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Summary 

 
The goal of this work was to express the three enzymes that catalyse the synthesis of ectoine 

(1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) in the chloroplast of 

Chlamydomonas reinhardtii. Ectoine is an amino acid derivative that functions in many 

bacteria as compatible solute, helping the bacteria to survive and grow in highly saline 

environments. In addition, ectoine is used in cosmetic products, in the medical industry and 

for biotechnological purposes. There is also a potential relevance to agriculture, as synthesis 

of ectoine in cells of plants or algae could make them tolerant towards salt concentrations that 

would normally prohibit growth. There is an ongoing interest in developing efficient 

production systems for ectoine. Overexpression of ectoine in the chloroplast may lead to both 

an efficient and economical way to produce ectoine. 

There are three bacterial genes, ectA, ectB and ectC, that encode the enzymes catalysing 

ectoine synthesis in bacteria. We wanted to insert the three genes into a suitable vector and 

transform the resulting construct into the chloroplast of C. reinhardtii in order to produce 

ectoine in C. reinhardtii cells and increase salt tolerance.  

A non-photosynthetic C. reinhardtii mutant cell line was transformed by microprojectile 

bombardment with a plasmid vector containing a photosynthesis marker (the atpB gene) and 

the codon optimised transgenes OectA and OectC. Cloning of ectB was not possible in the 

time frame of this work. 

Six OectAC chloroplast transformants (out of 30) were selected and screened for the presence 

of the OectC gene. Two positive transformants were further analysed for ectC mRNA 

accumulation. Very low levels of ectC transcripts could be detected in the two transformants, 

but no increase of salt tolerance was observed. It is concluded that OectC mRNA levels in the 

analysed transformant is too low for ectoine accumulation and that more transformants should 

be screened for the presence of the OectAC construct. In addition, insertion of the ectB gene 

could be performed in order to aid ectoine synthesis.  
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1.0 Introduction 

 

1.1 Salt tolerant organisms 

 

1.1.1 Saline environments 

Earth is a salty planet, with most of its water containing about 30 g of NaCl per litre (Flowers, 

2004). According to DasSarma and DasSarma (2012) the oceans constitute approximately 

99% of the biosphere for salt tolerant organisms. Small amounts of salt are required for all 

forms of life but for a long time it was believed that no life could exist in salt concentrations 

higher than 100 g NaCl per litre (10%). This is reflected by the names of many places 

throughout history e.g. in the name “the Death sea”, a salt lake bordering Jordan to the east, 

and Palestine and Israel to the west, which on average contains 34% salt. Today it is known 

that the lake is inhabited by microorganisms (Melmer and Schwarz, 2009), and that 

environments with salt concentrations approaching saturation often are populated densely by 

microbial communities. A hyper-saline environment is defined as an environment containing 

salt concentrations in excess of seawater (3.5 % total dissolved salts). These hyper-saline 

environments are found all over the world in dry, costal and deep sea locations, in salt mines 

and in artificial salterns (Oren, 2002), (DasSarma and DasSarma, 2012).  

 

1.1.2 Halophiles  

Halophiles (from Greek; hal meaning sea or salt, and philos meaning love) flourish in saline 

environments. They are often classified as slightly, moderately, or extremely halophilic, 

depending on their requirement for NaCl. Optimal growth conditions for slightly halophilic 

organisms range from 0.2-0.85 M (1-5%) NaCl, and for moderately halophiles the range is 

0.85-3.4 M (5-20%) NaCl. Extreme halophiles grow optimally with 3.4-5.1 M (20-35%) 

NaCl. In contrast, non-halophiles grow optimally in concentrations less than 0.2 M NaCl 

(< 1%) (DasSarma and DasSarma, 2012). Halophiles are found in all three domains of life, 

Bacteria, Archaea and Eukaryote (Figure 1) (Oren, 2008).  

 

  

http://en.wikipedia.org/wiki/Salt_lake
http://en.wikipedia.org/wiki/Jordan
http://en.wikipedia.org/wiki/State_of_Palestine
http://en.wikipedia.org/wiki/Israel
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Figure 1: Distribution of halophilic microorganisms within the tree of life. Groups 

marked with bold blue boxes contain at least one halophilic representative. The tree is based 

on small subunit rRNA gene sequences. From Oren (2008). 

 

1.1.3 Survival strategies 

It is extremely important for halophilic microorganisms to balance their cytoplasm 

osmotically with the surroundings because cell membranes are permeable to water.  

Figure 2 shows an example of what would happen in different surroundings if the 

microorganism did not possess any survival strategies. If cells lose water by osmotic 

processes, water can be actively transported inwards to compensate for the water lost. This is 

energetically unfavourable, and throughout evolution microorganisms have developed 

strategies to cope with high salt environments. The two main strategies are often called “salt-

in” and “salt-out” (Oren, 2008). 
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Figure 2: Overview of cells in high (hyperosmotic), normal, and low (hypoosmotic) salt 

concentrations. In both hyperosmotic and hypoosmotic environments cells will die if they do 

not possess any survival strategy. 

 

 

1.1.4 Salt-in strategy 

The salt-in strategy is based on the influx of ions from the environment. The cells accumulate 

potassium (K+) and chlorine ions (Cl-). Proteins in the saline cytoplasm need to be enriched in 

acidic amino acids (aspartate and glutamate) in order to remain functional. This is part of the 

adaptation of the microorganism’s intracellular machinery, which will ensure that proteins 

will remain in their proper conformation, and continue to have normal activity in near-

saturating salt concentrations. Most proteins of organisms using this strategy will denature 

when present in low salt environments, and therefore such microorganisms generally cannot 

survive in low salt media (Oren, 2008). Naturally, this strategy is most widespread amongst 

extreme halophile microorganisms (Empadinhas and da Costa, 2008). An overview of 

microorganisms using the salt-in strategy is given in Figure 3. 
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Figure 3: Distribution of microorganisms using the salt-in strategy. Groups marked with 

bold purple boxes contain microorganisms that use the salt-in strategy as their sole or main 

osmotic solute. From Oren (2008). 

 

1.1.5 Salt-out strategy 

The salt-out strategy is more common in nature than the salt-in strategy. This is because 

microorganisms using the salt-out strategy need very few adaptions of the cell proteome, and 

naturally, organisms using this strategy are adapted to a broad range of salt concentrations. 

The strategy involves both exclusion of salt from the cytoplasm and the synthesis and/or 

accumulation of small organic molecules (Oren, 2008). By accumulation of non-ionic 

molecules and/or Zwitterions (a natural molecule with both a positive and a negative charge) 

with low molecular weight, the decrease in water activity due to an increase in environmental 

salt conditions are balanced. These small molecules are named compatible solutes (DasSarma 

and DasSarma, 2012), (Melmer and Schwarz, 2009). Figure 4 gives an overview of 

microorganisms using the salt-out strategy. 
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Figure 4: Distribution of microorganisms using the salt-out strategy. The groups marked 

with bold red boxes contain at least some halophilic representatives in which de novo 

synthesis and/or accumulation of organic solutes have been demonstrated. From Oren (2008).  

 

1.1.6 Compatible solutes (organic osmolytes) 

The compatible solutes (also called organic osmolytes), were so named because they do not 

inhibit the overall cellular pathways of the cell. Even though they can interfere with some 

enzymes, they are compatible with all of the cells functions. Compatible solutes are natural 

substances like alcohols, amino acids, sugars and derivatives of these compounds. Their main 

task is to help the cell regulate the osmotic pressure, and maintain protein stability (Arakawa 

and Timasheff, 1985). Compatible solutes act as chemical chaperones that either are produced 

by the cell itself or transported into the cell from the surroundings. The accumulation of 

compatible solutes helps the organism adapt to different environments e.g. freezing, high 

temperatures and salt stress, and they protect by maintaining the cell volume, the turgor 

pressure and the concentration of electrolytes (Roberts, 2005), (Kolp et al., 2006). 
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1.2 Ectoine 

 

1.2.1 Discovery and characterization of ectoine 

Ectoine was first found and characterized by Galinski et al. (1985) in the extremely halophilic 

phototrophic eubacterium, Ectothiorodospira halochloris, and hence the compound was 

named ectoine. Now we know that ectoine is widespread among both halophilic and 

halotolerant microorganisms (Melmer and Schwarz, 2009), and that it is one of the most 

commonly found osmolytes in nature (Zhu et al., 2014). The capacity to synthesize ectoine is 

most widespread among α- and ϒ-proteobacteria and actinobacteridae, although it has been 

observed also in a more limited number of β-, δ-, and ε-proteobacteria, firmicutes, and one 

plantomycete (Pastor et al., 2010). Ectoine can be considered either to be a heterocyclic amino 

acid or a partially hydrogenated pyrimidine derivate and is characterized as 1,4,5,6-

tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (Galinski et al., 1985). The structure of 

ectoine is shown in Figure 5, and the molecular formula is C6H10N2O2. 

 

              

 

Figure 5: Structure of Ectoine. From Melmer and Schwarz (2009). 

 

1.2.2 Syntheses of ectoine  

The gene cluster ectABC is responsible for the synthesis of ectoine in bacteria. The cluster has 

been isolated and characterized from many eubacteria and archaea (Louis and Galinski, 

1997), (Anbu Rajan et al., 2008). Ectoine is synthesized in three steps (Figure 6). The first 

substrate is an aspartate derivate called L-aspartate-β-semialdehyde. Glutamate and L-2,4-

diaminobutyrat transaminase (encoded by ectB) are required in the first step to transform the 

L-aspartate-β-semialdehyde to L-2,4-diaminobutyrate. In step two, acetyl-CoA and L-2,4-

diaminobutyrate acetyltransferase (encoded by ectA) are needed, and L-2,4-diamionobutyrate 

is transformed into N2-acetyl-L-2,4-diaminobutyrate. In the final step the enzyme ectoine 
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synthase (encoded by ectC) transforms N2-acetyl-L-2,4-diaminobutyrate to ectoine in a cyclic 

condensation reaction.  

From ectoine, the synthesis can go on using 2-oxoglutarate, oxygen, Fe2+, and ectoine 

hydroxylase (encoded by ectD) making hydroxyectoine. Hydroxyectoine also works as a 

compatible solute, but while ectoine, which is produced at once when the microorganism 

finds itself in a salty environment, hydroxyectoine is made primarily when the cultures enter 

the stationary growth phase (Bursy et al., 2007).  

 

 

Figure 6: Pathway for the biosynthesis of ectoine and hydroxyectoine, from Bursy et al. 

(2007).  

 

The two last steps in the ectoine syntheses pathway seems to be the most important once, 

since they are unique and do not participate in any other syntheses that we know of. The first 

step however from L-aspartate-β-semialdehyd to L-2,4-diaminobutyrate accrues naturally in 

C. reinhardtii because of a endogenous ectB gene in the syntheses pathway of the amino acids 

arginine and proline (Figure 7). 
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Figure 7: The biosynthetic pathway of ectoine. ectA encodes L-2,4-diaminobutyrate 

acetyltransferase, and ectC encodes ectoine synthase. The enzyme L-2,4-diaminobutyrate 

transaminase (encoded by ectB) occur naturally in the syntheses of the amino acids arginine 

and proline. Adapted from KEGG (http://www.genome.jp/dbget-

bin/www_bget?pathway+ko00260).   

 

 

1.2.3 Activity of ectoine and other compatible solutes 

There are two main theories on how compatible solutes, like ectoine, works: the preferential 

exclusion model (Figure 8) and the water replacement hypothesis. 

According to the preferential exclusion model, compatible solutes are excluded from having 

any direct protein surface contact since this can lead to unfavourable interactions, and to 

induce unfolding of proteins. This might provide the molecular basis for solute exclusion and, 

subsequently, the stabilization effect. A water layer forms between the compatible solutes and 

the proteins, forcing the proteins to occupy a smaller volume. This is called “wetting 

hydrophobic molecules”. Because the proteins wants to protect its hydrophobic parts from 

water, it stays in its native conformation. Unfolding would need additional energy, which is 

not thermodynamically favoured. When the compatible solutes do not react with the proteins, 

the catalytic activity remains unaffected (Pastor et al., 2010).  
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Figure 8: Stabilization mechanism of compatible solutes based on the preferential 

exclusion model. Small spheres represent water molecules and backbones represent 

compatible solutes (ectoine). The native conformation of the protein is favoured when 

compatible solutes are excluded from the protein surface. From Pastor et al. (2010).  
 

 

The water replacement hypothesis is completely opposite to the preferential interaction 

model. This theory is based on the fact that many organisms can lose over 50% of cellular 

water and still return to full activity when the cell is rehydrated. Scientists supporting this 

hypothesis believe that water is replaced with compatible solutes that interacts with the 

protein surface and protects them from degradation.  

Some scientists believe that both the water replacement model and the preferential interaction 

hypothesis are correct, and that replacement of water with compatible solutes only happens in 

extreme cases with very low water activities. The dilution model is the preferred model for 

the more diluted range of solute concentrations (Pastor et al., 2010). 

 

1.2.4 Commercial use of ectoine 

Today saline soil is a big challenge for agricultural production. Soil that contains a lot of NaCl 

and Na2SO4 is called saline soil. In contrast, soil that is dominated by Na2CO3 and NaHCO3 is 

called alkaline soil. However, saline and alkaline soils are easily mixed together, and are often 

referred to as saline-alkaline soil. Salinization of land is becoming a big problem in many 

areas, especially considering the lack of fresh water in many places. The soil is often treated 

wrongly, with improper land irrigations and fertilization practices. In 2012 there were around 

ten million square kilometres of saline-alkaline soil in the world, a total of 7.6% of the earth’s 

land area (Yu et al., 2012). 
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Increased salinity in the soil can disturb plants’ ionic homeostasis, create a hyperosmotic state 

and eventually even lead to crop death. Generally, a soil salinity of 0.2% to 0.5% has a 

negative effect on plant growth; however, the surface of the soil in saline areas usually ranges 

from 0.6% to around 10%. Therefore, salt stress is a major agricultural concern and requires 

new methods to increase crops’ salinity resistance and saline-alkali tolerance (Yu et al., 

2012). If we could get “food plants” to express ectoine, many of the problems of growing in 

saline environments might be solved. 

There are also many other reasons for wanting to produce high amounts of ectoine. 

Researchers have seen that ectoine could improve cell growth and utilization of glucose, and 

some researchers have reported ectoine to be a potential candidate for treating Alzheimer’s 

disease. Ectoine is already used in creams because of its moisturizing effect which is even 

better than that of glycerol. It also protects the skin from harmful UV-A light, which could 

damage the cells in a number of different ways. Ectoine is proven to have anti-aging 

properties, and is licensed as a biomolecule stabilizer to be used in molecular biology 

applications. In addition, it is found to protect biomolecules from many variants of stress 

(protein stabilization, DNA stabilization, osmotic stress, thermostability, oxidation, detergents 

and degradation). Numerous other potential uses are still under investigation. The first 

cosmetic product containing ectoine was introduced on the market in 2001. In 2007 a nasal 

spray was launched, and became the first medical product containing ectoine. (Pastor et al., 

2010), (Melmer and Schwarz, 2009).  

 

1.2.5 Production of ectoine. 

Since the demand for ectoine has increased over the last couple of years, a number of methods 

to improve ectoine production are being researched. Earlier, ectoine was either extracted from 

natural producers, which gave quite a low yield, or synthesized chemically. In the mid-

nineties a fermentation process called “bacterial milking” was developed, and is still in use for 

ectoine production. The German company, Bitop AG, founded in 1993, is today the only 

large-scale commercial producer of ectoine, and they use the “bacterial milking” strategy for 

ectoine production. The bacterium Halomonas elongate, which produces both ectoine and 

hydroxyectoine, is grown in a hyperosmotic medium with 15% NaCl. After a while the 

bacteria are introduced to a hypoosmotic downshock of 3% NaCl. Now the bacteria do not 

need the compatible solutes any more, and release them in to the surrounding media. The 



11 

 

downshocked bacteria are then put back into the growing chamber at 15% NaCl to start 

producing compatible solutes again. The compatible solutes in the media are isolated and 

purified (Melmer and Schwarz, 2009).  

There is today a lot of ongoing research to improve the “bacterial milking” process, and a new 

method is a cumbersome multi-step process (Melmer and Schwarz, 2009). Here the producer 

strain creates a mix of different compatible solutes, and ectoine needs to be purified from 

these. Also new genetic engineering experiments, and/or new wild type strains might be able 

to increase the quality and yield of ectoine. Biotechnological processes tend to be preferable 

because the use of organic solvents and toxic chemicals are avoided. Bacterial methods 

demand high amounts of nutrients and finely tuned culture conditions such as pH, aeration, 

and nutrient feeding during the operation of fermenters (Melmer and Schwarz, 2009), (Pastor 

et al., 2010). 

 

1.2.6 Pseudomonas stutzeri and the ectABC gene cluster 

P. stutzeri is a universal gram negative bacterium. It is often called universal because it is 

found in virtually all environments around the world, and therefore also has a widely diverse 

metabolism (Lalucat et al., 2006). Naturally, P. stutzeri produces the compatible solutes 

ectoine that makes the organism salt tolerant (Seip et al., 2011). Previous studies on 

transcriptional regulation revealed that the ectABC gene cluster is organized as an operon in 

almost all cases (Zhu et al., 2014). Appendix 3 shows the ectABC gene cluster organisation in 

P. stutzeri. 

 

1.3 Chlamydomonas reinhardtii 
 

1.3.1 C. reinhardtii as a model organism 

C. reinhardtii is a unicellular freshwater eukaryotic green algae, 10 µm in diameter, whose 

lineage diverged from land plants over 1 billion years ago. C. reinhardtii has a simple life 

cycle, multiple mitochondria, two anterior flagella for motility and mating, and one single 

chloroplast (Figure 9) (Merchant et al., 2007). Because of its features, C. reinhardtii has been 

in use as a model organism for the past 50 years, and the whole genome of the algae has been 

sequenced. The linear mitochondrial genome of 15.8 kb was fully sequenced in 1993 

(Vahrenholz et al., 1993). The single chloroplast genome which consists of 203 395 bp, was 
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fully sequenced in 2002. The chloroplast genome is divided by 21.2 kb inverted repeats into 

two single copy regions of about 80 kb, and contains 99 genes. 20% of the chloroplast 

genome is repetitive DNA (Maul et al., 2002). The alga has 17 linear chromosomes in the 

nucleus, and these were fully sequenced in 2007 (Merchant et al., 2007).  

 

  

 

 

Figure 9: A schematic of a Chlamydomonas cell. From Merchant et al. (2007). 

 

 

C. reinhardtii has several features that make it attractive as a model for expressing 

recombinant genes. The alga is easy to grow, either in agar or liquid media. The optimal 

growth temperature is between 20°C and 36°C, and it requires no additional vitamins or co-

factors. C. reinhardtii grows best phototrophically (in constant light), and with extra supply of 

CO2 (Potvin and Zhang, 2010). Transformation of the alga can be done with well-established 

techniques, and it takes from 2-6 weeks to generate a transformant cell line. The generation 

time under optimal conditions is about eight hours. C. reinhardtii is classified as a GRAS 

(generally recognized as safe) organism. It has no known virus or pathogens (Purton, 2007).  
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1.4 Transformation and optimization 

1.4.1 Chloroplast transformation vs. nuclear transformation 

Recombinant gene expression has been done in both nuclear, mitochondrial and chloroplast 

genomes of microalga, but expression good enough for commercial use has been achieved by 

chloroplast expression only. It has so far been very difficult to express transgenes in the 

nucleus. Reasons for this might be linked to positional effects; RNA silencing, chromatin 

structure and epigenetic effects. Because of the high expression level of genes in chloroplasts, 

they are generally chosen for transgene expression in microalgae. Surzycki et al. (2009) have 

observed protein yields varying from 0.88% to 20.9% of total soluble protein (TSP) when 

expressing a transgene in the chloroplast, but it has also been reported a yield as high as 45% 

TSP (Bock, 2007). Such high numbers only occur in rare cases, and the large majority of 

yields are around 5% of TSP and lower (Potvin and Zhang, 2010). Plastids and all their 

genetic information are usually inherited maternally, and are therefore excluded from pollen 

transmission. This means that scientists have an environmentally benign method for transgene 

expression. It is also possible to regulate the gene expression in chloroplasts by choosing 

appropriate combinations of plastid expression signals (e.g. promoters, Shine-Dalgarno 

sequences, 3´untranslated regions) (Bock, 2007).  

 

1.4.2 C. reinhardtii chloroplast transformation 

The first stable transformation of a C. reinhardtii chloroplast was actually the first stable 

transformation of any chloroplast ever done. This happened in 1988, and researchers found 

that chloroplasts worked very well for expressing recombinant products. Each chloroplast 

contains up to hundred copies of the plastome and most of the genes in the plastomes have 

roles in the photosynthetic pathway, which should therefore be highly expressed. 

Consequently, a transgene inserted into the plastome is amplified significantly compared to 

insertion of the same gene into the nuclear genome. DNA integration very often occurs 

through homologous recombination (Figure 10), and this allows very precise and predictable 

site-specific expression. Studies have also shown that transgenes expressed in the chloroplast 

are not subject to transcriptional or post-transcriptional gene silencing (Purton, 2007).  

The downside of chloroplast transformation is that poor promoter activity and low mRNA 

stability can impact gene expression. Analysis of transgenic C. reinhardtii chloroplasts show 

sufficient heterologous mRNA accumulation to support high levels of protein synthesis 
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(Blowers et al., 1990), (Salvador et al., 1993). Another thing to keep in mind is that 

C. reinhardtii prefers monocistronic genes (Drapier et al., 1998). 

 

Figure 10: Homolog recombination. The figure gives an overview of the integration of a 

transgene into the circular chloroplast genome of C. reinhardtii by homolog recombination 

 

1.4.3 How to express genes in C. reinhardtii 

One of the most successful methods of transforming plants is by bombarding target cells with 

DNA-coated tungsten or gold particles. This way of transforming plants is both simple and 

effective. The kinetic energy of the particles is great enough to penetrate the cell wall, the 

plasma membrane and even the two membranes surrounding the chloroplast. The particles can 

of course also deliver multiple copies of the transgene into the chloroplast. A minor drawback 

of the method is the cost for the required special equipment and consumables, e.g. gold 

particles, and that the number of positive transformants can be quite low after a bombardment. 

But today this is the most efficient and effective method for chloroplast transformation in use 

(Potvin and Zhang, 2010). 
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1.4.4 Ectoine in metabolic engineering 

Agrobacterium tumefaciens has been used in nuclear transformation in land plants. The 

ectABC cluster has been successfully integrated into tobacco and tomato plants, and the genes 

were transcribed using endogenous plant promoters. Accumulation of ectoine was detected in 

both plants, and they showed increased resistance towards salinity when compared with their 

wild-types. These experiments gave valuable insight into the mechanisms responsible for 

plant growth, salt tolerance and effectiveness of ectoine (Moghaieb et al., 2006) (Moghaieb et 

al., 2011). The problem with expression of transgenes in plastids is that some tissues of food 

plants and fruits don’t contain chloroplasts but amyloplasts and chromoplasts. Scientists 

believe that the activity of plastid gene expression is lower in non-photosynthetic tissue, than 

in photosynthetic tissue, but today too little is known about the bottlenecks of protein 

expression in non–green plastids (Bock, 2007).  

 

1.4.5 Codon optimization 

All amino acids, except methionine and tryptophan, are encoded by more than one triplet 

codon. Such codons usually differ by one nucleotide in the third position, and are called 

synonymous. Synonymous codons are rarely used with equal frequencies in different 

organisms. Bias in codon usage is an essential feature of most genomes, both bacterial, 

archean and eukaryotic (Ermolaeva, 2001).  

Optimizing the codons in the transgenes increases their expression efficiency by increasing 

their translation rate. It may also decrease their susceptibility to silencing. Scientists believe 

that for prokaryotic genomes and organelle genomes, e.g. in the chloroplast genome of 

C. reinhardtii, codon bias is the single most important determinant for successful protein 

expression. Therefore, optimisation of codons in transgenes is considered necessary for high 

level protein expression (Potvin and Zhang, 2010). For a graphical view of codon 

optimization, see appendix 2. 

 

1.4.6 Previous work with the ect genes and C. reinhardtii 

In previous attempts to produce ectoine in the chloroplast of C. reinhardtii, the bacterial ectA 

gene has been inserted into a suitable vector and transformed into the algae’s chloroplast by 
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microprojectile bombardment. In a later experiment both the ectA, and the ectB genes were 

inserted together in the same vector, and transformed into the chloroplast of C. reinhardtii. In 

both cases it was found that both the ectA and ectB genes were expressed, but at a very low 

level. Neither ectoine accumulation in the cells or increased salt tolerance of the algae were 

detected. Codon optimising the ect genes has not been done before in C. reinhardtii. These 

projects have been carried out in cooperation with the Microbiology Department of the 

University of Bonn, Germany,   
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Aim of project 

The main goals of this project were: 

 

1. To create a transgenic Chlamydomonas reinhardtii cell line that contains the 

functional genes OectA, ectB and OectC. 

2. Evaluate the expression of the OectA, ectB and OectC genes, and the effects of 

production of ectoine. 

 

Sub-goals to achieve the main goals were: 

 

1. To create a plasmid construct that works well for transformation of the chloroplast 

genome with all the three genes ectA, ectB and ectC. ectA and ectC will be codon 

optimized to fit the demands of C. reinhardtii. The constructs will also contain 

promoters and terminating regions for each gen, a selection marker (in this case the 

atpB gene), and a sequence that is homologous to chloroplast DNA for the stable 

homolog integration of the construct (in this case a BamHI-EcoRI insert). The 

flanking 5’ and 3’ untranslated regions (UTR) of each gene shall enable stabilization 

and translation of the transcript. 

 

2. Transformation of C. reinhardtii with the constructed plasmid by microprojectile 

bombardment. 

 

3. Selection of positive transformants, and analysis of them at the DNA, RNA, protein 

and product (ectoine) level. 
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2.0 Materials and Methods 
 

2.1 Work with DNA 
 

2.1.1 Quantification of DNA by Ultra violet light absorption 

Procedure: 

-Calibrate/zero the absorption apparatus at 260 nm with a control sample, using the liquid 

used to resuspend the DNA.  

-Dilute sample as needed, and measure optic density (OD). 

-OD 1.0 = 50 µg DNA/mL (40 µg RNA/mL). 

 

2.1.2 Quantification of DNA by “Dot spot”  

Procedure: 

-Prepare a standard of DNA in water solutions, with increasing concentrations (0 ng/µL, 2.5 

ng/µL, 5 ng/µL, 7.5 ng/µL, 10 ng/µL and 15 ng/µL). 

-Place a series of 2 µL drops of ethidium bromide-water solution (2 µg/mL) on a plastic petri 

dish that is transparent to UV-light. Place 6 drops for the DNA-standards, and add additional 

drops according to the number of samples you wish to measure.  

-Add 2 µL of the DNA-standards to each ethidium bromide-water drop, mixing by pipetting 

within the drop a few times.  

-Add 2 µL of the sample DNA to the rest of the ethidium bromide-water drops, mix by 

pipetting. Usually up to a 100-fold dilution is required to lower the sample DNA-

concentration to match that of the standards range.  

-Compare the sample fluorescence and the standards with UV-light, and estimate the DNA 

concentration. 

 

2.1.3 Agarose gel electrophoresis 

Procedure (1% agarose gel): 

-Measure 60 mL TAE (1x) buffer in an Erlenmeyer flask. 

-Add 0.6 g agarose. 

-Use a microwave oven to make the mixture boil (you may use a plastic foil to cover the flask 

so you do not spill). Make sure all the agarose is dissolved. 
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-Cool down the Erlenmeyer flask to about 45oC and add 10 µL of ethidium bromide 

(1 mg/mL). 

-Pour the solution into a tray, and insert comb.  

-Wait for solidification, and immerse the gel in an electrophoresis chamber. Pour TAE (1X) 

buffer into the chamber so that it just submerges the gel. 

-Mix the DNA sample with 1-2 µL of loading buffer. Load X µL in each well (depending on 

which comb is used). In most cases: remember to load a control and a DNA ladder.  

-Apply a voltage according to electrophoresis chamber specifications. Usually 90 volts. 

-After ca. 45-60 minutes the electrophoresis is finished. Visualize the DNA by using UV-

light. 

 

2.1.4 Purification of DNA fragments from agarose gel  

*Specific DNA samples were isolated and purified by using the IllustraTM purification kit 

from GE Healtcare. 

 

Procedure: 

-Cut out the DNA fragment of interest using UV-light at 350 nm (so the DNA is not 

damaged). 

-Add a minimum of 300 µL Capture buffer, and use 10 µL per 10 mg after that. Mix by 

inversion.  

-Use a heating block at 60oC to melt the agarose (ca. 10 minutes). 

-Add 600 µL sample to a microspin column and collection tube. Leave at room temperature 

for 60 seconds.  

-Centrifuge for 30 seconds at 13 000 g in room temperature. Discard flow through. Repeat 

this step until the whole sample is used.  

-Add 500 µL wash buffer. Centrifuge for 60 seconds at 13 000 g in room temperature. 

-Transfer spin column to a clean, DNase-free microcentrifuge column. 

-Use 10-50 µL elution buffer, and leave at room temperature for 60 seconds.  

-Centrifuge for 60 seconds at 13 000g in room temperature.  

-Store DNA sample (flow through) at -20oC, or use immediately. 
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2.1.5 Precipitation of DNA 

Procedure: 

-Add Na-acetate so that it makes up 10% of the volume in the DNA solution. 

-Add 96% ethanol so it makes up 2/3 of the total sample volume. 

-Freeze at -20oC for minimum 30 minutes (can also freeze overnight). 

-Centrifuge at 4oC for 10 minutes at 13 000 g. 

-Remove all liquid (make sure you do not lose the pellet). 

-Add 1.0 mL of 70% ethanol. 

-Centrifuge at 4oC for 5 minutes at 13 000 g. 

-Remove all liquid and dry with the vacuum centrifuge for about 1-2 minutes. 

 

2.1.6 Dephosphorylation of DNA (Method 1) 

Procedure:  

-Resuspend precipitated DNA in 90 µL dH2O and add 10 µL of buffer. 

-Add 1µL CIP enzyme, and mix with pipette. 

-Putt the sample on a heating block at 37oC for 1 hour.  

-Inactivate CIP by heating at 75oC for 10 minutes.  

-Precipitate DNA as described in section 2.1.5.  

 

2.1.7 Dephosphorylation of DNA (Method 2) 

Procedure:  

-Resuspend precipitated DNA in 90µL dH2O and add 10 µL of buffer. 

-Add 1µL CIP enzyme, and mix with pipette. 

-Putt the sample on a heating block at 37oC for 1 hour.  

-Inactivate CIP by adding 100 µL of phenol/chloroform/isoamylalcohol (25:24:1). Mix by 

vortexing.  

-Centrifuge at 13 000 g at room temperature for 2 min.  

-Transfer upper phase to a new microfuge tube, and add ca. 100µL of 

chloroform/isoamylalcohol (24:1). Mix by vortexing.  

-Centrifuge at 13000 g at room temperature for 2 min. 

-Transfer the upper phase to a new tube. Add 200 µL of ice-cold 96% ethanol. Mix by 

vortexing and leave on ice for 10 min to precipitate nucleic acids.  

-Centrifuge at 13000 g at 4oC for 10 min. 
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-Discard supernatant, and add 1 mL of ethanol (70%) to the pellet. Mix by inversion. 

-Centrifuge at 13000 g at 4oC for 5 min. 

-Discard supernatant, and dry the pellet by leaving at room temperature for about 10 minutes, 

or dry in a vacuum centrifuge.  

-Dissolve the pellet in 15 µL of sterile distilled water.  

 

2.2 Work with Escherichia coli  
  

2.2.1 Preparation of agar growth plates with ampicillin  

Procedure for 1 L (approximately 40 plates): 

-1 L of lysogeny broth (LB) with 1.5% agar is prepared and autoclaved. 

-The solution is cooled down to about 50oC (Ampicillin is sensitive to temperature 

degradation), and 1 mL of ampicillin (60 mg/mL) is added, to a final concentration of 

60 µg/mL. 

-The solution is poured into sterile petri dishes under a sterile hood, and allowed to solidify. 

-After solidification, the dishes are turned upside down (to avoid water condensation) and 

stacked. They are stored in sealed plastic bags at 4oC. 

 

2.2.2 Transformation of competent E. coli cells 

Procedure: 

-Melt an aliquot of frozen competent cells on ice, and add pure DNA (1 ng/µL) or 3 µL of a 

ligation reaction. Mix and leave tube on ice for 30 minutes. 

-Incubate on a heating block at 42oC for 90 seconds. Immediately cool down on ice 1-2 min.  

-Add 0.8 mL sterile LB medium at room temperature to a 15 mL plastic tube, and transfer the 

cell mix to the tube. Grow the cells for 1 hour on a rotating wheel at 37oC. 

-Plate the suspension (described in section 2.2.3). 

 

2.2.3 Application and growth of E. coli on agar plates   

*This procedure is done in a sterile hood. 

Procedure:  

-A glass rod is sterilized by burning with alcohol and cooled down in air.  
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-75 µL of E. coli culture is pipetted onto a petri dish (dilute the culture if to many colonies 

appear or spread out on more dishes). 

-The petri dish is put on a hand operated turntable and rotated while the glass rod is used for 

spreading the E. coli culture evenly around the plate.  

-The plate is left for a few minutes to allow the liquid to be absorbed into the agar.  

-The lid is put on, and then the petri dish is turned upside-down, and incubated at 37oC for 16-

20 hours (incubation is not done in the hood). 

-Store at 4oC or use immediately. (Can be stored in the cold for several weeks). 

 

2.2.4 Culturing of E. coli agar plate colonies 

Procedure: 

-3 mL of lysogeny broth (LB) with ampicillin (60 µg/mL) is added to a sterile 15 mL tube 

with loose cap for air ventilation. 

-A single colony is picked from a plate, with a sterile pipette tip.  

-The pipette tip is put inside the tube, making sure the tip with the colony is in contact with 

the LB medium.  

-The tube is incubated overnight at 37oC on a rotating wheel.  

-The next day, the culture can be used for plasmid isolation (Miniprep). (See section 2.2.6). 

 

2.2.5 Storage of E.coli at -80oC 

Procedure: 

-Take 0.7 mL of the E. coli culture and mix with 0.3 mL of 50% glycerol in a 2 mL tube with 

screw cap. 

-Store in -80oC freezer.  

*Cells are viable for several years. 

 

2.2.6 Miniprep: plasmid isolation from E. coli 

Procedure:  

-Transfer 1.5 mL of an E. coli culture into a 1.5 mL tube. Store the rest of the culture in a cold 

room or refrigerator (4oC).  

-Centrifuge at 13 000 g in room temperature for about 30 seconds. 

-Discard supernatant, leaving the bacterial pellet as dry as possible. 

-Resuspend the bacterial pellet by vortexing in 100 µL ice cold TEG buffer. 
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-Leave the mixture for 5 min at room temperature.  

-Add 200 µL of NaOH/SDS (0.2 N, 1% (w/w)) solution (prepare fresh). Mix by inversion, 

and incubate on ice for 5 min. 

-Centrifuge at 13 000 g at 4oC for 5 min. 

-Transfer the supernatant to a new microfuge tube, and add 410 µL of 

phenol/chloroform/isoamylalcohol (25:24:1). Mix by vortexing.  

-Centrifuge at 13 000 g at room temperature for 2 min.  

-Transfer upper phase to a new microfuge tube. Add 410 µL of chloroform/isoamylalcohol 

(24:1). Mix by vortexing.  

-Centrifuge at 13 000 g at room temperature for 2 min. 

-Transfer 310 µL of upper phase to a new tube. Add 750 µL of ice-cold 96% ethanol. Mix by 

vortexing and leave on ice for 10 min to precipitate nucleic acids.  

-Centrifuge at 13 000 g at 4oC for 10 min. 

-Discard supernatant, and add 1 mL of ethanol (70%) to the pellet. Mix by inversion. 

-Centrifuge at 13 000 g at 4oC for 5 min. 

-Discard supernatant, and dry the pellet by leaving at room temperature for about 10 minutes, 

or dry in a vacuum centrifuge.  

-Dissolve the pellet in 15 µL of sterile distilled water.  

- Use immediately, or store in freezer at 20oC. 

 

*A yield of 1 to 3 µg of plasmid DNA can be expected (for more scale up the procedure). 

The preparation contains RNA, which will be removed with ribonuclease A when the DNA is 

digested with restriction enzymes.  

 

2.2.7 Maxiprep: plasmid isolation from E. coli 

Procedure:  

-Inoculate 5 µL or 1 colony from a plate of E. coli culture in 100 mL LB with ampicillin 

(60 µg/mL), and grow the culture overnight at 37oC on a shaker.  

-Centrifuge at 6000 g at 4oC for 5 min. 

-Discard supernatant, and resuspend cells in 3.6 mL ice-cold TEG buffer.  

-Add 0.4 mL of lysozyme (10 mg/ml) in TEG (prepare fresh). Leave at room temperature for 

5 minutes, and then leave on ice for 5 minutes. 
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-Add 8 mL NaOH/SDS (0.2 N, 1% (w/w)) solution (prepare fresh). Mix by inversion and 

leave on ice for 5 minutes. 

-Add 6 mL ice-cold potassium acetate (5M K, 3M acetate). Mix by inversion, and incubate on 

ice for 5 min. 

-Centrifuge for 10 minutes at 6000 g and at 4o C.  

-Transfer supernatant to a new tube by filtering through a gauze. Add 12.5 mL isopropanol. 

Mix by vortexing. Leave at room temperature for 15 min. 

-Centrifuge for 10 minutes at 6000 g in room temperature. 

-Discard supernatant, and leave tube to dry in room temperature for 10 minutes.  

-Resuspend pellet in 3mL TE (50mM Tris (pH 8), 1mM EDTA) buffer. 

-Determine the weight of the solution and add TE (50mM Tris (pH 8), 1mM EDTA) buffer to 

4.2 grams.  

-Add 4.5 g CsCl, warm solution with your hands to reach room temperature while mixing. 

Make sure all the CsCl dissolves. 

-Add 0.25 mL ethidium bromide (10 mg/ml) and 0.25 ethidium bromide (10 ng/mL). Mix by 

pipetting.  

-Centrifuge for 5 minutes at 6000 g in room temperature.  

-Transfer supernatant to Beckman OptiSeal tubes, and load tube into VTi 65.2 rotor. 

-Centrifuge at 50 000 g for minimum 15 hours at 15oC. Decelerate rotor without brake. 

-Carefully transfer the ultracentrifugation tube to a clamp, and illuminate the tube with 350 

nm UV-light.  

-Extract the middle band with a 2 mL syringe. The volume should be approximately 0.5 mL. 

-Remove ethidium bromide by extracting with 0.75 mL isopropanol/water (7:1 v/v) up to five 

times.  

-Dialyze against sterile 200 mL TE buffer at 4oC for about 2 hours. Replace with fresh buffer 

once every 20 minutes.  

-Transfer the DNA solution to a tube with screw cap. 

-Determine the concentration by measuring the absorption at 260 nm (dilution 1:100). (See 

section 2.1.1.). 

-Store in the freezer at 20oC. 
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2.3 Cloning 
 

2.3.1 Ligation reaction  

*T4 DNA ligase was used for all the ligation reactions. The amount of insert used was based 

on molar ratio 1.3:1 (insert : vector). The amount of vector used in a 10 µL reaction was 800 

ng of a vector of 12 kb, and 400 ng of a vector of 6 kb and so on. 

 

Procedure (10 µL): 

-Calculate concentration and ratio of vector and insert. Total sample volume should be 6.5 

µL. Use dH2O if necessary.  

-Leave the mixture on a heating block at 45oC for 5 minutes. 

-Cool down on ice for 1-2 minutes. 

-Add 1 µL T4 DNA ligase buffer (10x), 2 µL PEG 8000 (30% w/v) and 0.5 µL T4 DNA 

ligase.  

-Incubate at 19oC for minimum 3 hours.  

-Use immediately or store at -20oC. 

 

2.3.2 Digestion with restriction enzymes 

Procedure: 

All restriction digestions were done with enzymes from NEB (New England Biolabs), 

following the protocols recommended by the supplier. The overall restriction mixture is a mix 

of Enzyme, DNA, dH2O, buffer and if needed BSA.  

 

2.3.3 Plasmids 

The ectABC gene cluster from P. stutzeri was obtained on a PSB01 plasmid provided by the 

University of Bonn, Germany (Appendix 3). The pMU_kn+ plasmid were synthesized by Life 

TechnologiesTM GeneArt® service. The plasmid SK+_157_NdeI (the plasmid SK+_157 

modified to have a NdeI site instead of an Eco47 site) is described in (Salvador et al., 2011). 

The final plasmid for transformation into the chloroplast of C. reinhardtii, the pCrc_32 

plasmid is described in (Blowers et al., 1993). The SK+ 157_NdeI plasmid, the pCrc_32 

plasmid and pMU-RQ plasmid contain an ampicillin resistance gene. Transformants 

containing these plasmids or derivatives were selected on petri dishes containing ampicillin. 
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The pMU_kn+ plasmid contained a kanamycin resistance gene. Transformants with this 

plasmid were selected on petri dishes containing kanamycin.  

 

2.3.4 Codon optimization of ectA and ectC 

To codon optimized sequences of ectA and ectC the online tool “Graphical codon usage 

analysis”, and the function “each triplet position vs usage table” 

(http://gcua.schoedl.de/sequential_v2.html) was used (Fuhrmann et al., 2004). The online tool 

(http://www.kazusa.or.jp/codon/cgi-

bin/showcodon.cgi?species=3055.chloroplast&aa=1&style=N) was used to get the 

C. reinhardtii chloroplast codon usage table (Nakamura et al., 2000). The original ectA and 

ectC sequences used are from Pseudomonas stutzeri (Seip et al., 2011) see Appendix 2. 

 

2.4 Work with Chlamydomonas Reinhardtii 

 

2.4.1 C. reinhardtii strains 

The non-photosynthetic atpB deletion mutant strain ac-uc-221 (CC373), and the wild type 

strain (CC125) of C. reinhardtii were originally obtained from the culture collection of the 

Chlamydomonas Genetics Centre at University of Minnesota, MN, USA. The photosynthesis 

mutant is maintained in the dark in high salt high acetate (HSHA) media, and the wild type 

and transformants are maintained in the high salt (HS) media. The mutants can not perform  

photosynthesis and will die when exposed to light in a medium not containing an organic 

 carbon source.  

 

2.4.2 Preparation of solid media for C. reinhardtii 

Procedure (1 L ca. 40 plates):  

-Prepare 1 L of high salt and high acetate/high salt (HSHA/HS) media with 1.5% agar. 

Autoclave for 20 minutes. 

-The solution was cooled down to 50oC, and poured into sterile petri dishes under a sterile 

hood. The solution needs time to solidify. 

-After solidification the plates are stacked, turned upside down (to avoid water condensation), 

sealed in plastic bags, and stored at room temperature.  

http://gcua.schoedl.de/sequential_v2.html
http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=3055.chloroplast&aa=1&style=N
http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=3055.chloroplast&aa=1&style=N
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2.4.3 Preparation of liquid medium for C. reinhardtii 

Procedure (1 L): 

-Prepare 1 L of HSHA/HS media in one large Erlenmeyer flask, or 250 mL flasks. 

-Autoclave for 20 minutes. 

-Store at room temperature.  

 

2.4.4 Culturing the C. reinhardtii photosynthesis  

                              mutants for transformation 

Procedure: 

-Inoculate a 100 mL solution of high salt high acetate (HSHA) medium with the 

photosynthesis mutant C. reinhardtii. 

-Shield the culture from light by wrapping the flask in dark paper, and leave the culture on a 

shaker for 2 days.  

-Inoculate ca. 5 mL of the culture to a new flask with 100 mL HSHA media, and leave the 

culture on the shaker for 2 days.  

- Inoculate this culture to a new flask with 500 mL HSHA media, and leave the culture on a 

shaker for 1 day. Remember to always shield the culture from light. 

-The culture will be ready for transformation.  

 

2.4.5 Harvesting and plating of the C. reinhardtii 

         photosynthesis mutant for transformation 

*All steps should be done with as little light as possible. 

Procedure (6 plates):  

-Centrifuge 500 mL of the C. reinhardtii mutant culture in two sterile centrifuge tubes at 

5000 g at room temperature for 5 minutes. 

-Discard the supernatant and resuspend the cells in up to 500 µL of high salt high acetate 

(HSHA) media.  

-Heat sterilized soft agar (0.11% agar in HSHA) in a microwave oven, and add 900 µL to two 

sterile microfuge tubes.  

-Let the tubes cool down to 42oC and add 100 µL of the resuspended C. reinhardtii mutant 

cells to each microfuge tube, and mix gently. 
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-Transfer 300 µL of the cells to an HSHA agar plate (3 cm in diameter). Spread the liquid as 

evenly as possible on the plates. Do the same for all 6 plates. Don not turn the plates upside-

down. 

-Store the plates in the dark for minimum 3 hours before microprojectile bombardment.  

 

2.4.6 Microprojectile bombardment 

*Transformation vector DNA is precipitated, and pasted on gold particles according to 

instructions of the manufacturer of the particle delivery system (Bio-Rad). 

*The following steps are done in as little light as possible. 

Procedure: 

-The whole inside of the particle bombardment device is sterilized by wiping with ethyl 

alcohol. 

-The particle bombardment device is assembled with the agar plates containing 

photosynthesis mutants. 

-The particle bombardment is carried out according to operating instructions. 

-After bombardment the plates are stored in the dark at room temperature, for 1 day, in order 

for the cells to recover. Do not turn the plates up-side down.  

 

2.4.7 Recovery and selection of transformants 

Procedure: 

-1 day after microprojectile bombardment, the bombarded plates are transferred to a sterile 

hood. 

-400 µL of high salt (HS) media is added to each of the small plates.  

-A hand held tool with a ridged metal wire angled to 90oC is used to scrape off the thin layer 

of cells that are embedded in the soft agar. As many cells as possible are scraped into the HS 

medium that was added to the plates.  

-All of the liquid on the plates is then transferred to a fresh HS agar plate with a pipette and 

spread out as evenly as possible using a glass rod. Do the same with all the plates. 

-The HS agar plates are placed in the light. Do not turned upside-down, the liquid needs a day 

to dry. 

-After 1 day the plates are sealed with parafilm, and turned upside-down. They are kept under 

constant light. 
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-Colonies of transformed C. reinhardtii should appear after ca. 2 weeks. These are picked in a 

sterile hood and transferred to HS agar plates with a visual grid, and 2 days later inoculated in 

liquid cultures. 

 

2.4.8 Photosynthetic growth of C. reinhardtii 

When growing C. reinhardtii photosynthetically the algae are first cultured on solid media, 

and then later in liquid media, with no carbon-source other than CO2 from the air. The algae 

are under constant light 24 hours, night and day. 

 

2.4.9 Photosynthetic growth of C. reinhardtii with 2% CO2 

*Prior to DNA and RNA isolation C. reinhardtii is grown with an additional supply of CO2 in 

liquid culture, and in a 12 hours light/12 hours dark cycle.  

Procedure: 

-Add 100 mL of high salt medium (HS) to a 250 mL glass tube that has both gas inlet and  

outlet enabling bubbling by air, and the tube should otherwise be sealed in order to prevent  

contamination. This should be done in a sterile hood. 

-Inoculate to a tube with about 200 mL of liquid C. reinhardtii culture.  

-Place the tube in a water bath with a constant temperature of 30oC. 

-Connect the gas inlet to a source that supplies 2% CO2 in to the air. This is done by bubbling 

CO2 and air trough water, at a rate of e.g. 2 bubbles per second, leading the gases into the 

C. reinhardtii culture. The exact amount and rate of bubbling will (only) influence the speed 

of growth and can be varied. 

-After a few days the cultures should be dark green and ready for harvesting. 

 

2.4.10 Total DNA isolation from C. reinhardtii 

Procedure: 

-Centrifuge 40-80 mL (depending on how long the cells have grown, and hence their 

concentration) of a C. reinhardtii culture containing about 2 x 106 cells per mL for 5 minutes 

in room temperature at 5000 g. 

-Discard supernatant and resuspend the pellet in 0.75 mL DNA extraction buffer (100 mM 

Tris pH 8.0, 50 mM Na2-EDTA, 0.5 M NaCl, 10 mM β-mercaptoethanol), and transfer the 

suspension to a 2 mL microfuge tube. 



31 

 

-Add 60 µL SDS (21 % w/v), mix, and incubate for 15 minutes at 65oC. While at 65oC, mix 

by inversion every 4 minutes. 

-Let the mix cool down to room temperature, and add 0.9 mL phenol (equilibrated with 0.1 M 

Tris pH 8.0). Mix gently by inversion.  

-Centrifuge for 5 minutes in room temperature at 13 000 g. 

-Transfer 750 µL of the upper phase to a new 2 mL microfuge tube, and add 750 µL of 

phenol/chloroform/isoamylalcohol (25:24:1). Mix by inversion. 

- Centrifuge for 5 minutes in room temperature at 13 000 g. 

-Transfer 650 µL of the upper phase to a new 1.5 mL microfuge tube, and add 650 µL of 

isopropanol. Mix by inversion and incubate at room temperature for 5 minutes (or more, until 

precipitate appears). 

-Centrifuge for 2 minutes in room temperature at 4000 g. Discard supernatant, and add 1 mL 

of ice-cold ethanol (70%). Mix by inversion.  

-Centrifuge for 2 minutes in room temperature at 13 000 g. Discard supernatant, and dry pellet 

in a vacuum centrifuge (or by incubation at room temperature). 

-Resuspend pellet in 90 µL TE buffer (10 mM tris pH 8.9, 1 mM Na2-EDTA), add 10 µL 

RNase A (1 mg/mL), and incubate at 37oC for 1 hour.  

-Extract the mixture once with 100 µL phenol/chloroform/isoamylalcohol (25:24:1), and once 

with 100 µL chloroform/isoamylalcohol (24:1). 

-Precipitate the DNA in freezer for up to 1 hour with ethanol by adding Na-acetate so the 

volume is 10% of the total volume, and then adding 2 final volumes ethanol (96%). 

-Centrifuge for 10 minutes in 4oC at 13 000 g. Discard supernatant, and add 1 mL of ice-cold 

ethanol (70%). Mix by inversion.  

-Centrifuge for 5 minutes in 4oC at 13 000 g. Discard supernatant, and dry pellet in a vacuum 

centrifuge (or by incubation at room temperature). 

-Resuspend DNA in 20 µL off sterile dH2O. Measure DNA concentration by dot spot (see 

section 2.1.2), and store in freezer (-20oC) or use immediately. 

 

2.4.11 RNA isolation from C. reinhardtii 

*Samples most always be kept on ice and in the beginning you should try to work as quick as 

possible. All the solutions and consumables are RNase free. 

Procedure:  
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-Centrifuge 40 mL of a C. reinhardtii culture containing approximately 2 million cells per mL 

for 5 minutes at 5000 g in 4oC.  

-Discard the supernatant and resuspend the pellet in 1.5 mL ice-cold lysis buffer (0.6 M NaCl, 

200 mM tris pH 8.0, 10 mM Na2-EDTA). 

-Add 150 µL RNase inhibitor (200 mM vanadyl ribonucleoside (NEB)). 

-Transfer 3 mL of the upper phase to another 15 mL tube containing 3 mL ice-cold 

phenol/chloroform/isoamylalcohole (25:24:1) and mix. 

-Centrifuge for 5 minutes at 8000 g in 4oC and transfer 2.5 mL of the upper phase to another 

15 mL tube containing 2.5 mL ice-cold phenol/chloroform/isoamylalcohole (25:24:1) and 

mix. 

-Centrifuge for 5 minutes at 8000 g in 4oC, and transfer 2 mL of the upper phase to another 

15 mL tube containing 2.5 mL ice-cold isopropanol and 250 µL Na-acetate (3 M pH 5.2). Mix 

and incubate at -20oC for minimum 1 hour. 

-Centrifuge for 15 minutes at 12 000 g in 4oC. Discard supernatant, and leave the tube upside-

down on a paper towel for 10 minutes in order to completely dry the pellet. Make sure that the 

pellet is not loose when you turn the tube upside-down, or the pellet might be lost.  

-Resuspend pellet in 300 µL DEPC-treated H2O, and transfer to a sterile 1.5 mL microfuge 

tube containing 100 µL ice-cold LiCl (8 M). Mix and incubate on ice for 2 hours. 

-Centrifuge for 30 minutes at 13 000 g in 4oC. Discard supernatant and resuspend pellet in 

100 µL DEPC-treated H2O, and keep on ice.  

-Dilute 10 µL of the RNA solution in 1 mL DEPC-treated H2O, and measure OD260 nm 

(OD 1.0 = 40 µg RNA/mL). To the rest of the DNA solution add 10 µL Na-acetate (3M pH 

5.2) and add 200 µL ice-cold ethanol (96 %). Mix and incubate at -20oC for minimum 1 hour.  

-Centrifuge for 10 minutes at 13 000 g in 4oC. Discard supernatant and add 1 mL of ethanol 

(70 %), mix by inversion.  

-Centrifuge for 10 minutes at 13 000 g in 4oC. Discard supernatant and dry the pellet in a 

vacuum centrifuge.  

-Resuspend RNA to a concentration of 2 µg/µL in DEPC-treated H2O. 
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2.5 Analytical methods 

 

2.5.1 Preparation of radioactive probes (random 

                             primer labelling) for DNA and RNA blots 

Synthesis of the radioactive probe was done with a DNA polymerase (Klenowe fragment). 

The polymerase is primed by random hexanucleotide primers. In the deoxynucleotide 

triphosphate (dNTP) mix the deoxycytidine triphosphate (dCTP) has the radioactive 

32phosphor isotope incorporated at its α-phosphate ((α-32P)-dCTP), which gives a high energy 

β-particle emission when the isotope decays (half life 14.3 days). 

 

*Work with high energy radioactive material should only be done by authorized personal, and 

with proper shielding and protective measures. 

 

Procedure: 

-Prepare a DNA template for the radioactive probe. 

-In a 1.5 mL microfuge tube mix 10.5 µL sterile dH2O, 2 µL template DNA (100 – 

200 ng/µL). 

-Denature in boiling water for at least 5 minutes, and add 5 µL cold labelling buffer, 2.5 µL  

BSA (4 mg/mL), 1.5 µL dNTP mixture (deoxyadenosine triphosphate, deoxythymidine 

 triphosphate and deoxyguanosine triphosphate (1 mM of each, mixed 1:1:1)). 

-Add 2.5 µL (25 microcurie (µCi)) (α-32P)-dCTP, and mix with a pipette. 

-Add 1 µL DNA polymerase I (Klenow fragment) (2 units/mL) (NEB). 

-Spin briefly and incubate at room temperature for 3 hours. 

-Store at -20oC. 

 

2.5.2 Hybridizing sample DNA and RNA with  

                             radioactive probes made by random primer labelling 

Procedure:  

-The hybridization buffer is stored at 37oC. 

-Wash blotting membrane in dH2O. 

-Put the membrane into a hybridization tube and add 1 mL of hybridization buffer. Incubate at 

65oC on a rotating wheel for 15 minutes. 

-Discard the hybridization buffer and add 4 mL hybridization buffer. 
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-Add random primer labelled probe at a ratio of 1/2000 the amount of hybridization buffer 

(e.g. 10 mL hybridization buffer requires 5 µL probe). 

-Incubate for ca. 24 hours at 65oC on a rotating wheel. 

-Dispose of the radioactive hybridization buffer properly, put wash buffer 1 and wash buffer 2 

at 65oC water bath. 

-Wash membrane at 65oC on a rotating wheel. Wash twice with wash buffer 1for 5 minutes, 

and then seven times for 5 minutes in wash buffer 2. Do a final wash for 20 minutes in wash 

buffer 2. 

-Wrap membrane in plastic wrap, with the side with DNA having a smooth surface. 

-Check radioactivity with a Geiger counter. 

-Visualize the result of the hybridization by autoradiography. 

 

2.5.3 Autoradiography 

*The Autoradiography was done with the Kodak® BioMax® MS equipment and solutions.  

 

Procedure: 

-In a dark room, fix the blotting membrane to the audioradiography casing, and insert a x-ray 

film with intensifying screen. Close the casing.  

-Expose film at -80oC using a few hours, or overnight, depending on how fresh the radioactive 

probe is, and how much hybridization occurred. 

-Develop the film in a dark room by dipping the film for 1 minute into developer solution, 

rinse in dH2O, then dip the film in fixer solution for 1 minute. 

-Rinse the film in plenty of water, and dry. Take photos with a digital camera. 

 

2.5.4 Slot blot 

Procedure: 

-Add 3 µL NaOH (5 N) to a 1.5 µL microfuge tube. 

-Add 500 ng sample DNA dissolved in dH2O, and if necessary add sterile dH2O to raise the 

volume to 50 µL.  

-Denature by incubating at 65oC for 45 minutes. Cool down to room temperature, and add 

50 µL saline-sodium citrate buffer (SSC) (10 x). 

-Setup the dot blot apparatus (PR 600 SlotBlot, Hoefer Sientific Instruments (USA) according 

to operation instructions. 
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-Soak blotting membrane for 5 minutes in dH2O, then for 5 minutes in SSC (10 x).  

-Load blotting membrane into dot blot apparatus, and pull 200 µL SSC (10x) through sample 

slot by suctioning with a vacuum aspirator. 

-Turn off suction, and add 100 µL SSC (10x) in sample slot. Add denatured DNA sample and 

mix with a pipette in the slot. Turn on suction and wait until all liquid has been sucked 

through. 

-Turn off suction, and wash slot by sucking through 200 µL SSC (10x).  

-Take out the blotting membrane, put it into 2X SSC for 20 seconds, and then wrap it into 

plastic, and crosslink DNA to membrane with CL-1000 Ultraviolet Crosslinker, UVP (USA), 

set to 1500 energy. 

-Hybridize the membrane with a radioactive probe and develop by autoradiography.  

 

2.5.5 Southern blot  

Procedure:  

-Isolate genomic DNA (section 2.4.9). 

-Digest in a microfuge tube 1.5 µg of genomic DNA in 20 µL with 30 units of enzyme for 4 

hours. 

-Ethanol precipitate the digested DNA.  

-Resuspend DNA in 20 µL, including DNA gel loading buffer. 

-Run reaction on an agarose gel.  

-Check gel under UV-light, and take a photo with a digital camera.  

-Transfer DNA to a nylon membrane according to protocol. 

-Put membrane into plastic wrap, and crosslink DNA to membrane with CL-1000 Ultraviolet 

Crosslinker, UVP (USA), set to 1500 energy.  

-Hybridize the membrane with a radioactive probe and develop by autoradiography. 

 

2.5.6 Southern blot analysis 

-Take a photo of the autoradiographically developed Southern blot results. 

-Print out the picture and cut out (with a scissor) around the result of the transformed, and un 

transformed plastomes in each sample. 

-Use the analytical-weight and measure the weight of the transformed an untransformed 

plastomes for each sample. 
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-Calculate the ratio between them to see how many plastomes are transformed. Together they 

represent 100% of the plastomes in the transformant.  

 

2.5.7 Northern blot 

* All equipment and solutions used have to be RNase-free. 

Procedure: 

-Sterilize an electrophoresis chamber, a try and a comb with 3% H2O2 overnight.  

-Dissolve 0.78 g agarose in 37 mL DEPC-treated water (1.3% agarose gel). Cool down in 

water bath at 65oC.  

-Add 12 mL MOPS buffer (5x), and 11 mL formaldehyde (37%). 

-Mix gently by swirling and pour into a gel tray. Put in comb.  

-Prepare the samples by mixing for each sample in a microfuge tube: 

2.5 µL DEPC – treated water  

2 µL MOPS buffer (5x) 

3.5 µL formaldehyde 

3.5 µL ethidium bromide (100 µg/mL) 

10 µL formamide 

2 µL RNA sample (2 µg/mL) 

-Incubate samples at 65oC for 15 minutes. 

-Put the gel into the electrophoresis chamber and add running buffer to cover gel (315 mL 

DEPC H2O , 90 mL MOPS (5X), and 45 mL formaldehyde). 

-Prerun for 5 minutes at 60 mA. 

-Cool down samples, spin in centrifuge at max speed for 1 minute, and add 2 µL RNA gel 

loading buffer. 

-Mix with a pipette and add 20 µL sample per well. 

-Run the samples at 60 mA for 10 minutes in reverse direction, than in normal direction until 

the bromphenol blue band is at the bottom of the gel. 

-Take a photo of the gel.  

-Wash briefly in DEPC-treated water and transfer RNA to a nylon membrane following the 

protocol. 

-Transfer for 6 hours. Put membrane into SSC (2x). Check gel under UV-light for complete 

transfer. 
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-Wrap membrane into plastic wrap, and crosslink DNA to membrane with CL-1000 

Ultraviolet Crosslinker, UVP (USA), set to 1500 energy. 

-Hybridize the membrane with a radioactive probe and develop by autoradiography.  

 

2.5.8 Aligning agarose gel photo to autoradiographic films 

Procedure:  

-Take a photo of the agarose gel with ladder, or rRNA bands, making sure that both top and 

bottom of the gel is included for reference points.  

-When continuing the blotting procedure, make sure that the bottom of the blotting membrane 

is aligned with the bottom of the agarose gel.  

-Continue the blotting procedure until a film is developed. 

-Mark the point on the film that was the bottom of the blotting membrane, and the point 8.5 

cm above that (the agarose gel is 8.5 cm). This gives the top and bottom reference points. 

Photograph the film. 

-On the computer align the bottom point of the gel to the bottom point of the film, and the 

same for the top point. 

 

2.5.9 Salt tolerance experiment  

50 mL solutions of high salt (HS) media with NaCl concentration 0%, 0.5% and 1% were 

made. 50 mL of transformant cultures, in the exponential phase, were poured into each salt 

solution. The mixtures were left for 24 hours (12 hour light/12 hours dark) before analysing 

the result using your eyes to see colour differences.   
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3.0 Results 

 

3.1 Construction of the transformation plasmid 

 

3.1.1 The ectABC genes 

The goal of this project was to introduce the ectA, ectB and ectC genes from P. stutzeri into 

C. reinhardtii in order to create salt tolerant Chlamydomonas transformants. The ectA and 

ectC genes were codon optimised for expression in C. reinhardtii chloroplasts. These genes 

were designated OectA and OectC. The ectB gene was not optimised. In P. stutzeri the 

ectABC genes are expressed as an operon. In our plasmid construct each gene was linked to 

separate promoters and a transcription termination sequence. OectA was linked to the 5’ 

region of the rbcL gene (coding for the rubisco large subunit) and the 3’ region of the psaB 

gene (coding for subunit B of photosystem I). The ectB coding sequence was linked to the 5’ 

region of the psbD (coding for a photosystem II subunit) and the 3’ region of the rbcL gene. 

OectC was linked to the 5’ region of the atpH gene (coding for an ATPase III subunit), and 

the 3’ region of the petA gene (coding for a cytochrome f). All flanking regions were 

endogenous Chlamydomonas chloroplast sequences. Construction of the transformation 

vector containing the ect genes is described in the following paragraphs.  

 

3.1.2 Cloning of OectA 

The cloning strategy for the OectA construct is shown in Figure 11.  Plasmid SK+_157_NdeI 

(Lunde, 2012) was digested with NdeI and XbaI, resulting in the removal of the ~ 2kb GUS 

gene from the SK+_157_NdeI vector. The OectA gene fragment of 582 bp ending in 

restriction sites NdeI and SpeI, was ligated into the NdeI/XbaI-digested SK+_157_NdeI vector 

creating the SK+_157_OectA plasmid. SpeI and XbaI ends are compatible (Figure 12). After 

transformation into competent C2529 E. coli cells (NEB), plasmid DNA from transformants 

was isolated and analysed by digesting with NdeI and XbaI which should release the inserted 

OectA fragment of 582 bp from the constructed SK+_157_OectA plasmid (Figure 13). A 

positive transformant containing the OectA gene fragment was selected for maxiprep. 
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Figure 11: Cloning strategy of OectA. The OectA fragment was ligated into the NdeI and 

XbaI site of SK+_157_NdeI, next to the rbcL region creating the SK+_OectA plasmid. A 

fragment containing both the rbcL region and the OectA was released with XhoI and XbaI 

from this plasmid and ligated into the XbaI and XhoI site of the pCrc_32 plasmid, after 

removing a GUS gene ~ 2000 bp (pink), creating the pCrc_32_OectA plasmid.  

 

 

 

Figure 12: Restriction sites for SpeI, XbaI and NdeI. The restriction sites of SpeI and XbaI 

are compatible with each other. 
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Figure 13: Analysis of miniprep DNA to identify transformants carrying the OectA gene 

construct. Isolated plasmid DNAs were digested with NdeI and XbaI. OectA (582 bp) was 

released from three transformants (lanes 1-3). Lane 4: The SK+_157_NdeI plasmid used as a 

control. Lane 5: 1 kb ladder (Appendix 5). 

 

In order to clone the OectA construct into the Chlamydomonas chloroplast transformation 

vector, the SK+_OectA construct was digested with XhoI and XbaI and the resulting 743 bp 

fragment, containing the OectA construct, was cloned into XhoI/XbaI-digested plasmid 

pCrc_32. This released the ~2000 bp GUS gene in pCrc_32 with the OectA construct (GUS 

gene in pink in Figure 11). The pCrc_32_OectA plasmid was transformed into competent 

E.coli TB1 cells. Plasmid DNA from transformants was analysed by digesting with Pst1. 

(Figure 14). The Pst1 digestion would give a fragment of about 2100 bp if the ~2000 bp GUS 

gene was removed and replaced with the OectA 743 bp fragment .Plasmids from 

transformants still containing the GUS gene will give a fragment of around 3400 bp whereas 

plasmids from OectA-positive transformants should release a Pst1-fragment of ~2100 bp. Of 

four analysed transformants, three contained inserts of the anticipated size. One of the 

transformants containing the OectA gene fragment was selected for maxiprep. 
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Figure 14: Restriction enzyme digest of the pCrc_32_OectA plasmid with Pst1. The 

pCrc_32_OectA plasmid was digested with Pst1 to analyse the transformants for insert size. 

Lane 1: Vector control, pCrc_32 plasmid digested with Pst1. Lanes 2-5 transformants. Lane 

6: 1 kb ladder. Lanes 3-5 show plasmids with the expected insert.  

 

3.1.3 Cloning of OectC 

Next, the OectC construct, containing the atpH and petA flanking regions (see 3.1.1) was 

inserted into the pCrc_32_OectA plasmid. The cloning strategy is shown in Figure 15. The 

pCrc_32_OectA plasmid was digested with restriction enzyme NheI. This restriction enzyme 

has only one restriction site in the vector. To avoid relegation of the linearized 

pCrc_32_OectA plasmid during ligation, the plasmid was dephosphorylated with calf 

intestine phosphatase (CIP) after digestion with NheI.  

To isolate the 700 bp OectC fragment (including the 5’atpH and 3’petA regions), the 

pMU_kn+ plasmid was digested with NheI and the OectC construct purified from an agarose 

gel. The purified fragment was ligated into the dephosphorylated linearized pCrc_32_OectA 

plasmid. OectC fragment has NheI restriction sites in both ends of the fragment and can 

therefore ligate with the vector in two different orientations. After transformation into 

competent E. coli TB1 cells, plasmid DNA was isolated from transformants, digested with 

NheI and analysed by gel electrophoresis (Figure 17). Only one of the eight transformants 

appeared to contain the OectC fragment (lane 6). This transformant contained the 

pCrc_32_OectA_OectC plasmid (Appendix 4). The other transformants gave two large bands 
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presumably linearized and supercoiled plasmid without insert. The transformant containing 

the OectC gene fragment from lane 6 was selected for maxiprep to obtain enough DNA for 

further cloning work. 

 

 

 

Figure 15: Cloning strategy of OectC. The OectC construct was released from the 

pMU_kn+ vector by digestion with NheI, and isolated from an agarose gel. The vector 

pCrc_32_OectA was digested with the restriction enzyme NheI (Figure 16), and ligated to the 

OectC fragment. The resulting pCrc_32_OectA_OectC plasmid is approximately 9800 bp.  

 

 

Figure 16: Restriction site of the restriction enzyme NheI.  
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Figure 17: NheI digestion of miniprep DNA to identify transformants that harbour the 

OectA/OectC constructs. a) Lane 1: 1 kb ladder. Lane 2: Linearized pCrc_32_OectA plasmid 

(control). Lanes: 3-10 plasmid DNA from transformants. Red arrow points to a weak band of 

~700 bp. b) Repetition of digestion from transformant from lane 6 using larger amounts of 

DNA to confirm the presence of a 700 bp fragment. 

 

3.1.4 Attempted cloning of ectB 

The cloning strategy for insertion of the ectB construct into the pCrc_32_OectA_OectC 

plasmid is presented in (Figure 18). The pCrc_32_OectA_OectC plasmid was digested with 

XhoI and dephosphorylated with CIP to avoid relegation during the ligation reaction. To 

obtain the ectB gene fragment (including the 5’ psbD promoter region), the pMU_RQ plasmid 

was transformed into competent E. coli TB1 cells. pMU_RQ plasmid was isolated from a 

transformant and digested with Sal1. The fragment presumably containing ectB was purified 

by agarose gel electrophoresis and subsequent excision from the gel. The purified fragment 

was ligated into the dephosphorylated linearized pCrc_32_OectA_OectC plasmid. Sal1 and 

XhoI are compatible restriction sites (Figure 19). The insert can be ligated into the vector in 

both orientations. The ligation mixture was cloned into competent E. coli TB1 cells. Plasmid 

DNA was purified from transformants, digested with Sal1 and analysed by agarose gel 
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electrophoresis. Several cloning experiments were carried out. In all cases only religated 

pCrc_32_OectA_OectC plasmids were obtained from the transformants.  

Since C. reinhardtii already contains the enzyme L-2,4-diaminobutyrate transaminase as part 

of its amino acid metabolism, performing the same reaction as the enzyme encoded by ectB 

(Figure 7), the lack of ectB in the transformation vector was not considered to be critical for 

ectoine synthesis in C. reinhardtii.  

 

 

 

 

Figure 18: Attempted cloning of ectB. ectB was released from the pMU-RQ plasmid by Sal1 

and isolated from an agarose gel. The pCrc_32_OectA_OectC vector was digested with XhoI 

and dephosphorylated with CIP. Unfortunately, all attempts to ligate ectB with the 

pCrc_32_OectA_OectC vector failed. The red cross marks the step that would not work. The 

desired final insert is shown at the bottom of the figure.  
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Figure 19: Restriction sites for the restriction enzymes Sal1 and XhoI. The sticky ends 

made by the two restriction enzymes are compatible with each other.  

 

Because we encountered difficulties in cloning ectB, we wanted to investigate if the ectB 

contained an additional unknown Sal1 site, which could jeopardise the cloning. To test this 

we digested the original PSB01 plasmid containing the ectABC operon from P. stutzeri with 

Sal1 (Figure 20). From the known DNA sequence (Appendix 3) this plasmid should only 

contain one Sal1 site in the ectA gene. The appearance of a separate 1100 bp fragment 

indicated the presence of an additional Sal1 restriction site 1100 bp from the known Sal1 site 

in ectA. If the additional Sal1 site is downstream of the ectA gene it will be present in the ectB 

gene. To determine this, we digested the PSB01 plasmid with Sal1 and BglII, and Sal1 and 

XhoI (Figure 21).  

 

 

 

 

 

 

 

 

 

 

 

Figure 20: PSB01 plasmid containing the ectABC gene cluster digested with Sal1. Lane 1: 

1 kb ladder. Lane 2: Sal1 digest of PSB01 plasmid. The arrow indicates a fragment of about 

1100 bp.  
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Figure 21: PSB01 plasmid digested with a) Sal1 and BglII b) Sal1 and XbaI. In a) Lane 1: 

plasmid digest. Lane 2: 1 kb ladder. In b) Lane 1: 1 kb ladder. Lane 2: plasmid digest. 

 

From the known Sal1 site in ectA it is approximately 1800 bp to the BglII site in ectC. We 

obtained two fragments of about 1000 bp and 800 bp when digesting with Sal1 and BglII. 

This is consistent with the presence of an additional Sal1 site in the ectB gene. When 

digesting with Sal1 and XbaI we obtained two fragments of about 270 bp and 750 bp. From 

the known sequence we expected only a ~270 bp fragment. This confirms the Sal1 site in 

ectB.  
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3.2 Transformation and selection of OectA and OectC                 

transformants in C. reinhardtii 

 

3.2.1 Microprojectile bombardment and selection for transformants 

The pCrc_32_OectA_OectC plasmid contains the full-length atpB gene which can 

complement the mutated atpB gene in the C. reinhardtii strain (ac-uc-2-21) used for 

transformation. Uptake of the atpB gene restores photosynthetic abilities and facilitates 

selection of transformants. The atpB gene is part of a 5.3 kb sequence from the 

Chlamydomonas chloroplast genome that directs integration of transformed DNA into the 

chloroplast DNA by homologous recombination.  

Gold particles of 0.6 µm were coated by precipitation with the pCrc_32_OectA_OectC 

plasmid. The plasmid was introduced into to a C. reinhardtii atpB deletion mutant by biolistic 

transformation using a particle bombardment device. After bombardment, the transformed 

cells grew for 2 weeks on high salt (HS) plates under constant light for phototrophic selection. 

Only transformants containing the full length atpB gene should be able to grow. Individual 

colonies were then transferred to high salt (HS) liquid media and left to grow for 4 days with 

constant light. Transformants 1, 2, 4, 8, 11 and 25 were selected for their rapid growth. These 

transformants were grown with additional 2 % CO2 for 4 more days with 12 hours light/12 

hours dark cycles.  

 

3.2.2 DNA slot blot  

DNA slot blotting was carried out to analyse the six transformants for the presence of the 

OectC gene. DNA was isolated from transformants 1, 2, 4, 8, 11, and 25, and 500 ng DNA 

was transferred to a membrane in a slot blot apparatus. A 32P-radiolabled probe was prepared 

from the OectC fragment, and hybridised to the genomic DNA on the membrane. 

Hybridisation signals were visualized using autoradiography (Figure 22). The slot blot 

showed that the OectC gen had been integrated into the chloroplast genome of C. reinhardtii 

in transformants 1, 2, 4, 11, and 25. Even though we see a weak signal in transformant 8, this 

is so faint that it most likely consist of background noise. As there was not enough time for 

another round of screening, we decided to proceed with analysis of transformants 2 and 25, 

although their slot blot signals were also not strong compared to the controls.  
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Figure 22: DNA hybridisation signals from transformants after DNA slot blotting using 

an OectC probe. A: controls C1, and C2 consisting of the pCrc_32_OectA_OectC vector. B: 

DNA from C. reinhardtii transformants 1, 2, 4, 8, 11, and 25.  

 

3.2.3 Southern blot 

A Southern blot was carried out to investigate how many copies of the plastid genome of 

transformant 2 and 25 harbored the OectA and OectC genes (Figure 23). DNA was taken 

from the same samples used to make the slot blot and digested with EcoRI and KpnI. This 

would give us a fragment of about 5000 bp containing the OectA, the OectC, and the atpB 

genes.  

Prior to the Southern analysis it was discovered that two copies of the OectC gene were 

present in the transformation vector. The pCrc_32_OectA_OectC plasmid was digested with 

SwaI and XhoI which should release a fragment of 770 bp containing the OectC gene. Instead, 

a fragment of approximately 1450 bp was observed (Figure 24). This indicates that the OectC 

gene has been incorporated in duplicate.  

No OectC gene could be detected in transformant 2 by Southern analysis (Figure 23). In 

transformant 25, only about 5% of the plastomes were estimated by to carry the OectAC 

construct, by comparing the band intensities of the ~3300 and the ~5700 bands. 
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Figure 23: Gel electrophoresis before, and autoradiography after a Southern blot from 

transformants 2 and 25, hybridized with an atpB probe. a) Gel electrophoresis. Lane 1: 

1Kb ladder. Lane 2: pCrc_32_OectA_OectC plasmid (control). Lane 3: Transformant 2. Lane 

4: Transformant 25. b) x-ray film exposed for 3 hours. C: Wild type C. reinhardtii (control). 

2: Transformant 2. 25: Transformant 25. c) x-ray film exposed for 24 hours. C: Wild type 

C. reinhardtii (control). 2: Transformant 2. 25: Transformant 25. Only transformant 25 seems 

to have plastomes containing the insert.   

 

 

Figure 24: Restriction enzyme digest of the pCrc_32_OectA_OectC plasmid with SwaI 

and XhoI. Lane 1: 1 kb ladder. Lane 2: Restriction digest. 
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3.2.4 Northern blot 

A northern blot was carried out to investigate if OectC was transcribed into mRNA in 

transformants 2 and 25. The transformed algae cultures were grown in 12 hours night/12 

hours day cycles. Total RNA was isolated after 1 hour growth in light, and subjected to 

agarose gel electrophoresis. The RNA was subsequently transferred to a membrane by 

northern blotting and hybridized to a radiolabelled probe for the OectC gene. The signals were 

visualized by autoradiography (Figure 25). The autoradiography was examined by visual 

inspection revealing faint bands in the transformants, not present in the control. The apparent 

size of the bands was around 700 bp, which is the expected size of the OectC transcript, 

indicating a very low level transcription of the OectC gene. 

 

 

Figure 25: Autoradiography after northern blot from transformants 2 and 25 

hybridized to the OectC probe. Lanes marked 2 and 25 indicate RNA from transformants 2 

and 25, respectively. Lane C: control, RNA from untransformed C. reinhardtii. The arrows 

indicates faint bands approximately 700 bp in the transformants.  

 

3.2.5 Salt tolerance experiment 

Wild type C reinhardtii is sensitive to NaCl. The algae can survive in HS medium 

supplemented with 0.5% NaCl, but will not grow. To investigate if the transformed algae 

showed enhanced salt tolerance, we grew transformant 2 in HS medium containing 1% NaCl. 
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Transformant 25 was grown in HS medium containing 0.5% NaCl, and 1% NaCl. The results 

of the growth experiment after 24 hours of growth are shown in Figure 26. The colours of the 

transformant cultures in HS media with added NaCl were significantly less intense compared 

to the controls. The transformant in 0.5% NaCl solution shows somewhat more colour than 

those in the 1% NaCl solutions. C. reinhardtii transformant nr 25 in 0.5% NaCl appears to 

survive, but not grow. These results indicate that the transformants have not obtained higher 

salt tolerance.  

 

Figure 26: Behaviour of C. reinhardtii transformants in NaCl solutions. a) Transformants 

2 and 25 grown in HS medium without added NaCl (controls). b) Transformant 2 in HS 

medium with 1% NaCl (left), transformant 25 in HS medium with 1% NaCl (middle), and 

transformant 25 in HS medium with 0.5% NaCl (right).  
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4.0 Discussion  
 

4.1 Cloning of the ect genes 
 

The main goal of the project was to synthesize ectoine in the chloroplast of C. reinhardtii. 

Therefore we wanted to introduce the ectA, ectB and ectC genes from P. stutzeri into the 

chloroplast genome of C. reinhardtii and determine salt tolerance in ectoine-producing 

transformants. In P. stutzeri the ectABC genes are organized as an operon. Because operons 

have been found difficult to express in C. reinhardtii (Drapier et al., 1998) the genes were 

inserted into the chloroplast genome as individual constructs, each gene containing different 

promoter and terminating sequences.  

The plasmid used for transformation was constructed by using the backbone of the pCrc_32 

plasmid from which the GUS gene has been removed. The pCrc_32 plasmid was created by 

Blowers et al. (1993), based on the same construct design as in Blowers et al. (1989). This 

plasmid has previously been shown to be suitable for chloroplast transformation in 

C. reinhardtii. It contains the atpB gene which can be used for selection of transformants 

when introduced into atpB-deficient mutants of C. reinhardtii thereby restoring 

photosynthesis. The plasmid also contains sequences homologous to endogenous sequences in 

C. reinhardtii chloroplast DNA (the BamHI-EcoRI regions, see Figure 11) necessary for 

homologous recombination. 

Previous research has shown that it is much more likely to get protein expression of 

transgenes in transgenic microalgae if the introduced genes are codon optimised (Potvin and 

Zhang, 2010). The ectA gene was previously optimised for expression in C. reinhardtii, and 

designated the OectA gene. We codon-optimised the ectC gene, and designated it OectC. In 

our construct we wanted primarily to use these codon optimised genes. This implied that we 

could not use already existing constructs containing non-optimised genes (e.g. ectA/B 

constructs) but had to make new constructs.  

Cloning of OectA into the transformation vector was straight forward. Several transformants 

containing the OectA gene were obtained in the first cloning experiment. The subsequent 

cloning of OectC into the pCrc_32_OectA plasmid proved much more difficult. Both the 

OectC fragment and the pCrc_32_OectA vector were digested with NheI only. This creates 

insert and vector fragments with NheI compatible sequences at both ends. To avoid religation 
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the vector was dephosphorylated. However, several attempts to clone OectC were 

unsuccessful despite several different cloning strategies. Finally, we tried to inactivate CIP 

after dephosphorylation of the vector by phenol/chloroform/isoamylalcohol (25:24:1) 

extraction instead of the recommended heat inactivation. This seemed to have the desired 

effect. One possible explanation for this could be that when CIP is inactivated by heat at 

75oC, the temperature is so high that dsDNA denatures to ssDNA. Upon rapid cooling of the 

solution, ssDNA may not have time to reanneal. If the DNA remains single stranded it would 

not work in the subsequent ligation reaction. Using phenol/chloroform/isoamylalcohol 

inactivation of CIP, we were able to clone the OectC fragment into the pCrc_32_OectA 

vector, creating the pCrc_32_OectA_OectC plasmid. 

The ectB gene was not codon optimised due to limited resources. This gene is comparatively 

larger (1278 bp) than ectA (582 bp) and ectC (401 bp). Cloning of ectB also proved difficult. 

Also here, the insert and vector were digested with one enzyme, SalI, creating fragments with 

SalI compatible ends. We did several transformation experiments, varying the same 

parameters as in the cloning of OectC. However, despite all variations in cloning experiments, 

we were unable to obtain any clones containing the ectB gene. Control digests of the original 

PSB01 plasmid containing the ectABC gene cluster confirmed the presence of an additional 

SalI site in ectB. When examining the ectB sequence in the ectABC gene cluster provided, we 

found a sequence, 5’-GTCGAT-3’, closely resembling a SalI site 5’-GTCGAC-3’. Upon 

resequencing of the ectB gene, it became evident that this in fact was a SalI site, explaining 

the fragment patterns obtained by agarose gel electrophoresis after digesting with SalI, BglII 

and XhoI combinations.  

Digesting the pMU_RQ plasmid with SalI released a fragment of apparent molecular weight 

of 1600 bp as expected for the ectB sequence with promoter and terminating regions. As the 

pMU-RQ vector contains SalI sites, it was possible that the 1600 bp fragment isolated from 

the gel was partially from the ectB fragment and partially from the pMU_RQ vector. 

However, as previously stated, none of the transformants contained any inserted fragments, 

but consisted only of religated vector.  

Expression of ectB may not be necessary for ectoine synthesis in the Chlamydomonas 

chloroplast because an L- 2,4-diaminobutyrate transaminase should be present as part of 

arginine and proline metabolism in C. reinhardtii. Therefore we might naturally have enough 

substrate for the L-2,4-diaminobutyrate acetyltransferase (encoded by ectA) to continue the 
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synthesis from L-2,4-diamionobutyrate to N2-acetyl-L-2,4-diaminobutyrate and further to 

ectoine. 

 

4.2 Analyses of chloroplast transformants 
 

The results of the slot blot suggested that five out of six analysed C. reinhardtii transformants 

contained the OectC gene (Figure 22). However, compared to the control, signals from the 

transformant DNAs were weak. Comparing our signals with signals on slot blots performed 

by previous master students the signals appeared weak (personal communication). This 

indicates that a low percentage of plastomes in the C. reinhardtii chloroplast have 

incorporated the OectC gene. To determine the percentage of plastomes that had incorporated 

the OectC a Southern analysis was made. During the search for restriction enzymes suitable 

for Southern analysis it was discovered that two copies of the ectC gene were present in the 

transformation vector (Figure 24). The orientation of the two ectC  genes in the vector still 

needs to be determined. It is not known how a duplicate insertion of OectC will affect 

transcription.  

The Southern blot analysis confirmed that both the OectA and the OectC genes were 

incorporated in about 5% of plastomes of transformant 25, and our suspicion that the 

percentage of plastomes containing OectA and OectC is low was confirmed (Figure 23). No 

plastomes containing the OectA or OectC were detected in transformant 2. The reason for this 

might be that too few plastomes have incorporated the OectA and OectC genes, so that the 

signal is too weak to be detected by Southern blotting. This seems the most likely explanation 

considering both the slot blot and the northern blot results. Another possibility is that we 

loaded a higher DNA concentration of transformant 2 compared to the other samples in the 

slot blot, so that what we actually thought was a positive transformant was background noise 

(unspecific hybridization to genomic DNA). 

 

4.3 Transcript analysis  

 
Expression levels of foreign genes in microalgae, in addition to generally being low, are 

inconsistent and difficult to predict. A significant part of this variation in expression levels 

arises from inconsistences in the number of transgene copies integrated within a particular 
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genome (Potvin and Zhang, 2010). Northern blot analysis of RNA isolated from 

transformants 2 and 25 indicated very low levels of ectC transcripts in both transformants. 

This fits our expectations for transformant 25 given the results in the slot blot and Southern 

blot. For transformant 2, the result appears inconsistent with the results of the Southern blot, 

but consistent with the result from the slot blot. The reason for low levels of expression may 

be low integration of the construct into plastomes (see section 4.2). Levels of chloroplast 

mRNAs may also be influenced by light. For example, the mRNA transcribed from the 5’ 

rbcL UTR and promoter region upstream of the OectA gene is sensitive to light degradation 

(Salvador et al., 1993). As the RNA used in the Northern analysis was isolated in the light, 

stability might be a factor for levels of the OectC transcripts found. Transcript levels of OectA 

or the endogenous ectB homologue are not known but, if ectoine is produced, it is 

accumulated at a level which is so low that it does not significantly influence the salt 

tolerance of the transformed C. reinhardtii cells, as shown by the growth experiment (Figure 

26). 

It is in most cases desirable to design expression systems with high levels of expression. 

Accumulation of chloroplast gene transcripts can be impacted in a variety of ways during 

synthesis. For example during transcription, mRNA accumulation, translation or protein 

turnover. Plastid protein accumulation has been shown to depend mostly on the rate of 

translation, and the accumulation of proteins is not rate limiting in C. reinhardtii. Also it has 

been shown that mRNA production and protein production are well correlated (Rosa. León et 

al., 2008). According to Barnes et al. (2005) the 3’ UTR region used in chimeric constructs 

seems to have little or no effect on the mRNA accumulation, but the 5’ UTR and promoter 

region seems to be crucial. Figure 27 shows different C. reinhardtii chloroplast promoters 

used as 5’ UTR and promoter for a transgene (in this case GFP), and their correlation with 

mRNA and protein accumulation. 
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Figure 27: Analysis of mRNA/protein accumulation of GFP using different 5’ UTR and 

promoter regions. mRNA and protein levels were normalised to 16S and Rubico levels, 

respectively. Grey columns: mRNA accumulation. Black columns: Protein accumulation. 

Figure from Transgenic microalga as green cell factories (Rosa. León et al., 2008). 

 

Promoters from the atpA, and the psbD genes seem to work best in expression of the GFP 

gene in Chlamydomonas. Both mRNA and protein accumulation using these two promoters 

are high. For the OectC we had chosen atpH as 5’UTR and promoter. atpH is not shown here, 

but it can be assumed that the atpH 5' region directs transcription of transgenes as frequently 

as the 5' region of atpA. Both atpH and atpA genes encode different subunits of the 

ATPsynthase and should be expressed at the same rate. However, it has been documented that 

at least in E. coli, atpA mRNA is translated at least three times more efficiently than the atpH 

mRNA (Rex et al., 1994). Whether this is also the case for C. reinhardtii is not known. The 

promoter activity might also change when placed in front of a transgene. The rbcL promoter 

as we see here leads to both quite low mRNA and protein accumulation. We also know that 

OectA transcripts which contain the rbcL 5' UTR have a half-life of 5 hours in the dark, and 

only 20 minutes in the light (Singh et al., 2001). It could be that exchanging the 5’ rbcL 

region with a more suitable 5’ UTR and promoter region would give a higher transcription 

rate of the OectA gene and better transcript stability.  
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4.4 Conclusion 
 

Understanding ectoine expression and its effect on salt tolerance can be of importance both in 

agriculture and in industry. We were able to transform C. reinhardtii with a plasmid construct 

containing the OectA and the OectC gene. OectC was expressed in transformants at a very 

low level. The expression of OectA and endogenous ectB in transformants remains to be 

determined. Ectoine did probably not accumulate in the pCrc_32_OectA_OectC 

transformants to any significant level since we did not observe any increased salt tolerance. 

Further work is needed to improve expression of the required genes of the ectoine 

biosynthetic pathway to achieve appreciable ectoine production.  

 

4.5 Further Work 
 

To complete this study a number of analyses needs to be done which, due to strict time limits 

for this master project, could not be addressed.  

First of all, a new round of transformant screening should be done in order to find a 

transformant that is homoplasmic for the OectAC genes. Also, one should analyse the 

transformants for presence of the OectA and OectC proteins. Antibodies or tagging of the 

proteins could be used for detection and quantification. 

Since codon optimization is regarded as the single most important determinant for successful 

protein expression (Potvin and Zhang, 2010), one should also construct a codon optimised 

ectB gene. This OectB gene should then be introduced into the pCrc_32_OectA_OectC 

plasmid and transformed into the chloroplast of C. reinhardtii. The whole bacterial pathway 

of ectoine synthesis would then be present in Chlamydomonas with codon optimised genes. 

This would increase the probability of ectoine production and, perhaps, induce salt tolerance 

in the algae. The rate of production and level of ectoine could be analysed by HPLC or mass 

spectrometry.  

Even with all the genes present ectoine production could be so low that salt tolerance might 

not easily be detected. In this case one could investigate the effect of using other promoters, 

e.g. the atpA promoter presented in Figure 27. 

A simpler cloning strategy would be to design the complete insert structure in silico, and 

order it as one large DNA fragment from a commercial DNA synthesis company. Different 
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varieties of the inserts containing different promoter regions could be used to compare the 

importance of the promoter regions for expression. Approximately the same amount of 

plastomes with insert must then be present in the transformants to make such a comparison.  

When doing transformation experiments with C. reinhardtii one often obtains a large number 

of transformants. It could be interesting to analyse these phenotypically for salt tolerance 

early in the investigation process to identify the most promising transformants. 
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Appendix 1 - Solutions and recipes 
 

Used in work with E. coli: 

 
TEG (Tris-EDTA-Glucose) (1L) 

25 mM Tris-HCl, pH 8.0, 10mM Na2-EDTA, 50mM glucose 

 

Potassium acetate (3M potassium, 5M acetate) (1L) 

294.42 g potassium acetate in 100 mL dH2O. Add glacial acetic acid until a pH of 4.6. (About 

40-50 % of final volume). Bring to 1 litre.  

 

Lysogeny broth (LB) (1L) 

10 g tryptone, 5 g yeast extract, 10 g NaCl. Add dH2O to 1 litre.  

 

For plates: 

Add 15g agar per litre. 

Sterilize in autoclave for 20 minutes.  

If plates should contain any antibiotics, this should be added after autoclaving. 

 

Ampicillin stock: In water 60 mg/mL. Use 1mL/ L. 

Kanamycin stock: In water 10 mg/mL. Use between 1-5 mL/L. 

 

The antibiotic stock solutions have to be sterilized by filtration through a 0.22 µm filter and 

stored in small aliquots (1 ml) at -20oC. 

 

Tris-acetate EDTA buffer (TAE) 50x (1L) 

242 g Tris base, 57.1 ml glacial acetic acid, 100 mL 0.5 M EDTA pH 8.0. Add dH2O to 1L. 

To make 1x, dilute in dH2O. 

 

Agarose gel loading buffer 

0.25% bromphenhol blue, 0.25% xylene cyanol FF, 30% glycerol. 
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1% agarose (60 mL) 

0.6 g agarose is added to 60 mL of 1 x TAE buffer. Solution is covered with plastic foil, and a 

microwave oven is used to make it boil. All the agarose most dissolve. Cool down to about 

45oC with running water before pouring it into a tray. The agar solidifies at approximately 

40oC. 

 

Media for grooving Chlamydomonas reinhardtii: 

 

HS (high salt) 1L 

20 mL salt stock  

20 mL phosphate stock  

1 mL trace elements (Hunter) 

 

HSHA (high salt high acetate) 1L 

20 mL salt stock  

20 mL phosphate stock  

1 mL trace element (Hunter) 

2.5 g potassium acetate. 

 

For plates, add 15 g agar per litre.  

 

Salt stock (50x) 500 mL 

12.50 g NH4Cl 

0.50 g MgSO4 x 7H2O 

0.25 g CaCl2 x 2H2O 

 

Phosphate stock (50x) 500 mL 

47 g K2HPO4 x 3H2O 

18 g KH2PO4 

 

Sterilize in autoclave (1 litre for 20 minutes). 
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Used in work with C. reinhardtii: 

 

DNA extraction buffer 

(100 mM Tris pH 8.0, 50 mM Na2-EDTA, 0.5 M NaCl, 10 mM β-mercaptoeethanol). 

 

Used for blotting: 

 

20X SSC saline-sodium citrate 

NaCl (3M), trisodium citrate (300 mM, pH 7.0 with HCl). 

 

Labelling buffer 

The following solutions most be made: 

1. Mix 625 µL Tris (1M pH 8.0), 62.5 µL MgCl2 (1M), 8.7 µL β-

mercaptoethanol (14.4 M), and 303.8 µL sterile dH2O in a 1.5 

mL microfuge tube. This gives a final solution of Tris-HCl 

(0.625 M pH 8.0), MgCl2 (62.5 mM), β-mercaptoethanol (125 

mM). 

2. 2.5M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES). 

3. Random hexanucleotide primers (pd(N)6): 50 units/mL in TE 

(10 mM Tris, 1mM Na2-EDTA, pH 7.5).  

The final labelling buffer is a mix of 475 µL solution 1, 500 µL solution 2, and 25 µL of 

solution 3. 

Used for hybridization: 

 

Hybridization buffer (100 mL) 

50 mL Na-phosphate buffer (1 M pH 7.2), 200 µL EDTA (0.5 M pH 8.9), 1g BSA, 7g SDS is 

mixed together, and dH2O is added to 100 mL. Dissolve at room temperature (takes a long 

time).    
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Na-phosphate buffer (1 M pH 7.2) 

134g Na2HPO4 x 7H2O (or 89g Na2HPO4 x 2H2O, or 71g Na2HPO4) and 4 mL H3PO4 (85 %) 

is mixed, and dH2O is filled to 1 L.  

 

Wash buffer nr 1. (1L)   

Mix 40 mL Na-phosphate buffer (1M pH 7.2), 2 mL EDTA (0.5 M pH 8.9), 5g BSA, 50 g 

SDS, and add dH2O to 1 L. 

 

Wash buffer nr 2. (4L)   

Mix 160 mL Na-phosphate buffer (1M pH 7.2), 8 mL EDTA (0.5 M pH 8.9), 40 g SDS, and 

add dH2O to 4 L. 

 

Southern blot: 

 

DNA gel loading buffer 

4% sucrose and 0.25 % bromphenol blue. 

 

Northern blot:  

   

RNA gel loading buffer 

Mix 0.5 mL glycerol (100 %), 4 µL Na2-EDTA (250 mM pH 8.0), 2.5 mg Bromphenolblue, 

2.5 mg Xylene cyanol FF, and add sterile dH2O to 1 mL. Treat with DEPC before use. 

 

MOPS buffer (5x) 

Mix MgSO4 (10 mM), MOPS (0.5 M), NaCl (2.5 M). Adjust pH to 7.5 with NaOH. Filter to 

sterilize and store in the dark. 
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Appendix 2 – Graphical codon usage analysis 
 
The bar graphs below (Figure 28 and Figure 29) show the difference between optimised and 

non-optimised codon usage of the ectA and ectC genes from P. stutzeri in the chloroplast of 

C. reinhardtii. To make the graphs we used the online tool “Graphical codon usage analysis”, 

and the function “each triplet position vs usage table” 

(http://gcua.schoedl.de/sequential_v2.html) (Fuhrmann et al., 2004). We used the online tool 

(http://www.kazusa.or.jp/codon/cgi-

bin/showcodon.cgi?species=3055.chloroplast&aa=1&style=N) to get the C. reinhardtii 

chloroplast codon usage table (Table 1). We can also see the nuclear P. stutzeri codon usage 

for comparison in Table 2 (Nakamura et al., 2000). In Figure 28 and Figure 29 each bar 

represent a codon and the bar value (relative adaptiveness) represents the average occurrence 

of the codon in C. reinhardtii. Red bars show codons with less than 10 % relative 

adaptiveness, grey bars show codons with less than 20 % relative adaptiveness, and the black 

bars show codons whit more than 20 % relative adaptiveness.  

 

Table 1: Codon usage in the chloroplast genome of C. reinhardtii. The numbers from left 

to right after each codon triplet and one letter amino acid are: fraction for amino acid, 

frequency per thousand triplets, and number of instances in genome. 

 

 

 

http://gcua.schoedl.de/sequential_v2.html
http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=3055.chloroplast&aa=1&style=N
http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=3055.chloroplast&aa=1&style=N
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Table 2: Codon usage in the nuclear genome of P. stutzeri. The numbers from left to right 

after each codon triplet and one letter amino acid are: fraction for amino acid, frequency per 

thousand triplets, and number of instances in genome. 

 

 

 

 

Figure 28: Codon usage ectA vs. OectA. The left bar graph shows codon usage of ectA from 

P. stutzeri in C. reinhardtii chloroplast. The right bar graph shows the usage OectA in 

C. reinhardtii chloroplast. 
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Figure 29: Codon usage ectC vs. OectC. The left bar graph shows codon usage in ectC from 

P. stutzeri in C. reinhardtii chloroplast. The right bar graph show codon usage of OectC in 

C. reinhardtii chloroplast. 
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Appendix 3 - The sequence of the ectABC gene cluster in P. stutzeri 
 

Colour codes: 

Yellow:  ectA (overlapping area with ectB in bold letters) 

Grey:   ectB 

Green:            ectC  

Red:   ectD 

Dark grey:  ask (Regulatory gene) 

 

 

TTAAGAGCGGGAGCCGGGAAAACTGCGGAATATATGGGCGTCACACTAGCGCCATATATT 

CCGGACTCGATCACAGAAGTCTTACGAATATCGAATCGCCCAGCGCGGCCTTATCCGCCC 

AACCCCTTCGTTTGTCCCAGACGCCCCGCGCAAGCTACCAATCCGCCGCGCCAAGCACCG 

CCACAGCCCTAGCCCGGCGCGGCTTTCAGCCAGGCAGACCGTCAGTCAGAGAACTTCTGA 

CGCGCTCGGCGCTCGAACTTCCAGCCTGAATTCAAATTGCATTTCGGTGACAGCTAAGTT 

GCCCGGCAAGCTGACCACCGCAATACACAGAAACATTCTGCGCGCCAGCATAGTTATCAT 

GCGGGTTTCAGCGGCATATACAGCAACGCAAACTTCCCATATTCCGTTACATGGGTTGAG 

AAACTTGTGCGCATATGCCTACCCTAAAAAGGAATTCAATCAACAACCCCAAAGGCATTG 

TTTTGAGTTTCCCCACCGTAATGCTCCGTCGCCCAACCGACGGCGACGGTTACAACCTTC 

ATCAGCTGGTGGCGCGCTGCCAGCCCCTCGATACCAATTCGGTCTACTGCAACCTGCTGC 

AGTGTTCCGATTTCGCTGACACCGCCATCGCCGCAGAGAACGCCCAAGGCGAGCTGGTCG 

GTTTCATCTCGGGTTACCGCCCCCCTTCGCGGCCGGACACGCTGTTCGTCTGGCAGGTCG 

CCGTCGACAGTTCGATGCGCGGTCAGGGGCTGGCCCTGCGCATGCTGCTGGCACTGACCG 

CCCGGGTCGCTCGCGAGTACGGCGTGCGTTACATGGAAACCACCATCTCGCCGGACAACG 

GGGCGTCACAGGCGCTGTTCAAGCGGGCCTTCGACCGCCTCGATGCCAACTGCACGACGC 

GCACGCTGTTTGCCCGCGACACGCATTTCGCCGGTCAGCACGAGGACGAGGTGCTCTACC 

GCGCCGGCCCGTTCACCGTTTCCCATCTAGAAGAAGAGCTCAAGGAGCACGCATGAAAAC 

TTTTGAACTGAATGAATCCAGGGCTAGCAACTAGTGCCGTTCCTTCCCCGTGGTCTTCAA 

GCAGGCCCAGGGCGCCGAACTGGTCACTCAGGACGGCAAGCGCTACATCGACTTCCTCGC 

TGGTGCCGGCACGCTCAACTACGGGCACAACCACCCGGTGCTCAAGCAGGCGCTGCTCGA 

GTACATCGAGAGCGACGGCATCACCCACGGCCTGGACATGTACACCGAAGCCAAGGAGCG 

TTTCCTCGAAACCTTCAACCGGCTGATCCTCGAGCCGCGCGGCATGGGCGACTACCGCAT 

GCAGTTCACCGGCCCGACCGGCACCAACGCGGTCGAGGCGGCGATGAAGCTGGCGCGCAA 

BspE

I 

NlaI

V 

XhoI 

XhoI 

SalI 

XbaI SacI 

DdeI 

DdeI 

EcoRI 

NheI SpeI 

NdeI 
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GGTCACCGGGCGCAACAACATCATCAGTTTCACCAACGGCTTCCACGGCTGCAGCATTGG 

CGCGCTGGCCGCCACCGGCAACCAGCATCACCGCGGCGGCTCCGGCATCGGCCTCACCGA 

TGTCAGCCGCATGCCGTACGCCAACTATTTCGGCGACAAGACCAACACCATCGGCATGAT 

GGACAAGCTGCTCTCCGACCCGTCCAGCGGGATCGACAAGCCCGCCGCGGTGATCGTCGA 

GGTGGTCCAGGGCGAAGGCGGTCTGAACACAGCATCGGCCGAGTGGATGCGCAAGCTCGA 

GAAGCTCTGCCGCAAGCACGAGATGCTGCTGATCGTCGATGACATCCAGGCCGGCTGCGG 

CCGCACCGGGACTTTCTTCAGCTTCGAAGAGATGGGCATCCAGCCGGATATCGTCACGCT 

GTCCAAGTCGCTGTCCGGCTACGGCCTGCCGTTCGCCATGGTGTTGCTGCGCCAAGAGCT 

GGACCAGTGGAAGCCCGGCGAACACAACGGCACCTTCCGCGGCAACAACCATGCATTCGT 

CACGGCGGCCGCGGCGGTCGAGCACTTCTGGCAGAACGACGCGTTCGCCAACAGCGTGAA 

GGCCAAGGGCAAGCGCATCGCCGACGGCATGCAGCGCATCATCCGTCGCCACGGCCCGGA 

TTCGCTGTTCCTCAAGGGCCGCGGGATGATGATCGGCATCAGCTGCCCCGATGGCGAGAT 

TGCCGCCGCAGTGTGCCGCCACGCCTTCGAAAACGGCCTGGTGATCGAGACCAGCGGCGC 

CCACAGCGAAGTGGTCAAGTGCCTCTGCCCGCTGATCATCAGCGATGAGCAGATCGACCA 

GGCACTTTCCATCCTCGACAAGGCCTTTGCCGCCGTGATGAGCGAGCAGACCGAGAACCA 

AGCTTCCTGAGGTATCCGCAATGATCGTCAGAACCCTCGCCGAGTGCGAAAAGACCGACC 

GCAAGGTCCACAGCCAGACCGGCACCTGGGACAGCACGCGCATGCTGCTCAAGGACGACA 

AGGTGGGATTCTCCTTCCACATCACCACCATCTACGCCGGCAGCGAGACGCACATCCACT 

ACCAGAACCACTTCGAGTCGGTGTACTGCATCAGCGGCAATGGCGAGATCGAAACCATCG 

CCGACGGCAAGATCTACAAGATCGAGCCGGGCACGCTGTACGTGCTGGAGAAGCATGACG 

AGCACCTGCTGCGCGGTGGCAGCGAAGACATGAAGCTGGCCTGCGTCTTCAACCCGCCGC 

TCAACGGGCGCGAAGTGCATGACGAAAGCGGCGTCTATCCTCTGGAGGCCGAAACCGTCT 

GATACCGGTTTAACCGGGGCGGCCACCGCGCCGCCCTGCCATTACAAGAAAGGAGGTAAG 

CGTGAACCCTATGCAAGCCGACCTGTATCCCTCGCGCCAGGAAGACCAGCCCAGCTGGCA 

GGAACGCCTGGATCCGGTCGTCTACCGCAGCGACCTGGAGAATGCGCCGATCGCGGCAGA 

GCTGGTCGAACGCTTCGAACGCGACGGCTACCTGGTCATCCCCAATCTGTTCAGCGCCGA 

CGAAGTCGCGCTGTTTCGCGCCGAACTCGAGCGCATGCGCCAGGACCCGGCCGTCGCCGG 

TTCCGGCAAGACCATCAAGGAACCCGACAGCGGTGCGATCCGCTCGGTGTTCGCCATCCA 

CAAGGACAACGAGCTGTTCGCCCGCGTCGCAGCCGACGAGCGCACCGCCGGCATCGCCCG 

CTTCATCCTTGGCGGCGACCTGTACGTGCATCAGTCGCGAATGAACTTCAAGCCCGGCTT 

CACCGGCAAGGAGTTCTACTGGCACTCGGATTTCGAGACCTGGCACATCGAGGACGGCAT 

GCCGCGCATGCGCTGCCTGTCCTGCTCGATCCTCTTGACCGACAACGAGCCGCACAACGG 

HindIII 

XhoI 

XhoI 

EcoRV 

BglII 

BamHI 

DdeI 

AgeI 
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CCCGCTGATGCTGATGCCCGGCTCGCACAAGCACTACGTGCGCTGCGTCGGAGCCACACC 

GGAAAATCACTACGAGAAGTCCCTGCGCAAGCAGGAGATCGGCATCCCCGACCAGAACAG 

CCTGAGCGAGCTGGCCAGCCGCTTCGGCATCGACTGCGCCACCGGCCCCGCCGGCAGCGT 

GGTGTTCTTCGACTGCAACACCATGCACGGCTCCAACGGCAACATCACGCCCAGCGCGCG 

TAGCAATCTGTTCTACGTCTACAACCACGTGGATAATGCCGTGCAGGCTCCGTTCTGCGA 

GCAGAAACCGCGCCCGGCCTTTGTCGCCGAACGCGAGAATTTCAAGCCGCTGGACATTCG 

GCCGCAACAGTATCTCTGAGGCGATGGGGCACGTCTGATGACGGGCCCCTTCCCCCGGCT 

TGGCCGATCGCTACCGGCCCAGGGAAATTCACTCCAGCTCGTTGATCGACAGGTGCGCCA 

GCTGCGCGCCGGGCCCGTCAACGGCCTGCCAGATTCGGACGCTATAAAAAGATGCATACC 

GTGGAAAAGATCGGCGGCACGTCGATGAGCCGCTTCGAGGAAGTTCTCGACAATATCTTC 

ATCGGCCGCCGGGAAGGCGCAGCGCTTTACCAGCGCATCTTCGTCGTCTCGGCCTACAGC 

GGCATGACCAACCTGCTGCTGGAGCACAAGAAGACCGGCGAGCCCGGCGTTTACCAACGC 

TTCGCCGATGCGCAGAGCGAAGGTGCCTGGCGCGAAGCGCTGGAGGGCGTGCGCCAGCGC 

ATGCTCGCCAAGAACGCCGAGCTGTTCAGCTCCGAGTACGAACTGCACGCCGCCAACCAG 

TTCATCAACTCGCGCATCGACGATGCCAGCGAGTGCATGCACAGCCTGCAGAAGCTTTGC 

GCCTACGGCCACTTCCAGCTCTCCGAACACCTGATGAAGGTCCGCGAGATGCTCGCCTCC 

CTCGGCGAGGCCCACAGCGCCTTCAACTCGGTGCTGGCGCTTAAGCAGCGCGGCGTCAAC 

GCGCGCCTGGCCGACCTCACCGGCTGGCAGCAAGAAGCACCGCTGCCGTTCGAGGAGATG 

ATTTCCAGCCACTTCGCCGGCTTCGACTTCAGCCGCGAACTGGTGGTCGCCACCGGTTAC 

ACCCATTGCGCCGAAGGCCTGATGAACACCTTCGATCGCGGCTACAGCGAGATCACTTTC 

GCCCAGATCGCCGCCGCCACCGGCGCACGCGAGGCGATCATCCACAAGGAATTCCACCTC 

TCCTCGGCCGACCCGAATCTGGTGGGTGCCGACAAAGTGGTCACCATCGGCCGCACCAAC 

TACGACGTCGCCGACCAGCTGTCGAACCTCGGCATGGAGGCGATCCACCCGCGCGCCGCC 

AAGACCCTGCGTCGCGCCGGCGTCGAACTGCGCATCAAGAATGCCTTCGAGCCCGAGCAT 

GGCGGCACGCTGATCAGCCAGGACTACAAGTCCGAGAAGCCCTGCGTCGAGATCATCGCC 

GGGCGCAAGGACGTCTTCGGCATCGAGGTGTTCGACCAGGACATGCTCGGCGACATCGGC 

TACGACATGGAGATCAGCAAGCTGCTCAAGCAGCTCAAGCTCTATGTGGTGAACAAGGAT 

TCCGACGCCAACAGCATCACCTACTACGCCTCCGGTTCGCGCAAGCTGATCAACCGCGCC 

GCGCGGCTGATCGAGGAGCAGTACCCGGCCGCCGAGGTCACCGTGCACAACCTGGCCATC 

GTTTCGGCCATCGGCTCCGACCTCAAGGTCAAGGGCATTCTGGCCAAGACCGTGGCCGCT 

CTGGCCGAGGCCGGCATCAGCATCCAGGCGATCCACCAGTCGATCCGTCAGGTGGAGATG 

CAGTGCGTGGTCAACGAGGAAGACTACGACGCCGCCATCGCCGCGCTGCACCGCGCACTG 

HindIII 

DdeI 

DdeI 

HincII 
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ATCGAGCCGGAAAACCATGGCGACGTGATCGCCGCAGCCTGATTCGGGCTTGCAACACAA 

AACGCCGGGCTCGTCCCGGCGTTTTGCTGTCTGCACGGCCGCCCATCCCGCATGACGCCG 

ATCAATACCGCCCGCTCGGGGCGGGAGGACCATGGCTGCAAGCGGCGCCTGCCGGTCGCA 

AGACGCGCGAGGCGCCCCATCGCTCCCCCATGAAGCAGGAGTTGCCATGTTCCCCGAGTA 

CCGCGATCTGATCACCCGTCTCAAGGCTGAAAACAAGACCTTTGCCCGCCTGTTCGACGA 

GCACAACGACCTCGACCAGCGGGTGAAGAACATCGAGGCGCACATCGTGCCGGGCACCGA 

CAGCGAGGTGGAAAACCTGAAGAAGCAGAAGCTGCAGCTCAAGGATCGCCTCTACGACAT 

GCTCAAGGAGGCATCCGTCGCCTGACCCTCTGCGCGCCCCGCTCGCGGGGCGCTGCCTGC 

CGCGTCATTGCGGACAACGCTCGACGCGCAATCGCCGGGCAAGCGCAGTAAAATGCCGCG 

CTTTCGATACCCCTGCGAGTCCCGCGCCATGAACACCCCCAACCGCACCGAGCTGCTGTC 

GCCTGCCGGCACGCTGAAATCCATGCGCTACGCCTTCGCCTACGGCGCCGATGCGGTGTA 

TGCCGGGCAGCCACGCTACAGCCTGCGCGTACGCAACAACGAGTTCGACCACGCCAACCT 

GAAGGTCGGCATCGACGAGGCCCACGCGCTGGGCAAGCAGTTCTACGTGGTGGTCAACAT 

CGCCCCGCACAACGCCAAGCTCAAGACCTTCATCAAGGACCTGGAGCCGGTGGTAGCGAT 

GGGTCCGGACGCGCTGATCATGTCCGACCCGGGCCTGATCATGCTGGTGCGCCAGCATTT 

TCCGCAGCAGACCATCCACCTCTCGGTACAGGCCAATGCGGTGAACTGGGCGACGGTGAA 

GTTCTGGGAAAGCCAGGGCGTCTCCCGGGTGATCCTTTCCCGCGAGCTGTCGCTGGAGGA 

GATCGGCGAGATACGCGAGCAGGTGCCGGGCATGGAGCTGGAAGTGTTCGTCCATGGTGC 
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Appendix 4 – The DNA sequence of the expected 

pCrc_32_OectA_OectC plasmid 

 

Red :  rbcL region = (The hole sequence 161 bp, 5’ UTR and promoter for OectA 137 bp) 

Beige:             atpH region = orange (5’ UTR + promoter for OectC 93 bp)  

Green:   OectC = green (401 bp) 

Turquoise:       petA region = light blue (3’prime end for OectC 72 bp) 

Yellow:   OectA = yellow (582 bp) 

Blue:    psaB region = dark blue (3’ prime end for OectA 348 bp) 

Brown:            BamHI-EcoRI = brown (3883 bp, not counting the atpB gene)  

Rosa:   atpB = purple (1476 bp) 

Light grey:  pUC8 = light grey (2849 bp) 

Dark grey:  Extra sequences = dark grey  

 

TGATAAGACAAGTACATAAATTTGAGTTACCTCGCCTATCGGCTAACCGTTTTGGGACGTCC

TAATATAAATATTGGGATATTTAACCGTATAATGTTTTTCCACCATTGAAACAACCAAAGAA

TATAATATTCTTTGGTTGTTATCGATTTTATTGATTCATTTAGGAGGAAATACAATGATTGT

TCGTACATTAGCTGAATGTGAAAAAACAGATCGTAAAGTTCATTCACAAACAGGTACATGGG

ATTCAACACGTATGTTATTAAAAGATGATAAAGTTGGTTTTTCATTTCATATTACAACAATT

TATGCTGGTTCAGAAACACATATTCATTATCAAAATCATTTTGAATCAGTTTATTGTTTTCA

GGTAATGGTGAAATTGAAACAATTGCTGATGGTAAAATTTATAAAATTGAACCAGGTACATT

ATATGTTTTAGAAAAACATGATGAACATTTATTACGTGGTGGTTCAGAAGATATGAAATTAG

CTTGTGTTTTTAATCCACCATTAAATGGTCGTGAAGTTCATGATGAATCAGGTGTTTATCCA

TTAGAAGCTGAAACAGTTTAATATTTAATTTTTTGTAGGGCTGCTGTGCAGCTCCTACAAAT

TTTAGTATGTTATTTTTAAAGTTTGATATACTATACTCCGAAGGACGTCCCCTTGGGGCAAA

TAAATTTTAGTGGCAGTTGCCTCCTTCGGGCTAGCCTAGCTTACATTATTTTTTATTTCTAA

ATATATAATATATTTAAATGTATTTAAAATTTTTCAACAATTTTTAAATTATATTTCCGGAC

AGATTATTTTAGGATCGTCAAAAGAAGTTACATTTATTTATACATATGCCTACATTAAAACG

TAATTCAATTAACAACCCAAAAGGTATTGTTTTAAGTTTCCCAACAGTAATGTTACGTCGTC

CAACAGACGGTGACGGTTACAACTTACATCAATTAGTTGCTCGTTGTCAACCATTAGATACA

AATTCAGTTTACTGTAACTTATTACAATGTTCAGATTTCGCTGACACAGCTATTGCTGCAGA

AAACGCTCAAGGTGAATTAGTTGGTTTCATTTCAGGTTACCGTCCACCTTCACGTCCAGACA

CATTATTCGTTTGGCAAGTTGCTGTTGACAGTTCAATGCGTGGTCAAGGTTTAGCTTTACGT

ATGTTATTAGCATTAACAGCTCGTGTTGCTCGTGAATACGGTGTTCGTTACATGGAAACAAC

AATTTCACCAGACAACGGTGCTTCACAAGCTTTATTCAAACGTGCTTTCGACCGTTTAGATG

CTAACTGTACAACACGTACATTATTTGCTCGTGACACACATTTCGCTGGTCAACACGAAGAC

GAAGTTTTATACCGTGCTGGTCCATTCACAGTTTCACATTTAGAAGAAGAATTAAAAGAACA

CGCATAATCTAGAGCGGCCCAGGTCGTTTCGGTTAATGTAATGTACTTTATTTACTACCTCA

TGCATATACGTGCGACCCGATGTGGTACTTTTAAATCGGTTAGACATTTAGTAATATAAATG
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TCTAACCGATTTTATAATGCGTAAAAAACCTTATTTCACTACTAATGAAGTCTTTAGATATA

TATTTATATTACAGATGATACAGTTAACAAGTTATTCCCACTGTGGTTCTTAAAAAACACTT

AAGTAAAAACACATAACTCCACGTAAGCGCATTTTCTTACAATCAAAGAATGCCAATTGTTC

TTTGCTTGTTGTAAAAGAAAAACTAGGCTTTTTCTTTGAAAACATTTCAGCATATTCAACAA

CTTTTATAGATTGGTTTAGCGGATGATGGGACTCGGGCCGCCACCCGCCACTGACGTCCACT

AATATTTATATTCCCGTAAGGGGACGTCCTCCTTCCCCTTCCCTTCGGGACGTCCTTCGGGT

AAATAAATTTTAGTGAGTTGCCTGCCAACTGCCTAATATAAATATTGGGCAAGTAAACTTAG

CATGTTTACATACTCCGAAGGAGGACGCAGTGGCAGTGGTACAATAAATAAATTGTATGTAA

ACCAGTGCCAAGCATGTTTACATACTCCGAAGGACGCCAGTGGAGTGGTACAATAAATAAAT

TGTATGTAAACCTGCTACCGCAGCAAATAAATTTTATTCTATTTTAATACAATAAATAAATT

TGTTGGCAGGCAACAAATTTATTTATTGTCCGAAGGGGAAGGGGACGTCCTGAAGGGAAAGG

TGCAACTACCTGGGAATTTTACCGATTAAATTAACCTTTTAAATAATTTTTTAAAAATACTT

TTTTAATACCTTGTTTTGTTCTTAAAGAAACTGTATCTCGTGGACGACAAATATAATTTGGC

GTTTTCACACTCTTATTATTTACTCGCACGTTTCCTTTAGTTTTTTGCTGAAAAAATAAAAT

TAGTATTTAACACATTATTAAATACACGTTTAACGGCGTCCTTTATTTTAAAGTAAATAGAT

TAAATAGCTAATATGACATATATAATGTATGTGTAATTAAAATAAATTGGCTCTTTAAGAAG

AAAACAACTTAATGGTGTCCAAATATTTATTTTAATTACACATAAAAAATTAAATTATTTTA

ATGAAGCAGCTTTACTAATAGCTTCTGTAATGTTACCTACTAAGTAGAATGCTTGTTCTGGT

AAATCATCTAATTCACCAGCGAAAATTTTACCAAAACCTTCAATAGTTTCAGCTAAAGAAAC

ATATTTACCAGGTGAACCTGTAAATACTTCAGCTACGAAGAATGGTTGTGATAAGAAACGTT

CAATTTTACGAGCACGAGCTACAATAAGTCTGTCTTCTTCAGATAATTCATCTAAACCTAGA

ATAGCAATAATATCTTGTAATTCTTTGTAACGTTGTAAAGTTTTTTTTACGCTTTGTGCAGA

ATCATAGTGTTTTTCACCAAGAATCCACGGTTGTAACATAGTTGAAGTTGATTCTAATGGGT

CAACCGCAGGGTAAATACCTTTAGCAGCTAAGTTACGAGAAAGTACTGTAGTAGCATCTAAG

TGAGCGAATGTTGTAGCAGGAGCAGGGTCAGTAAGGTCATCTGCAGGTACATATACAGCCTG

AATCGATGTGATAGAACCATCTTTAGTTGAAGTAATACGTTCTTGAAGACCACCCATTTCTG

TAGCTAAAGTAGGTTGGTAACCTACAGCTGATGGCATACGACCTAATAAAGCAGATACTTCA

GCACCAGCTTGTACGAAACGGAAAATGTTATCAATGAAGAATAATACGTCTTGTTTGTTAAC

ATCACGGAAATATTCAGCCATTGTTAAAGCTGTTAAAGCAACACGCATACGAGCACCTGGTG

GTTCGTTCATTTGACCGTATACAAGAGCTACTTTTGAATCAGATAAGTTCTTTTCAACAATA

ACACCAGATTCTTTCATTTCTGTGTAAAGGTCGTTACCTTCACGTGTACGTTCACCAACACC

AGCAAATACAGAAACACCACCGTGTGCTTTAGCAATGTTGTTGATCAGTTCCATAATTAAAA

CTGTTTTGCCTACACCAGCACCACCGAAAAGACCAATTTTACCACCACGACGGTATGGAGCT

AAAAGGTCTACAACTTTAATACCTGTTTCAAAAATTGATAAACGAGTATCTAAATCAACGAA

AGCAGGAGCTGTACGGTGAATTGGTAAAGTTTCTTCAACTTTAACATTACCCATGTTATCTA

CAGGTTCACCTAGAACGTTGAAAATACGTCCTAAAGTTACTTTACCTACAGGAACACTTAAC

GGTTTACCAGTATCTACAACTTCCATACCACGCATTAAACCTTCTGTTGGGTTCATAGAAAC

TGCACGTACACAGTTATCACCTAAAAGTTGTTGAACTTCACAAGTAACAGCCATTTCTGTAC

CTGCTGAGTTTTTAGCACGAATAGTTAGAGCGTTGTAAATATTTGGTACTTGGCCTTTAGCA

AATACGATATCTAAAACAGGACCAATAATTTGTACAATACGTCCCATGTTTTTTGTTTCAAT

AGAATCACTCATAGTAAGTGGAATTAATATGCCCCAAGGCATTCATATTTTAACTTATTTTA

CTTAAATTCTTACGTATAAACCCCGAAGGAAACTTTATCTTAGGTAATTTGAAATAAGAACC

TCCTCCTTCCCCTTCGGGCAAGTAAACTTAGCATGTTTACATACTCCGAAGGAGGACGCCAG

TGGCAGTGGTATCGCCACTGCCTAGTATGTAAACATTGTGGCTTTACTTTCAAAAAGGCAGG

AAATACTGAGAGTGTAACTTGTTATAAATTTAAAATTTATATAAAAGGAAGCTCAAACATAT

AGTAGAATTTATATATAAAAAGTATTATTCACTAACGCTTATTTTTTAGTTTTTTCATTTAA

CTATATATATTAATATATTATATAAATATTCCAAAACATTGTACTCATCTTTAGAGATGCAA
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AGCATCTTCTTTATTTATAAGCATACAATGTCTTGGAATATAAAATTAGTAAAAATATGGCA

TATTTTTAAATAGCTGGTGGAGAATTTTGAATTAAATTTTTATATTCTTGTACCACTTTAGT

TAATTGTTGTGTTGAATAAGCTTGAGAAAGTTTCTTTTTCAATACTTTAATATTATGTTTTT

CAATTAAATATTTACGTGGCATAATACCAACTGGTTGAACATTAATTTTTTGTTTTAAACTT

GTTTTTTTAATATTGATTGATTTTAATTTTGGCATTTCAACAATTTCTAAACGTAAATAATC

ACCTGGCCATGTAAATCCACCGTTTTGTGGAATATAGCGTTGAAGAGGTTTTAAAACTTGTT

GGAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCA

CACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACT

CACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGC

ATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCC

TCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAA

GGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAG

GCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGC

CCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACT

ATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGC

CGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCA

CGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACC

CCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAA

GACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTA

GGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATT

TGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCG

GCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGA

AAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGA

AAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTT

TAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGT

TACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGT

TGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTG

CTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCA

GCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAA

TTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCA

TTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCC

CAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGG

TCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCAC

TGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCA

ACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACG

GGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGG

GGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCA

CCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAG

GCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCC

TTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAA

TGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGA

CGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCT

TTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACG

GTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGG

TGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGC

ACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCAT

TCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACG
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CCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCC

AGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTGGCTGCAGGTCGACGGATCCTCTG

ATGGAGTATCTCGCGATGCTCGATCTTGGTTTTTCTTAATTAGTAAACTATAGATAAATTTT

AAAACAACCAATACTTCAGTTTGCTGTAGATAATTTACAGTACCAAATTCTAAATCTAAATC

TTGTAAAAAGGTAATTAGAGTAACTTTTCTTTGGGGTAAAGATTTAGTATTTAACCAATTCA

AGATACTAAGGTGAATAATAGATTGCTCACGAGTAGAACTGTTTACATATAGCTTAAACAAA

AAAATAAGACCTTCTGTCGAATTTTTTAGATACAAGCAGTACTTATTTACTAAAAGTTTAAA

CTGGTTTTCTGTTTTTATATTCAAACCATTAAAATGTTCTACTAAACTGTCTTGTACGCTAT

AAATATCATTATTTGTCATAAATATAAATAAATGTAACTTTTGTTGTCGATCCTAAAATAAT

CTGTCCGGAAATATAATTTAAAAATCTTAAAAATTTTTAAATACATTTAAATATATTATATA

TTACTTTTTTTAAATATATTATATATTACTTTTTTTAAATATATTATATATTACTTTTTTTA

AATATATTATATATTACTTTTTTTAAATATATTATATATTACTTTTTTTAAATATATTATAT

ATTACTTTTTTTTAGTAAACTTTGACAAGCTTTACATCCCTACCCTACTTCCCAACAAATCT

ATCGGCAAAGCCGATTCCCAAAGGGGACAAGGAATGTAAATAGTCCATCGGCTTCCCCCATA

CCCTAATACCCTGAAAGGGTATATATCCCCGTAGGGGATGGAAGGGTATGATTGAGCGTCGT

CCCCAAAGGGGAAGAAATTTGAGCTAGAGGATACGTCGGTCGCCTGAAAATAGTTGCTTCCC

CAAAGGGGACAACCAAAGCTTGTCTTTTAAATGAAATGTCTCTTTCCCCAAAGGGGACCAGA

GGAAAGCTTGTCTTTATGAGCCGTCCCCGAAGGGGTGAGGAAAGAAAGGGCAGTTGAAGAAA

TGTATTTTAGGACGTCCCCTTCCCCTTCCCCGAGAAAGAGTAAACTTAGGGATTTCAATCCG

TAGTTAGGACGTCCTCCTTACGGAGTATTTAAAATCCCGGAGGGGATTAAATTTGTATGTTA

ATTTTTTGTATATTTTTAAGAATTTTATTATTATTATTATTTTATTATTATTATTATTATTA

TTATTATAAAACCGTATTACTATTCGTATTAGGTACCCCATTATATATTATACATTAAAAAA

ATAAAAAATTTTTTTTTATTTTATTTTTTTTATTTTATTAATTATTTTATTAATTATTTTAT

TAAATACCATGTGTGTATTCTAAATAGGTTTATTGGGGTACTTTATTTTACACTTTATTTTA

CACTTTATTTTACACTTTATTTTACACTTTATTTTACACTTTATTTTACACTTTATTTTACA

CTTTATTTTACACTTTATTTTACACTTTATTTTACACTTTATTTTACACTTTATTTTACACT

TTATTTTACACTTTATTTTACACTTTATTTTACACTTTATTTTACACTTTATTTTACACTTT

TTTAATATGAATTAAATTAAATTAATTTAATTTAATTTAAGAGAACCAATTACTGGTATAAT

TTGGAAAATAAAATACATTTAATCTGGTAATTTATTTGGTAATTTGGTCAAAATTATAATAG

TTTTTATTTGATTTTTTTGAATTGAATTTAAAAAGACATCCCCTTACAGTATTCTTGCAAAC

CTTACGGGACAATAAATAAATTTGTTGCCTGCCAACTGCCGATATTTATATACTAGGACGTC

CCCTTCCCCTTACGGGATATTTATATACTCCGAAGAGCAAGTAAACTTAGGGATTTTAATGC

AATAAATAAATTTGTCCCCTTACGGGAATATAAATATTAGTGGACGTCCCCTTCGGGCAAAT

AAATTTTAGTGGCAGTTGCCTCGCCTATCGGCTAACAAGTTCCTTCGGAGTATATAAATATA

GGACGTCAGTGGCAGTTGCCTGCCAACTGCCTATATTTATATACTGCGATAAACTTTAGTTG

CCGAAGGGGTTTACATACTCCGAAGGAGGAAGCAGGCAGTGGCGGTACCACTGCCACTAAAA

TTTATTTGCCTCCTAACGGAGCATTAAAATCCCGAAGGGGACGTCCTGCCAACTGCCCTTGC

CGCAGTATTAACATCCTATATTTATATACTCCGAAGTATATTTATATGCTTCCCCTTCCTTC

GGGTATATAAATATTGGGCAAGTAAACTTAGGAGTATATAAATATAGGACGCCAGTGGCAGT

GCCCCCTCGAG 
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Appendix 5 – 1kb Plus DNA ladder 

 

 

 

1kb Plus DNA ladder 

0.7 µg/lane 

0.9 % agarose gel 

Stained with ethidium bromide 
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