
NoSQL Databases in the
Enterprise
An Experience with Tomra’s Receipt Validation System

Davlet Dzhakishev
Master’s Thesis Autumn 2014

NoSQL Databases in the Enterprise
An Experience with Tomra’s Receipt Validation System

Davlet Dzhakishev
Institutt for informatikk, University of Oslo

Ole Johan Dahls Hus
Gaustadalléen 23 B

N-0373 OSLO
Norge

davletd@ifi.uio.no

5th November 2014

Abstract

The information processing demands of many of today’s businesses have
outgrown the legacy relational database management system (RDBMS)
software resulting from both the data explosive growth and the variety of
data models. Today, businesses must manage increasingly large volumes
of data that must be available across distributed systems and as well as
able to evolve and adapt data models according to the changes of business
requirements.

Enterprises across all industries are challenged by the task of ensuring
scalability of massive quantities of data while at the same time keeping
database models simple and flexible at the same time. A new and advanced
set of software, "NoSQL" as it is so called, has emerged in response to this
challenge and offer new methods for storing data. The NoSQL ecosys-
tem has flourished, with numerous software contributions appearing un-
der the NoSQL umbrella. However, as more enterprises have implemented
NoSQL solutions, a distinctive set of criteria has emerged that can help to-
day’s IT professionals more easily make use of NoSQL solutions built for
enterprise-wide development.

In this thesis we investigate the usage of NoSQL solutions in the enterprise
environment, where RDBMS traditionally run the show. Tomra AS
provided us with the industrial case, featuring implementation of the
distributed system for validation of receipts, using two different NoSQL
databases. In this work, we describe implementation of the receipt
validation system and evaluate NoSQL solutions, based on variety of
criteria, such as performance, scalability and ease of use. We also describe
the advantages NoSQL approach has over SQL (RDBMS) approaches in
a distributed environment. The goal is to help decision makers in the
enterprise to make better informed judgements when choosing a particular
set of database software for their data handling strategies.

ii

Acknowledgments

First I would like to thank my supervisor, Sagar Sen, for his excellent guid-
ance and advice. I appreciate his involvment and passion for research. He
has been inspiring curator with high expectations, that helped me to push
for better results.

I would like to thank my second supervisor, Magne Jørgensen for taking
his time and giving a valuable feedback on my thesis.

I would also like to thank Tomra AS, namely Christian Hovde for the great
opportunity to use their industrial case as the topic for my theis. I thank my
former colleagues Erik Drolshammer and Bård Lind for the opportunity to
learn from them and work on the mentioned project together.

Finally I would like to thank my family, friends and especially Morgaine
Wood for motivating and helping me. This thesis would have never been
finished if it was not for the support from all of you.

Thank you!
Davlet Dzhakishev

November 2014

iii

iv

Contents

I Introduction and Background 1

1 Introduction 3
1.1 Time of explosive growth of non-relational data 3
1.2 Not only SQL data storage . 4
1.3 NoSQL trends . 5
1.4 Motivation . 6
1.5 Problem statement . 7
1.6 Industrial case with Tomra AS 8
1.7 Structure of the thesis . 8

2 Background 11
2.1 Introducing NoSQL . 11

2.1.1 Criticism of NoSQL . 13
2.1.2 Types of the NoSQL databases 14

2.2 MongoDB: A Document-oriented database 19
2.2.1 MongoDB competitive features 20

2.3 Neo4j: A graph database . 22
2.3.1 Neo4j competitive features 23

2.4 Related work . 24
2.4.1 Fundamental research of NoSQL 24
2.4.2 Comparative studies 25

2.5 Case studies . 27
2.5.1 Neo4j case studies . 27
2.5.2 MongoDB case studies 28
2.5.3 Summary . 29

3 Research Method 31
3.1 Qualitative and quantitative research methods 31
3.2 Data collection in the thesis 32

3.2.1 Comparative research 32
3.2.2 Secondary source research and data analysis 33
3.2.3 Case study research 33
3.2.4 Participant observation and fieldwork 34

3.3 Scientific method . 34
3.4 Development research . 35

v

II Industrial Case, Implementation and Evaluation 37

4 Industrial Case 39
4.1 Tomra Systems ASA Industrial Case 39

4.1.1 Problem description 39
4.1.2 Solution proposal . 41
4.1.3 Disclaimer . 41

5 Implementation 43
5.1 Overall project architecture 43

5.1.1 Receipt Validator . 45
5.1.2 Machine Network . 47
5.1.3 Performance requirements 47

5.2 Relational Implementation. Legacy approach 48
5.2.1 Monolithic architecture 48
5.2.2 Data storage for Receipt Validator 48
5.2.3 Implementation of Receipt Validator 50
5.2.4 Data storage for Machine Network 52
5.2.5 Implementation of Machine Network 52
5.2.6 Summary . 53

5.3 NoSQL Implementation. Separation of concerns 54
5.3.1 Distributed architecture. 54
5.3.2 Implementation of ReceiptDB 55
5.3.3 Implementation of MachineNetworkDB 57

6 Evaluation and experiments 61
6.1 Evaluation . 61

6.1.1 Scalability and Performance 62
6.1.2 Usability and maintainability 63
6.1.3 Cost reduction . 65

6.2 Performance experiments . 67
6.2.1 Experiment results . 67
6.2.2 Indexes . 69
6.2.3 Summary . 71

7 Summary and Conclusion 75
7.1 NoSQL databases . 75
7.2 Research questions discussion 76
7.3 SQL or NoSQL? . 77

A Listings of queries for populating databases with data 79

vi

List of Figures

1.1 NoSQL momentum, Evans Data 5

2.1 Customer data example of Key-value store 15
2.2 . 16
2.3 Core graph entities . 18
2.4 Data availability mechanism 21
2.5 Large collection with data distributed across 4 shards. 22
2.6 Cypher declaring a relationship between nodes "a" and "b" . 23

4.1 T9, one of the flagships in the reverse vending machines
market. 39

4.2 Three step process. 40

5.1 Sample barcode . 46
5.2 Monolithic database architecture 48
5.3 MSSQL structure . 53
5.4 Distributed project architecture 55
5.5 Two areas of responsibility . 56
5.6 Graph Structure . 58

6.1 Web interface for Neo4j console 64
6.2 Performance of Neo4J against SQL 68
6.3 Performance of Neo4J using indexes 71
6.4 Performance of SQL using indexes 72
6.5 Performance of Neo4J with indexes against SQL with indexes 72
6.6 Response times on verify request 73

vii

viii

List of Tables

2.1 Table with movie data . 17
2.2 Row-oriented Database Layout 17
2.3 Column-oriented Database Layout 17
2.4 Summary information of popular NoSQL databases 19

6.1 Pricing for standard licensing per core 66
6.2 Time in ms, required to perform search query in respective

db at a given data size . 68
6.3 Time in ms, required to perform search query in Neo4j at a

given data size . 70
6.4 Time in ms, required to perform search query in SQL at a

given data size . 70

ix

x

Listings

5.1 SQL query style search . 53
5.2 Normalized structure of database 56
5.3 Embedded document . 57
5.4 Structure of the database depicted in Cypher 58
5.5 Cypher Query that returns all nodes and relationships 58
5.6 Cypher query style search . 58
6.1 Cypher query style search . 64
6.2 Enable indexes in Neo4j . 69
6.3 Create indexes in Neo4j . 69
6.4 Create indexes in MSSQL . 69
A.1 SQL. Creation and populating ’Countries’ table 79
A.2 SQL. Creation and populating ’Chains’ table 79
A.3 SQL. Creation and populating ’Stores’ table 80
A.4 SQL. Creation and populating ’Machines’ table 81
A.5 Cypher. Creation of ’Country’ nodes 82
A.6 Cypher. Creation of ’Chain’ nodes 82
A.7 Cypher. Creation of ’Store’ nodes and relationships 82
A.8 Cypher. Creation of ’Machine’ nodes and relationships . . . 83

xi

xii

Part I

Introduction and Background

1

Chapter 1

Introduction

1.1 Time of explosive growth of non-relational data

In 1970, Edgar F. Codd published a paper where he revealed his thoughts
on how information stored in the large databases could be accessed without
knowing the details of how or where mentioned information is stored[6].
His revolutionary ideas spawned a new family of products, known today
as relational databases, which began with IBM DB2 in mid-1980s and then
continued into the 1990s with Oracle, Sybase, Microsoft SQL Server and
MySQL. Relational databases have since become the predominant choice
for keeping of financial records, personnel data, manufacturing, logistical
and other information.

Today’s businesses rely on the collection and storage of increasing amounts
of data. Their information processing demands have already outgrew the
relational database capabilities. The Web’s explosive growth contributed
to the need for businesses to manage not only increasingly large volumes
of data, but also data that must be made available across distributed (ge-
ographically or otherwise) systems and which does not follow a common
relational data model.

While Internet giants such as Amazon, Facebook and Google may have
been the first to truly struggle with the big data problem, enterprises across
industries - and not just Web-based organizations - are now struggling to
manage massive quantities of data, data entering systems at a high velocity
or more commonly, both. For example, according to a recent report from
consulting giant McKinsey & Company, the average investment firm with
fewer than 1,000 employees has 3.8 petabytes of data stored, experiences
a data growth rate of forty percent per year and stores structured, semi-
structured and unstructured data[8].

As a result of the aforementioned demands of large-scale data storage, it
was not long before a movement began with an aim to address the main
problems data scientists and engineers were facing. With the original
intention of building modern, scalable databases, a new and advanced

3

set of software has emerged to meet today’s data handling demands
and the term "NoSQL" was introduced to describe these progressive
data management engines. Being non-relational, distributed, open-source
and horizontally scalable, they contained some RDBMS-like qualities, but
went beyond the limits that typically constrained traditional relational
databases. There has been a rapid shift to a new method for storing data
since then and almost all software development related conferences have
NoSQL topics in their agendas. Technology leaders are no longer asked if
they will have a NoSQL strategy, but rather when their NoSQL strategy will
roll out - and more importantly, what it will be comprised of.

1.2 Not only SQL data storage

What exactly is NoSQL? Some may think that the "No" part of the
NoSQL name is intended to distinguish it as apart from and having
nothing in common with SQL solutions. The "No" part of the NoSQL
label, however, should rather be thought of as "not only SQL"1, which
communicates the fact that a NoSQL database does not completely discard
all features/functions that define a relational database. In fact, a few
NoSQL databases provide a SQL-like query language that helps to ease the
transition from the world of RDBMS. NoSQL rather completes SQL and
provides an alternative when conventional solutions are found not to be as
efficient. Today’s NoSQL databases can:

• Serve as an online processing database, so that it becomes the primary
datasource/operational datastore for online applications[8].

• Use data stored in primary source systems for real-time, batch
analytics and enterprise search operations.

• Handle "big data" use cases that involve data velocity, variety, volume
and complexity.

• Excel at distributed database and multi-data center operations.

• Offer a flexible schema design that can be changed without downtime
or service disruption.

• Accommodate structured, semi-structured and non-structured data.

• Easily operate in the cloud and exploit the benefits of cloud comput-
ing.

Structure-wise, NoSQL databases are organized in a very different way
with data in NoSQL databases being greatly denormalized, residing in
structures organized in a variety of formats such as columnar, document,
key-value store or graph. Most NoSQL databases do not conform to the
standard Codd relational model where data is normalized to a third form.

1 http://nosql-database.org/, Retrieved October, 2014

4

Figure 1.1: NoSQL momentum, Evans Data

That means we can often avoid resource-intensive "join" operations to sat-
isfy end user requests.

NoSQL databases perform best when dealing with data that is either
impossible to store properly in an RDBMS or data that performs very
poorly when accessed in a relational manner. Let us examine such a
problem as traversal in a social network. This problem, like almost any,
can be solved in a relational way, yet it becomes unwieldy after a certain
point of time as the data continues to increase. The graph database
is a convenient way to tackle this kind of problem in a scalable way
and Google’s Knowledge Graph, Twitter’s Interest Graph and Facebook’s
Social Graph are good examples of this use case.

1.3 NoSQL trends

The capabilities of NoSQL databases are fast becoming well known to IT
leaders. For example, an Evans Data survey revealed that corporate enter-
prise developers in North America are rapidly accepting NoSQL. The study
also showed that NoSQL databases are already being used in fifty six per-
cent of organizations surveyed and sixty three percent of respondents said
they plan to use NoSQL within the next two years[8] (Figure 1.1).

We can observe that NoSQL adoption is significantly stronger in the Asia-
Pacific region as nearly seventy percent of respondents from the region
have plans to introduce NoSQL databases in their projects. Yet even in the
EMEA (Europe, Middle East and Africa) region, we can expect a growth of
forty percent of enterprises which are planning to utilize NoSQL within the
next two years.

These numbers imply that NoSQL databases may indeed replace most of
the traditional relational databases in the enterprise sector. Netflix, the
world’s leading Internet subscription service for movies and TV shows, has
replaced a number of its existing Oracle systems with Cassandra NoSQL

5

database, which runs in the cloud. One of the main reasons for this shift
was due to the centralized nature of the SQL-based database system that
they were running before. With one single point of failure, it was impos-
sible to guarantee high levels of up-time world-wide. Another problem
was that schema changes required system downtime. “Every two weeks,
we’d have at least ten minutes of downtime to put in the new schema”,
Cockcoft explains. The limitations of a SQL database impacted their avail-
ability and scalability, not to mention the reliability and flexibility they
needed to create and manage data clusters quickly as the company ex-
panded internationally[9].

While the shift from SQL to NoSQL databases that Netflix and other big
companies have made is common, many companies are choosing to leave
their existing legacy RDBMS systems in place. However, they are actively
introducing NoSQL databases with their new projects, especially when
new systems require flexible or non-standard schema designs expected to
deal with large-scale data or should be executed in a distributed environ-
ment. NoSQL databases allow them to easily integrate new systems with
existing ones benefiting from new technology without disrupting their
main business.

Technology aside, another reason many new development and/or migra-
tion efforts are being directed towards NoSQL databases is the high cost of
legacy RDBMS vendors versus NoSQL software. In general, NoSQL soft-
ware costs are a fraction of what vendors such as IBM and Oracle charge
for their databases. This fact is especially important in the age of startups,
such as we are experiencing today when small companies who are yet to
earn their first revenues need stable databases that are able to hold large
volumes of data from very early on in their business endeavours.

1.4 Motivation

Currently there are large-scale changes taking place within many enter-
prises and many of these said changes are paving the way for great oppor-
tunities when it comes to NoSQL databases. Enterprises are internally de-
veloping more and more web-based or service-oriented applications with
the intention for them to interact with their customers, suppliers, or other
stakeholders. They are complex applications that store session information,
user generated data, sensor data, telemetric data, etc. and increasingly re-
quire the agility and capabilities of the NoSQL.

NoSQL databases have been chosen as the topic of this thesis due to the
increasing impact of data-usage across the IT industry and major problems
with relational databases that do not fulfil all the needs of the enterprise
for scalable, distributable and efficient data-storage. One of the main
challenges with NoSQL, however, is the fact that there are relatively few
engineers and organizations who are familiar with NoSQL databases, thus

6

making it difficult for them to make a choice in terms of data storage
solutions and methods in their favour. The intention of this thesis is to serve
as both research insight on NoSQL databases as well as an assessment of
them in the situation of a real industrial case which also happens to be a
first-time-encounter environment.

1.5 Problem statement

We have already argued that NoSQL data storages may be the optimum
choice for solving big data problems or for data distributed across multiple
servers in a web environment. However, not all businesses operate with big
data, and not all of them require web scalability. Indeed, there are relatively
few works highlighting the usage of NoSQL in a medium or small-sized
enterprise environment where traditional usage of SQL databases more
frequent than in any other environment[31]. This thesis investigates how
a medium-sized enterprise company may successfully utilize NoSQL data
storage solutions and benefit from them. Thus, the Main Research Question
is:

• MRQ: What are the advantages of using NoSQL data storage in the
enterprise environment?

From this initial question it is possible to derive a number of Secondary
Research Questions that aid in expanding the topic.

• SRQ1: How does the choice of data storage influence the flow of the
application development and architecture of the system?

• SRQ2: How easy is it to integrate a new solution with the legacy one when
using NoSQL databases?

In order to investigate the MRQ, a real industrial case concerning of a
large company will be analysed. This company currently utilizes multi-
ple legacy systems, while their crucial business data is rapidly increasing.
It is necessary for them to implement new services and systems using a
non-conventional approach in order to meet future business requirements
in addition to the requirements of their partners.

In the course of this investigation, thorough analysis of data-behaviour and
data usage of the system the aforementioned company intends to build
will be carried out. Consequently, it should be possible to identify the
most common use cases as well as typical scenarios of data writing and
data reading. The acquisition and analysis of such information in conjunc-
tion with further research should help conclude whether or not the use
of NoSQL data storage in this particular case is in face necessary. In due
course a selection of available solutions on the market will be described
and discussed in a bid to defend the reasoning behind the author’s final
determination of the most suitable solution.

7

In order to investigate SRQ1 and SRQ2, it will be necessary to analyse
the process of decision making when modelling data and designing the
architecture of the system under the research. Evaluation of the extent
to which NoSQL influenced the application development process will
likewise be undertaken. After the system has been built, the performance
of the solution will then be tested and evaluated based upon specific
requirements from the industrial partners with the results being compared
with a possible RDBMS solution. Assessment of the executed solution will
be based upon multiple criteria, including the ease of building, availability
of the common language API and costs related to the development.

1.6 Industrial case with Tomra AS

An industrial case study was used to further investigate the subject of using
NoSQL data storage solutions in a business enterprise. The case study
explores the question of how, by using different database solutions, we
may change the way our data is modelled as well as the way we develop
an application. Tomra AS is a Norwegian company based in Asker and is
the leader in the Reverse Vending market. Tomra were in need of a new
solution that would allow them to validate the receipts coming from their
reverse vending machines. As part of this project we, the team of external
consultants in collaboration with Tomra specialists and management, have
implemented a new solution using NoSQL databases as the method of data
storage for the system. During the implementation two popular NoSQL
solutions came to be chosen - MongoDB document database and Neo4j
graph database. This is an unprecedented case in the Tomra corporation
and made for an interesting task to develop a new system using NoSQL
databases and then to be able to integrate it with the existing systems the
company has. The case study will be discussed in more detail in Chapter 4.

1.7 Structure of the thesis

The structure of this thesis will coincide with the following order to sys-
tematically investigate the problem area of developing a NoSQL solution
in an enterprise environment. Part 1 contains the chapters Introduction,
Background and Research methods. In the course of the introduction, the
topic of the topic of the thesis is presented, alongside the defence of and
explanation as to why the subject of this thesis is relevant. In addition, the
research questions and a hypothesis are also presented. The Background
chapter gives a broader explanation of characteristics of NoSQL databases,
their appliances and features. Different studies related to this thesis are
discussed in the last part of the chapter. The methods used for gathering
data and implementing the applications are described in the chapter enti-
tled Research methods.

Part 2, Industrial Case, Implementation and Evaluation, contains the
description of the Industrial case used in the course of this research project.

8

It likewise elaborates upon the process described in the Implementation
chapter. Experiments and evaluations have been conducted in order to
investigate the problem area in more depth. The final chapter summarizes
the thesis and discusses whether the hypothesis has been confirmed or not.

9

10

Chapter 2

Background

In this chapter we will look closer at the different types of NoSQL
databases, their features, advantages and things they are criticized for.
Our aim is to acquire an understanding of the subject to make well
informed decisions about incorporating NoSQL in the enterprise. We
will describe MongoDB and Neo4j database systems in more detail,
since they are featured in the industrial case that we will present in the
next Chapters. In the following section we present related articles and
studies investigated in the NoSQL field with focus on the cloud, web
and distributed environment. In the last part of the chapter we will look
through several case studies highlighting experience of NoSQL being used
in a real business environment to leverage existing systems.

2.1 Introducing NoSQL

First mention of NoSQL was made in 1998 by Carlo Strozzi. He used it as
a name for his open source relational database that did not offer an SQL
interface. The term was reintroduced in 2009 by Eric Evans in conjunc-
tion with an event discussing open source distributed databases[18]. At
that time it was not used to describe a particular system, but rather a whole
new mindset of non-relational distributed data stores that emerged in early
2000’s. Hundreds of NoSQL databases appeared in the market since then.

NoSQL properties

Today we have to deal with the broad range of NoSQL implementations
and term variations associated with them. However, most NoSQL
databases share some common traits that can be used to distinguish them,
such as:

• They lack fixed schemas

• They avoid joins (the operation of combining relations)

• They scale horizontally

11

Another common characteristic of NoSQL databases for which they are
sometimes criticized, is that they lack ACID transactions. Those set of
properties (Atomicity, Consistency, Isolation, Durability) guarantee that all
transactions transform a database from one valid state to another. Once a
transaction updates a database item, all database clients (e.g. users and ap-
plications) will see the same value for the updated item.

CAP theorem

In order to understand why ACID properties often sacrificed in NoSQL
databases, let us examine findings in the area of distributed computing
that were presented by Eric Brewer back in 2000 year. He presented a
CAP theorem[4][12], the postulate that describes three essential system re-
quirements necessary for the successful design, implementation and de-
ployment of applications in distributed computing systems. They are Con-
sistency, Availability and Partition Tolerance – or CAP. The theorem also
states that a system can guarantee only two of the three mentioned prop-
erties. Due to the fact that NoSQL databases are occupied with availability
and partition tolerance of the large-scale distributed systems, the consis-
tency has suffered, therefore ACID properties could not be maintained.

BASE

Consistency and reliability, however, are still attained in NoSQL databases,
by embracing the notion of BASE[29]. BASE states for the Basic Availability,
Soft state and Eventual consistency.

• Basic availability implies disconnected client operation and delayed
synchronization meaning all data is distributed and holds tolerance
to temporary inconsistency and its implications.

• Soft state means the state of the system may change over time, even
if there is no any input (leading us to the eventual consistency).

• Eventual consistency property guarantees that even when data is
not consistent, eventually it will be. After a database item has been
updated for long enough period of time, all clients will see the same
value for the updated item.

In most of the cases mentioned properties mean that applications should be
aware of non-repeatable read results due to the latency in consistency[13].
An item in the internet shop might be shown as available for some time
after it has been sold out. The flight ticket price might change during the
check out process. In return, however, we get extremely fast insert and read
operations.

Unprecedented data volumes, connected data, performance and scalability
requirements of modern data-driven applications changed the way we
approach data management. And it is not clear yet, if available RDBMS

12

solutions can be flexible enough to be able to satisfy needs of the modern
business. One thing that is certain that NoSQL databases can cater to
very different needs. Thus, arguably providing better-suited solutions
for many today’s data storage problems. Consistency, availability and
partition tolerance are three primary concerns that determine which data
management system is suitable for a given application.

2.1.1 Criticism of NoSQL

Even though NoSQL growth is impressive, not everyone is ready to jump
into the wagon just because of the hype. There are structural, idealogical
and other constraints in NoSQL that people have to deal with. Only know-
ing these disadvantages will let enterprise to make well-weighted decisions
and build reliable solutions for their business.

Redundancy

A lot of performance gains achieved in NoSQL databases by denormal-
ization, the process of optimizing the read performance of a database by
adding redundant data[30]. In practice it means that related data, such
as for example customer information and street address are stored in the
same place. That way we can extract all data together when we pull the
information about customer, thus avoiding performance-expensive "joins"
on several tables by customer id. As the result of having arbitrary records
stored in any place, our data can be duplicated throughout the database. In
our example that makes it a challenge to update street addresses and make
sure it is consistent in every record.

Lack of true ACID transactions

We have already mentioned this problem and while there are thousands
of businesses that are content with BASE properties of NoSQL databases,
there are still certain industries where ACID is a must have property. Any
financial or sensitive data requires the database to be guaranteed in a valid
state at any given time. We do not want our financial data "disappear" until
the state of the database will become consistent again.

Zoo of implementations

After many years of use, SQL have become standardized and well-spread
query language. Database engineers are capable of writing SQL queries for
virtually any SQL-based database system with rather moderate changes in
syntax. Structure and logic are very similar whether one use Oracle DB,
MSSQL, MySQL or PostgreSQL. It does not hold true in case of NoSQL,
where dozen of paradigms with dozen of popular implementations exist
and provide their custom made APIs. While giving us a freedom of choice,
variety of different database systems might become a challenge when learn-
ing new paradigm and integrating it with existing systems.

13

Immaturity

Most of the other shortcomings NoSQL database systems have regarding
bad support, lack of documentation and questionable reliability can be
well explained by the fact that most of the NoSQL systems are much
younger than existing SQL implementations. For many years database
developers were working on query optimizations, tools, documentation,
thus providing very reliable, mature and well-predicted experience of
using SQL database systems. NoSQL databases are still on their way to
integration with more tools. They get more functionality and number of
NoSQL adepts is growing. We are seeing that NoSQl world started with
denying everything SQL made so far, but it is slowly adding back things
that look like transactions, schemas and standards1. This will be the next
step to the maturity and wide-adoption of the NoSQL databases.

2.1.2 Types of the NoSQL databases

There have been various attempts to classify NoSQL databases. However,
because of variety of implementations and approaches it is difficult to come
up with all-suited overview and classification. In addition, we should
mention that a lot of databases do not belong to one of the types completely,
incorporating hybrid features of several classes. Although classifications
that describe seven and more types exist, in this paper we will divide
NoSQL databases into four main types:

• Key-value stores

• Column-oriented stores

• Document Databases

• Graph Databases

Key-value (KV) stores

Key-value stores use the associative array (also known as a map or dic-
tionary) as their fundamental data model. In this model, data is repre-
sented as a collection of key-value pairs, such that each possible key ap-
pears at most once in the collection. This data structure is available across
many programming languages and is very well-known to software devel-
opers. Query, delete, insert and modify operations for data are executed
through the primary key. Being simple structure, still it provides query
speed higher than in relational database, supports mass storage and high
concurrency[14].

1 http://www.infoworld.com/article/2617405/nosql/7-hard-truths-about-the-nosql-
revolution.html, Retrieved October, 2014

14

Figure 2.1: Customer data example of Key-value store

Key-values represent buckets of data. For example, in case of a customer
database illustrated in Figure 2.1, each user data information is represented
in individual bucket and represented using a key-value which in this case
is user id. The key-values can be serialized using either Java serialization
or XML. This way it is very fast to store as it just writes bits to the discs.
Some popular key-value store implementations in the market are Berkeley
DB, Tokyo Tyrant, Voldemort and Redis. Voldermort describe their vision
of key-value store database as "basically just a big, distributed, persistent,
fault-tolerant hash table."2 It should be noted that such simplicity is often
achieved through hiding the details of implementation from an application
developer. Even though key-value store may look and act like an associa-
tive array, it can rely on tables, indexes and other properties of relational
systems to be efficient in practice.

Document databases

Document-oriented databases are semi-structured data storages usually
designed around abstract notion of a "Document". Although the imple-
mentation of the database might differ, the idea behind is to allow the client
applications to address documents and their content in the most convenient
way for them. A document may represent collection of tags, meta-data or
collection of collections. In some way it can be analogous to a tabular struc-
ture with records in it, except we do not have to follow the same structure
for all the records. It is possible to add and remove attributes to any single
tuple or collection without wasting space, by creating empty fields for all
other tuples or collections. That resolves in all tuples can contain any num-
ber of fields of any length. As the result, the application programmer gains
ease of use and the possibility to create very dynamic data.

Consider an example with set of TV shows. Each show consists of many
seasons, each season has several episodes and each episode has many re-
views and many cast members3. This structure is depicted in Figure 2.2a.

2 http://www.project-voldemort.com/voldemort/, Retrieved September, 2014
3http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-

mongodb/, Retrieved October, 2014

15

(a) TV show structure (b) Babylon 5 TV season encoded in the
document

Figure 2.2

Typically, we want to retrieve the information connected to that TV show
all at once, such as user is able to see how many seasons does the TV show
has, how many episodes and who are the cast members. If the data we need
for a TV show is under one document (Figure 2.2b), it will be very fast to
retrieve all this information at once, even if the document is very large.

The drawback of such structure is that we lack consistency and is some
cases write performance. Consider an example if one of the cast members
have changed their name. In the document database the records of this cast
member could be in a very large number of the documents. We will have
to find all the documents with this cast member and update the same in-
formation in all records. Traditional concepts like indexes and keys are of-
ten employed in the same sense as in relational databases. By using these,
one is supposed to achieve almost the same performance as it would be
possible in a system implemented with tables[18]. Most often documents
implemented in a semi-structured file format, accessible both for humans
and computers, such as JSON, XML, YAML or BSON. Typical document
database examples are MongoDB and CouchDB.

Column-oriented stores

Column-oriented stores in a nutshell, store each database table column sep-
arately with attribute values belonging to the same column stored contigu-
ously, compressed and densely packed as opposed to traditional database
systems that store entire records (rows) one after the other[1]. To illus-
trate the concept consider the Table 2.1 of best movies on IMDB4. In a row-
oriented relational database, this information will be stored as depicted in
a Table 2.2. While in a column-oriented database, data in each column will
be recorded contiguously, which is presented in a Table 2.3 Reading a sub-
set of a table’s columns becomes faster, at the potential expense of excessive
disk-head seeking from column to column for scattered reads or updates.

4http://www.imdb.com/chart/top, Retrieved September, 2014

16

Title Year Rating
The Shawshank Redemption 1994 9,3
The Godfather 1972 9,2
The Godfather Part II 1974 9,0
...

Table 2.1: Table with movie data

Title Year Rating
The Shawshank Redemption 1994 9,3
The Godfather 1972 9,2
The Godfather Part II 1974 9,0
...

Table 2.2: Row-oriented Database Layout

Title Year Rating
The Shawshank Redemption 1994 9,3
The Godfather 1972 9,2
The Godfather Part II 1974 9,0
...

Table 2.3: Column-oriented Database Layout

Key characteristics of column database applications are: tolerance to tem-
porary inconsistency, need for versioning, flexible database schema, sparse
data, partial record access and high speed of insert and read operations[13].
When a value changes it is stored as a different version of the same value
using a timestamp. In other words, the notion of update is effectively
nonexistent. Partial record access contributes to dramatic performance im-
provements for certain applications. Columnar databases perform aggre-
gate operations such as computing maxima, minima, average and sum on
large datasets with extreme efficiency.

Column family is a set of related columns. Column databases require pre-
defining column families and not columns. A column family may contain
any number of columns of any type of data, as long as the latter can be
persisted as byte arrays. Columns in a family are logically related to each
other and are physically stored together. Performance gain is achieved by
grouping columns with similar access characteristics into the same fam-
ily. Database schema evolution is achieved by adding columns to column
families. A column family is similar to the column concept in RDBMS. Sys-
tems in this category include Google BigTable, Apache Cassandra, Apache
HBase, Hypertable and Cloudata.

17

Figure 2.3: Core graph entities

Graph database

Graph database models defined as those in which data structures for the
schema and instances are modelled as graphs or generalizations of them
and data manipulation is expressed by graph-oriented operations and type
constructors[3]. Graph data models work with 3 core abstractions: Nodes,
relationships between nodes and key value pairs which can be attached
to nodes and relationships (Figure 2.3). Graph databases are optimized
for use cases where you have connected data. Today connected data is
prevalent in social networking, logistics networks (for package routing),
financial transaction graphs (for detecting fraud), telecommunications net-
works, ad optimization, recommendation engines, bioinformatics (protein
calculations) and in many other places. In all these cases graph databases
outperform traditional database systems. Today the paradigm has shifted
from caring about static records of data to being occupied with the con-
nections between different data nodes and ways we can leverage useful
information from their relationship.

Most of the large companies have their own implementations of graph
database that is tailor made for their core business. Google uses its Knowl-
edge Graph to enhance the quality of their search. Twitter’s Interest Graph
and Facebook’s Social Graph are used to map users, their relationships and
interests. Microsoft’s Office Graph is bringing new ways to people that can
be productive at their work, using relationships between colleagues and
their documents. Graph databases are also popular for implementing ac-
cess control and authorization subsystems for applications that serve mil-
lions of end users. Graph databases include FlockDB, InfiniteGraph, Titan,
HyperGraphDB, AllegroGraph, Affinity, OrientDB and Neo4J.

18

System Type API Language Storage License

MongoDB Document BSON C++ Disk AGPL v3.0.
CouchDB Document JSON/REST Erlang Disk Apache
Elasticsearch Document REST Java Disk Apache
RavenDB Document HTTP/JSON C#.NET Disk AGPL v3.0
Riak Key-value JSON/REST Erlang Plug-in Apache
Redis Key-value Multiple C++ RAM BSD
Voldemort Key-value Multiple Java RAM Apache
Berkeley DB Key-value Multiple C RAM AGPL v3.0
Cassandra Column CQL/Thrift Java Disk Apache
HBase Column Java/mult Java HDFS Apache
Hypertable Column Thrift C++ Files AGPL v3.0
Neo4J Graph REST/mult Java Disk Personal
AllegroGraph Graph REST C#.NET Disk Commercial
Infinite Graph Graph JAVA/DLB Java Disk EULA

Table 2.4: Summary information of popular NoSQL databases

2.2 MongoDB: A Document-oriented database

MongoDB (from "humongous") is an open-source, cross-platform, document-
oriented database developed in C++. It was developed in October 2007 by
10gen(now MongoDB, Inc.) with first open-source public release in 2009. It
is currently in version 2.6.5 and available to download for Windows, Linux,
Mac OS X or Solaris operation systems.5 Being a NoSQL database, Mon-
goDB eschews the traditional table-based relational database structure in
favour of JSON-like documents with dynamic schemas. The format to store
documents in MongoDB is BSON – Binary JSON with the maximum 16MB
size for each. The maximum document size helps ensure that a single doc-
ument cannot use excessive amount of RAM or excessive amount of band-
width during transmission. Like JSON, BSON supports the embedding of
documents and arrays within other documents and arrays.

Concepts and structure

In MongoDB there are no database schemas or tables. Instead, documents
which are similar to rows, are grouped into collections which are similar to
tables. Document is a data structure composed of field and value pairs. The
values of fields may include other documents, arrays and arrays of docu-
ments. MongoDB automatically generates a primary key (id) to uniquely
identify each document. The id and document are conceptually similar to
a key-value pair. MongoDB attempts to hold most of the data in memory
so simple queries take less time by avoiding expensive hard disk retrieval
operations. One problem to this is once the data set becomes larger than the
available memory, then MongoDB will have to start querying the hard disk

5http://www.mongodb.org/downloads, Retrieved October, 2014

19

for results. For this reason, it is advised to use 64-bit version of MongoDB,
since MongoDB is limited to a total data size of about 2GB for all databases
in 32-bit mode.

Indexing

In order to increase performance while working with documents, Mon-
goDB uses indexing similar to relational databases. Each document is iden-
tified by _id field and over that field is created unique index. Although in-
dexing is important to execute efficiently read operations, it may have neg-
ative impact on inserts. Apart from automatic index created on _id field,
additional indexes can be created by database administrator. For example,
can be defined index over several fields within specific collection. That fea-
ture of MongoDB is called “compound index”. However, all indexes use
the same B-tree structure. Each query use only one index chosen by query
optimizer mechanism, giving preference to more efficient index. Eventu-
ally query optimizer re-evaluates used indexing by executing alternative
plans and comparing execution cost.

License and adoption

Released under a combination of the GNU Affero General Public License
and the Apache License, MongoDB is free and open-source software, with
MongoDB, Inc. offering commercial support and other services. MongoDB
has been adopted as backend software by a number of major websites and
services, including Craigslist, eBay, Foursquare, SourceForge, Viacom and
the New York Times, among others. MongoDB is the most popular NoSQL
database system up to date6.

2.2.1 MongoDB competitive features

Replication

Replication is the mechanism in MongoDB that gives the database durabil-
ity and concurrency. It is the process of synchronizing data across multi-
ple servers. This way replication provides redundancy and increases data
availability. MongoDB uses Master-Slave replication mechanism. It al-
lows defining a Master and one or more Slaves. Master can write or read
files while Slave serves as backup, so only reading operations are allowed.
When Master goes down, Slave with more recent data is promoted to Mas-
ter.

Automatic Failover

Automatic Failover is the name of this mechanism which ensures avail-
ability of the service. Figure 2.4 illustrates this process. With multiple

6http://www.mongodb.com/leading-nosql-database, Retrieved October 26, 2014

20

(a) Replication

(b) Automatic Failover

Figure 2.4: Data availability mechanism

copies of data on different database servers, replication protects a database
from the loss of a single server. Replication also allows you to recover
from hardware failure and service interruptions. With additional copies
of the data, you can dedicate one to disaster recovery, reporting, or backup.
You can also use replication to increase read capacity and achieve concur-
rency. Clients have the ability to send read and write operations to different
servers. You can also maintain copies in different data centres to increase
the locality and availability of data for distributed applications.

Sharding

Sharding is a method of data partitioning across multiple databases. Shard-
ing is one of the MongoDB core features, which allows it to support deploy-
ments with very large data sets and heavy throughput operations. With
increasingly growing size of a database, number of transactions and appli-
cation throughput, the response time for querying single database increases
exponentially. It is a great challenge for single server to provide necessary
CPU, storage, memory and I/O capacity for the data operations.

Scaling by adding CPU and storage resources to increase capacity is called
vertical scaling and it has limitations. Costs of creating and maintaining
high-end servers with large number of CPUs and large amount of RAM
are disproportionately high compared to smaller systems. In addition to
that, cloud-based solutions does not provide server instances that are big
enough to satisfy big data needs. There is a clear practical limitation for
vertical scaling.

By contrast, sharding or horizontal scaling, distributes the data sets or data
shards across a number of much less expensive commodity servers. Data
shards have comparatively little restriction as far as hardware and software
requirements are concerned. Each shard operates as an independent
database, but collectively, the shards make up a single logical database
(Figure 2.5). In a lot of cases, database sharding can be achieved
fairly simply. One common example is splitting a customer database

21

Figure 2.5: Large collection with data distributed across 4 shards.

geographically. Customers located in Europe can be placed on one server,
while customers in the US on another. Given there are no customers with
multiple locations, the split is easy to maintain.

2.3 Neo4j: A graph database

Neo4j is an open-source NoSQL graph database implemented in Java and
Scala. Started by Neo Technology in 2003, it has been publicly available
since 2007. Neo4j is used today by hundreds of thousands of users in al-
most all industries. Use cases include match making, network manage-
ment, software analytics, scientific research, routing, organizational and
project management, recommendations, social networks and more. Neo4j
is one of the few general-purpose graph database engines that are mature,
robust and have a great supporting community.

Neo4j implements the Property Graph Model down to the storage level.
As opposed to graph processing or in-memory libraries, Neo4j provides
full database characteristics including ACID compliance, cluster support
and runtime failover, making it suitable to use graph data in production
scenarios. Neo4j is a high-performance database, especially for highly con-
nected data, where Neo4j can be thousands of times faster than relational
databases[26], making it a ideal for managing complex connected data.
Its model is intuitive and expressive, mapping closely to the whiteboard
domain model. High performance, maturity and ease of use make Neo4j
world’s leading graph database7.

7According to http://neo4j.com/ and general consensus on that matter

22

Figure 2.6: Cypher declaring a relationship between nodes "a" and "b"

2.3.1 Neo4j competitive features

ACID compliance

Being a NoSQL database, Neo4j possesses all the advantages of its kind,
such as flexible schema, horizontal scalability, high-performance and high
availability. However, some particular features make Neo4j very popu-
lar among users, developers and DBAs. Among them is proper ACID be-
haviour. It is the foundation of data reliability in Neo4j. It enforces all op-
erations that modify data to occur within a transaction, guaranteeing con-
sistent data. This robustness does not only applicable for single embedded
graphs instance, but it extends to multi-sharding high availability installa-
tions. Among other important features in Neo4j is its simple, yet powerful
query language Cypher and highly efficient traversal mechanisms.

Powerful traversal

Traversing a graph means visiting its nodes, following relationships ac-
cording to some rules. Graph databases are all about connected graph data.
One of the key features in Neo4j is constant time traversals for relationships
in the graph both in depth and in breadth due to double-linking on storage
level between nodes and relationships. In most cases only a subgraph is
visited, as you already know where in the graph the interesting nodes and
relationships are found. Neo4j comes with a callback based traversal API
which lets you specify the traversal rules. In combination with compact
storage and memory caching for graphs it results in efficient scaling up to
a billions of nodes in one database on moderate hardware.

Rich query language

Cypher is Neo4j’s Graph Query Language. Cypher is a declarative, SQL
inspired language for describing patterns in graphs. Like SQL, Cypher
is not only a query language but does also allow data manipulation like
updates and deletes from a graph database. Unlike SQL, however, it does
not require us to describe exactly how to do it. Cypher is a relatively simple
but still very powerful language. We can express very complex database
queries with simplicity and elegance Cypher provides. From developer
point of view, it allows us to focus on our domain instead of worrying about

23

database structure. The constructs are designed to be human-readable,
based on English language and iconography which helps to make queries
more self-explanatory as we can see in the Figure 2.6. Cypher is inspired
by a number of different approaches and builds upon established practices
for expressive querying. Most of the keywords like WHERE and ORDER
BY are inspired by SQL. Pattern matching borrows expression approaches
from SPARQL. Some of the collection semantics have been borrowed from
languages such as Haskell and Python. Cypher focuses on the clarity of
expressing what to retrieve from a graph, not on how to retrieve it.

2.4 Related work

Generally, works about NoSQL databases fall into two categories. First is
fundamental research or general research about NoSQL databases, their
features and properties. Another type of research is comparison between
different implementations of NoSQL databases, or between NoSQL and
SQL databases. The aim of this thesis is to investigate how NoSQL
databases will be used in enterprise. That is why the main area of
interest is comparison between different database implementations in
terms of performance or other features. General research about NoSQL
in distributed or cloud environment is also in our focus. We overview most
recent studies in respective areas. However, none of the works had similar
approach as in this thesis.

2.4.1 Fundamental research of NoSQL

NoSQL assessed on elasticity

Konstantinou I. et. al. in their work "On the Elasticity of NoSQL Databases
over Cloud Management Platforms"[17], performed a study of the elas-
ticity feature in the cloud-enabled environment on some of the popular
NoSQL databases. In this work they quantified and analysed the costs
and gains of various NoSQL cluster resize operations, utilizing three pop-
ular NoSQL implementations. HBase is identified as fastest for reads and
scales well with node additions. Cassandra performance described as fast
writes and good scalability, without any transitional phase during node
additions. Riak is found unresponsive in high request rates, an it can scale
only at lower rates but rebalanced automatically. All three implementa-
tions achieve small gains from a data rebalance in general, provided they
were under minimal load.

NoSQL and horizontal scaling

Another work that focuses on database scalability in the web environment -
"NoSQL Databases: a step to database scalability in Web environment"[27]
by Jaroslav Pokorny. He described the challenges that cloud-computing
bring to the databases that support large-scale, data-intensive applications.

24

He agrees that in order to achieve horizontal scaling, databases have to
relax some of their usual characteristics, such as for example transactions
or schemas. And NoSQL databases are a next step to tackle this problem.
However, he argues that an adoption of NoSQL data stores will hardly
compete with relational databases that represent huge investments and
mainly reliability and matured technology.

NoSQL for Big Data

Gudivada V. et. al. wrote a report on "NoSQL Systems for Big Data
Management"[13]. They provided taxonomy and unified perspective on
NoSQL systems with regard to Big Data and the way it created a need
for out-of-the-box horizontal scalability for data management systems. In
this work they compared various NoSQL systems using multiple facets
including system architecture, data model, query language, client API,
scalability, and availability. They concluded that NoSQL systems are
predominantly used for new applications which are characterized by
horizontal scalability, high performance, relaxed and eventual consistency.
However, it is also likely that existing applications will begin to use
NoSQL through re-engineering process. The current upheaval in the data
management systems will help promote using the system that closely
matches the application needs. New services such as Amazon EC2 will
make NoSQL systems even more economical and within reach for all
organizations, both small and big.

2.4.2 Comparative studies

Because of the variety of solutions and implementations available in the
NoSQL market, it is very hard to choose between different database sys-
tems, especially when they belong to the same type and provide similar
functionality. That is why, hundreds of articles, blog posts and books writ-
ten about comparison and evaluation between different NoSQL implemen-
tations.

MongoDB versus Cassandra

Abramova V. and Bernardino J. attempted to compare two popular open-
source databases: MongoDB and Cassandra. In their report "NoSQL
Databases: MongoDB vs Cassandra"[2] they performed experiments on
the execution time according to database size and the type of workload.
They tested six different types of workloads: mix of 50/50 reads and up-
dates; mix of 95/5 reads/updates; read only; read-modify-write cycle; mix
of 5/95 reads/updates; and update only. Results showed that with the in-
crease of data size, MongoDB started to reduce performance, sometimes
showing poor results. Differently, Cassandra just got faster while working
with an increase of data. Also, after running different workloads to analyse
read/update performance, they concluded that when it comes to update
operations, Cassandra is faster than MongoDB, providing lower execution

25

time independently of database size used in our evaluation. In their exper-
iments Cassandra showed the best results for almost all scenarios.

MongoDB versus SQL DB for moderate data

Most often enterprises have to choose between NoSQL and SQL solution
and they do not have problem of big data, such as large corporations have.
In order to make calculated decision, it is important to compare perfor-
mance of processing of modest-sized structured data in an NoSQL database
with traditional relational database. Parker Z. et. al. in their work "Com-
paring NoSQL MongoDB to an SQL DB"[25] highlight this area. Their ex-
periments showed that, MongoDB has better runtime performance for in-
serts, updates and simple queries. SQL performed better when updating
and querying non-key attributes, as well as for aggregate queries. They
consider MongoDB a good solution for larger data sets in which the schema
is constantly changing or in the case that queries performed will be less
complex. Since MongoDB has no true schema defined and SQL requires a
rigid schema definition, MongoDB would easily handle a dynamic schema
such as a document management system with several dynamic fields and
only a few well known searchable fields.

Scalable database solutions

Rick Cattell in his work "Scalable SQL and NoSQL Data Stores"[5] exam-
ined a number of SQL and NoSQL data stores designed to scale simple
OLTP-style application loads over many servers. He compares the new sys-
tems on their data model, consistency mechanisms, storage mechanisms,
durability guarantees, availability, query support and other dimensions.
After covering over twenty scalable data stores in this paper including
Voldemort, Redis, MongoDB, HBase, MySQL cluster, ScaleDB and others,
he came to several conclusions. He argues that many developers will be
willing to abandon globally-ACID transactions in order to gain scalability,
availability and other advantages. NoSQL data stores will not be a “pass-
ing fad”. The simplicity, flexibility and scalability of these systems fills a
market niche, e.g. for web sites with millions of read/write users and rela-
tively simple data schemas. New relational DBMSs will also take a signif-
icant share of the scalable data storage market. Many of the scalable data
stores will not prove “enterprise ready” for a while. Even though they ful-
fil a need, these systems are new and have not yet achieved the robustness,
functionality and maturity of database products that have been around for
a decade or more.

Neo4j versus MySQL and data provenance

Another comparison between NoSQL and SQL databases have been
performed by Vicknair C. et. al. Their paper "A Comparison of a Graph
Database and a Relational Database"[33] reports on a comparison of Neo4j
with MySQL for use as the underlying technology in the development of

26

a software system to record and query data provenance information. A
directed acyclic graph (DAG) is a common data structure to store data
provenance information relationships. Both systems performed acceptably
on their objective benchmark tests. In experiments Neo4j did generally
better at the structural type queries than MySQL. In full-text character
searches, the graph database performed significantly better than the
relational database. However, they make a conclusion that it is premature
to use the graph database for a production environment where many
queries will be on parameters stored in a semi-structured way, due to
security issues and lack of support, even in the face of Neo4j’s much better
string searches.

2.5 Case studies

There are plenty of various of use cases from different industries and
companies that emphasize customer stories when they used NoSQL and
it benefited from them. Here we will take several samples from several
different industries, their challenges and how they solved it using NoSQL.

2.5.1 Neo4j case studies

Telenor and resource authorization

In the Telenor case study "Resource Authorization Challenge Solved with
Graph Database"[22], we can see the challenge the leading supplier of Nor-
way’s telecommunications and data services has encountered. With more
than 3 million mobile subscribers, Telenor’s online self-service manage-
ment portal experienced performance issues. The existing solution was
backed by Sybase, with queries implemented as stored procedures result-
ing in resource authorization would take as much as 20 minutes for the
largest customers. Neo4j database was chosen to address this problem.
Modelling the resource graph in Neo4j was quite natural, since the do-
main being modelled is inherently a graph. Neo4j provided fast and secure
access and answers to important questions like: Which subscriptions can
a user access, does the user have access to the given resource and which
agreements is a customer party to? Neo4j enabled high performance and
reliable execution of authorization rules during all access to protected data.
"The transition resulted not just in faster performance, but in more main-
tainable code, because the access rules could be expressed so much more
easily in a graph. Query and response times were reduced to seconds and
even milliseconds in many cases, from many minutes", stated Telenor rep-
resentatives.

Neo4j leveraging dating sites

Manhattan-based SNAP Interactive, Inc. likes to give people the third
degree. It asks everyone, via web-and-mobile social dating app, Are You

27

Interested? The question has made SNAP a leading app developer for
social networking websites and mobile platforms. From the case study
"SNAP Interactive Conquers Online Dating with Neo4j"[23], we can learn
about the challenge, that was to represent friends-of-friends data. With
data of over a billion person nodes and over 7 billion relationships, they
could not find efficient way to search for 3rd degree connections with
their existing Apache Solr built solution. The indexing and joins would
take too much time to develop and maintain, and the solution wouldn’t
handle existing traffic or scale. Fox made the decision to move to a graph
database and selected Neo4j for its flexibility, speed and ease of use. As the
result, they significantly improved dating recommendations through use
of friends-of-friends connections. It is also mentioned how Neo4j’s Cypher
query language sped up the implementation by greatly simplifying coding.
According to their data 98% of queries are running faster than expected.
SNAP also gained powerful visual insights through Neo4j, by displaying
available data geospatially.

2.5.2 MongoDB case studies

MongoDB for content publishing

"Forbes Overhauls Publishing Platform"[19] is the name of the case study,
which describes, how Forbes decided to overhaul their entire platform and
rebuild their content management system (CMS) on MongoDB. A leading
source of business news since 1917, Forbes has always produced quality
content, but they lacked speed and robustness with their old, closed sys-
tem. Outages were common, changes to the architecture were challeng-
ing and costly. Forbes first built a custom CMS on MongoDB in just two
months. Then they launched a brand new mobile site in less than one
month. MongoDB aggregates real-time data, including over one million
articles and hundreds of thousands of comments and delivers immediate
insight into how readers are responding to content. MongoDB also sim-
plifies the capture and analysis of Forbes’ clickstream data: what people
are looking at, what parts of the page they’re viewing and most impor-
tantly, what they’re sharing. Now their publishing platform is incredibly
fast, open to contributors globally and easy to change without going of-
fline. All at a fraction of the time and cost of their old approach.

Expedia goes global with MongoDB

In another case study, we learn about Expedia and their new system for
performing various activities such as finding flight tickets, hotels and car
rentals. In their study "Online Travel Gets Personal"[20], they describe
a challenge dealing with data that have so many different attributes.
Customers want instantaneous and relevant results, which should be
available on any device. MongoDB’s flexible document store and simple
horizontal scale made it possible for Expedia to create a feature that collects
highly-dynamic customer information in real-time. That allows them to

28

present personalized offers on the fly. They were able to scale solution
from prototype to production in less than two months. After the release,
Expedia got a lot of feedback from customers and made a lot of changes
into the solution to satisfy their needs. MongoDB’s flexible schema allowed
them do do radical changes in the database design, without disrupting the
solution or any impact on the customer experience. Expedia expects even
more growth of the data in the future and they expect that MongoDB will
support that growth, thanks to its native sharding capabilities.

2.5.3 Summary

Looking at all these cases, we can find similar traits in all of them, even
though they come from completely different industries. First of all, com-
panies come to the power of NoSQL databases, when they need to store
data that does not "bend" naturally into table system provided by relational
databases. It makes it harder to architect such database, as well as requires
a lot of knowledge and experience to make it right. Cost of maintenance
of such database rises as well. Another important trait, is that for all com-
panies it was crucial to retrieve data in efficient and instant way. Whether
it was social, analytic or game data, the time constraints were limited, and
thus the speed of data response and retrieval was the main factor. Not only
that, but also data availability is another major concern of companies that
deal with large sets of data. Being able to retrieve data quick helps to avoid
data congestion. But ability of database to scale is one of the important
features that NoSQL databases should provide. Last but not least impor-
tant property of common problem is how quickly it was possible to model,
deliver and operate such database. In fast pace business environment as
today, it is highly important to be able to create new features, deliver new
values and develop new systems for customers in quick and efficient man-
ner. Therefore, it was important for all companies that NoSQL provide
tools, which are easy to use, yet powerful to create small data models and
scale it to enterprise sizes.

NoSQL and maturity

Among the reasons why companies have chosen particular solution, is that
they consider it as a mature and reliable system. And that is true, having
all the success stories behind, many articles written about them, having
a great support community and activity in promoting they solution, it
seems that NoSQL is here for long time. And unlike some open source
alternatives, we can with high probability say it is quite unlikely that it
will suddenly cease to exist, leaving all the companies without support
and bug fixes. Which is one of the things long-term enterprise companies
should think about. Talking about bug-fixing, we should also mention
that open-source community supported databases showed themselves as
highly reliable databases, without any notable or major issues. Most of
respondents agree that error-freeness of the particular chosen database
was among the advantages of the solution. We can conclude that NoSQL

29

databases are best choice in following cases:

• When domain data does not fit tabular relational model.

• When instant, real-time response/retrieval of data is required and
central.

• When scalability might be an issue as well as demand for high data
availability

• When data modelling should be done in quick and efficient way. With
a lot of possible changes in the model

In majority of the cases, companies and individual developers choose
particular NoSQL solution over its competitors because of the following
qualities:

• Maturity and reliability

• Track of success stories and large-scale companies that are already
using this database for their purposes

• Good documentation and large community support

• Simple and error-free solution. Easy to manage, maintain and work
with

All that have been taken in consideration, when Neo4j and MongoDB
have been chosen as solutions for Tomra AS project. We will evaluate
preconditions and current situation to assess necessity of using Neo4j
graph database and MongoDB document database, as well as we will
compare them with the relational database solutions.

30

Chapter 3

Research Method

In this section we will describe the research methods used for collecting
data and analysing topics of this work. We will talk about different existing
qualitative and quantitative research methods that were used for data
collection, development and decision making. We will discuss following
methods that have been mainly used:

• Comparative research

• Secondary source research

• Data analysis research

• Case study research

• Observation and fieldwork

3.1 Qualitative and quantitative research methods

There are several classifications available on the types of the research
methodology. One of the most common ones is distinction between quali-
tative and quantitative methods. The research topic usually dictates which
kind of research methodologies we use to build our work on and which
methods we should use to collect relevant data. Methods from both
methodologies can be used together in some cases.

Quantitative research in Information Systems is a set of methods that al-
low us to answer research questions about the interaction of humans and
computers1. In this case researcher is motivated by the numerical outputs
and how to derive meaning from them. Examples of accepted quantitative
methods include survey methods, laboratory experiments, formal methods
(e.g. econometrics) and numerical methods such as mathematical model-
ing. If one to collect quantitative data he or she is probably measuring vari-
ables and verifying existing theories or hypotheses or questioning them.
Data is often used to generate new hypotheses based on the results of data

1 http://dstraub.cis.gsu.edu:88/quant/, Retrieved October, 2014

31

collected about different variables.

Qualitative research methods were developed in the social sciences to
enable researchers to study social and cultural phenomena[21]. Examples
of qualitative methods are action research, case study research and
ethnography. Qualitative data sources include observation and fieldwork,
interviews and questionnaires, documents and texts and the researcher’s
impressions and reactions. Qualitative research takes place when statistics
and numerical methods are not the answer to understanding meanings,
beliefs and experience. Qualitative research methods are designed to help
researchers understand people and the social and cultural contexts within
which they live.

3.2 Data collection in the thesis

One of important principles of data collection is that everything is potential
data. It is a challenge to rigidly restrict the scope of data collection in
advance, or use formal rules to decide that some data are inadmissible or
irrelevant. In this work we mainly use qualitative research methods to find
information and to analyse data. The research methods, how they are used
and their advantages and disadvantages are described below.

3.2.1 Comparative research

There are many opinions on what is comparative research and when it
is used. In general it is the act of comparing two or more things with a
goal to discover something about the things being compared. Comparative
methods are used when there is an insufficient data to use the statistical
method2.

In section 2.1.2 we provide comparison of two different classes of data store
solutions, such as NoSQL and SQL. While we do not cover in great detail,
features that are typical of SQL databases, we emphasized on the features of
NoSQL that are distinctive from SQL. We also compared different NoSQL
solutions available in the market. We compare them on several levels, be-
ginning with classification comparison, ending with implementation com-
parison. Research did not aim cover all possible NoSQL variations. Rather,
it gives general overview and comparative analysis based on characteristic
features. We focused on the most relevant comparisons that will help us
to get better understanding of the topic and will allow us to answer the re-
search questions.

Chapter 5 compares two approaches in database modelling and implemen-
tation. We emulate the course of decision making and design process that

2 http://www.academia.edu/3510091/Qualitative_research_and_comparative_methods,
Retrieved October, 2014

32

occurred during the industrial case and implemented the same functional-
ity using different database engines. Both the development process and fin-
ished applications have been investigated. The emulations demonstrate the
use of databases for data modelling, architecture and basic queries, point-
ing out the strengths and weaknesses of each approach. The comparison
of the process is done with a qualitative approach, because it focuses on
understanding the differences between development approaches and in-
vestigates details in the database model. Not all the features that are part
of respective databases are compared and the comparison does not give a
comprehensive understanding of the database solutions.

3.2.2 Secondary source research and data analysis

Secondary source documents, scientific texts, pictures and artifacts also
can be valuable sources of qualitative data. We can analyze published
texts, case studies and articles written by engineers or other researchers
and benefit from knowledge construction in information systems. Dealing
with the secondary source we have to generalize, analyse, synthesise,
interpret or evaluate the original information. In chapter 2 we gather and
discuss a lot of material concerning NoSQL databases and research that
have been done on the topic. We take a look at the various works that
have different focus on the same topic, providing all-round overview on
the given research area. It gives us solid foundation for research and help
us to explore research questions.

3.2.3 Case study research

A case study is an empirical inquiry that investigates a phenomenon within
a specific natural setting and uses multiple sources of evidence[16]. A qual-
itative case study is used in this thesis to investigate different approaches
to database modelling and application development with data-centric view
on design and implementation. It is important to discover how the NoSQL
technology is used, and to get an understanding of how it affects devel-
opment process. For this reason, qualitative case study particularly well-
suited in our research since the object of our discipline is the study of
database systems in organizations.

In this work we use case study as one of the foundations for our research.
Described in chapter 4 the implications and reasons of the study, as well
as practical and scientific importance of the results. We investigate NoSQL
database usage in an enterprise environment and will have visible evidence
in terms of the project results and metrics. We also take use of existing sec-
ondary case studies in section 2.5 to get a better overview of the topic and
understand the flow of the case study.

It can be a challenge to draw a concrete conclusion from a case study,
because case study is very influenced by the performer and the setting of
the study. It is hard to do a generalizations, when retrieving a data from a

33

case study, because most often it highlights only small part of the big issue,
it is highly contextual and depends on the goals of the study.

3.2.4 Participant observation and fieldwork

Observation in qualitative studies typically involves the observer’s active
involvement in the setting studied[16]. Participant observation allows the
observer to ask questions for clarification of what is taking place and to
engage in informal discussion with system users, as well as to note the on-
going activities and descriptions of the setting. As the result, we have very
detailed description of what is going on. It also provides an opportunity
to bring up actors’ own explanations, evaluations, and perspectives in the
immediate context of use, rather than retrospectively.

Chapters 5 and 6 describe all this experience from being part of the whole
project from design to eventually implementation and evaluation part.
It brings all the observations that have been made during this work, as
well as expert and interview data from getting in the conversations and
discussions with the system actors. Being part of the project gives a great
insight on the processes going on and internal work that is being held. We
can observe implications and reasons behind each decision and solution in
their contextual environment. It is crucial to assessment of the system as a
whole.

3.3 Scientific method

The scientific method is the logical scheme used by scientists to approach
a scientific problem. Scientific method is used to produce various scientific
theories and find answers to the questions posed within science[11]. The
simple version can consist of the following steps:

1. Pose the question in the context of existing knowledge.

2. Address the problem related to the question.

3. Offer a hypothesis as a tentative answer to the problem.

4. Test the hypothesis in a specific experiment.

5. Obtain consistency in the results and analyse them.

6. Evaluate theory and publish the results.

7. Start the process from the beginning if theory requires improvements
or additions.

This structural approach to research provided a framework for this
thesis. We started with establishing the research questions and analysed
importance and actuality of them. After describing a problem, we have
developed a hypothesis that certain problem can be solved in particular

34

way. The solution is examined through implementation and experiments.
Evaluation and analyse of the results provided an answer on the validity of
the hypothesis. In this particular work, we analysed and tested two NoSQL
solutions in the industrial context and were able to draw a conclusion and
give answers on the research questions. The results have stated whether
our hypothesis is invalid or confirmed.

3.4 Development research

Development research is different from traditional research approaches in
its focus. Experiments, surveys, correlational analyses are focusing on de-
scriptive knowledge. They hardly provide useful guideline for a variety
of design and development problems in information systems. Develop-
ment research deals with uncertainties in the complex tasks in very dy-
namic contexts[32]. It aims to make not only scientific contributions, but
also practical ones. Developers do appreciate more adequate information
to create a solid ground for their choices and more timely feedback to im-
prove their products. Development research benefits the professional com-
munity of developers as a whole by growing knowledge of theoretically
underpinned and empirically tested design principles and methods.

In some cases development research can be referred as the action research.
Action research aims to contribute both to the practical concerns of people
in an immediate problematic situation and to the goals of the social science
by joint collaboration within a mutually acceptable ethical framework[21].
However, action research roots much older than development research. We
can consider development research as a new term, characterized by a pro-
liferation of terminology and a lack of consensus on definitions.

During this thesis, two applications have been implemented. They are part
of one system, which solves the problem dictated by the industrial case.
On top of that, we have created four emulations, two for each of the appli-
cations. The aim of emulations is to show the development process of the
application from decision making and design part to implementation and
evaluation part, using two different approaches in the database design and
using different tools.

The development process consists of several phases:

1. Gather requirements for the system, understand context and problem
it solves.

2. Propose several solutions to the problem and analyse them.

3. Test solution prototypes against the problem and gather related
information.

4. Design a process of development.

35

5. Incrementally implement main features of the application.

6. Evaluate after each step and refactor.

7. Test the application and evaluate the results.

8. Deploy.

These steps are very similar to the scientific approach and the goal is
to learn after each step and improve the process. The knowledge is
distributed between the actors and we focus on incremental improvements
of the system and the process. This process correlates to the Agile
Methodologies, which are the set of light-weight practices and guidelines
for incremental development. However, we are not constrained by these
methodologies and rather focus on important aspects for us during the
development phase.

36

Part II

Industrial Case,
Implementation and

Evaluation

37

Chapter 4

Industrial Case

4.1 Tomra Systems ASA Industrial Case

Tomra Systems ASA is a Norwegian multinational corporation which cre-
ates sensor-based solutions for optimal resource productivity. The com-
pany’s products and services fall within two main business areas: Col-
lection Solutions (including the business streams reverse vending, com-
paction and material recovery) and Sorting Solutions (including the busi-
ness streams recycling, mining and food) The business stream that is of our
interest is reverse vending.

A reverse vending machine or RVM, depicted on Figure 4.1, is a device
that accepts used (empty) beverage containers and returns money to the
user. Tomra is one of the main world vendors of reverse vending machines.
Not only that, it is provides maintaining and monitoring of them for the
client. Clients of Tomra are usually large retail (grocery) chains that put
RVMs inside their stores, thus maintaining full-cycle process by selling the
beverages and providing recycling matters for the emptied containers later.

4.1.1 Problem description

In a lot of places around the world RVMs issue money to the user directly.
However, Norway and other Scandinavian countries have adopted another
system. After recycling containers from beverages in the vending machine,

Figure 4.1: T9, one of the flagships in the reverse vending machines market.

39

Figure 4.2: Three step process.

the user receives a receipt that is to be taken to a point of sale where it may
either be exchanged for cash directly or the amount is discounted from the
customers’ shopping cart. Therefore we have three step process:

1. Submit containers

2. Receive a receipt

3. Receive refunded money at the point of sale in one or another way

This additional step, as illustrated in the Figure 4.2, introduces possible
breach in security. Getting a receipt instead of money directly, can leas to a
situation when the same receipt can be possibly used several times, or can
be faked. In this case, receipt is not that different from the paper money, as
it represents value, yet has less security signatures in it. While most of the
retail stores dealt with this problem in their own way, some until recently
did not take it as their priority. As they assumed, the cost of any secu-
rity check would be bigger than possible losses from small receipt misuses.
Unfortunately, recently there has been recorded more and more cases of ex-
ploiting this breach, thus resulting in possibly significant money losses for
the vendors. Therefore, one of the large retail chains in cooperation with
Tomra, decided to build a system, one that will ensure the validity of all
receipts from the RVMs.

The goal of this project raises a lot of questions and brings challenges.
First of all, the large scale of the project. Some of the retail chains have
hundreds of stores that operate in several countries, with thousands of
reverse vending machines with different configurations and of different
generations. The usage of data storages is expected to be extensive.
As well as search in this data. We need to ensure not only smooth
data handling from all these machines simultaneously, but also provide
near 100% availability of the service in a real-time access manner. This
requirement has crucial value for retail chains, since it is related to the
image of the chain, customer relations and loyalty. No one wants to make
customers of grocery shops wait for the validation of receipt, when the
system is not responding in its expected time frame. The possible loss of
couple pennies from recycled bottles is nothing compared to dissatisfied
customer that was made to wait.

40

4.1.2 Solution proposal

Validation of receipt will follow this procedure: when customer submits
containers from beverages to the reverse vending machine, the data about
containers, date, refund value and other sent to the Tomra, as it always
does for reporting and monitoring reasons. All machines are always
connected to the intellectual network of Tomra, which oversees the status
and data coming from the machines. At the same time, reverse vending
machines print out receipts to the customers, with similar data encoded in
the barcode. After that, this receipt is taken to the cashier where the barcode
scanner reads the encoded information. At this point, this information
should be sent to the validation system, where it is compared against the
data received earlier from reverse vending machine. Depending on this
comparison result, we get approval or refusal of payout of refund value.
There are a lot of things that should be taken into consideration in this
scheme. That is why it is extremely important to ensure the validity and
availability of the data in an efficient manner and available within strict
time constraints.

4.1.3 Disclaimer

Project at Tomra AS that we discuss here, is a commercial project that has
been executed by Tomra AS and their partners. I was part of the team of
external consultants from Altran Norway AS, that were invited by Tomra
AS to help accomplish before mentioned task. All rights and ownership of
developed solution belongs to intellectual property of Tomra AS.

Although, solutions that we will describe later, as well as code samples
were inspired by real application, they do not represent original solutions
that were developed by Tomra and consultants from Altran. They are
simplified and framed examples that are used to demonstrate features
of NoSQL databases that were used in production, compared to RDBMS
solutions.

41

42

Chapter 5

Implementation

During the process of software system design there are multiple ap-
proaches that exist when it comes to the system architecture. One of the
most commonly utilized approaches is domain-driven design, a process
where domain of the problem constitutes the ways it should be designed
and solved. For this project we have extended this approach into the
domain-data-driven design, a data-centric process of modelling of the ar-
chitecture. Data-centric solutions are very common in industries where
business is heavily driven by information, thus actuality, responsiveness
and reliability of it is crucial.

Next step of design process is to base our decisions upon information
about possible use cases and main actors. The choice of a data storage is
extremely important, as it will influence the flow of development process,
all the way from design part until evaluation. This section describes a
simplified and shortened implementation process that occurred during
the executing project at Tomra AS. In the following sections we will
present outcomes of two different paradigms when approaching problem
of designing a system architecture.

5.1 Overall project architecture

The goal of the project is to prevent misuse of receipts from reverse
vending machines. In order to achieve that we have to implement a simple
validation mechanism that compares data from receipt against data, in
authenticity of which we can be absolutely certain. System responsibilities
are summarized in the following list:

• Persist data from reverse vending machines every time customer uses
them. We call it consumer data or a consumer session, since data is
an output of one to several empty containers that customer submits
to reverse vending machine. One single session is completed by
pressing a finish button. Receipt for the session is issued right here as
well.

43

• Analyse and decode incoming data from receipts. Incoming data
usually arrives in form of number sequence that was encoded into
the barcode.

• Match data from receipt with data available in the database. Here we
perform extensive search by many parameters in a storage of millions
of records.

• Depending whether search result has been successful or not, give a
response whether receipt data is valid or not.

• Persist receipt data and mark it as the one that has been processed.
This is performed in order to avoid duplicate checks.

Increasingly growing data

From the aforementioned list we can clearly identify the most data-heavy
operation - the search by parameters in the database where we expect mil-
lions of records. The challenge is that this data will grow exponentially
as it will write all consumer sessions from all machines that Tomra owns
on daily basis. There are many ways to optimize the process in order to
avoid excessive data search. One of the possible optimizations is to archive
old data. We assume that customers will likely claim money at the same
moment they have been issued the receipt, right after submitting empty
containers.

Configurability requirement

Another way to avoid unnecessary data writing and search, however, may
change the way we design our system. In the beginning we were assuming
that all machines that belong to Tomra will be part of the new receipt vali-
dation system by default. It is not, however, the real case yet. First of all, as
we already mentioned every retail chain decides how to deal with receipt
frauds in their stores independently. That means that the decision to use
new system should be done by the owners of the chains. Up to the mo-
ment receipt validation system was designed to be used in stores of the one
particular retail chain. From the developer perspective of view it means
that we have to implement a mechanism to record consumer session data
from machines that operate in the stores of one particular chain, with pos-
sibility to easily add other chains and stores when necessary.

Geographical location, such as region or country can also determine
whether the system should be in place. A lot of large retail chains oper-
ate in several countries and they might have different policies in different
places. There is a real case when particular number of frauds have been
detected in Sweden and one retail chain wants to place validation of the re-
ceipts there. It also operates in Norway, however, since cases of abuse have
not been recorded so often, it will be not necessary to put validation just yet.

44

Other machines might be exempt from the validation system because of
technical and other constraints. For example when the model of reverse
vending machine is too old and therefore does not allow to print out the
barcode in the required format. All aforementioned requirements show
us a necessity of the mechanism that will quickly determine whether we
should process, persist and operate data that comes from certain machine
in a particular store of a chain in some region. As the result, designed
system should have following responsibilities in addition:

• Keep track of all machines in the network.

• Be aware of contextual information, such as where machine is located,
which store it belongs to, in which chain and in which country.

• Be able to set machines on and off from the validation system.

• Being asked about particular machine be able to respond in a real-
time fashion whether validation is enabled or not for this particular
machine.

• Being able to remove existing and add new machines to the network.

Having all this additional features, we can clearly see that we have two
areas of responsibilities here. First is to store and validate consumer data,
second is to keep track of machine network. In order to address these
two problems we have to create two separate applications which we call
Receipt Validator and Machine Network. We should note that here we
are not talking about databases. These two systems can be built on top of
the one or multiple databases. The separation is based on the two different
responsibilities these subsystems have.

5.1.1 Receipt Validator

Receipt Validator’s responsibility is to handle receipts. First, we need to
record consumer data from RVMs. Second, we have to validate incoming
data from receipts. Consumer session is the name given to the data about
consumed(accepted) empty containers. Usually one session contains in-
formation about number of consumed containers, amount of money that
should be refunded, timestamp and also some information that will help
to identify the machine itself.

Etalon data

Information about each session is sent to the intellectual systems of the
Tomra and used for monitoring, statistics and other tasks related to the
main Tomra business. We are also interested about this information since
it will give us a foundation for validation of receipts. Consumer data will
become our example data that we will check data from receipts against.
When the customer finishes his session of submitting containers, machine
will issue him a receipt with a barcode that will be read by POS terminal.

45

7 0 4 6 2 2 5 0 3 4 6 4 3

Figure 5.1: Sample barcode

Essentially, the information that coded in barcode should be the same as in
the consumer data. It contains information about the amount of refunded
money, machine itself and timestamp. But since the format of encoded
information is decided by the client company of Tomra, it does not neces-
sarily correspond to the consumer data completely.

Decoding of the barcode

If we take a closer look at the typical barcode in Figure 5.1, we can find that
simple barcode can contain fairly large amount of data. First two digits can
be used to identify that barcode belongs to certain chain or used to iden-
tify which purpose this barcode serves. Next three digits are identifiers to
the particular store in the chain and reverse vending machine id inside this
store, the one that issued this receipt. Next four digits have information
about month and the day receipt has been printed. Information about a
year can take two digits, but even one digit will be sufficient. In our case
number 4 will indicate the current year of 2014. That would require us to
archive our receipt data at least after 10 years of usage. However, archiving
of old data will most likely happen much sooner than 10 years. Last digits
can be used to indicate the refund value.

Receipt identity

The information that we have describes is still not sufficient to determine
exact consumer session. A possibility exists that same machine will issue a
receipt for the same amount of refund value in the same day more than
once. In this case our search by parameters will return several records
which is wrong by design. To address this problem it is necessary to in-
troduce a four digit receipt serial number in addition. It will contain an id
of the receipt during the day and will be reset after every twenty four hours.

Description we provided in this section is rather explanatory. The way data
is encoded is decided by a contract between companies. There could be
different formats and ways data can be written in a barcode. The baseline is
that we can get enough information to find exact record about the consumer
session.

46

5.1.2 Machine Network

The responsibility of the Receipt Validator is to record consumer data from
RVMs as well as validation of the receipts from POS terminals. However,
not all the data from RVMs is supposed to end up in the validator. There
are many thousands of machines that are connected to the Tomra network
which belong to the hundreds of stores from different retail chains. Not all
stores, chains and machines are supposed to be part of this project, at least
initially.

Switch mechanism

Simple flag mechanism on the every machine record, will help us to iden-
tify if the particular machine or data from it supposed to be validated later
on. It will help us to avoid recording millions of redundant records. When
need to know if receipt validator is enabled for particular machine or not
the information should be available within milliseconds. We can not afford
slow check, since consumer sessions are coming from the machines every
second from different places. At every point we should have information
about whether we should drop incoming consumer data or save it for fu-
ture validation. The administration of such settings (enabled/not enabled)
should on contrary be fairly easy even for non-technical personnel to be
able to switch on/off machines from the validation network. For this sole
purpose we have built a Machine Network Service.

5.1.3 Performance requirements

The are certain requirements that are provided by retail chains in order to
have this system approved. One of their main concerns is the response
time. The idea is that customer usually comes with the receipt, issued by
reverse vending machine inside the store, to the cashier after he or she has
done some shopping as well. It is very important for the cashier to process
the client as quickly as possible. It would be unacceptable to make a client
wait for validation of the receipt which might have refund value of several
pennies. Satisfaction of store clients is the first priority for a chain.

During the process of the system design we should keep in mind
performance requirements and plan ahead about how can we guarantee
them. Requirements from one of the big retail chains, customers of the
Tomra are presented below:

• System should be able to process 1000 requests at the same time

• Response time should never exceed 6 seconds

• Uptime of the system should not be less than 98%

• Logs and error messages should be available for analytic and
monitoring reasons

47

Figure 5.2: Monolithic database architecture

5.2 Relational Implementation. Legacy approach

5.2.1 Monolithic architecture

Most straightforward way of designing a system would be to think of a it
as the whole and give the system all the necessary responsibilities. It will
perform all basic operations and be designed in non-modular way. In this
case we would have a central data storage, most likely using some rela-
tional database management system. Mentioned design is called mono-
lithic which is meant to suggest the fact that it is massive. As the result,
such structure to a large extent is intractable, meaning that altering individ-
ual components of the system will be difficult[7].

Tomra systems already incorporates monolithic system architecture. It col-
lects all information from all the machines in one data storage. Processing,
analysing and monitoring of data happens in the same place as well. Fig-
ure 5.2 illustrates the scale and size of the processing database. It seems
reasonable to use all the information that Tomra already collects to keep
track of consumer session data. In this case we will just need to add one
more layer of responsibility and access point where we can validate bar-
code data against the data in the main data storage.

5.2.2 Data storage for Receipt Validator

Microsoft SQL Server is a relational database management system de-
veloped by Microsoft. Its primary query languages are T-SQL and ANSI

48

SQL. SQL Server is without doubt one of the most popular RDBMS solu-
tions available in the market, with large number of enterprise customers
throughout all possible industries. Tomra AS uses MSSQL as their main
data storage solution.

Data fields

In order to incorporate our solution into the existing, we have to identify
the data that we need to store and how we will interact with it. Central
information that we need is the consumer session sent by the reverse vend-
ing machines. The data they send among other consist of:

• Date and time of the beginning of the session.

• Date and time of the end of the session.

• Refund value (in local currency).

• Reverse vending machine serial number.

• Receipt serial.

Since we chose the RDMBS solution to store the data, mentioned items will
be our columns in a table called "ConsumerSession". We will also need to
have a table called "Receipt" to store information that we get from receipts.

• Date the receipt has been issued.

• Refund value (in local currency).

• Reverse vending machine internal id.

• Store id.

• Receipt serial.

Note that RVM serial number we get directly from machines and RVM in-
ternal id that encoded in the receipt, are not the same. Serial number is
unique number issued to all machines by Tomra. Internal id is an arbitrary
id that is given to the machine inside the store. It is unique inside the store,
but is not guaranteed to be unique between all the machines. Due to this
fact, in order to identify a machine, we have to use a combination of the
store id and internal machine id inside the receipt. These values are our in-
put parameters for Machine Network, which will be responsible for map-
ping store and internal machine id numbers to the machine serial numbers.

49

Status handling

In addition, we also need to keep record of statuses of the receipt. We need
statuses for several reasons. First of all is to avoid multiple payouts for re-
ceipts. To ensure that we distinguish new and processed receipts we need
to have at least two statuses: NEW and CONSUMED. When we look up in
a database for receipt match, if it has been already CONSUMED, meaning
that money have been already paid out for this receipt, then we will refuse
the second payout.

There is still a possibility for another error due to distributed nature of the
process. We should account for possible network loss, meaning that system
can get validation request from the point of sale, but response holding an
information about validity or invalidity of the result may be lost due to
the connectivity or other network problems. We might have a situation
when receipt has been marked Consumed, but point of sale never got
approval for the refund value payout. All future requests will be marked as
duplicates and hence rejected. To avoid this situation we have to have two-
factor verification. First we send request and mark receipt as RESERVED.
Once we got a response and confirmed the payout (or decline of payout),
we send another request with different meta-data that will finalize receipt
and mark it as CONSUMED. RESERVED in this case is temporary and
intermediate status to ensure correctness of the data. If there were no
further requests after receipt has been RESERVED, after certain timeout it
will be marked as NEW again and be available for new validation requests.

5.2.3 Implementation of Receipt Validator

We have already identified a database design with two tables that will be
required to implement such solution. We can also note that information
inside "ConumserSession" and "Receipt" tables is quite similar. Seemingly
we could merge two tables into the one. However, we need to distinguish
two types for the logging and monitoring purposes. We need to have
a possibility to monitor consumer sessions by the given period and also
see logs of the receipts in order to identify possible problems. The whole
process is described as following:

1. We receive a consumer session data from the reverse vending
machine.

2. Using Machine Network we check if this machine is in the network.
In case if it is not, we skip the data and receive the next consumer
session.

3. We record consumer session data fields inside MSSQL database in the
"ConsumerSession" table.

4. After submitting containers client of the store proceeds to the cashier
and asks for refund money. At this point, when cashier scans barcode
on the receipt, there is a validate command sent to our system.

50

5. Barcode is decoded and all vital information that identifies a con-
sumer session is fetched

6. First, we look up for records inside "Receipts" table, since we want to
be sure that this receipt has not been already used. If we do not find
any records or we found one record with NEW status we can safely
proceed.

7. As the next step we search in the "ConsumerSession" table by
parameters. In case if there are no matches or more than 1 record
found in "ConsumerSession" we return error and receipt is refused to
be paid out.

8. In case if we found exactly one corresponding match in the "Con-
sumerSession", we record a new entry in the "Receipt" table, with all
the data and RESERVED status.

9. After sending a response to the cashier, the money are paid out and
consume request is sent to our system. At this point the entry is
marked as CONSUMED and secured against duplicate requests.

10. In case when our response is lost during the connectivity, after some
time RESERVED status is changed to NEW and available for another
attempt of the validation

From this list we can identify that we need at least two database lookups
in order to find corresponding match of the receipt data. It is highly ineffi-
cient as we expect very large samples of data in both of the tables and they
will grow very quickly on the daily basis.

Denormalization

Since we have a lot of duplicating data in both tables, we violate the nor-
malization rules in MSSQL. Database normalization is the process of or-
ganizing the fields and tables of a relational database to minimize redun-
dancy. This is usually considered a bad design, however intentional denor-
malization can be performed for performance purposes, like in our case.
The drawback of such design, is that if we need to make changes in one
table, it is quite possible that we also need to make changes in another to
avoid inconsistency of data.

One of the possible ways to optimize queries is to link two tables with one-
to-one primary key - foreign key relationship between "ConsumerSession"
and "Receipt" tables. This will help us to avoid double database lookup, in
those cases when we already have record from one of the tables. However,
it does not improve our main case, when we get first validation requests
and thus do not have record in Receipt table yet. We are limited by the
RDBMS constraints.

51

5.2.4 Data storage for Machine Network

The central part of the Machine Network is the data storage that contains
information about all the machines in the network and their statuses with
regards to the Receipt Validator. The most natural way to organize data in
the database is to mimic real-life structure. In our case all machines usu-
ally installed at the stores that operate and maintain them. Those stores are
usually part of the big retail chain that oversees the stores and operations
in them. On top of that some of the chains operate in several countries and
as the result, due to possible differences in legislations, rules and other rea-
sons, their stores should be divided in different regions in order to be able
to make amendments that will affect only particular region.

Modelling graph into the tables

Described structure may remind us a graph structure with "Chain" as a
root node, "Stores" and "Regions" as child nodes and "Machines" as leafs.
First, we should look into the common search queries that we are going
to execute here. In our case the most common operation will be to find a
certain machine or rather its status (enabled/disabled) if we know the store
where this machine is located, which chain does this store belongs to and in
which region and machine id within this store. Given all this information
we should be able to fetch individual store in a least possible time. In this
section we will describe how we can use SQL data storage to model the
data and implement this solution

5.2.5 Implementation of Machine Network

If we choose to store the data in RDBMS way, we need to have separate
tables for each of the entity types. We need to create "Chains", "Regions",
"Stores" and "Machines" tables. Luckily, we have only one-to-many rela-
tion, therefore we do not need additional tables to provide many-to-many
relation. In appendix the readers can find SQL listings that were used to
create the test database (Listings A.1 - A.4). As the result of those queries
we will get region and chain tables with populated data in them. We cre-
ate a store for each combination of region and chain, also using one of the
available unique addresses for stores, resulting in different stores described
by region, chain, address and name. In the final step we generate certain
amount of machines per each store.

Search query

Let us take a look at the common search query. We need to find the machine
that is located inside the store that belongs to chain with name "Bunnpris"
in Norway with address "Blindern". We know that inside this store it has
internal id equal to "TMR1" (all this information directly or indirectly we
get from the receipt barcode). To find this machine we need to execute the
following SQL query:

52

Figure 5.3: MSSQL structure

Listing 5.1: SQL query style search

SELECT *
FROM [dbo] . [Machines]

INNER JOIN dbo . S t o r e s ON Machines . s t r o r e _ i d = S t o r e s . id
INNER JOIN dbo . Chains ON S t o r e s . chain_id = Chains . id
INNER JOIN dbo . Countries ON

S t o r e s . country_id = Countries . id

WHERE Countries . name = ’Norway ’
and Chains . name = ’ Bunnpris ’
and Machines . name = ’TMR1 ’
and address = ’ Bl indern ’

From this query we can clearly observe a performance problem. For this
and virtually almost all operations that require information about machines
in context, we need to have joins on many separate tables. This is a common
problem when the data that we map into the database does not follow the
structure of it. Every join slows down performance drastically.

5.2.6 Summary

Incorporating new applications in the monolithic architecture is not an easy
task. For simplicity reasons we have talked about implementation of the
data storage for Receipt Validator and Machine Network as if they were in
a separate database. In reality, it will require mentioned information to be
part of the bigger database. We might have to reuse some of the existing
tables Tomra already has, since adding new tables with similar data con-
tributes to the denormalization and data inconsistency.

53

Flexibility issue

Tomra has been in the market for more than thirty years and operates in
more than forty countries throughout the world. To use, search and oper-
ate with the data that has been accumulated so far is a great challenge. It is
difficult to isolate data that we need from data that other services require.
Consumer sessions used for all kind of reports and monitoring purposes.
Archiving data and any kind of manipulation with it is also not feasible for
the same reasons. Search in a large quantities of redundant data will effect
performance drastically.

Data congestion

Data congestion is another major issue. Same data and database used by
many services and tools inside Tomra and it is not guaranteed that vali-
dation request will be processed in the expected time frame. Some of the
reports that use consumer session data are known to take up to several
minutes and may hinder the validation requests. However, we can not pri-
oritize some requests over another. Hence we do not have control over the
execution time when it comes to data which is used by many services.

The longer monolithic system exists, the more it grows with interdepen-
dencies, redundant data and responsibilities. It is harder to reuse available
components, refactor existing code and find errors and faults in a large sys-
tem.

5.3 NoSQL Implementation. Separation of concerns

5.3.1 Distributed architecture.

In order to meet customer requirements in efficient manner we have to
think about ways to guarantee quick response time and 100% availabil-
ity of the service. To ensure that we have this kind of control, we have to
create a standalone service that will work separately from the other intel-
lectual services of Tomra, yet reusing some of them if that is possible.

Separation of concerns

There are two sets of responsibilities that have to deal with the receipt vali-
dation. One area is dealing with recording consumer session data and val-
idating receipts. Another keeps track of machine network within Tomra.
Those tasks are different in their nature and do not overlap in their func-
tionality. The best way to approach both problems is to have separate sub-
systems with separate sets of responsibilities with some common API to
interact with each other.

54

Figure 5.4: Distributed project architecture

Separation of concerns achieved by dividing our system into two subsys-
tems with different responsibilities, architectures and databases. From here
we will talk separately about ReceiptDB database which will store and val-
idate consumer data and MachineNetworkDB database which will be re-
sponsible for having up to date information about machines in the Tomra
network and their statuses (Figure 5.5).

Distributed architecture

Aforementioned design decision was made in accordance with Tomra’s
strategy of overall moving all intellectual services of Tomra from mono-
lithic architecture to distributed one. There are a lot of advantages of such
architecture - speed and reliability are the ones that of our main concern,
as well as possibility to narrow down the search frontier of the problems
when they occur. According to Coulouris et. al. [7], a distributed system
should make it possible to:

• Allow the software implementing any particular service to be
changed independently of the other facilities.

• Allow alternatives of the same service to be provided, when this is
required to suit different users or applications

• Introduce new services without harming the integrity of existing
ones.

5.3.2 Implementation of ReceiptDB

To improve performance and consistency of the data we we need a way to
fetch all required information in one database lookup. Yet, we should still

55

Figure 5.5: Two areas of responsibility

have the possibility to distinguish two different types of data (consumer
sessions and receipts) for logging and monitoring purposes. To achieve this
we might need to look at the structure from the different angle. In a sense
"ConsumerSession" type is subtype of the "Receipt". "Receipt" contains all
the data that "ConsumerSession" has. In addition, it has some arbitrary
data to identify receipts and statuses. In order to distinguish two types, yet
provide interface to fetch Receipt and ConsumerSession records separately
in one query we can to use document-base database like MongoDB.

Embedded documents

Data in MongoDB has a flexible schema. Collections do not enforce
document structure. Decisions that affect how you model the data can
affect application performance and database capacity. MongoDB has a data
model that uses embedded documents to describe relationships between
connected data. Consider our example that maps "ConsumerSession"
and "Receipt" relationships. In this one-to-one relationship between the
"ConsumerSession" and "Receipt" data, the "ConsumerSession" belongs to
the "Receipt". In the normalized (or RDBMS) data model, the "Receipt"
document contains a reference to the "ConsumerSession" document.

Listing 5.2: Normalized structure of database

{
_ i d : " r e c e i p t 1 " ,
s t a t u s : "NEW"

}

56

{
r e c e i p t _ i d : " r e c e i p t 1 " ,
d a t e s t a r t : " 2 9 . 0 7 . 2 0 1 4 14 : 5 2 " ,
dateend: " 2 9 . 0 7 . 2 0 1 4 14 : 5 2 " ,
m a c h i n e s e r i a l : " 98767687324 " ,
r e c e i p t s e r i a l : " 12345 "

}

If the receipt data is frequently retrieved with the consumer session
information, then with referencing our application needs to issue multiple
queries to resolve the reference. The better data model would be to embed
the "ConsumerSession" data in the "Receipt" data, as in the following
document:

Listing 5.3: Embedded document

{
_ i d : " r e c e i p t 1 " ,
s t a t u s : "NEW"
consumersession: {

d a t e s t a r t : " 2 9 . 0 7 . 2 0 1 4 14 : 5 2 " ,
dateend: " 2 9 . 0 7 . 2 0 1 4 14 : 5 2 " ,
m a c h i n e s e r i a l : " 98767687324 " ,
r e c e i p t s e r i a l : " 12345 "

}
}

With the embedded data model our application can retrieve the complete
receipt information with one query. This example illustrates the advantage
of the embedding over the referencing if we need to view one data entity
in the context of another.

5.3.3 Implementation of MachineNetworkDB

As we have already mentioned, the structure of the data that we should
model remind us the graph structure, with "Chain" as a root node, "Stores"
and "Regions" as child nodes and "Machines" as leafs. Neo4j was used for
graph implementation of this database. Here we focus on the implementa-
tion part and will describe the advantages in the next chapter

Architecture as query

It is very easy to create a database model with Neo4J database. We need to
create nodes of type "Region", nodes of type "Chain" and generate stores
that have different addresses, belong to different chains and located in
different regions. After that we populate nodes of type "Machine" and
associate them with respective nodes of type "Store". We will end up

57

Figure 5.6: Graph Structure

with the following structure that can be described in Cypher, Neo4j query
language:

Listing 5.4: Structure of the database depicted in Cypher

(Machine)−[:BELONGS_TO]−>(Store)−[:BELONGS_TO]−>(Chain)
(S tore)−[: IN]−>(Region)

It is interesting to note that it does not only describes the structure of the
database. With small changes we can make it a valid query for Cypher that
returns all the entities from the database. Limiting the return data size by
twenty nodes, we will get visualisation of the graph structure as depicted
in Figure 5.6.

Listing 5.5: Cypher Query that returns all nodes and relationships

MATCH (m:Machine)−[:BELONGS_TO]−>
(s : S t o r e)−[:BELONGS_TO]−>(c:Chain) ,
(s)−[: IN]−>(co:Country)

RETURN m, s , c , co

Similarly to SQL approach we create necessary test data in Neo4J database
(see Listings A.5 - A.8 in the appendix for detailed queries). After that we
can execute query described in Listing 5.6 in order to find a machine by
chain, region, address and personal id.

Listing 5.6: Cypher query style search

MATCH (m:Machine)−[:BELONGS_TO]−>
(s : S t o r e)−[:BELONGS_TO]−>(c:Chain) ,

58

(s)−[: IN]−>(co:Country)
WHERE m. pid = ’TMR_1 ’ and s . address = ’ Bl indern ’ and

co . name = ’Norway ’ and c . name = ’ Bunnpris ’
RETURN m;

Quick glance to this query allow us to see that it is very similar to the
query that represents our graph structure with additional WHERE clause
that narrows down the search to the specified parameters.

59

60

Chapter 6

Evaluation and experiments

In this chapter we evaluate NoSQL solutions that we have used to build
ReceiptDB and MachineNetworkDB data storages for Receipt Validation
and Machine Network systems. Our assessment involves determining
whether the software and the project responsible for developing it con-
forms to various characteristics or exhibits various qualities that are ex-
pected of efficient and evolvable[24] software that is the ability of the system
to perform well under given conditions and to be cost-efficient in its main-
tenance and the addition of new features.

In the following section we will focus more on the performance aspect of
using NoSQL. For many enterprises, good performance is one of the main
conditions for the choice of the data storage. To answer on the MRQ we
should provide enough evidence that using NoSQL is at least not worse
than using any other SQL database in terms of performance. We will ex-
plore the requirements that were laid on the system and will argue how
NoSQL helped us to fulfil those.

We also describe the experiments we performed to compare performance
of processing moderately connected data by Neo4j against MSSQL Server.
We emulated the data structure to be in accordance with requirements of
the industrial case. The idea of evaluation is to understand advantage(or
disadvantage) of using Neo4j for cases that do not require processing big
or highly connected data, like in our case.

6.1 Evaluation

In this section we evaluate MongoDB and Neo4j from the enterprise per-
spective and take a closer look to such properties as usability, maintainabil-
ity, ease of use, learning curve and licensing. All these properties are im-
portant during the development process and directly affect the costs and
time frames involved with development.

First, we discuss properties and our understanding of the criteria we use
for the evaluation. After that we measure and evaluate NoSQL solutions

61

based on these criteria. We assess both, technology we used to build our so-
lutions and developed systems themselves: ReceiptDB that uses MongoDB
and MachineNetworkDB that incorporates Neo4j for its main data storage.

Our evaluation is based on the criteria of a well-performing and evolvable
system, as well as expectations of the Tomra and their partners:

• Performance

• Scalability

• Ease of use

• Integrability

• Cost Efficiency

6.1.1 Scalability and Performance

First, we should define what we mean by scalability and performance and
how they differ. Performance refers to the capability of a system to pro-
vide a certain response time, host a defined number of users or process a
certain amount of data. In section 6.2 we explore the topic of performance
in greater detail.

Scalability refers to the characteristic of a system to increase performance
by adding additional resources (such as additional servers for example).
When we realize that our performance requirements change (e.g. we have
to serve more users, we have to provide lower response times) or we can-
not meet our performance goals, we have to deal with the scalability issue.

Scalability in MongoDB

In order to ensure the future maintainability of the designed system, we
have to make sure that we have possibilities to guarantee same or better
response time in the case of explosive growth of data or new requirements.
To scale its performance MongoDB uses a sharding, which is the process of
splitting the data evenly across the cluster of servers with parallel access.
This is implemented by breaking the MongoDB server into a set of front-
end routing servers (mongos) that route operations to a set of back-end
data servers (mongod). This way large data sets are split across multiple
nodes, keeping shards balanced as new records and/or nodes are added
to the system. We did not use this technique in our case yet, because our
architecture and data size did not require it. However, knowing that hor-
izontal scaling will be as easy as it is done in MongoDB allows us not to
worry about the future performance and gives us advantage in the plan-
ning process.

Scalability in Neo4j

62

Neo4j on the other hand does not support sharding. Yet it has massive scal-
ability - it can handle graphs of several billion nodes/relationships/prop-
erties on a single machine[28]. With ability to traverse depths of 1000 levels
and beyond at millisecond speed is a guarantee that performance will not
fall even if we need to add new entities and relationships into the database.
That means that Tomra has a flexibility to change database schema with-
out risk of affecting performance. We can add new entities or attributes
to the database, such as general node location, if Tomra will deploy their
machines not only in the stores but in the public places, offices and other
types of spaces. Such addition will require to have deeper graph structure,
which still be computed by Neo4j in an efficient manner.

6.1.2 Usability and maintainability

Usability describes how well systems are supported by frameworks and
common programming libraries. Possibility to find comprehensive, ap-
propriate and well-structured documentation or help from community.
Understandability of how the software works and easiness to use basic
functions[15].

Both MongoDB and Neo4j have great shell applications, allowing to do
simple tasks very quickly and efficient. Neo4j went further and ships with
web-gui console out of the box (Figure 6.1). Simple web interface allows de-
velopers to visualize the graph data on the fly. It is a great tool that gives a
lot of value when modelling and testing graph structure and queries. It can
also become a very useful tool of learning about Cypher query language

Maturity

During the implementation of ReceiptDB and MachineNetworkDB, we
found that both technologies MongoDB and Neo4j are mature, well-
documented and well-supported databases. It was easy to find accurate
and appropriate information about features of the database. Following ba-
sic steps provided by documentation it is easy to install and incorporate
databases into the application. Strong community support and wide-use
ensures that we can get information and help about specific cases or prob-
lems.

Learnability

When describing a data model, MongoDB uses notation that resembles
JSON - JavaScript Object Notation, Python dictionaries or Ruby hashes.
This notation is familiar to a lot of developers, since it became another stan-
dard of data representation after XML. This is a rich data structure capable
of holding arrays and other documents. It is very easy to operate with doc-
uments and query language is intuitive and powerful.

Neo4j provides a very thorough, yet easy to understand introduction

63

Figure 6.1: Web interface for Neo4j console

course after which one can simply use the power of the graphs at ease.
A lot of features of the query language Cypher are inspired by SQL and
will be familiar to a lot of developers. Featuring a lot of traits of functional
programming the cypher is very powerful, yet simple language to master.
It allows us to write queries that resemble a sentences in English language.
In a Listing 6.1 even a person that is not familiar with cypher can derive
that we try to Match all the nodes that conform to certain structure, such as
Machines belong to Stores which belong to Chains and located in certain
Countries. In addition, we return those nodes that correspond to certain
properties, such as "located in Blindern, Norway".

Listing 6.1: Cypher query style search

MATCH (m:Machine)−[:BELONGS_TO]−>
(s : S t o r e)−[:BELONGS_TO]−>(c:Chain) ,
(s)−[: IN]−>(co:Country)

WHERE m. pid = ’TMR_1 ’ and s . address = ’ Bl indern ’ and
co . name = ’Norway ’ and c . name = ’ Bunnpris ’

RETURN m;

Cross-language portability

Both Neo4j and MongoDB technologies have bindings for a number of lan-
guages like Java, Python, Jython, Ruby and Clojure. There are number of
ways to communicate via well-defined API. REST (Representational state
transfer) interface is also available and recommended for use. Java has a
number of frameworks that provide seamless integration with a database
API. Spring Data framework for Java has well developed APIs that will
allow us to incorporate MongoDB in our application easily and without

64

much code. One of the nice features of Spring Data Repository class, is that
we can create abstract interface class with virtual methods and we do not
need to worry about implementation of those. Spring Data generates im-
plementation of search queries for us based on interfaces we define.

Robustness to requirements changes

One of the common risks of software development is a change of require-
ments. Business always needs to evolve, so do software systems that are
crucial for the business. Being able to change the data model of application
without much effort is something that can can become a game changer.
RDBMS is thriving in an environment when we have decided, static, rela-
tional data, that can be easily modelled into the number of tables. However,
the moment we need to change our schema in already running database,
we face a lot of challenges, such as how to change architecture of the
database without breaking existing software and halting the business pro-
cesses.

Flexibility

NoSQL databases solve this problem easily, by just not having schemes at
all. By having such property we can easily change, adapt and restructure
our database model according to new requirements and our needs. It is
much easier to prototype the database and grow it with more functionality,
whilst RDBMS do not forgive architectural mistakes early on. To maintain
software that incorporates NoSQL data storage is much easier and safer. It
gives us desired flexibility by almost no cost. We were able to focus on de-
veloping of application without spending too much time on the database
architecture, since we knew that we can change the schema at any time and
it will cost us very little. During the implementation we have amended the
structure of the database several times and have been able to continue im-
provement without loosing the implemented work.

6.1.3 Cost reduction

In an enterprise environment the cost of introducing new software sys-
tem is something that can decide the success of the system. Our aim
is to achieve business goals by the least possible cost. Implementation
of ReceiptDB and MachineNetworkDB has shown us that using NoSQL
databases as main data storages can significantly reduce the cost of produc-
tion. Both by having a cheaper licenses and reducing the time of developers
involved.

Licensing flexibility

Both MongoDB and Neo4j are open-source solutions with flexible licens-
ing. They provide free community editions that allow us not only to pro-

65

totype solutions and test performance and suitability, but actually run a
full-production scale data in an enterprise environment, since they do not
have any large functional limitations compared to enterprise licenses. To
our last knowledge, free community editions are still used for both imple-
mented systems. Oracle and MSSQL also have free editions, however, they
are severely limited compared to standard editions.

Oracle Database XE, for example will store only up to 11GB of user data,
use up to 1GB of memory and use one CPU on the host machine1. These
limitations allow prototyping and initial testing of database, but make real
industrial use of them impossible. In the Table 6.1 we can compare pricing
for standard licensing between MongoDB2, Neo4j3, Oracle4 and MSSQL5.
As we can see, even standard database editions of popular RDMBS solu-
tions require significant budgets.

Database Price for standard license Price for standard license
+ support

MongoDB free on demand
Neo4j free 12 000 USD6

Oracle 17 500 USD 21 350 USD
MSSQL 2012 3 189 USD on demand

Table 6.1: Pricing for standard licensing per core

Efficiency in usage

Time of developers consumed by planning, implementation and mainte-
nance was significantly reduced. By having a good documentation and
simple installation process it was easy to start productive work with a new
database. Both databases have good support community that allow us
to solve emerging problems quickly. Flexible non-schema structure of the
databases saved a lot of time on architectural and data modelling discus-
sions. Being able to use the data models that intuitively follow the database
structure saved up a lot of time, instead of trying to bend the data and hack
it into the tabular representation. Good integration with popular program-
ming languages and frameworks made development process simple and
effortless.

1http://www.oracle.com/technetwork/database/database-technologies/express-
edition/overview/index.html

2https://www.mongodb.org/about/licensing/
3http://neo4j.com/subscriptions/
4http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf
5http://www.microsoftstore.com/store/msusa/pdp/SQL-Server-Standard-Edition-

2012/productID.281182400
6Price listed per year

66

6.2 Performance experiments

NoSQL database solutions are becoming more and more common in a
world currently dominated by SQL relational databases. The idea behind
NoSQL movement was to provide a tool to tackle large volumes of un-
structured data. However, it is still unclear if it is advantageous or disad-
vantageous to use NoSQL database for moderate volumes of data which
is the case for most of the world’s small and medium-sized enterprises.
There are few studies that compare the performance of processing a mod-
est amount of unstructured data in a NoSQL database with a traditional
relational database. MongoDB, for example was found to be equally per-
forming well or sometimes better than the SQL Server, except cases when
aggregate functions are utilized[25]. However, there are no studies that as-
sesses performance of Neo4j graph database when processing data that is
not so highly connected with a depth from a root node up to five levels.

Test setting

In order to compare performance of Neo4J graph database against MSSQL
RDBMS, we have created instances of Neo4j Community Edition version
2.0.1 and MSSQL Express Server 2012. We have not been using any tweaks
or measures to improve performance of any of those databases (e.g. heap
and stack memory settings amendments). All tests has been done with in-
stances "out of the box".

System information of the computational machine in test is following:

Operating System: Windows 8.1 Pro 64-bit (6.3, Build 9600)
Processor: Intel(R) Core(TM) i7-3667U CPU

@ 2.00GHz (4 CPUs), 2.5GHz
Memory: 8192MB RAM

Disk Drive: 225GB SSD INTEL SSDSCMMW240A3L

6.2.1 Experiment results

Tests have been executed in the following way:

1. Test data of different sizes is populated (ranging from 20 000 elements
to 2 millions)

2. For each size of the test data respective search queries are executed
several (at least ten) times.

3. Out of the results the median value is selected as representative and
added to the table.

To populate the data we used queries that are listed in appendix (Listings
A.1 - A.8). After running the tests we got following results depicted in the
Table 6.2.

67

Data size SQL Neo4J

20 000 9 ms 56 ms
200 000 66 ms 63 ms
400 000 117 ms 79 ms
600 000 138 ms 83 ms
800 000 167 ms 95 ms

1 000 000 205 ms 106 ms
1 200 000 216 ms 122 ms
1 400 000 235 ms 135 ms
1 600 000 285 ms 144 ms
1 800 000 293 ms 144 ms
2 000 000 316 ms 156 ms

Table 6.2: Time in ms, required to perform search query in respective db at
a given data size

0 0.5 1 1.5 2

·106

0

100

200

300

records

m
s

Neo4J
SQL

Figure 6.2: Performance of Neo4J against SQL

These results give us an interesting insight into the problem. Performance
of the Neo4J database is far from the promised one (5x times better than
MySQL according to Graph Databases book[28]). However, we should
take into consideration that our problem is different from the typical graph
problem like finding friends of friends. In addition to that, MSSQL is run-
ning in almost ideal situation with only one-to-many relationship, avoiding
creation of additional tables just to provide many-to-many relations.

With small data set SQL is faster, due to initial overhead Neo4J has. How-
ever, at two hundred thousand data elements performance of Neo4J is com-
parable to SQL and it is twice as better with a very large dataset. This trend
is well visualized in the Figure 6.2.

68

6.2.2 Indexes

As we already have mentioned, we did not used powerful means of query
optimizations available in MSSQL, neither we used any memory tweaks to
boost up the heap of the Neo4J. However, one of the easiest and most ef-
ficient ways to boost performance of queries is by the usage of indexes. A
database index is a data structure that improves the speed of data retrieval
operations in a database. As the cost it requires more storage space to main-
tain the extra information about the data. Indexes are used to quickly lo-
cate data without having to search every entity in a database every time a
database is accessed.

There are a lot of possible ways to create indexes and there are also a lot
of different types of indexes. In our case we will use simplest non-unique
indexes for all properties (columns) that are used for ’where’ condition.
To create an index in Neo4J, first we need enable auto indexing for newly
created nodes, since by default it is disabled. In neo4j.properties file we
change node_auto_indexing to true, as well as providing list of property
names that should be indexed.

Listing 6.2: Enable indexes in Neo4j

Enable auto−indexing f o r nodes ,
d e f a u l t i s f a l s e
node_auto_indexing=true

The node property keys to be auto−indexed ,
i f enabled
node_keys_indexable=name , pid , address

After that, we can create indexes on individual labels using following
commands in the Neo4j shell:

Listing 6.3: Create indexes in Neo4j

CREATE INDEX ON :Chain (name)
CREATE INDEX ON :Country (name)
CREATE INDEX ON : S t o r e (address)
CREATE INDEX ON :Machine (pid)

Similarly, we created indexes for columns that we are using for our search
in the MSSQL.

Listing 6.4: Create indexes in MSSQL

CREATE INDEX IX_Name_Machines −− s p e c i f y index name
ON dbo . Machines (name) −− s p e c i f y column name

CREATE INDEX IX_Name_Chains
ON dbo . Chains (name)

69

CREATE INDEX IX_Name_Countries
ON dbo . Countries (name)

CREATE INDEX IX_Address_Stores
ON dbo . S t o r e s (address)

Data size Neo4J Neo4J with indexes

20 000 56 ms 29 ms
200 000 63 ms 39 ms
400 000 79 ms 52 ms
600 000 83 ms 66 ms
800 000 95 ms 79 ms

1 000 000 106 ms 91 ms
1 200 000 122 ms 103 ms
1 400 000 135 ms 118 ms
1 600 000 144 ms 133 ms
1 800 000 144 ms 137 ms
2 000 000 156 ms 147 ms

Table 6.3: Time in ms, required to perform search query in Neo4j at a given
data size

Data size SQL SQL with indexes

20 000 10 ms 9 ms
200 000 66 ms 59 ms
400 000 117 ms 103 ms
600 000 138 ms 135 ms
800 000 167 ms 158 ms

1 000 000 205 ms 183 ms
1 200 000 216 ms 202 ms
1 400 000 235 ms 225 ms
1 600 000 285 ms 236 ms
1 800 000 293 ms 252 ms
2 000 000 316 ms 275 ms

Table 6.4: Time in ms, required to perform search query in SQL at a given
data size

There are a lot of options available for tweaking indexes further such
as making them UNIQUE or NON-UNIQUE, CLUSTERED or NON-
CLUSTERED, but for our experiment simple index would be enough to see
the difference. Tables 6.3 and 6.4 show the response time results of Neo4J
and SQL search queries with and without indexes.

If we try to analyse these results visualised in Figures 6.3 and 6.4, we can
clearly see that indexes give immediate advantage for Neo4J database even

70

0 0.5 1 1.5 2

·106

50

100

150

records

m
s

Neo4J vs Neo4J with indexes

Neo4J with index
Neo4J

Figure 6.3: Performance of Neo4J using indexes

for small sizes of data. While indexes in SQL start to show their efficiency
on rather large data samples. However, usage of indexes was advanta-
geous for both databases at almost no cost except slightly larger disk space
usage (1.29 GB against 629MB with 2 million records in Neo4J) which is not
a problem in most of the cases when databases are used in the enterprise
scale.

Let us now compare performance of Neo4J database with indexes against
SQL. In Figure 6.5 we can clearly see that retrieval speed of Neo4J is still
superior to one with SQL. For the sake of purity of the experiment we
would like to mention, however, that at the very large data samples (1.8
- 2 millions) SQL showed rather anomalous results, having a retrieval time
of sample search query of just 20-30 ms opposed to usual 250ms. This
possibly can be explained as internal mechanism of MSSQL to cache pre-
calculated results for often called queries. In these experiments we did not
take those numbers in consideration. Future work might be done to analyse
the behaviour of MSSQL databases with indexes and have better research
in this regard.

6.2.3 Summary

Initial performance criteria for us was to meet the requirements from Tomra
partners. In order to ensure acceptance of the system our goal was to
guarantee:

• Response time within 6 seconds.

• Processing of the 1000 requests at the same time

71

0 0.5 1 1.5 2

·106

0

100

200

300

records

m
s

SQL vs SQL with indexes

SQL with index
SQL

Figure 6.4: Performance of SQL using indexes

0 0.5 1 1.5 2

·106

0

100

200

300

records

m
s

Neo4J with indexes
SQL with indexes

Figure 6.5: Performance of Neo4J with indexes against SQL with indexes

72

Figure 6.6: Response times on verify request

• 98% uptime of the system

Performance of the designed system far out-performed all expectations. In
Figure 6.6 we can see a period of time represented on x-axis that was ob-
served during the current year. On the y-axis we can see typical response
time values of the system expressed in milliseconds. We can observe that
normally system under test processes request and returns response within
10 milliseconds with rare spikes up to 150 milliseconds, most likely due to
interference with other data-heavy write/read operations that might occur
at the same time. We tested system on data sizes ranged from millions to
billions of records and it performed well within desired borders.

Outstanding performance results became possible due to several factors.
One of the first things that we have identified, is that noticeable perfor-
mance gains are achieved by the fact that different NoSQL databases can
provide appropriate data structures for our applications, such as key-value,
document or graph data stores. Due to possibility of having more suitable
database model according to our needs we can avoid redundant data con-
structs or inefficient relationships. In practice we can very often represent
in a single entity a construct that would require us to build several tables
in order to be properly modelled in a relational database.

In case of ReceiptDB we could reduce the database structure from two
tables to just one embedded document using MongoDB, yet providing
full support of distinguishing two different entities: "Receipt" and "Con-
sumerSession". Instead of searching records in the join of two tables we
utilize only one simple query that retrieves either part of the embedded
document. Another part is retrieved for us ’for free’. This is the powerful
mechanism that gives us desired performance gains and flexibility.

73

Similar gains are achieved by using Neo4j database for holding graph data
of MachineNetworkDB. Instead of spreading the data between four tables
and joining them again for search purposes we have a simple graph struc-
ture with four entity types and relationships between them. The depth of
this graph is never more than five making search very quick and efficient.

Indexes are usually used to improve performance of the relational
databases. However, both MongoDB and Neo4j have also full support
of indexes. After using indexes on the fields that are used for search
in ReceiptDB, the retrieval time improved by the order of magnitude
power of ten. Being non-relational, MongoDB implements many features
of relational databases, such as sorting, secondary indexing and range
queries[10]. Indexes are very powerful mechanism in Neo4j as well. Our
experiments showed that indexes in Neo4j improved performance of the
data retrieval to a greater extent than indexes in MSSQL.

74

Chapter 7

Summary and Conclusion

In this chapter we sum up the main results of this thesis. The results are
primarily based on the research described in Chapter 5 and Chapter 6. We
answer the research questions in the following sections.

7.1 NoSQL databases

There are many data storage solutions available today in the market. There
is a challenge for application developers and the leadership to make the
right choices. Using the wrong database can be costly. It can slow down the
process of the development, it can not perform well in the given conditions
and it can be difficult to scale. In Section 2.1.2 we describe various NoSQL
solutions that provide new tools to tackle today’s data storage problems.
Most of the mentioned solutions are mature and reliable databases that can
be used safely in the enterprise.

In Chapter 5 we compared the database design and data modelling imple-
mentation using Neo4j and MongoDB NoSQL databases with implemen-
tation in MSSQL. These two particular NoSQL solutions have been chosen
for their maturity, good support and their good fit for the problem. As the
result, we achieved very light-weight, scalable and well-performing solu-
tion at a low cost. In Section 6.1 we discuss the advantages of using NoSQL
in this particular industrial study in more detail.

Chapter 6 provides results of performance experiments on Neo4j and
MSSQL databases. We populated both applications with the same data and
performed series of similar query searches in the database. Experiments
showed that performance of Neo4j is not worse and in most cases better
than SQL solution, even if the data is not highly connected. We can
conclude that Neo4j can be used not only for typical graph problems, but
also in larger range of general data storage problems in enterprise.

75

7.2 Research questions discussion

We have presented three research questions in Section 1.5. The industrial
case experience and conducted experiments allowed us to investigate these
questions in more detail. Brief discussion of each question is presented be-
low.

What are the advantages of using NoSQL data storage in the enterprise environ-
ment?

Tomra AS used Neo4j Graph database and MongoDB document database
for their project and successfully delivered solution within designated time
and within performance constraints provided by the customers of Tomra.
The performance results were ten times better than expected. Creating and
maintaining of NoSQL databases was much easier compared to SQL solu-
tions. Developing applications on top of the NoSQL databases was more
straightforward with a help of the common APIs and good integration
with Java technology that was used during the implementation. Having
schema-less structure was beneficial in terms of prototyping, creating and
making future amendments in the database. It is a great advantage over
SQL schema which is highly difficult to edit after having production data
in it.

How does the choice of data storage influence the flow of the application develop-
ment and architecture of the system?

In this particular project NoSQL databases provided us with flexibility dur-
ing the design process of the architecture of the system. We were able to
choose better suited data storage solution from the data-centric point of
view. We could achieve better separation of concerns using two different
NoSQL databases. It allowed us to treat both subsystems separately, which
simplified the development process, architecture of application and test-
ing. Usage of NoSQL databases helped the developers to focus more on
the domain problem, rather than thinking about database architecture. The
development process was more light-weight, since we could change the
schema of the database without discarding the application layer.

How easy is it to integrate a new solution with the legacy one when using NoSQL
databases?

An industrial case showed us that there are no barriers to integrate a
NoSQL solution into the legacy system. Simple REST or other entry points
allow us to easily communicate between the systems. Integration of the
database with the application was possible through multiple language
APIs. Both Neo4j and MongoDB provided very rich functionality of
communicating with the code and other services.

76

7.3 SQL or NoSQL?

We do not provide one answer to this question in this thesis. Usage of both
is highly depends on the context of the problem. We need to know what
are the requirements for the solution? Is the scalability an issue? Do we
have to deal with large amounts of unstructured data? These and more
questions should be answered before any attempt on choosing the right
database solution. SQL databases have been and still are the top choice
for many data storage problems. Powerful query language, robust schema
and ACID compliance make it the best choice for many industries like fi-
nance and government. There is a lot of support, tools and documentation
available for developers and companies when deploying SQL solution. It
is well-known paradigm that provides users with expected results. How-
ever, SQL have been far too long the default choice in many companies.
SQL databases have been chosen without consideration because there were
arguably no alternatives.

Today the paradigm have shifted. Today decision makers in the ICT
industry should not only consider NoSQL solution as well, but consider it
first. We believe that use of NoSQL can be beneficial for many enterprises
that still use RDBMS. A lot of companies use SQL databases just out of
the habit and lack of information about available options. It is apparent
that use of NoSQL databases will increase and NoSQL based solutions will
become a strong competition to the available SQL solutions. They will
also change the way we see, map and program our data. And when that
happens, the data professionals across all industries should be aware about
all the options and provide well-weighted solutions.

77

78

Appendix A

Listings of queries for
populating databases with data

Listing A.1: SQL. Creation and populating ’Countries’ table

USE [TEST]
GO
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo] . [Countries] (

[id] [i n t] IDENTITY (1 , 1) NOT NULL,
[name] [varchar] (5 0) NOT NULL

) ON [PRIMARY]
GO
SET ANSI_PADDING OFF
GO
GO
INSERT INTO Countries values (’Norway ’) , (’Sweden ’) ,

(’Denmark ’) , (’Germany ’) , (’ Finland ’) , (’USA ’) ,
(’ I re l an d ’) , (’UK’) , (’ I ce land ’) , (’ France ’)

GO

Listing A.2: SQL. Creation and populating ’Chains’ table

USE [Test]
GO
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON

79

GO
CREATE TABLE [dbo] . [Chains] (

[id] [i n t] IDENTITY (1 , 1) NOT NULL,
[name] [varchar] (5 0) NOT NULL

) ON [PRIMARY]
GO
SET ANSI_PADDING OFF
GO
GO
INSERT INTO Chains values (’ Bunnpris ’) , (’ Kiwi ’) ,

(’ Rema1000 ’) , (’ Rimi ’) , (’Coop ’) , (’ ICA ’) ,
(’Meny ’) , (’ Spar ’) , (’ Netto ’) , (’7−eleven ’)

GO

Listing A.3: SQL. Creation and populating ’Stores’ table

USE [Test]
GO
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo] . [S t o r e s] (

[id] [i n t] IDENTITY (1 , 1) NOT NULL,
[name] [varchar] (5 0) NOT NULL,
[address] [varchar] (5 0) NOT NULL,
[chain_id] [i n t] NOT NULL,
[country_id] [i n t] NOT NULL

) ON [PRIMARY]
GO
SET ANSI_PADDING OFF
GO

dec la re @tab t a b l e ([id] [i n t] IDENTITY (1 , 1) NOT NULL,
addresses varchar (5 0))

i n s e r t i n t o @tab values (’ Ullev å l ’) , (’ Bl indern ’) ,
(’ Centrum ’) , (’ Krings å ’) , (’ Lysaker ’) , (’ Sköyen ’) ,
(’ Fornebu ’) , (’ S t o r t i n g e t ’) , (’ N a t i o n a l t e a t r e ’) ,
(’ KarlJohan ’) , (’Gamle ’) , (’ Grunerlökka ’) ,
(’Grönland ’) , (’ Majorstuen ’) , (’ Snaröya ’) ,
(’ Asker ’) , (’ Sandvika ’) , (’Drammen ’) ,
(’ Gothenburg ’) , (’ Stockholm ’)

Declare @NumberOfChains i n t =
(S e l e c t Count (*) From dbo . Chains) ;

80

Declare @NumberOfCountries i n t =
(S e l e c t Count (*) From dbo . Countries) ;

Declare @NumberOfAddresses i n t =
(S e l e c t Count (*) From @tab) ;

Declare @i i n t = 1 ;
Declare @j i n t = 1 ;
Declare @k i n t = 1 ;
Declare @ChainName varchar (5 0) ;
Declare @Address varchar (5 0) ;

While (@NumberOfAddresses >= @k)
Begin

Set @Address =
(S e l e c t addresses From @tab Where id = @k)

While (@NumberOfChains >= @i)
Begin

Set @ChainName =
(S e l e c t name From dbo . Chains
Where id = @i) + ’ _ ’ + @Address ;

While (@NumberOfCountries >= @j)
Begin

I n s e r t i n t o dbo . S t o r e s values
(@ChainName , @Address ,
@i , @j)

Set @j = @j + 1 ;
End
Set @i = @i + 1 ;
Set @j = 1 ;

End
Set @k = @k + 1 ;
Set @i = 1 ;

End

Listing A.4: SQL. Creation and populating ’Machines’ table

USE [Test]
GO
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo] . [Machines] (

[id] [b i g i n t] IDENTITY (1 , 1) NOT NULL,
[name] [varchar] (5 0) NOT NULL,
[enabled] [b i t] NOT NULL,

81

[s t o r e _ i d] [i n t] NULL
) ON [PRIMARY]
GO
SET ANSI_PADDING OFF
GO
ALTER TABLE [dbo] . [Machines]

SET (LOCK_ESCALATION = DISABLE)
GO
−− : temp v a r i a b l e s
Declare @NumberOfStores i n t =

(S e l e c t Count (*) From dbo . S t o r e s) ;
Declare @NumberOfMachines i n t = 1000 ;
Declare @i i n t = 1 ;
Declare @j i n t = 1 ;
Declare @name varchar (5 0) ;

While (@NumberOfMachines >= @i)
Begin

Set @name = ’TMR’ + CONVERT(varchar (5 0) , @i)
While (@NumberOfStores >= @j)
Begin

I n s e r t i n t o dbo . Machines
values (@name, 1 , @j)

Set @j = @j + 1 ;
End
Set @j = 1 ;

Set @i = @i + 1 ;
End

Listing A.5: Cypher. Creation of ’Country’ nodes

WITH [’Norway ’ , ’Sweden ’ , ’Denmark ’ , ’Germany ’ ,
’ Finland ’ , ’USA ’ , ’ I re l an d ’ , ’UK’ ,
’ I ce land ’ , ’ France ’]
as c o u n t r i e s

FOREACH (c in c o u n t r i e s |
CREATE (:Country { name:c }))

Listing A.6: Cypher. Creation of ’Chain’ nodes

WITH [’ Bunnpris ’ , ’ Kiwi ’ , ’ Rema1000 ’ , ’ Rimi ’ , ’Coop ’ ,
’ ICA ’ , ’Meny ’ , ’ Spar ’ , ’ Netto ’ , ’7−eleven ’]
as chainnames

FOREACH (c in chainnames |
CREATE (:Chain { name:c }))

Listing A.7: Cypher. Creation of ’Store’ nodes and relationships

82

MATCH (Chains:Chain) , (Countries :Country)
WITH C o l l e c t (D i s t i n c t Chains) as ch ,

C o l l e c t (D i s t i n c t Countries) as cou ,
[’ Ullev å l ’ , ’ Bl indern ’ , ’ Centrum ’ , ’ Krings å ’ , ’ Lysaker ’ ,
’ Sköyen ’ , ’ Fornebu ’ , ’ S t o r t i n g e t ’ , ’ N a t i o n a l t e a t r e ’ ,
’ KarlJohan ’ , ’Gamle ’ , ’ Grunerlökka ’ , ’Grönland ’ ,
’ Majorstuen ’ , ’ Snaröya ’ , ’ Asker ’ , ’ Sandvika ’ ,
’Drammen ’ , ’ Gothenburg ’ , ’ Stockholm ’] as addresses

FOREACH(country in cou |
FOREACH (c in ch |

FOREACH (a in addresses |
CREATE (s : S t o r e { name:c . name+" _ "+a , address :a })
CREATE (s−[:BELONGS_TO]−>c)
CREATE (s−[: IN]−>country))))

Listing A.8: Cypher. Creation of ’Machine’ nodes and relationships

MATCH (S t o r e s : S t o r e)
WITH C o l l e c t (D i s t i n c t S t o r e s) as st , "TMR" as name
FOREACH (s in s t |

FOREACH (r in range (1 , 1 0 0 0) |
CREATE (m:Machine { pid:name+" _ "+r , enabled : " t rue " })
CREATE (m−[:BELONGS_TO]−>s)))

83

84

Bibliography

[1] D. J. Abadi, P. A. Boncz, and S. Harizopoulos. Column-oriented
database systems. Proceedings of the VLDB Endowment, 2(2):1664–1665,
2009.

[2] V. Abramova and J. Bernardino. Nosql databases: Mongodb vs
cassandra. In Proceedings of the International C* Conference on Computer
Science and Software Engineering, C3S2E ’13, pages 14–22, New York,
NY, USA, 2013. ACM.

[3] R. Angles and C. Gutierrez. Survey of graph database models. ACM
Computing Surveys (CSUR), 40(1):1, 2008.

[4] E. A. Brewer. Towards robust distributed systems. In PODC, page 7,
2000.

[5] R. Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39(4):12–
27, May 2011.

[6] E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970.

[7] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems:
Concepts and Design. International computer science series. Addison-
Wesley, 2005.

[8] Datastax. Nosql in enterprise. White paper, October 2013.

[9] Datastax. Netflix case study. White paper, October 2014.

[10] E. Dede, M. Govindaraju, D. Gunter, R. S. Canon, and L. Ramakrish-
nan. Performance evaluation of a mongodb and hadoop platform for
scientific data analysis. In Proceedings of the 4th ACM Workshop on Sci-
entific Cloud Computing, Science Cloud ’13, pages 13–20, New York,
NY, USA, 2013. ACM.

[11] G. Dodig-Crnkovic. Scientific methods in computer science. In
Proceedings of the Conference for the Promotion of Research in IT at New
Universities and at University Colleges in Sweden, Skövde, Suecia, pages
126–130, 2002.

[12] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT
News, 33(2):51–59, 2002.

85

[13] V. Gudivada, D. Rao, and V. Raghavan. Nosql systems for big data
management. In Services (SERVICES), 2014 IEEE World Congress on,
pages 190–197, June 2014.

[14] J. Han, E. Haihong, G. Le, and J. Du. Survey on nosql database. In
Pervasive Computing and Applications (ICPCA), 2011 6th International
Conference on, pages 363–366, Oct 2011.

[15] M. Jackson, S. Crouch, and R. Baxter. Software evaluation: criteria-
based assessment. Software Sustainability Institute, The University
of Edinburgh, available at: http://software. ac. uk/sites/default/files/SSI-
SoftwareEvaluationCriteria. pdf (accessed 1 October 2012), 2011.

[16] B. Kaplan and J. A. Maxwell. Qualitative research methods for evalu-
ating computer information systems. In Evaluating the Organizational
Impact of Healthcare Information Systems, pages 30–55. Springer, 2005.

[17] I. Konstantinou, E. Angelou, C. Boumpouka, D. Tsoumakos, and
N. Koziris. On the elasticity of nosql databases over cloud manage-
ment platforms. In Proceedings of the 20th ACM International Conference
on Information and Knowledge Management, CIKM ’11, pages 2385–2388,
New York, NY, USA, 2011. ACM.

[18] A. Lith and J. Mattsson. Investigating storage solutions for large data-
a comparison of well performing and scalable data storage solutions
for real time extraction and batch insertion of data. 2010.

[19] I. MongoDB. Forbes overhauls publishing platform: A case study.
2014.

[20] I. MongoDB. Online travel gets personal. White paper, 2014.

[21] M. D. Myers and D. Avison. Qualitative research in information
systems. Management Information Systems Quarterly, 21:241–242, 1997.

[22] I. Neo Technology. Resource authorization challenge solved with
graph database: A case study. 2014.

[23] I. Neo Technology. Snap interactive conquers online dating with neo4j:
A case study. 2014.

[24] F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux, F. Gallo,
H. Garavel, and C. Occhipinti. Archware: Architecting evolvable
software. In Software Architecture, pages 257–271. Springer, 2004.

[25] Z. Parker, S. Poe, and S. V. Vrbsky. Comparing nosql mongodb to an
sql db. In Proceedings of the 51st ACM Southeast Conference, ACMSE ’13,
pages 5:1–5:6, New York, NY, USA, 2013. ACM.

[26] J. Pater and A. Vukotic. Neo4j in action. Manning Publications, 2012.

86

[27] J. Pokorny. Nosql databases: A step to database scalability in web
environment. In Proceedings of the 13th International Conference on
Information Integration and Web-based Applications and Services, iiWAS
’11, pages 278–283, New York, NY, USA, 2011. ACM.

[28] I. Robinson, J. Webber, and E. Eifrem. Graph databases. " O’Reilly
Media, Inc.", 2013.

[29] C. Roe. Acid vs. base: The shifting ph of database transaction
processing, 2012.

[30] G. L. Sanders and S. Shin. Denormalization effects on performance of
rdbms. In System Sciences, 2001. Proceedings of the 34th Annual Hawaii
International Conference on, pages 9–pp. IEEE, 2001.

[31] Tesora. Data Usage in the Public and Private Cloud. 2014.

[32] J. Van den Akker. Principles and methods of development research.
In Design approaches and tools in education and training, pages 1–14.
Springer, 1999.

[33] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. A
comparison of a graph database and a relational database: A data
provenance perspective. In Proceedings of the 48th Annual Southeast
Regional Conference, ACM SE ’10, pages 42:1–42:6, New York, NY, USA,
2010. ACM.

87

