Pierrot-deseilligny et al. (2011) studied more angular objects

than Javernick et al. (2014) so this may be a cause for the difference in suggested overlap.

For the purpose of this study 75 % overlap is the goal.

It should be noted that when taking images for photogrammetry, a strict set of rules

should be followed to ensure the best results (Butterworth (2012)). When photographing

a region the focus, zoom, and exposure should not be changed. If the camera has an

optical image stabilizer, it should be turned off. Each of these variables can cause
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Figure 3.2: Image showing overlap between 20 images (5 horizontal x 4 vertical) taken
with 25% overlap. The black box outlines the upper left image. The numbers show
the increase in number of times each region has been photographed. Darker areas show

greater overlap. The maximum overlap occurs near the center with 16x overlap.

problems in processing. When processing with SFM programs, such as MicMac, it is

common for the program to set a fixed distortion constant for all images. A change

in focus or zoom affects this distortion. The image stabilizer can potentially cause

distortion as the sensor may change its position relative to the lens (Butterworth, 2012).

When photographing a planar environment, obtaining the image overlap described above

will be sufficient for image capturing. This method is called aerial analysis (Fig. 3.3).

For round objects or corners, a different strategy is needed. The strategy is to shoot

converging images around a central image (Fig. 3.3). At least four images should be

linked to each master image. Pierrot-desseilligny and Clery (2008) suggest that 15 degree

rotation around central point between images allows for proper overlap.

When capturing images, it is important to note scale. This can be by measuring the dis-

tance between two points in the field (Georgantas, 2012) . This will allow for an accurate

scale to be determined in the ortho-photo and point-cloud. For georeferenced scenes,

ground control points (GCPs) are needed. Using SFM algorithms creates a scaleless

point-cloud. By inputing GCP positions, the scaleless point-cloud can be georeferenced.

This can be done in the processing steps by linking GCP location to exact pixels in im-

ages (Pierrot-Deseilligny, 2013). The user interface for MicMac warns that the accuracy

of the georeferencing is dependent on accuracy in matching and final noise (Clery, 2013)
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Figure 3.3: Two diagrams showing photo capture methods for photogrammetry. The
camera positions are sequential in the direction of the arrow. The left is known as
”Arial”. Photos should be taken at a constant distance and spacing. The right is
”Converging”. Images are taken at a constant distance from the surface with 15 degrees

of rotation of the camera between images.

Proper use of the controllable variables will increase the accuracy of the final result.

There are some variables which are harder to control. Lighting can present some prob-

lems. The ideal conditions for capture are overcast. Shadows cause problems when

imaging outside. Triggs et al. (2000) note that shadows may cause errors in point cloud

creation. Stumpf et al. (2013) notes that, when comparing time steps from a tempo-

ral study of surface deformation, lighting condition changes make radiometric correction

techniques for complex and changing surfaces difficult. Shadows also may cause problems

in post processing. Yen (2003) note that strong shadows can be improperly identified

as an edge using edge detection algorithms. This being said, it is important to realize

the problems associated with image capture under direct sunlight.

3.2 Data organization and processing

After collection of data, it is important that it is manually organized and filtered. Or-

ganizing refers to labeling the files in logical numerical order, and filtering refers to the

removal of blurry or obstructed images. The result of not doing this was noticed in a

trial survey of a brick wall. One photo was blurry due to camera movement. In process-

ing, this image was not removed from the series. This resulted in a blurred section on

the ortho-image seen in Figure 3.4. If analysis of the ortho-image required a certain res-

olution the blurred section could cause potential problems. Additionally ,images which

have high levels of vegetation may also cause a problem as the vegetation may move
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between images. Thd effect of vegetation on surrounding points is discussed in Javer-

nick et al. (2014). Using MicMac images with over 75% vegetation caused processing

problems. Excess vegetation once caused MicMac to crash. Images should be limited to

in-focus images which cover the study region.

Figure 3.4: This figure shows an ortho-photo composed of a mosaic of the original
images. The image used for the right hand portion was out of focus. A total of 4 images

were used in the processing.

After a set of images is chosen to be analyzed, the photogrammetry software MicMac is

used to process the images.

3.3 MicMac

MicMac is an open sourced photogrammetry software. Unlike other open source 3D

reconstruction software, MicMac is focused on creating repeatable and precise 3D re-

constructions. Other open sourced software typically create good visual representation,

but the results lack detail and accuracy (Pierrot-deseilligny et al., 2011). The process

is automated; however, there is plenty of room for user input. The two workflows out-

lined here are by no means the only ways to process images using MicMac, they are a

suggestion for how to quickly and repeatably produce results. The steps in processing

images after they have been captured and sorted are straight forward, see Figure 3.5.

As seen in Figure 3.5, there are four main steps for processing image data with a fifth step

option for geo-referencing. In this thesis, two main workflows are used. The ”aerial”

workflow is designed for a set of images which are all roughly taken from the same
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Figure 3.5: This figure shows the basic MicMac workflow , adapted from Girod (2012).
The step Apero is optional since it is only used if georeferencing is done.

distance and angle. A basic example of this kind of survey is a plane flying over a

field. The ”converging” workflow is designed for images converging around a point (ie.

a corner). The two workflows are detailed below.

3.3.1 Aerial workflow

As stated above, the aerial workflow images should in practice be taken with lines of

sight, overlap should be around 75% and no camera setting should be changed during

the survey.

3.3.1.1 Tapioca

Tapioca is the first step in processing image data. The goal of Tapioca is to select tie

points from the separate images by using a SIFT command (Lowe, 2004). For full scale
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Figure 3.6: This is the basic aerial workflow used for this thesis. The specifics are
discussed below.

images this may be time consuming. There are options for speeding up the process.

Using a MulScale (multiple scale) approach the images are resized before the tie points

are calculated. The problem with choosing a MulScale approach is the loss of data. With

few tie points the final result may be compromised. To test this, two workflows were

run on identical datasets consisting of four images of a brick wall. One was completed

at full resolution and the other used a MulScale approach. The full scale approach took

21.38 minutes. The mulscale approach took 1.56 minutes. The immediate advantage of

using the MulScale approach is apparent. The two tests continued with the first using

the maximum degrees of freedom in the next step (Tapas), and the second used limited

degrees of freedom. After this, the process was the same. The total time for the accurate

version was 40.91 minutes and the reduced quality time was 20.34 minutes. These times

were gathered from the output file named mm3d-LogFile.txt. The reduction in quality

saved lot of computer processing time. The resulting point clouds were compared using

methods described in Section 3.6.1. The results of this comparison are seen in Figures 3.7

and 3.8. The differences here are absolute distances. There is a clear pattern. From this

analysis it is impossible to tell which cloud is more accurate. The patterned variations

show that depth resolution under half a pixel is not reliable.

Based on these observations, the time needed for full resolution processing is not needed.

The use of MulScale in Tapioca cuts the processing time nearly in half while producing

very similar results. The non-uniform noise in Figure 3.8 is centered mostly around the

edges of the bricks. A slight outline of a brick can be seen on the right hand side of the

image. It is not known which processing method most correctly created the point cloud.

An experiment similar to the 3D printed gravel experiment by Bertin et al. (2014) is

needed to assess this.
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Figure 3.7: Resulting ortho-photo from the test for speed vs. quality. The section
highlighted in red was used for point cloud analysis.

3.3.1.2 Tapas

Tapas is a tool which extracts camera data from the exif file of an image. This data gives

information on the focal length and type of lens used. From this, the distortion in the

images is known and the program can properly calculate the positions of the cameras

and points. The output from this step is a series in scale invarient points. Based on

the test run on the Tapioca and Tapas settings, it is recommended to use the option

of FraserBasic when using Tapas. This limits the degrees of freedom when calculating

camera positions. By creating the system of points an cameras Tapas also creates a

scale-less coordinate system. This coordinate system should be saved for future use.
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Figure 3.8: Point cloud comparison between the high resolution and low resolution
tests. The scale is in cm. The resolution of the input images was 1pixel=0.074cm. The

average error between the two point clouds is roughly half a pixel in distance.

3.3.1.3 Apericloud

This step is not required in the processing of image data; however, the output can be

useful for ensuring the proper completion of the first steps and as a visual aid. The

output is a scale invariant display of the tie points and camera positions. A quick glance

at the cloud will make it clear if the processing has failed. Figure 3.9 shows camera

positions for a terrestrial survey of a glacial moraine in Fjaerland, Norway. The camera

positions match the path taken (not shown). This cloud shows that the survey is on the

right track. The cloud is dense in the regions of interest and the positions are correct.

Figure 3.10 shows a failed apericloud of a classmates head. Some of the camera positions

are correct, but the full circle of images is not seen. The point cloud, composed of tie

points, is very sparse. This suggests the final high density point cloud may not be

accurate. Failure by this point is most likely due to poor survey quality. In the case of

the head, the survey probably failed due to subject movement.

3.3.1.4 Georeferencing and orienting

The georeferencing process is explained clearly in the MicMac documentation (Pierrot-

Deseilligny, 2013). There are no user input parameters for changing the output or

speeding up the process. This step will not be explained here. A sample workflow
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Figure 3.9: This is an example of an apericloud. The camera positions (green/red)
all appear to be correct and the point cloud is dense on the moraine which was the

subject of this survey.

Figure 3.10: This is an example of a poor apericloud. The survey was of a classmate’s
head. The tie point cloud is very sparse, and the camera positions should circle the
head completely. This suggests future problems in the creation of a high resolution

point cloud.

with georeferencing steps is in the appendix for reference. It should be noted that when

importing GCPs, the maximum number of figures in a coordinate is 6. When using UTM

coordinates the largest numbers can be removed and the scene will maintain the same

geometry. If the point-cloud needs to be placed on a georeferenced map, an additional

transformation is needed to properly orient the image to make up for removed digits.
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3.3.1.5 Tarama

Once the scene is positioned, Tarama is used to create a simple ortho-rectified image.

This image is used for cropping the scene for high resolution processing. A binary mask

(TA LeChantier Masq.tif) must be created to select the region to be used for the ortho-

photo and point cloud. It is important to only select the region of interest so as to

minimize processing time. An example of a Tarama output is seen in Figure 3.11. The

mask is seen on the right.

Figure 3.11: This is an example of the output from Tarama. The rectified image on
the left and the user created binary mask on the right. The region inside the mask
will be processed. This mask was chosen to ensure the resulting orthophotos and point

clouds would include at least three of the georeferencing points.

3.3.1.6 Creation of the ortho-photo and point-cloud

The last three steps (Malt, Tawny, and Nuage2ply) for the aerial survey are straight

forward but time consuming. In the low resolution brick survey, above 85% of the
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processing time was used on these steps. There is no way to speed up this process. The

workflow for these steps are in Figure 3.12.

3.3.2 Converging workflow

The initial steps of a converging survey are the same as for the aerial survey until the

completion of AperiCloud. After this point there, is no need to create an ortho-image as

the study area is not flat. If the surveying technique of taking a minimum of one photo

every 15 degrees was completed, then there should be sufficient photos for analysis. At

this point the user needs to select master images. A mask needs to be created for each

of these images. It is important when masking the images to select faces nearly normal

to the camera, and to avoid cropping over outside the feature. This causes improperly

oriented points to appear. The user must also select which images to pair the masters

with. This limits the total processing time as only selected images are compared with

each other. A minimum of four images should be paired to each master. Images can be

paired to more than one master. .xml files will also need to be created for the individual

master images and one combined .xml file for the masters and the images they are paired

with. More on this is found in the user guide (Pierrot-Deseilligny, 2013). Masking should

be done with care. As seen in Figure 3.13, over masking can result in artifacts.

Figure 3.12: This is the basic converging workflow used for this thesis. The initial
steps are the same as for aerial. The user must make masks for selected ”master images”.
These images must be input into the Micmac-POV.xml file. SaisieMasq DSC... refers

to masking the master images.

After the masking is complete, the point-cloud can be created. The syntax can be seen

in the appendix.

3.4 Potential Problems with MicMac

Over the course of this work, certain problems arose when using MicMac. One common

problem was the effect of vignetting. The effect may not be noticeable on small scale

surveys, but on aerial surveys consisting of hundreds of images, the effects of vignetting

on of the original photos multiplies. Luckily MicMac has a solution for this. The tool,
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Figure 3.13: Image showing a corner of the boulder used in the terrestrial survey.
Due to improper cropping of the ”master” images to be used in the convergent micmac

workflow, artifacts such as this appear. The boulder did not have this shape.

Vodka, creates a mask for multiplication against the images before they are used in the

final steps. The problem with vignetting is that when hundreds of images are complied

the effects show up drastically on the edges. This was apparent in the Kolsaas data.

Figure 3.14: The upper images is an orthophoto generated before Vodka use. The
bottoms image shows the effect of Vodka on the processing. Although this does not
effect the point cloud geometry, vignetted images makes intensity based image filtering

difficult.

Another problem associated with MicMac is the need for correctly captured data. This

only became an issue when dealing with large images sets with high amounts of vertical

camera movement. This occurred when the drone did not stay a fixed distance away

from the surface in the fall 2014 study of Kolsaas. The sporadic images caused MicMac

to crash when attempts were made to process many images at the same time.
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3.5 Grain size analysis

Figure 3.15: Workflow showing the steps in the grainsize analysis MatLab package.
The variables used in refining the grainsize analysis are shown. The outputs are grain

overlay images, grainsize statistics, and detail maps of selected regions.

For grain size analysis a few methods were used. The programs used for this task were

MATLAB, cloudcompard, photoshop, and MIP4 student. Matlab was used to run image

analysis code created for this thesis. Matlab was selected due to the pre-exisiting set of

image analysis tool specifically the Image Processing Toolbox. This toolbox consists of

tools for segmentation, morphology, statistics, and measurement (MathWorks (2014)).

Cloudcompare was used to create a digital elevation model (DEM) based on the point

cloud of a selected region. Photoshop was used for manual image analysis. MIP4 student

is an image analysis program with automated grainsize analysis built in. This was used

as a comparison for results from the Matlab generated code.

3.5.1 CloudCompare

CloudCompare is a point cloud analysis software. It accepts a wide range of point cloud

types and is open sourced. There is an active online community available for problems

(www.cloudcompare.org/forum).

For the purpose of grain size analysis cloud compare was used to import point clouds

from the aerial surveys. The data was then checked for accuracy between point clouds.

If differences existed a planar and rotational translation was used to match point clouds.
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Once the point clouds were oriented a the region for analysis was selected. This was done

by finding a region between point clouds which had no holes and a sufficient amount of

data for analysis. Typically the largest central region was selected. Further segmentation

occurs in MATLAB if needed. This step is completely user controlled. With the regions

selected a best fit plane is fitted and they are rotated to horizontal. This allows for the

creation of an ortho image and height map to be created. Without planar rotation the

height map would show values based on elevation instead of highlighting grain shape.

The scale of the selected region remains constant.

A height map (DEM) is then created using the ”Height grid generation” tool. When

exporting the DEM image file it is important to also export a text file. This file will

show the range of values. If the point cloud has been georeferenced in MicMac this will

be in the same scale used when georeferencing. The DEM is grayscale with values from

0-256. Dividing the range in values in the text file by 256 the scale can be found. In

post processing in MatLab it is important to take these values into consideration.

The ortho image from CloudCompare is exported using ”Render to file” when the camera

positions are all set to ”0”. Resolution can be selected here. I suggest a value of 4 times.

This outputs an ortho-photo of the scene roughly the same dimension as the DEM.For

the ortho-photo the bounding box should be left on for the MatLab analysis. This serves

as a bounding box used in cropping the images. The ortho is known as ORTHO DEM in

MATLAB. This image is the same shape as the DEM and used for matching the DEM

to the ortho-photo exported by MicMac.

If desired a roughness map can be generated. Kernel size is the manual input. If the

point clouds are georeferenced this will be in the scale of the image. For the purposes

of this thesis the roughness maps were not used, but they may provide important data

relating to slide characteristics.

3.5.2 MATLAB

Unless otherwise specified the MATLAB code presented in this section was created for

use in this thesis. The MATLAB code for grain size analysis was first broken into

separate sections. One for extracting grain size data from ortho-photos and the other

for gathering data from the DEM. This was done to find the benefits and drawbacks of

each technique. They were then combined to form the ideal results.

The full code is found in the appendix. The code is broken into functions for specific

tasks. The separate functions are compiled in one all inclusive operating file. The
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required input for the code to function are (parenthesized names are the names used in

Matlab ):

Ortho image(ORTHO) This is the direct output from MicMac

DEM (DEM) This file is created in CloudCompare 3.5.1

Ortho of the DEM region(ORTHO DEM) Created in CloudCompare3.5.1

Georeferencing points (p1,p2...) Minimum of 3 points are used for scale.

3.5.2.1 scaleortho.m

The first step is to determine the scale of the ortho-photos. This requires the ortho-

photo and the three ground control points. The user is prompted to select the ground

control points from the ortho-photo. The distance between selected points is compared

to the input points. There is also a two point version for ortho-photos with only two

points. The advantage of the three point version is further verification of the actual

scale. If the scale of the ortho-photo is already known this step can be skipped.

3.5.2.2 matching.m

This function allows for matching of ortho-photos and DEMs. The first step is to

match ORTHO DEM to the DEM. This is done by cropping, scaling, and matching

ORTHO DEM. The DEM is not scaled to preserve the highest data quality. The scale

of ORTHO DEM is not important as it is just used for matching purposes. A function

called resize ORTHO DEM.m is used for the sizing and positioning of ORTHO DEM.

This function removes the background from the ORTHO DEM and creates a binary

composite image to be used as a mask for ORTHO DEM. The yellow box, discussed in

section 3.5.1, is then used as a bounding box. Everything outside the box is removed.

The image is then scaled to the same size as DEM.

Next the matched DEM and ORTHO DEM are matched with ORTHO. There is both an

automated function for this and a manual. It is recommended to check the output of the

automated matching before continuing on. The automated matching (match auto.m)

creates feature points and attempts to match them between the two input images (OR-

THO DEM and ORTHO). Proper output should look similar to figure 3.16. Improper

matching usually has less than ten functioning tie points. The option to view this figure

is commented in match auto.m. With improper matching the option to manually se-

lect tie points is available through match manual.m. This uses the same transformation
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function with manually input tie points. A minimum of three are required. Accuracy

in this step is crucial. Combining of the DEM and ORTHO grain size results requires

perfectly matched images. Offset could lead to off set results and improper data. The

output images are cropped to the maximum extent of the selected region.

Figure 3.16: Figure showing the results of successful match auto.m matching. The
red image is ORTHO. The red are feature points found but not used in matching. The
light colored part of the image represents the original location of ORTHO DEM. THe
green points are feature points used for matching. The yellow lines connect matching

feature points on ORTHO and ORTHO DEM.

3.5.2.3 watershed analysis.m

This function is the first step of grain size analysis. Using the watershed function built

into the image analysis toolbox in MATLAB. There are multiple outputs from this step.

The main output is a map of separated grains. The functionality of this step is based on

brightness levels of the ORTHO image. Watershed analysis works by separating images

by the highest lines of brightness Barraud (2006). The levels were elevation the image

are split in to separate regions where water collects. The brightness on top of the grains

is greater than that in the shadowed regions surrounding then. For this reason a negative

of the ORTHO was used. This made the grains the darkest and the surrounding areas

the lightest. Originally watershed was over segmenting the grains. This was due to

imperfections on the grain surfaces.

Over large regions looking at individual grains will not be visually representative of grain-

size over the region. For this reason grainanaly.m (function in watershed analysis.m)

breaks the ORTHO image into pixels. The area of these pixels is user defined. It is

recommended to make them square. The size of the image must also be divisible by

the size of the pixel. Once segmented each pixel is assigned an average value for mean

grain size area. Grains boarding the edge are removed. The result is a visual represen-

tation of changing average grain sizes over the ORTHO. Variables in grainanaly.m may

be manually changed to fine tune the results.

It is also an option to analyze a specific region (grainpix.m) to clearly see the grain

boundaries. This function uses the same parameters as grainanaly.m over a smaller

area. It is a good idea to find tune the variables here before running the full analysis.
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There are also matching codes set up for the analysis of the DEM. The same variables

are used as for the ORTHO image.

One easily noticeable problem with this technique is the over segmentation of larger

grains. Changing the variables does little to fix this (Fig. 3.17). The smaller grains in

are apparently segmented properly.

Figure 3.17: Seen here is the watershed segmentation of the ORTHO image. The
original image is on the right. As is easily evident. Over segmentation is occurring over

the larger grains

3.5.3 edge detect .m

This function uses edge detection instead of watershed. This allows for the detection of

grains based on gradient changes in the image brightness. The image toolbox has two

built in edge detection algorithm: sobel and canny. These are good for grain boundaries.

They are not however easily modifiable and result in rough boarders for the edges Yen

(2003). For the purpose of this project they are sufficient.

When testing the two detection algorithms sobel returned more accurate results. Canny

seemed to under segment the image. Edge detection worked well at initially segmenting

the large grains, but the smaller grains were not well segmented. To solve this problem

the large grains were stored as shapes on a binary image. This image was then multiplied

against the original ortho-photo to create a new image for edge detecting. Watershed

was used for its ability to define the small grains as stated in 3.5.2.3.

3.5.4 Analyzing the grain data

To analyze the grain data a select area was chosen for analysis. Various techniques were

used to fine tune the processing. Once the processing reaches a sufficient level the results

were compared between the flights. Ideally the result should be the same. The main
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tool for assessing validity of the results was a visual analysis of the region. It is clear

when the analysis is not correct. The attempt is to create a workflow that can produce

statistically significant results between different data sources.

3.6 Further analysis

3.6.1 Comparing point clouds

The comparison of point clouds is done using CloudCompare. Living up to its name,

CloudCompare can measure the difference between point clouds. The georeferencing

should limit differences between the point clouds. The small differences can be cor-

rected for by matching the clouds and preforming a transformation. This transformation

should not skew or scale the data. This can be done by manually selecting points of

by automatically alignment. Manual alignment is useful for surveys in which movement

may have occurred. With automatic alignment the best fit match can be made. From

here the point clouds can be compared for similarities.

3.6.2 Orthoimage comparison

The ability to reproduce an accurate and repeatable orthoimage is key to this experi-

ment. Being able to extract the same results from different surveys of the same features

will be a validation of this project. To Compare the orthoimages they are matched using

either manual or automated matching (similar to Fig. 3.16). After this the movement

of pixels is monitored using the motion detecting function normxcorr2.m Analysis of the

resulting vectors will show if the accuracy of the orthoimages is sufficient. The MAT-

LAB codes for this can be found in the Appendix .One problem with this code is it is

memory intensive when automatically matching points between two orthoimages. This

resulted in the crashing of MATLAB To work around this a manual matching tool was

created. A minimum of three points are required for the manual matching.

The offset is displayed as a group of vectors. Each vector represents the average dis-

placement vector for a 50 pixel x 50 pixel surrounding region.

3.6.3 Roughness

Even though the values for roughness will not be analyzed in this thesis the ability

to reproduce them is important. To ensure similar roughness measurements can be



Methods 31

repeated a roughness map will be made for each of the three flights. A quick visual

inspection of these roughness maps will show if the values are easily repeatable.
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Kolsaas

Figure 4.1: Map showing the location of the Kolsaas scree slop in Norway. The scree
slope is outlined in black in the lower right hand image.

A scree slope located in Kolsaas Norway (Fig. 4.1) is the main study area for this thesis.

The slope was selected for multiple reasons. The slope lays beneath a cliff composed

of near horizontal layers of multiple rock types. The lateral and vertical changes in

composition cause the scree to have near homogeneous and mixed grain sizes throughout.

In addition to varying composition the scree slope is hard to access as the bottom is

surrounded by trees and the top of the cliff is hazardous without proper equipment.

These sort of access problems can be very common when dealing with slide tracks in

wooded or highly topographic terrain making Kolsaas an ideal location for developing a

workflow for landslide track analysis.

32
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4.1 Geological Setting

Figure 4.2: Geologic map (left) and bore hole data (right) as presented in Dons and
Gyory (1967). This The map shows the extent of the porphyry on the mountain. The
geologic map covers approximately the same region as the bottom right image in fig.

4.1. The bore hole data shows the presence of The Kolsaas Formation

Kolsaas is an easy to access hill located 10 kilometers from the center of Oslo. The

site is a popular outdoor destination and geology tour groups commonly frequent the

region due to the ease of access and exposed outcrops (Dons and Gyory, 1967). Located

in the Oslo rift the geology of Kolsaas consists of both sedimentary and igneous rocks.

The hill of Kolsaas is also a popular climbing destination with multiple cliffs. The cliff

and scree presented in this thesis are located on the eastern side of Kolsaas (fig.4.1).

The region was geomorphologically shaped by glaciers during the past glaciations. The

stratigraphy of the region consists of multiple groups (fig.4.2). At the base of Kolsaas

the Asker group is found. This group, permian in age, consists of three formations.

The Kolsaas Formation is the lowest member of the Asker group ((Dons and Gyory,

1967). This formation is overlain by the Tanum formation. The Tanum formation is

dominated by quartz grain with mica, limestone, and schist also found (Larsen et al.,

2008). The Skaugum Formation, which is the top formation in the Asker Group, is not

clearly defined in the Kolsaas area (citepTidsskrift)
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The Asker group is then covered by a basalt flow. The flow was one of the first dating

around 300 ma. With a thickness of 20 to 30 meters this is one of the dominating layers

in the study area. The basaltic layer known as B1 in literature is believed to have been

created by a single flow. Following the B1 flow a sandstone of irregular thickness and

composition was deposited. Above this sandstone is a Rhomb-porphyry lava or RP1

(Dons and Gyory, 1967). This layer is the result of volcanic eruptions associated with

the Oslo Rift. This layer was very thick at the time of deposition with a thickness of

up to 100m in the Oslo region (Larsen et al., 2008). Today at Kolsaas this layer has

been eroded to around 40m varying laterally. The durability of the basaltic layer (B1)

is a main reason for the local topographic prominence of the Kolsaas region (Dons and

Gyory, 1967). For this project the geologic setting can be broken down into the cliff and

the scree.

4.1.1 Cliff

The cliff overlying the scree slope varies laterally in height, composition, and basal

elevation. The layers are predominantly flat. On the southern end of the cliff the

conglomerate of the Tanum formation is seen at the base. The B1 basalt is above the

conglomerate is the B1 basalt. This basalt continues laterally covering most of the cliff.

The basalt appears columnar in some regions;however, a distinct fracture pattern is not

easily recognized. Above this is the Rhomb-porphyry. This layer continues to the top

of the cliff.

4.1.2 Scree

The lateral changes in the composition of the cliff have a direct effect on the underlying

scree. The scree is mainly composed of basalt and Rhomb-porphyry. Conglomerate

grains are not as common since the conglomerate is only present on the southern end of

the cliff.

4.1.3 Relation to other regions

The formations and terrain types seen in the Kolsaas cliff and scree can be compared to

those found in active or recent slide regions. The scree slope can be compared to scree

slopes in regions with active rock fall. The cliff is composed of various rocktypes and can

thus give information on processing techniques needed to extract data such as possible

failure planes or existing fractures. The scree changes from homogeneous particle sizes

to non-homogeneous laterally. This allows for the development of techniques to analyze
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both types of fields. The difficulty of terrestrial access to the Kolsaas slope is also

similar to possible field localities in which ground surveys could be difficult or dangerous.

The Kolsaas locality acts as a learning and process development site for future in-field

applications of aerial and terrestrial photogrammetry.

4.2 Data Collection

Figure 4.3: Photos from the June 2013 field work. The drone seen in the left image
had 8 propellers. This location is 30 m east of the scree slope.

Data analysis at Kolsaas consisted of four aerial surveys and one terrestrial survey. Three

aerial surveys were completed in June of 2013. These surveys were completed with the

help of Bygg Control AS (fig.4.3). The fourth aerial survey was completed with the

help of Luc Girod and Boris Leroux in June 2014 along with the terrestrial survey. The

reason for repetitive testing was to acquire an adequate amount of data to determine

the effects of camera quality, image resolution and camera position on the final results.

4.2.1 Aerial photography

This section will discuss the methods used for image acquisition. The data from the

aerial surveys serves as the main source of data for the Kolsaas study area. The scree

slope runs roughly north south and is surrounded by trees to the east and a cliff to the

west. These features make terrestrial access difficult. Combined with the length of the

slope ( 400m north-south) make land based data acquisition nearly impossible. Aerial

surveys allow for safe access and improved image coverage.
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Figure 4.4: Diagram showing a cross sectional view of the three aerial surveys com-
pleted in June 2013. The UAV flew the camera with different aspects and distances

from the slope. The surveys are labeled with numbers on the cameras.

4.2.1.1 Aerial surveys June 2013

The three first aerial surveys were completed in June of 2013. These surveys used an

eight rotor unmanned aerial vehicle (UAV) operated by Bygg Control AS. The camera

was an Olympus E-PM 2. This camera records .ORF images with a size of 3024 x 4032

pixels. When operated from 100m the resolution is roughly 2.7 cm/pixel. The resolution

was calculated using ground control points and a image from the second aerial survey

which flew at 100m normal to the slope (fig.4.4).

In order to quantify the results an array of ground control points (GCPs) was set up.

This array consisted of 9 points. These points were marked using 1x1m markers. The

markers were white with a black center. This makes them easily distinguishable from

aerial photographs. The locations of the points were measured by a high-accuracy GPS

operated by Bygg Control AS.

The survey paths and photo overlap were decided prior to flying and an autopilot system

was used to fly the UAV. This allowed for the position of the UAV to be known however

using Structure From Motion (SFM) techniques these positions were not used in analysis.

The ideal overlap between images is 75%. This overlap when used horizontally and

vertically allow for up to a 16 times overlap in the center of the study (3.2). During

these surveys the number of lateral passes over the scree limited maximum overlap. More

overlap improves results but SFM programs can deliver accurate results with as few as

4 photos.
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Figure 4.5: Photo taken from the UAV in June of 2013 of two ground control points
(GCPs) survey of Kolsaas. The GCPs are 1x1m in size.

The surveys consisted of multiple lengthwise passes over the scree slope during which the

UAV would pause and take photographs. The spacing of photography was determined

by the hight and desired overlap. The surveys consisted of 3-4 passes over the slope.

The second survey (fig.4.4) required more passes to adequately cover the entire slope

with the desired 75% overlap. Figure 4.6 displays a sparse point cloud composed of tie

points. This is one of the first outputs when using MicMac. The camera positions are

seen as red/green markers. This is the third survey and the three passes are clearly seen.

The first survey consisted of only two passed over the scree. This was due to the height

and image cover of the scree. The resolution for this survey was roughly 4.7cm/pix

depending on slight fluctuations in altitude of the UAV and the relation of the camera

to the selected point on the scree. Points at the bottom of the scree would have lower

resolution as they are further from the lens. The lighting conditions were sunny. Sunny

lighting can potentially cause issues when using photogrammety if the survey takes a

significant amount of time. A significant amount of time can be defined as sufficient time

for shadows to move causing possible offset of tie points. Since this survey consisted

of a low number of images which were taken in a short period of time, this was not an

issue. Due to the height of the flight the resolution of the scree slope was not too high.

No real clear definition could be seen on between the smaller boulders (fig. 4.7). The

images also seemed to be slightly out of focus

The second and third surveys were completed with cloud cover. This is ideal for image

capturing as high variations in brightness between shadows and sun exposed areas will

not result in missing data. The time constraint caused by moving shadows is also

removed. Flight 2 showed 2.7 cm/pix resolution. As the camera was normal to the scree

slope this resolution was roughly constant throughout the image depending on distortion

from the lens. The resolution of third filght was 4 cm/pix. As with flight 1 this value

also changes with respect to position of the camera and the scree slope.
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Figure 4.6: Preliminary point cloud showing tie-points and camera positions. Shown
as green/red markers (oriented in the same direction as the camera) are the positions
of the UAV during survey 3 of the June 2013 surveys completed at Kolsaas. The
coordinate system is scaleless thus no scale bar is shown. The length of the scree slope

is roughly 500 m.

The second and third aerial surveys not only covered the scree, but they also imaged

the overlying cliff. The first survey did not cover a significant area of the cliff due to

the vertical camera angle. To properly image the cliff a flight with a horizontal camera

position would have been idea. However, the main goal was to image the scree. The

autopilot setup and the nearby trees also presented a problem as the UAV operators

did not feel comfortable flying the UAV in the proximity of potential flight hazards. A

manually controlled flight may have accommodated cliff imaging. During the June 2014

surveys the focus was on the scree so imaging of the cliff was not completed.
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Figure 4.7: Image showing the resolution of the flight 1 images. Seen in the zoomed
in section is a ground control point measuring 1x1 m and a few people for scale. The

images also appears to be slightly out of focus.

4.2.1.2 Aerial surveys June 2014

In June 2014 a second set of tests were completed with a different UAV. The drone

used was the DJI Phantom 2 Vision+. This drone is consumer priced at 1099 euro (in

July, 2014), roughly 7000 euro cheaper than the UAV flown in 2013. The reason for this

test was to attempt to focus on selected regions of the scree measuring roughly 10x10

m. These regions were selected from orthoimages from the June 2013 flights (4.8). The

regions were selected based on average particle size in each.

There were two days of aerial surveys completed. The first day consisted of a total

station survey and aerial survey. The total station survey was completed as a method

for testing the accuracy of the georeferencing as well as a way to determine accurate

distances between points on the orthoimages. Two aerial surveys were completed on

the first two (left and middle) selected regions from fig.4.8. The third was not surveyed

due to low battery in the UAV. The lighting conditions were overcast and the UAV flew

roughly 3-4m above the surface of the scree with the camera positioned to image directly

below the drone. The extreme fish-eye lens along with the close proximity and angle

of the scree caused problems. These problems are discussed in section 4.3.1. The main
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Figure 4.8: These two images show the selected regions to be used for the June 2014
aerial surveys of the Kolsaas scree. They were selected for their differences in particle-
size and homogeneity.Top: Orthoimage of the Kolsaas scree with selected repeat survey
areas removed Bottom: Selected repeat survey areas measuring roughly 10x10m. The

difference in particle-size can be seen

problem was color aliasing near predominantly near the edges but also noticeable near

the center of the images. This caused problems when using MicMac.

Due to the problems with the first survey we completed a second survey with a few

notable changes. When using the DJI Phantom 2 Vision+ setup we found it important

to position the camera normal to the study region. This limited the aliasing near the

center of the image. We also concentrated on getting both close (1-2m) as well as distant

(> 10m) images in order to ensure sufficient coverage. During this survey the UAV was

manually piloted and was set to take an image every three seconds. This results in a

more sporadic array of camera positions (fig.4.9) than the precise passes of the June

2013 surveys.

During the image capturing process the light remained overcast. This stayed true for

the surveying of the three regions. For the first region we focused on collecting images

very near to the scree coming within 1m at certain point. Imaging at this resolution

made complete coverage difficult. The second two regions were imaged from a further
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Figure 4.9: —Preliminary tie-point cloud for a section 2 of the June 2014 Kolsaas
aerial surveys. The camera positions are seen as green/red markers. There is no scalebar
as this output is created prior to georeferencing. Siginificant noise can be seen, but the

camera positions seem to be correct.

distance. Between surveys we flew the UAV higher and imaged a larger portion of the

scree to accurately connect the separate regions in the processing steps. The average

resolution of the images used in processing was 1 cm/pixel.

Due to lack of time all the data from these surveys have not been processed. Instead

of focusing on the dependency of aerial surveys on grain size homogeneity, the data is

used to test repeatability over time. This means that the data was compared with data

from 2013 to see if meaningful comparisons could be made.

4.2.2 Terrestrial survey

A terrestrial survey was completed in June 2014. The goal of this survey was to compare

the accuracy of the aerial surveys to a close-up survey of a specific boulder. This boulder

was chosen due to its prominence in both the 2013 and 2014 aerial surveys (fig.4.10). To

properly survey this boulder a series of photographs were taken using a Nikon D7100.

A distance of 3-4m was maintained around the boulder. The light conditions were

overcast. This survey was a success in that the boulder was modeled, but time ran out

for comparison between the boulder it’s position in the point clouds.

Maintaining the proper distance was a slight issue as the terrain was rough and access

was at times difficult. The survey took roughly five minutes to complete. In total 82

photographs were taken. The locations of these photos are seen in fig. 4.11. When taking
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Figure 4.10: Marked is the location of the boulder in the scree field. The large boulder
on the right with the ground control marker is the one in used for the terrestrial survey.
Although it is not clear in the orthoimage this boulder is laying slightly on top of the

other boulder.

images two images were taken from each standing location. One from low pointing up

and one from high pointing down. This was done in an attempt to create maximum

coverage.

Figure 4.11: Combined apericloud and point cloud for the boulder analysis. The
camera locations are marked with green/red markers. At most points two images were

taken (one high and one low).

When processing the images the convergent workflow was used. This workflow involves

the processing of multiple surfaces. The surfaces are user selected. This is done by

selecting ”master” images and creating binary masks for defining the region to be pro-

cessed. For this boulder 6 images were selected. This provided enough coverage of the

boulder to create a full point-cloud from the combined data. In an attempt to create
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full coverage some of the masks were too large. This resulted in noise around the edge of

the masked regions. This is evidenced by artifacts around sharp corners (fig. 3.13). To

avoid this problem in the future master images would be chosen for the middle section

of the flat surfaces to avoid cropping around the edges. To ensure full coverage an image

aimed at the corner with clear view on both sides could also be used.

4.3 Data Analysis

The photographs captured from the aerial and terrestrial surveys were processed using

the following programs:

MicMac for orthoimage, and point-cloud generation

CloudCompare for DEM creation and point cloud comparison

Matlab Used to compare orthoimages and run grain size analysis

The data analysis can be separated into two main categories. Pre-processing and post-

processing. Pre-processing involves the organization of image files and creation of the

orthoimage and point-cloud. Post-processing deals with the handling of the results from

pre-processing. The individual steps for a MicMac workflow are discussed in chapter 3.

All results in this section were created using FraserBasic and mulScale. These are the

lower resolution options with faster processing times.

4.3.1 MicMac processing

For the aerial surveys the workflow described in 3 was used. One problem encountered

was intense vignetting of the orthoimage. This was due to the slight vignetting on the

original images multiplied many times over. The Vodka tool was used to counteract this.

Results from Vodka are seen in Figure 3.14. In each case the same workflow was used.

The mulScale function was used for Tapioca and FraserBasic was used for Tapas (3.3)

The similar results as seen and described in fig. 3.8 the results are virtually the same

with significant time saved.
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Figure 4.12: Image showing point clouds from the three flights of June 2013. They
are labeled according to their flight number. As is evident here, flight 3 have the best
results. There are the fewest holes and the greatest coverage. The limited coverage of

the first two flights makes full comparison with flight 3 impossible.
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Figure 4.13: Image showing point cloud from the 2014 flight. The holes were cause
by lack of tie points. The horizontal distance is roughly 25m. For this flight this was

the densest part of the point cloud.

As seen in figure 4.12 it is clear to see that MicMac produced the fullest point cloud

for flight 3. Flight 1 displayed the lowest amount of coverage and the most holes. In

figure 4.12 the length of the flight 1 point cloud is about half that of flight 2. This was

expected due to the flight height and low quality of the images from flight 1. The bright

sun also may have played a role in the poor results.

The sporadic flight pattern of the UAV in the June 2014 flights made the images difficult

to process. To work with these images small groups were selected. Figure 4.13 shows

one of these groups. When more images were processed at the same time The holes are

due to lack of data. With a more powerful computer or with more time it would have

been possible to create a more comprehensive point cloud, but with the resources and

time available this point cloud and corresponding orthoimage (Fig. 4.15) will represent

the June 2014 flights for this thesis.
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Figure 4.14: Image showing orthoimages from the three flights. The color anomaly
seen in flight 2 appeared after Vodka processing to remove the vignette. This region

was cropped out for analysis.

Figure 4.15: Image showing orthoimage from the June 2014 flight. The camera used
had a strongly distorted lens. The distortion has been accounted for, but the edges of

the orthoimage appear to be stretched.

4.3.2 Orthoimage reproducibility

This section will cover the comparison of orthoimages from the three aerial surveys of

June 2013 and the 2014 orthoimage. The goal of this section is to determine the effects

that camera, lighting, and angle have on the reproducibility of orthoimages. Comparison

is done by matching feature points between images and running cross correlation to see
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if any movement occurred. Movement seen in orthoimages from the same day shows

that the matching of the is not correct, since the scree slope is stable and no movement

was seen. To do this analysis a series of MatLab codes were used. The full package of

codes will be made available. These codes are modified versions of the matching code

matching.m used for grain size analysis. The details will not be discussed in depth. The

three orthoimages from the flights (O1,O2,O3 respectively) were compared against each

other. The orthoimage from the 2014 survey will be references as O4.

Figure 4.16: Image overlay between O2 and O4. The matching for this image was
done by manually selecting feature points. Automated matching showed similar results.
The ability to match orthoimages with such high accuracy between completely different

surveys is significant.

Figure 4.17: Correlation map of the orthoimages O2 and O4. Manual matching
techniques were used. Despite the image color differences MATLAB was able to identify
points and monitor movement. The movement is believed to be an due to the static
state of the scree slope. The maximum translation vector for this plot is 31 cm. The

axis are in meters
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Figure 4.16 shows the difference in the O2 and O4 after manual matching. Automated

matching had similar results. The correlation map in Figure 4.17 shows that the or-

thoimages are close enough to be recognized by MATLAB. Matching between the 2014

flight and the 2013 flights worked for flights 2 and 3. The resolution of flight 1 was too

low to make any correlation. This suggests that the camera used has a limited effect on

the creation of orthoimages. The sunny lighting of flight 1 or the slightly out of focus

images may be causing the matching to fail.

The small displacements throughout the correlation map (Fig. 4.17) are smallest in

the center of the orthophoto. This suggests that the orthoimages are more accurate in

the center. Looking at Figure 4.15 slight distortion can be seen near the edges. Aside

from distortion, the images must be rescaled, meaning one loses resolution. Perhaps if

the resolution was more similar some of the small differences would be eliminated. The

resolution of the orthoimages for O2 and O4 are 2.5 cm/pix and 1.1 cm/pix respectively.

Figure 4.18 shows the displacement vectors from cross correlation between the orthoim-

ages from 2013. As with the 2013/2014 comparison it is clear that flight 1 does not

match properly. Flights 2 and 3 show correlation. The center of flight 1 shows some

correlation near the center when matched with flight 2. Looking at the overlay of the

flight 1 and flight 2 orthoimages there is a clear offset (Fig. 4.19). This is evident when

looking at GCPs. The matching method used only scales and translates. There is no

distortion. This is to preserve the georeferencing. The fact that the flight 1 orthophoto

is skewed may be related to the blurry images and different coverage region. Resolu-

tion and focus should be key points to remember when capturing images to avoid this

problem in the future.
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Figure 4.18: From top to bottom are displacement vectors between O1/O2, O1/O3,
and O2/O3. The maximum vector length for O1/O2 is 2.48 m, O1/O3 is 3.84m, and
O2/O3 is 23cm. Each vector represents the average displacement for a 2.2m x 2.2m

region of the orthoimage. The axis are in meters. The O1/O3 plot is inversed.

Figure 4.19: Overlay image between flight 1 and flight 2 ortho images. The corre-
sponding correlation map is Figure. 4.18. Looking at the GCPs it is clear that matching

has failed.
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4.3.3 Point cloud comparison

Figure 4.20: Ortho image from CloudCompare processing showing the region used
for point cloud comparison. The selected section is 25 m across.

CloudCompare was used for point cloud comparison. The result are displayed as the

minimum distance between one point cloud and the other. The average value is taken

for a set of pixels. This value is assigned to a pixel in the digital elevation model

”DEM”. The distances are an absolute value. This is done because the point clouds

may intersect and pass through each other. The function name in CloudCompare is

”Cloud/Cloud dist.”. The point clouds were already oriented when imported into cloud

compare. For each comparison a cloud matching algorithm, ”Fine Registration”, was

run to find the best fit. The function uses an iterative sequence to minimize distance

values. The transformations used were only rotational and translational. The scale

remained constant and there was no skew. This removes any small differences resulting

from manual georeferencing between the survey. As seen in Figures 4.21,4.22,4.23 the

differences in point clouds are not dependent on grain shape.
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Figure 4.21: Point cloud difference between flight 1 and flight 2. Colorbar is in the
scale of meters and the right side is a histogram for the displacement of points.

Figure 4.22: Point cloud difference between flight 1 and flight 3. Colorbar is in the
scale of meters and the right side is a histogram for the displacement of points.
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Figure 4.23: Point cloud difference between flight 2 and flight 3. Colorbar is in the
scale of meters and the right side is a histogram for the displacement of points.

The colorbar on the right side of the figures shows the offset between point clouds in

meters. The right side of the colorbar is a histogram showing number of points with

selected offset. The average values for offset are between 1 cm and 3 cm. With respect

to the resolution of the original images the results show sub-pixel resolution. The areas

with most offset are around the edges of larger particles. This may be due to the

different angles of viewing. Line of sight changed between flights. Monitoring very small

movement may be difficult to to the noisiness of the results. Monitoring small rock

movement would be very difficult.
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Figure 4.24: Cloud comparison between the June 2014 point cloud and the flight 3
pointcloud. All holes were present in the original point clouds. The colorbar is in the

scale of meters.

The point cloud from the June 2014 surveys (Fig. 4.13) is used for determining the

dependence on camera, lighting, and survey techniques. The first problem with com-

paring this point cloud is the presence of holes. These holes can be removed by limiting

the maximum range for point cloud comparison values. The June 2014 data was not

georeferenced during the survey. Feature points can be selected in CloudCompare to

align point clouds. The feature is called ”Align”. Rotation, translation, and scale are

used to fit the point clouds. The point clouds are never skewed. Translation information

can be exported. Once the point clouds are aligned using feature points the iterative

matching feature, ”Fine Registration” can be used to find the optimum fit. A quick

visual check will confirm if the point clouds are matching. ”Cloud/Cloud dist.” is then

used to calculate distances. Figure 4.24 shows the results of the cloud comparison. The

distances fall under 10 cm with the mode of the data showing 1cm distance. This is

the resolution of the data from the June 2014 dataset, and it is much less than the 4

cm/pixel resolution from the flight 3 data. The point cloud quality was not dependent

on the camera.
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In conclusion, point clouds can be created in different light conditions using different

cameras. It is important to ensure proper coverage of the study region to ensure sig-

nificant coverage. Using the methods described above it is possible to monitor slope

morphology over time without a permanent monitoring installation. The results are

also independent of camera type. It is recommended to try to maintain equal or higher

resolution between surveys to ensure no loss of data quality.

4.3.4 Orthoimage grain size

For extracting grain size information there is a wide range of techniques. Many were

tried in this thesis, but only a small portion of the results are displayed. No in-field

surveys were completed, as the analysis must be visually assessed for accuracy. Sections

of the ORTHO and DEM were selected for analysis so assess the quality of the grain

extraction process. The goal is to separate the grains on the visual boundaries seen in

the images using both the orthoimages and DEMs. Proper computational results could

then be calibrated by size comparisons with in-field surveys, but that was not completed

in this thesis.

The basic workflow can be seen in Figure 3.15. Two steps provide results. The water-

shed.m function and the combine grains.m function. watershed.m does a good job of

defining smaller grains. Edge detection techniques used in combine grains.m does good

job at detecting larger grains. The goal of combine grains.m is to combine both methods

so the large grains and small grains appear on the same grain map.



Kolsaas 55

Figure 4.25: Watershed analysis for ortho (left) vs. Watershed for DEM (right).
Flight 1

This is still a work in progress. The images taken in the 2013 surveys are mostly too

low resolution to properly image the smaller grains. Figure 4.25 show an excerpt from

an unprocessed image. The small grains surrounding th larger grains are barely visible.

For this reason, it can be expected that the grain size curves from flights with lower

resolution will be under-segmented. A good test of this is to compare the results from the

June 2014 survey with a the flights from 2013. The later having much lower resolution.

The results in Table 4.3.4 are from the watershed.m function as the combine grains.m

function is still being worked on to produce better results. The resolutions are not the

resolution of the images. Then are instead the resolution of the orthoimages. Flight 3

had higher resolution images but flight 1 has a higher resolution orthoimage. The June

2014 flight has by far the lowest mean value. This is due to the large number of small

grains accounted for in the processing. The June 2014 showed proper segmentation of

grains using watershed.m (Figs. 4.26,4.27). In contrast the flight 3 data does not show

the same level of segmentation . The lower resolution makes the small grains rounder

and thus harder to identify. The limiting size for grains seems to be 4x4 pixels. Thus

the grain size curve is only valid for grains with size over that threshold. It must be

noted that the June 2014 data covers a region inside the flight 1,2,3 data. The total

coverage area is not the same.
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Flight number Mean (m 2) Standard Deviation Number of grains Resolution (m/pixel)

1 0.179 0.175 6456 0.038

2 0.156 0.227 6870 0.025

3 0.166 0.259 6334 0.045

June 2014 0.020 0.0758 9538 0.0106

Table showing grain size distribution data for the watershed.m analysis of orthoimages.

The number of grains can be used to compare flights 1,2,3 data as they are for the

same region. but the June 2014 survey only covers a portion of the same region.

Figure 4.26: Grain boundaries from the June 2014 survey. Grain boundaries found
using watershed.m

Figure 4.27: Close up view of grain boundaries from the June 2014 survey. Grain
boundaries found using watershed.m
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In contrast the flight 3 data does not show the same level of segmentation . The lower

resolution makes the small grains rounder and thus harder to identify. Figures 4.28 and

4.29 show proper grain segmentation for what is visible. The limiting size for grains

seems to be 4x4 pixels. Thus the grain size curve is only valid for grains with size

over that threshold. The higher the resolution of the image the finer the grain size

distribution will be. This is seen in Table 4.3.4, with the exception of flight 3. This

can be attributed to the lack of focus in the flight 1 images. Comparing cumulative

distribution plots of grain size data shows the same trend (Fig. 4.30). Data from DEMs

analysis showed similar results (Fig. 4.31). However in this case the 2013 flights did

not show correlation to resolution. This may be attributed to the inaccuracy of DEM

segmentation.

Figure 4.28: Grain boundaries from the flight 3 survey. Grain boundaries found using
watershed.m
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Figure 4.29: Close up view of grain boundaries from the flight 3 survey. Grain
boundaries found using watershed.m This is nearly the same location as Figure 4.27.

Figure 4.30: Cumulative grain size distribution of orthoimages. Data comes from
watershed segmentation. Note that the June 2014 survey shows the smallest grain size

distribution. This can be attributed to the higher resolution of the imaging.
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Figure 4.31: Cumulative grain size distribution of DEMs. Data comes from watershed
segmentation. Note that the June 2014 survey shows the smallest grain size distribution.

This can be attributed to the higher resolution of the imaging.

The difference between orthoimage segmentation and DEM segmentation is very clear.

For accurate grain size analysis orthoimage segmentation outperforms DEM segmenta-

tion. Certain values need to be set when processing DEMs with the watershed.m func-

tion. The most important is the watershed threshold (variable name in watershed.m).

This defines the minimum indentation this can be considered a watershed. Low values

will result in over-segmentation, high values will do the opposite. Certain image filters

can enhance the visible boundaries on an orthoimage. This is not possible with the

DEM. That is why the DEM results from watershed.m analysis are so different from

the orthoimage results (Table 4.3.4). A comparison of the difference in grain separa-

tion using watershed.m is seen in Figure 4.32. The same region is being analyzed in

each. The DEM results properly segment some of the larger grains; the small grains are

under-segmented. From visual analysis, the orthoimage segmentation is better.

Flight number Mean (m 2) Standard Deviation Number of grains

1 0.134 0.222 8189

2 0.204 0.288 5089

3 0.574 0.0607 1847

June 2014 .0218 0.0430 8309
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Figure 4.32: Segmentation of the same region using watershed.m on an orthoimage
and DEM. The DEM under-segments the region.

Table showing grain size distribution data for the watershed.m analysis of DEMs. The

number of grains can be used to compare flights 1,2,3 data as they are for the same

region. but the June 2014 survey only covers a portion of the same region.

Separating and viewing ever grain is good for determining the proper values for the

input variables. For larger regions it can be useful to map showing changes in average

grain size. With respect to landslides, having a grain size map over a depositional fan

could give information relating to flow dynamics or composition. This was completed

by dividing an orthoimage into many small ”pixels” and finding the average grain size

for each. Figure 4.33 shows an example of this using the flight 3 orthoimage. The basic

regions showing large and small grains are correct, however regions with the largest

grains are not as visible. This may be because the algorithm for determining average

grain size removes boundary grains from the pixels used. This reduces the average grain

size. Larger pixels result in loss of detail. More research can be done on this.
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Figure 4.33: Figure showing average grainsize per area. This is a preliminary result.
It correlates to the actual changes in grain size. The orthoimage used is from flight 3

4.3.5 Point cloud roughness

This step was completed to show the possibility of using roughness as an output. The

roughness is calculated by giving a kernel size. This defines the region around a given

pixel to analyze. The best fit plane in this region is calculated and the roughness is the

distance between the center point and the best fit plane of its neighbors.

Figure 4.34: Roughness for flight 1 DEM.
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Figure 4.35: Roughness for flight 2 DEM.

Figure 4.36: Roughness for flight 3 DEM.

The similarity between the roughness plots (Figs 4.34,4.35,4.36) show that this could be

a possible course of further study. It is possible that roughness could be used to separate

grains or be used to calculate grain size.
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4.3.6 Cliff

As seen here, the a point-cloud was successfully calculated for the cliff. However, there

are lots of holes and thus no further analysis will be completed. The fact that there

are large holes after being imaged from 30 degrees to vertical shows the importance of

proper imaging techniques. To properly image this cliff A UAV should be used with

the camera normal to the cliff. Multiple passes at varying heights will ensure proper

coverage.

Figure 4.37: Flight three DEM with overlying cliff section.
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Figure 4.38: Closeup of the section of the cliff with the least amount of holes.

4.4 Discussion

The results from the Kolsaas field surveys are very promising. With the methods de-

scribed it is possible to set up repeatable surveys to monitor changes with time. The

results from preliminary surveys suggest sub-pixel accuracy between UAV surveys of

the scree slope. Imaging technique is very important for obtaining quality results. It

is maintain a constant distance, focus properly, and ensure adequate overlap between

images.

The MATLAB code for analyzing grainsize still needs work, but is showing accurate

results. Grain size segmentation works best using orthoimages. The dependency of

grain size distribution on image resolution should be investigated further. It may be
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possible to predict real grain size from knowing partial grain size and resolution. This

study did not have enough data to investigate this. Investigation to the effect of in-field

contours may be important to investigate as well. This was not an issue at Kolsaas, but

could definitely be an issue in other regions.

The problem of the flight 1 orthoimage not matching with the flight 2 and flight 3

images suggests that it has been skewed. This most likely means the vector normal to

the orthoimage is different for flight 1. A possible way to avoid this is to select the

bounding points for a study area and use the same points im MicMac processing every

time. This would keep the orthoimage oriented properly.

The results thus far show repeatability is not dependent solely on equipment but also

on technique.



Chapter 5

Future Work

5.1 Application to Active Slide

5.2 Fjaerland: glacial lake outburst flood

In order to confirm the repeatability of the photogrammetric procedures outlined in this

thesis a survey was completed on an active slide location in Fjaerland, Norway. This

location was the site of a glacial lake outburst flood (GLOF), resulting from the breech

of a moraine dammed lake in 2004. The details of this slide are throughly described

in Breien (2005) and Breien et al. (2008). Monitoring of the moraine could potentially

help predict future debris flows.

The material associated with the sliding event was composed of predominantly glacial

deposits. The depositional fan is composed of sub-angular granite/gneiss blocks (fig.

5.1). Most of the material throughout the slide path is similar to that seen in the fan.

There are a few areas with exposed bedrock through the debris flow path. The top of the

debris flow is a moraine. This moraine was built by the Little ice age of 1750. There is

a smaller inner moraine (fig. 5.2) thought to have been created in 1930 during a glacial

surge and retreat (Orheim (1970)).

A geophysical study by Lecomte et al. (2008) suggests that the 1750 moraine is partially

saturated and that the 1930 moraine has an ice core. The absence of an ice core in

the 1750 moraine makes it less likely to deform with time. Monitoring of the 1930 ice-

core moraine could prove advantageous for understanding the morphology of ice-core

moraines and potential points of weakness in the moraine.

66
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Figure 5.1: Image looking up the Fjaerland debris flow from the base of the deposi-
tional fan. Photo taken fall 2013. The fan is composed of sub-angular blocks of granite

and gneiss.

5.2.0.1 Slide history and future

The slide history in Fjaerland dates back centuries, but only recently have there been

recorded events of glacial lake outburst floods. The first being in 1924 and the second

being in 1947. The largest event was the 2004 slide. Comparing images from 1906 and

2001 it is clear to see that a portion of the moraine has been removed and that sliding

a failure has Breien (2005).

It is believed that the breach scar seen in 5.3 is related to the failure in 1947. The slide

of 2004 was the largest slide on record. The breach of the moraine removed much of

the material. The walls on either side of the breach are quite steep and when walking

over them I noticed they were quite unstable. According to a conversation with a local

it is believed that the walls are eroding down and filling the bottom of the breach.

Monitoring of this is crucial for determining the possibility of a new slide. Just to the

inside of the breach is a smaller ice core moraine. Erosion of this moraine may also add

to a build up of material in the breach zone. This ice-core moraine was actively eroding

while the field study was taking place.
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Figure 5.2: Image showing the moraine dammed lake. The moraine seen is a result
of the 1750 little ice age (Orheim (1970)). The area highlighted in blue is the ice-cored
moraine created during the glacial surge of 1930. The breach of the GLOF occurred on
the right side of the moraine. The new moraine dammed lake can be seen (photo: fall,

2013).

Figure 5.3: Images of the moraine at Fjaerland. The left image is from 1906 the right
is from 2001. A slight breach can be seen in the 2001 photo. In 2004 this notch opened

to the ground. This figure is from Breien (2005).

5.2.1 Field methods

The field study consisted of four main survey regions. The river path, a cliff, the breach,

and the moraine. Each trial was created to test the possibility of walking in field surveys

of photogrammetry.

The river path is was the river gully where the 2004 slide passed through. The walls

of the gully varied in composition with position on the hill. The majority of the walls
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were composed of rounded to sub-rounded grains with sizes from sand to 2m. There

were also some larger ¿5m blocks. The goal of this part of the study was to see if

convergent and aerial methods could be used to accurately map river gullies. The ability

to routienly survey regions like this would allow for the calculation of volume change

and erosion/deposition amount if two surveys were completed pre and post-slide.

A series of cliffs are located roughly 350 m downstream from the moraine. The cliffs

are around 300 m vertical. The object of the cliff survey was not related to landslide or

flood dynamics. It was a trial to see the power of terrestrial photogrammetry on cliff

faces from a distance. The ability to image a cliff from hundreds of meters away on foot

with limited lateral movement could prove to be a powerful tool when access is limited.

The breach was the main focus of this study. The ability to set up a method for repeated

analysis of the moraine would help monitor the growth of a new dam. Comparisons of

temporal data for the breach walls would help determine their stability as well

In the same way monitoring the breach is important temporal measurements of the

moraine are also crucial for determining moraine morphology other possible weakpoints.

Monitoring of the inner ice-core moraine would give important information about melt

rates and ice-core moraine morphology.

Field methods were similar to those used during the aerial surveys at Kolsaas. The

same principals were used to ensure adequate coverage over the study regions. One

main difference was the inability to change the angle of the camera with respect to

the survey region. When imaging the river gully and the moraine it was impossible to

complete the survey from a vantage point normal to the surface. Another drawback of

imaging of foot is the difficulty associated with imaging the same section from different

angles. Most the surveys consisted of one path of images taken in a line. This limits the

angular coverage which was available with aerial surveys at Kolsaas

Both ”aerial” and ”convergent” (3.3) survey methods were used in Fjaerland. Remem-

ber, aerial refers to imaging method and that all surveys in Fjaerland were terrestrial.

Aerial methods were used for most of the surveys, convergent methods were used for the

center of the river gully and the moraine breach.

5.2.1.1 Terrestrial field mapping

This section will discuss the difficulties and advantages of terrestrial photogrammetry

experienced in Fjaerland. The main advantage is the speed at which surveys can be

completed and the portability of the equipment. One camera was used for all the surveys

and no other equipment was needed. To ensure better results I would recommend taking
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Figure 5.4: Point cloud resulting from photogrammetric analysis of 6 images taken
from the bottom of the depositional fan (fig.5.1). This is from the point of view of
the camera. The data appears to be usable for determining a limited particle size

distribution of the region.

a tool for creating scale and a gps. However, this survey was completed in one afternoon

and one morning, and the goal was to test software and the ability to set up easily

repeatable and accurate methods for surveys.

One major disadvantage of terrestrial field mapping is the limited angles from which

one can take photographs. A survey of the debris at the bottom of the tongue was

attempted. It was immediately clear that from the low angle a full survey would be next

to impossible. Using a set of 6 images taken from the access road a point-cloud was

created for the bottom tongue. The fan has an average slope of 8-10 degrees (Breien

(2005)). When viewed from the relative position of the camera it looks to show usable

data. However when viewed from a vantage point normal to the fan it is clear the data

is not a valid representation of the fan. This is due to line of sight problems, from such

a low angle large boulders block the view to other rocks behind them. This is similar

to the line of sight issues discussed previously in association to LiDAR. A quick aerial

survey using an UAV could potentially cover this same region in a matter of minutes.

Thus it is not enough to use a photogrammetry program to create an orthoimage. To

ensure data quality both an orthophoto and a point cloud should be made.

This same problem experienced at the depositional tongue was also encountered in the

river gully. The larger the rocks the greater the problem as they shadowed more of the

region behind them. The grainsize distribution also appears to have an effect. Although

this was not studied in depth, it appears that the more consistent size of grains makes

this less of an issue. Further study is needed to determine if this is true.

Another difficulty associated with terrestrial surveys was the access. Around the bottom

of the river gully there were lots of trees. This made imaging from the banks difficult.

Surveys of the banks were completed from the bottom. This caused some of the same

line of sight issues as mentioned above. For the cliff the issue was that the access trail
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Figure 5.5: Point cloud resulting from photogrammetric analysis of 6 images taken
from the bottom of the depositional fan (fig.5.1). This is from the point of view normal
to the fan. From this angle it is clear the data is not adequate for any accurate analysis.

didn’t approach the cliff. This caused the survey to be carried out roughly 200 m away.

This wasn’t much of an issue for a wide survey, but if detail is required than a high

zoom value must be used. For this it may be better to have a tripod to eliminate image

blur and ensure proper overlap.

With the moraine itself the best place to image it was from fairly close up. A few

times terrain made it difficult to keep a constant distance. In full light this is not

an issue as a high f-stop value can be used ensuring the largest depth of field. In

low light this could result in out of focus images. Another issue encountered was the

changing lighting conditions. The curved moraine cause drastic changes in lighting when

imaging the outside of the moraine. This resulted in the need for multiple surveys. A

distant aerial survey of the entire region using fewer pictures would enable a much faster

computational analysis. The survey of the outer moraine consisted of 364 images. This

amount of images would take a substantial amount of time to process. For this reason

only certain sections of the moraine were processed. To create an overview of the entire
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moraine a wider, and ideally aerial, survey would be recommended. The low weight of

UAV’s such as those used at Kolsaas would make this easy to complete.

For the purpose of this study, terrestrial surveys proved to be good enough to create

repeatable data. Stationed cameras from positions similar to those in this study could

potentially give real time data of the region. For in depth analysis and to ensure spatial

accuracy aerial surveys would be ideal.

5.2.2 Photogrammety results

The goal of this section is to show the potential associated with in terrestrial photogram-

metry. There are only a few preliminary results. Figures 5.6, 5.7, 5.8 are three possible

locations for future study. The cliff give an opportunity to create plane recognition

software or maybe a rockclimbing guide. The ice-core moraine is an active landform

which would be very interesting to monitor at steady intervals. The south side breach

wall is important as erosion from this wall will actively re-dam the lake. Monitoring of

this feature could prove to be important. These three features took no longer that five

minutes a piece to image. That includes the unpacking/packing of equipment and note

taking.

Figure 5.6: Point cloud of a cliff. This was imaged from roughly 200 meters away.
The cliff is 50 m high. This point cloud show great detail.
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Figure 5.7: Point cloud of an ice-core moraine. Temporal monitoring of this would
give information for erosion rates.

Figure 5.8: Point cloud of the south wall on the south side of the breach. This point
cloud is composed of 4 images.



Chapter 6

Conclusions

6.1 Conclusions

The creation of a workflow for photogrammetric analysis of a landslide like environment

was successful. The results showed sub-pixel accuracy is possible using different equip-

ment image resolutions. This proves the method is reproducible. The data from the

photogrammetric analysis can serve many purposes. The grain size analysis program

created for this thesis successfully creates grain size distribution curves. However, the

dependency on image resolution should be tested to verify the results.

The foundation built in this thesis can serve as a starting point for future studies and

surveys

74
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