
N-body simulations with massive
neutrinos

H̊akon Opheimsbakken

Thesis submitted for the degree of
Master of Science in Astronomy

Institute of Theoretical Astrophysics
University of Oslo

June, 2014





Abstract

Neutrinos are very weakly interacting particles with a low mass. In fact, the mass of the
neutrinos has not yet been determined by experiments or observations. Still, neutrinos
are a good candidate for some of the dark matter in the universe.

In this thesis we will look at the effect of massive neutrinos on cosmological structure
formation. We will use a model with cold dark matter (CDM) and a cosmological
constant, and we will replace some of the CDM with neutrinos in the simulations. An
N-body code is used to simulate the evolution of the model, and neutrinos are added to
the code via two different methods. In the first method we use transfer functions from
linear theory to generate a density field for the neutrinos. For the second method we
will use a smoothing function that smooths out the perturbations to the CDM density
field. This smoothed out field will approximate a neutrino density field, and will be
added to the CDM field. We analyse the effect of the neutrinos on the matter power
spectrum.
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CHAPTER 1

Introduction

From Big Bang nucleosynthesis, we know that there is a background of neutrinos in the
universe that has evolved independently ever since the neutrinos decoupled from the
rest of the medium. We also know from oscillation experiments that the neutrinos have
a non-zero mass. So, neutrinos are weakly interacting and massive particles, therefore
they contribute to the dark matter. Unfortunately they can not make up all of the
dark matter, because neutrinos have a high thermal velocity, so they form structure on
much larger scales than what is observed today.

The neutrino masses are unlikely to be determined by laboratory experiments in
the near future. However, it is well known that neutrinos suppress the formation of
cosmic structure on small scales, and this effect has been used to put quite strong upper
bounds. It is hoped that future missions to map the distribution of matter might be
able to determine the masses. If this hope is to be realised, we need to understand how
neutrinos affect structure formation on both linear and non-linear scales.

The aim of the work presented in this thesis was to look at a simple way of including
neutrinos in an N-body code presented in [1], and to study the effect on the matter
power spectrum.

1.1 Mathematical functions

Below we present some mathematical functions that will be useful later in this work.
The books [8] and [7] have been used in these derivations.

1.1.1 Fourier transforms

The Fourier transform is a mathematical method that will be very useful to simplify
calculations. We will transform some theoretical equations to Fourier space to get rid
of spatial derivatives, and in our numerical simulations we will use the discrete Fourier
transform to save computational power.



2 Introduction

The analytical Fourier transform is

F (k) =

∫ ∞
−∞

f(x)eikxdx,

where F (k) is the Fourier transform of the function f(x). The inverse transform is then

f(x) =
1

2π

∫ ∞
−∞

F (k)e−ikxdk.

The discrete Fourier transform is given by

Hn =

N−1∑
k=0

hke
2πikn/N .

hk is a discrete function of N sampled values, and Hn is its transformed values. The
reverse transform is almost the same, but we change the sign in the exponential and
we divide by a factor N .

hk =
1

N

N−1∑
n=0

Hne
−2πikn/N

1.1.2 Distribution functions

Distribution functions describe the distributions of particles based on some parameters.
These parameters are usually time, space and energy. The functions give the number
density of the particle species we are interested in, as a function of the parameters that
goes into the distribution function.

Below are the Fermi-Dirac and Bose-Einstein distribution functions that are only
valid for a homogenous distribution of particles. That is why these functions do not
depend on spatial position. Here µ is the chemical potential, T is the temperature, E
is the energy and k is the Boltzmann constant.

The Fermi-Dirac distribution is defined as

fFD =
1

e(E−µ)/kT + 1
,

while the Bose-Einstein distribution is defined as

fBE =
1

e(E−µ)/kT − 1
.



CHAPTER 2

Cosmology

In this chapter most of the background theory is presented. The derivations are mainly
based on the book by Dodelson [3]. In addition [17], [13], [9], [12] and [14] are used.
We start by deriving equations for a homogeneous universe, and then add fluctuations
to the distribution of matter.

2.1 Short history

It is widely accepted that the universe started with the Big Bang. The universe has
expanded and evolved from a hot and dense initial state. We have no theory to explain
this, but the result of the Big Bang was a very hot and dense plasma of elementary
particles. Before one Planck time, which is about 10−43 seconds, nothing is known of
what happens in the universe.

After this Planck time the universe had a very short period of incredible expansion,
called inflation. This inflationary period lasted from about 10−36 seconds to about
10−32 seconds, and during this short period the size of the universe increased by a
factor of e60. This period is also the source of small inhomogeneities in the distribution
of matter, which will later evolve to stars and galaxies and clusters of galaxies.

After inflation ended, the universe had grown to cosmic scales, but it was still very
dense and hot. But now elementary particles like protons and neutrons could go to-
gether to form atomic nuclei. This is called the big bang nucleosynthesis, and light
elements up to lithium were created in this process. Although there were no electrons
bound to the nuclei, because as soon as an electron would attach to a nucleus, a high
energy photon would come along and ionize the atom again. The temperature of the
universe was high enough that photons could transfer more energy than the electrons
binding energy in a collision, and the electron would detach from the nucleus.

By this time the universe was a hot ionised gas, and it would be like that for some
time. The universe continued to expand and cool down, and finally after 380,000 years,
it had cooled down enough that the photons no longer could ionise neutral hydrogen.
This is called recombination and most of the hydrogen became neutral. Since the
universe consisted mostly of hydrogen this had the effect that photons could travel
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freely through the cosmic gas, and the universe went from opaque to transparent.
This is referred to as the photon decoupling, and from now on photons will develop
independently from the rest of the cosmic medium. These photons are what we now
refer to as the comic microwave background radiation (CMB).

As the universe continues to expand, small differences in the distribution of mass
will lead to large clouds of gas that are gravitationally bound. These clouds continue
to collapse, and by about 150 million years after Big Bang, the first stars were born.
These stars started to radiate high energy photons, and over the next few hundred
million years the hydrogen once again became ionised. This is called reionization.

From there the universe continued to expand and make structure on larger and larger
scales, until it ended up as we see it today. Figure (2.1) illustrates the evolution of the
universe.

Figure 2.1: Credit: NASA/WMAP Science Team [19].

2.2 General relativity

The framework of modern cosmology is Einstein’s theory of general relativity. So it is
important that we understand the basic principles of this theory before we continue on
to the cosmology. In general relativity, gravitation is not seen as a force, but rather a
consequence of the curvature of spacetime. This curvature is described by the metric
tensor gµν . The distance between two points in any geometry is given by the invariant
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quantity ds, which we can calculate using the metric tensor.

ds2 = gµνdx
µdxν

ds is called the space-time interval, and since it is invariant it is the same in all frames.
It can also be called the proper time. Because, if we attach a clock to a particle, it
would take the particle a time ds to travel between the two points. The path that gives
the longest proper time is called a geodesic, and particles without any external forces
always travel along geodesic lines.

To do calculations in general relativity we need the geodesic equation,

d2xµ

ds2
= −Γµαβ

dxα

ds

dxβ

ds
,

which describes the motion of a free particle, given the geometry of spacetime. The
Christoffel symbol, Γµαβ, which is given by the metric tensor, describes the geometry of
space.

Γµαβ =
gµν

2

[
∂gαν
∂xβ

+
∂gβν
∂xα

− ∂gαβ
∂xν

]
To relate energy to the space-time geometry, we need the Einstein equations. These

are given as

Gµν = Rµν −
1

2
gµνR = 8πGTµν

Gµν is called the Einstein tensor, and contains all information on the geometry of space.
This is seen in the Ricci tensor, Rµν , which depends only on the Christoffel symbols.

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓβµα

To get the Ricci scalar, R, we contract the metric tensor with the Ricci tensor, gµνRµν .
Finally, the energy-momentum tensor, Tµν , gives the distribution of energy. For a
homogeneous and isotropic energy distribution, Tµν is given as

Tµν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (2.1)

We also need to assume a perfect fluid for this to apply. Here ρ is the energy density
of all the components of the universe, and p is the pressure of the perfect fluid.

2.3 The homogeneous universe

Even though the real universe is not completely homogenous, the approximation to a
homogenous universe can give us some useful information. We will not get any structure
formation in these models, but they will give a picture of how the size of the universe
evolves, depending on its contents. Below we will derive a couple of these models.
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2.3.1 Friedmann equations

First we need to use the Einstein equations to derive the Friedmann equations, which are
the equations that determine the cosmological expansion of homogeneous and isotropic
space. For an expanding, flat universe the metric tensor is given by the Friedmann-
Robertson-Walker metric

gµν =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 . (2.2)

Here a(t) is the scale factor, which gives the size of the universe at a time t. Today the
scale factor a0 = 1.

We start with the time component of the Einstein equations.

R00 −
1

2
g00R = 8πGT00

To calculate the Ricci tensor is a bit of work, but we end up with

R00 = −3
ä

a
,

and

Rij = δij
[
2ȧ2 + aȧ

]
.

The Ricci scalar is then

R = −R00 +
1

a2
Rii = 6

[
ä

a
+
ȧ2

a2

]
.

Since T00 = ρ, we get

ȧ2

a2
=

8πG

3
ρ (2.3)

from the time component of the Einstein equation. This is called the first Friedmann
equation, and it gives the change of the scale factor a(t). We get the second Friedmann
equation from the space components of the Einstein equation,

Rij −
1

2
gijR = 8πGTij .

The space components of the energy-momentum tensor gives the pressure, Tij = δija
2p,

so the second Friedmann equation becomes

ä

a
= −4πG

3
(ρ+ 3p) . (2.4)
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2.3.2 Energy density

If we solve the Friedmann equations we get the expansion of the homogeneous and
isotropic universe, but what about the evolution of the energy of the different com-
ponents? We can use the energy-momentum tensor from the previous section, and
assume that the energy of each component is conserved. In special relativity this would
be ∂Tµν /∂xµ = 0, but in general relativity we need to use the covariant derivative.

Tµν;µ =
∂Tµν
∂xµ

+ ΓµαµT
α
ν − ΓανµT

µ
α

If we look at the ν = 0 component of this equation and set it to zero to get conservation
of energy we get

∂Tµ0
∂xµ

+ ΓµαµT
α
0 − Γα0µT

µ
α = 0,

∂T 0
0

∂x0
+ Γµ0µT

0
0 − Γα0µT

µ
α = 0.

Since Γµ0ν = ȧ/a δµν and T 0
0 = −ρ we get

dρ

dt
+ 3

ȧ

a
[ρ+ p] = 0.

Now we introduce the equation of state p = wρ, which relates the pressure to the
density. w is a constant that determines what type of fluid we look at. We use the
equation of state to eliminate pressure from our equation, and we get

dρ

dt
= −3

ȧ

a
[ρ+ wρ]

dρ

dt
= −3

a

da

dt
ρ [1 + w]

dρ

ρ
= −3 [1 + w]

da

a

We can integrate this equation from today at t0, to some time in the past, with initial
condition given as ρ(t0) = ρ0 and a(t0) = a0 = 1. So we get∫ ρ

ρ0

dρ

ρ
= −3 [1 + w]

∫ a

a0

da

a
,

which gives

ρ = ρ0

(
a

a0

)−3(1+w)

. (2.5)

Now we have the evolution of the energy density in a homogeneous universe. For
non-relativistic matter we have w = 0, so we get

ρm = ρm,0a
−3.
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We see that the matter energy density goes down by a factor a3 as the universe expands.
This makes sense, because there are three spacial dimensions. For radiation w = 1/3
which gives

ρr = ρr,0a
−4.

In addition to the three spacial dimensions expanding, radiation also loses energy be-
cause the wavelength gets bigger as space expands.

2.3.3 Solutions of the Friedmann equations

Before we can look at solutions to the Friedmann equations, we need to introduce the
cosmological constant, which we will need in some of the solutions. The first person to
add a constant to the Friedmann equations was Einstein in 1916. He did this to make
static solutions possible. Without the cosmological constant, the only static solutions
would be a universe without any contents (ρ = 0), or one with zero size (a = 0). Both of
these solutions are unrealistic, so Einstein modified the equations by adding a constant.

ȧ2

a2
=

8πG

3
ρ+

Λ

3
(2.6)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(2.7)

Here Λ represents the cosmological constant. These equations are only valid for flat
space (k = 0), so we will not look at solutions with curved space.

It is also useful to define a couple of quantities. The first is the Hubble constant,
which determines the rate of expansion of the universe. It is defined as

H(t) =
ȧ

a
.

If we use eq. (2.3) with all the quantities evaluated today, we can find an expression
for the critical density today

ρc0 =
3H2

0

8πG
,

where H0 is the Hubble constant today. By this definition the critical density is the
density needed for a flat universe. It is also common to write the density in terms of
the critical density, and we get

Ω0 =
ρ0

ρc0
.

We see that for a flat universe we have Ω0 = 1.

Einstein-de Sitter

The first solution is a solution with non-relativistic matter as the only component. We
start with the Friedmann equations, where we have used eq. (2.5), and the equation of
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state to remove pressure.

ȧ2

a2
=

8πG

3
ρ0

(
a

a0

)−3(1+w)

ä

a
= −4πG

3
(1 + 3w) ρ0

(
a

a0

)−3(1+w)
(2.8)

We can use the expression for the critical density with the first equation to get rid of
the density, and then take the square root to end up with

ȧ

a
= H0

(
a

a0

)−3(1+w)/2

.

We can integrate this to get an equation, which we can solve for a. But if we set some
initial condition, we can simplify the equation. We choose that a = 0 when t = 0, and
we get the relation

2

3(1 + w)
= H0t0

Our final solution for a is then

a(t) = a0

(
t

t0

) 2
3(1+w)

(2.9)

The expansion is determined by a power law. At this stage, we still have not decided
on a value for w, which is 0 for matter and 1/3 for radiation. In the case of matter,
which is what is called the Einstein-de Sitter model, we get

a(t) = a0

(
t

t0

) 2
3

This is a good approximation to the expansion in the matter dominated era.

de Sitter

The next solution we will look at was first derived by Willem de Sitter. It contains only
a cosmological constant Λ. In this case the Friedmann equations become very simple.

ȧ2

a2
=

Λ

3
ä

a
=

Λ

3

(2.10)

We take the square root of the first equation again, and use the positive solution, since
the expansion should be positive. From the definition of the Hubble parameter, we get
that

Λ

3
= H(t).
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In this model the Hubble parameter is a constant, H(t) = H0. We can solve the
equation ȧ/a = H0, and use the initial condition a(t0) = a0, to get the expansion

a(t) = a0e
H0(t−t0). (2.11)

Here the universe expands exponentially.

ΛCDM

Finally we have a solution with both matter and a cosmological constant. Observations
have shown that this model fit well with the actual expansion of the universe. Now we
will write the first Friedmann equation in a slightly different way.

H2(t)

H2
0

= Ωm0

(a0

a

)3
+ (1− Ωm0) (2.12)

Here ΩΛ = (1− Ωm0) is the density parameter for the cosmological constant. As long
as ΩΛ has a positive value, the universe will always expand. At early times the universe
is matter dominated, and the expansion will decelerate. But at some scale amΛ, the
universe will become dominated by the cosmological constant, and then the expansion
will start to accelerate. The era when the contribution to the energy density is equal
for matter and the cosmological constant is given by

amΛ = a0

(
Ωm0

1− Ωm0

)1/3

The Friedmann equation can be written as

H0dt =
1√

1− Ωm0

√
ada√

(amΛ/a0)3 + a3

.

If we integrate this, we get an equation that can solved for a, and we end up with

a(t) = a0

(
Ωm0

1− Ωm0

)1/3 [
sinh

(
3

2

√
1− Ωm0H0t

)]2/3

. (2.13)

This is a complicated function, and so it is hard to see how it behaves. But for a < amΛ,
the universe expands with a deceleration. And for a > amΛ the expansion accelerates.

2.4 Neutrinos

The neutrino was first postulated theoretically by Wolfgang Pauli in 1930. He needed
a new particle to explain the conservation of energy in β-decay, which is a radioactive
processes. This new particle is massless according to the standard model in particle
physics, but experiments show that the particle has a mass, even though it must be
small, and has not yet been determined. The neutrino is a very weakly interacting
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fermion with zero charge. Therefore it is only affected by the weak force and gravity.
Neutrinos belong to a group of particles called leptons. There are six leptons in the
standard model, electron (e), muon (µ) and tau (τ), and their associated neutrinos νe,
νµ and ντ respectively.

Neutrinos were detected for the first time in 1956, in an experiment that used nuclear
reactors as the source for neutrinos. Over the years we have built large chambers
deep underground filled with a liquid that interacts with neutrinos, that are used for
detection. These detectors are based on the same principle as the 1956 experiment.
Nearly all of the neutrinos detected by these chambers come from the Sun. The flux
of neutrinos from the Sun is about 1010 particles per square centimetre per second.
Despite this massive amount of particles, nearly all of them pass right through the
Earth. Only very few neutrinos are detected by the detectors per day.

2.4.1 Neutrino masses

Until recently there was a problem, called the Solar neutrino problem, where the detec-
tors only detected about 1/3 of the neutrinos that the theory of the nuclear reactions in
the Sun predicted. Theories for neutrino oscillations have been around since the 1950s,
but in 1998 it was confirmed via observations of neutrinos in the atmosphere, that
neutrinos can oscillate between the three different flavours, via a quantum mechanical
effect, when they travel through matter, such as the core of the Sun. So the electron
neutrinos (νe) that are created in the Sun’s core, can oscillate between the other two
neutrino species. This solves the problem of too few detections in experiments, because
the detectors could only detect one of the three neutrino flavours.

For these fluctuations to be possible, the neutrino need to have a non-zero mass,
because the probability of this effect is based on the square of the difference in mass
between the two neutrino species. This is interesting to cosmologists, because that
means that neutrinos can be a candidate for some of the dark matter in the universe.
We know that in the early universe, there were created a lot of neutrinos. And together
with photons, neutrinos are the most abundant particle in the universe. So if the
neutrinos have mass, they must constitute a part of the dark matter.

As the universe expands and cools down, eventually the neutrinos will decouple from
the rest of the medium, and continue to evolve independently. Because the neutrinos
are fermions, the distribution will follow the Fermi-Dirac distribution function. The
temperature of the cosmic neutrino distribution is related to the CMB temperature by

Tν =

(
4

11

)1/3

TCMB.

If we use this together with the Fermi-Dirac distribution function, we get the number
density of relic neutrinos in the universe. For a CMB temperature TCMB = 2.726 K,
we get a number density of nν = 112cm−3. This again gives a density fraction of

Ωνh
2 =

mν,tot

93.14eV
,
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where mν,tot is the total mass of all three neutrino flavours, and h is the dimensionless
Hubble parameter.

The neutrinos are highly relativistic at early times, which means that they don’t
clump together very well. This is a problem, because observations show that structure
in the universe was first formed on small scales, and then on large scales. The clumped
dark matter is essential to form gravitationally bound galaxies. Cosmological models
where all of the dark matter is in the form of neutrinos also creates a universe that
is very different from our own. But these models are still very useful, because we can
determine an upper bound for the neutrino mass, by looking at how much of the dark
matter we can replace by neutrinos in the models, before we get something that is not
consistent with our universe. Upper bounds on the total neutrino mass is presented in
[2], and it indicates that the total neutrino mass is under 1 electron volts (eV).

2.5 Linear perturbations

We have seen how a homogeneous and isotropic universe evolves, but that is not really
how the universe is. In reality there are small perturbations to the matter density.
These can be described by ρ = ρ(0) + δρ, where ρ(0) is the average density and solution
to the homogeneous equations, and δρ is a small correction to that average.

Since matter is no longer evenly distributed, there will also be small perturbations to
the metric given in eq. (2.2). We have Ψ, which is the perturbation to the Newtonian
potential, and Φ, which is the perturbation to the spacial curvature. The new metric
will then look like

gµν =


−1− 2Ψ 0 0 0

0 a2(1 + 2Φ) 0 0
0 0 a2(1 + 2Φ) 0
0 0 0 a2(1 + 2Φ)

 . (2.14)

This is the metric given in conformal Newtonian gauge, which is one of several gauges,
or coordinate systems, in which we can write our equations. All the perturbations are
functions of time t, and space xi.

2.5.1 Boltzmann equation

When describing the distribution of matter or radiation in the universe, we use a
distribution function. For the homogeneous universe, this function would be the Fermi-
Dirac function for fermions and the Bose-Einstein function for bosons. These zero-order
functions depend only on time t and energy E, but we will need to expand them to
first order when calculating the perturbed matter distributions. And then they will
also depend on space, xi, and the magnitude and direction of the momentum, p.

The distribution function f(xi, E, pi, t) will be needed when we derive the equations
for the evolution of the perturbations. Because to find these equations, we need the
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Boltzmann equation
df

dt
= C[f ]. (2.15)

The left hand side is the total time derivative of the distribution function. To do
anything with this we first need to change this total derivative to partial derivatives
with respect to each of the variables. The right hand side is a collision term that we
can ignore as long as we look at particles that does not react to other types of particles.

Cold dark matter

Cold dark matter is non-relativistic, very weakly interacting particles. Therefore we
can ignore the collision term in the Boltzmann equation, which is zero.

If we write out the left hand side of eq. (2.15) using partial differentials we get

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂E

dE

dt
+
∂f

∂p̂i
dp̂i

dt
.

To calculate the total derivatives in this equation, we need the momentum vector
defined as

Pµ =
dxµ

dλ
,

Where λ is the path of a particle. We also need the relation P 2 = gµνP
µP ν = −m2,

where m is the mass of a dark matter particle. We also have the energy of the particle
as E =

√
p2 +m2, and p2 = gijP

iP j is a sum over the spatial components of the
momentum vector.

First of all, since we are keeping the equations linear, we can neglect the last term
in our Boltzmann equation. This is a second order term, because we need the first
order expansion of the distribution function to differentiate with the direction of the
momentum.

To get the term with xi, we use the momentum vector and end up with

dxi

dt
=
p̂ip

aE

The only remaining term is then the energy, E. We can get this from the geodesic
equation, and with a little calculation we end up with

dE

dt
= −da/dt

a

p2

E
− p2

E

∂Φ

∂t
− p̂ip

a

∂Ψ

∂xi
.

So far our Boltzmann equation for cold dark matter look like

df

dt
=
∂f

∂t
+
p̂ip

aE

∂f

∂xi
−
[
da/dt

a

p2

E
+
p2

E

∂Φ

∂t
+
p̂ip

a

∂Ψ

∂xi

]
∂f

∂E
= 0.

Now we can integrate this equation and look at the zero order moment and first order
moment separately. After a bit of work we end up with two equations for the evolution
of dark matter, namely

∂δ

∂t
+

1

a

∂vi

∂xi
+ 3

∂Φ

∂t
= 0
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and
∂vj

∂t
+
da/dt

a
vj +

1

a

∂Ψ

∂xj
= 0.

Here, δ and vi are the perturbations to the dark matter density and velocity, respec-
tively.

Baryons

Baryons, as dark matter, are non-relativistic massive particles, so the equations of
evolution are very similar. The first equation is actually the same as for dark matter.
In Fourier space it is

∂δb

∂t
+

1

a
ikvb + 3

∂Φ

∂t
= 0.

The second equation also has a collision term

∂vb

∂t
+
da/dt

a
vb +

1

a
ikΨ =

dτ

dt

4ργ
3ρb

[3iΘ1 + vb] .

Here τ is the optical depth, which tells us how far light can travel before it is scattered,
and Θ1 is the dipole moment of the photon perturbation.

Massive neutrinos

For massless neutrinos we have the same equations of evolution as for photons, except
that there is no collision term in the Boltzmann equation, since neutrinos are so weakly
interacting. For massive neutrinos though, we need to differ between the relativistic
and non-relativistic regime. We follow [13] for the derivation of neutrino perturbation
equations.

As long as the neutrinos are relativistic, we can simplify the Boltzmann equation by
introducing a relative fluctuation to the distribution function fν .

N (η, xi, y, ni) =
fν(η, xi, y, ni)

fν0(η, y)
− 1 (2.16)

Here fν0 is the zero-order distribution and y = ap, where p is the momentum. As
long as the neutrinos remain relativistic, we can use the same equations as for massless
neutrinos (and photons), and we get

N (η, xi, y, ni) = −Θν(η, xi, y, ni)
d ln fν0

d ln y
. (2.17)

In the case of non-relativistic neutrinos we have that ẋi and ẏ both depend on the
energy ε, which is defined as ε =

√
y2 + a2m2, where m is the neutrino mass. We then

get the evolution equation

Ṅ +
y

ε
i(nj · ki)N +

d ln fν0

d ln y

[
φ̇− ε

y
i(nj · ki)ψ

]
= 0. (2.18)
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In the relativistic limit, y/ε = 1, so the equation simplifies to the massless Boltzmann
equation. We can take moments of this equation and we finally end up with the set
below.

Ṅν0 = −yk
ε
Nν1 − φ̇

d ln fν0

d ln y

Ṅν1 =
yk

3ε
(Nν0 − 2Nν2)− εk

3y
ψ
d ln fν0

d ln y

Ṅνl =
yk

(2l + 1)ε

[
Nν(l−1) − (l + 1)Nν(l+1)

] (2.19)

2.5.2 Einstein equations

Now we will use the Einstein equation to derive evolutionary equations for the New-
tonian potential, Ψ, and the spatial curvature, Φ. We have already seen the Einstein
equation

Gµν = 8πGTµν ,

but now we will use the perturbed metric given in eq. (2.14) to get Gµν . First we
can get the Christoffel symbols using the same method we used for the homogeneous
universe and we get

Γ0
00 =

∂Ψ

∂t

Γ0
0i =

∂Ψ

∂xi
= ikiΨ

Γ0
ij = δija

2

[
H + 2H(Φ−Ψ) +

∂Φ

∂t

]
Γi00 =

iki

a2
Ψ

Γij0 = δij

(
H +

∂Φ

∂t

)
Γijk = iΦ [δijkk + δikkj − δjkki] .

(2.20)

We have written the equations in Fourier space to get rid of the spatial derivatives.
We can now construct the Ricci tensor and scalar, which have a lot of terms. The
time-time component of the Ricci tensor is

R00 = −3
d2a/dt2

a
− k2

a2
Ψ− 3

∂2Φ

∂t2
+ 3H

(
∂Ψ

∂t
− 2

∂Φ

∂t

)
,

and the space-space component is

Rij = δij

[(
2a2H2 + a

d2a

dt2

)
(1 + 2Φ− 2Ψ) + a2H

(
6
∂Φ

∂t
− ∂Ψ

∂t

)
+ a2∂

2Φ

∂t2
+ k2Φ

]
+ kikj (Φ + Ψ) .
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We can now find the Ricci scalar, R = gµνRµν . But we will only write the first-order
terms, which are a correction to the zero order Ricci scalar that we have already found.

δR = −12Ψ

(
H2 +

d2a/dt2

a

)
+

2k2

a2
Ψ +

∂2Φ

∂t2
− 6H

(
∂Ψ

∂t
− 4

∂Φ

∂t

)
+ 4

k2Φ

a2

Finally we are ready to construct the Einstein tensor. The time-time component is
given by

G0
0 = g00R00 −

R
2

and if we only look at the first-order terms we get

δG0
0 = 6H

∂Φ

∂t
+ 6ΨH2 + 2

k2Φ

a2
.

The time-time component of the energy-momentum tensor is the energy density of all
the components. To first order this is ρ(1 + δ) for baryons and dark matter, and it
is ρ(1 + 4Θ) for photons. If we only use the first-order terms again we get the first
evolution equation for Φ and Ψ,

−6H
∂Φ

∂t
+ 6ΨH2 + 2

k2Φ

a2
= 8πG [ρcdmδ + ρbδb + 4ργΘ0] .

For the second evolution equation we need to do something smart. We need to first
get the space-space component of the Einstein tensor Gij , and then contract it with a

projection operator, so we are left with only the traceless part of Gij . We then need

to do the same for the energy-momentum tensor. The traceless part of T ij is called
anisotropic stress, and is only affected by relativistic particles, so the second evolution
equation is then

k2 (Φ + Ψ) = −32πGa2ργΘ0,

where Θ0 is the monopole moment of the photon perturbations.
To sum up, the equations of evolution in out perturbed universe is

∂δ

∂t
+

1

a
ikv + 3

∂Φ

∂t
=0

∂vj

∂t
+
da/dt

a
vj +

1

a
ikΨ =0

∂δb

∂t
+

1

a
ikvb + 3

∂Φ

∂t
=0

∂vb

∂t
+
da/dt

a
vb +

1

a
ikΨ =

dτ

dt

4ργ
3ρb

[3iΘ1 + vb]

−6H
∂Φ

∂t
+ 6ΨH2 + 2

k2Φ

a2
=8πG [ρcdmδ + ρbδb + 4ργΘ0]

k2 (Φ + Ψ) =− 32πGa2ργΘ0

Θ̇ + ikµΘ + Ψ̇ + ikµΨ =− τ̇ [Θ0 −Θ + µvb]

Ṅ +
y

ε
i(nj · ki)N +

d ln fν0

d ln y

[
φ̇− ε

y
i(nj · ki)ψ

]
=0, (non− relativistic)

(2.21)
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where all the equations is written in Fourier space. Here we have also included the
perturbations to the photons, Θ.





CHAPTER 3

Simulations

Cosmological simulations have been done for as long as there were computers around
to do them. Of course in those early days in the 1960s, there were neither a lot of
computing power, nor any refined computational methods, so the simulations were
very basic. In the type of simulation we will focus on in this thesis, namely N-body
simulations, they would brute-force calculate the effect of gravity on every particle
from all the other particles, for each time step in the simulation. This takes a lot of
computing power, so they could only run the simulations with at most 100 particles in
a grid. But still, this was enough to get some indication of how galaxies form, or how
the cosmic medium evolves.

During the 70s and 80s there were a lot of advancements in both computational power
and methods, that made it possible to do more advanced simulations. For example,
algorithms were applied to cosmological N-body simulations that made them much
more efficient. So it became possible to run simulations with as much as 105 particles.

Cosmological simulations are mainly used to test the validity of cosmological models.
And in the 80s cosmologists realised that the simplest models were not enough to fully
explain the cosmic evolution. More physics was needed, and baryonic gas dynamics is
an example of new physics that was implemented. [4] and [11] are used to present the
algorithms that are included in simulations of structure formation.

3.1 N-body simulations

In this thesis we will need to use simulations to evolve the dark matter from a set of
initial conditions. We will see later how these initial conditions are created, but for now
we need to know that they are determined from a set of cosmological parameters and
come in the form of a grid of CDM particles. We will use tree-dimensional grids with
128 particles in each dimension. So we end up with 1283 particles in our simulations.
Each particle has a position and a velocity. The main purpose of the N-body code
is to find the acceleration of each particle, and then use the acceleration to move the
particles to the next time step. There are several different ways to do this, and we will
discuss the three most popular methods.
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3.1.1 PM algorithm

First we have the particle-mesh algorithm. In this algorithm we find the gravitational
potential in a grid in our simulation, and then use this potential to find the acceleration
of the particles. First we use the masses of the particles to get a density grid. The
easiest way to do this, is to move the mass of each particle to its nearest grid point.
This will also give the biggest errors, so a better way to get the density grid is to use
the Cloud-in-Cell (CIC) scheme, which distributes the mass of each particle to the eight
nearest grid points.

Once we have the density grid, we can use the Poisson equation to calculate the
gravitational potential.

∇2φ = 4πGρ (3.1)

We can Fourier transform this equation to remove the spacial derivatives, and we get

φ(k, t) = −4πG
ρ(k, t)

k2
, (3.2)

where φ and ρ are now Fourier transformed potential and density. Once we have the
potential φ, we can reverse Fourier transform, and use

g = −∇φ

to get the gravitational acceleration g.

3.1.2 3PM algorithm

The particle-particle/particle-mesh algorithm is an evolution of the PM algorithm,
where we use a direct summation of forces on a particle from other particles that are
close to the current particle. This method requires more computational power, but it
is still the preferred method. This is because the PM algorithm has a force resolution
limited to the grid, so if there are many particles close together, or even within the same
grid spacing, their forces will be inaccurately given by the PM algorithm. If we use
gravitational forces from individual particles within a few grid spacings, this problem
will be resolved.

3.1.3 Tree algorithm

In the tree algorithm we collect several particles into cells of a size s. If we, in the
point we are interested in, have that s/d < θ, where d is the distance to the cell, we
can treat all the particles in the cell as one large particle that lies in the center of mass
of the cell. Here θ is typically some number smaller than one. That is, if the cell is
much smaller than the distance from our point of interest to the cell, then we can treat
the cell as a single particle. And we can determine the accuracy by setting a value
for θ. This means that particles that are close, will still contribute individually to the
force calculation, as there is no cell small enough that it can encompass more than one
particle.
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3.1.4 Time evolution

Now that we have the gravitational acceleration of each particle, we can calculate the
forces and move the particles. To do this we need integrate a set of equations of motion

dx

dt
= v,

dv

dt
= g.

Here x is the position, v is the velocity and g is the acceleration. To solve these equations
numerically, and get new positions and velocities, we will need a numerical integrator.
There are many different algorithms that can do the job, and we will chose the leapfrog
scheme, (Hockney & Eastwood 1981)[10], which is a second order integrator.

xi+1 =xi + vi∆t+
1

2
gi∆t

2 (3.3)

vi+1 = vi +
1

2
(gi + gi+1) ∆t (3.4)

The subscript i indicates the time step and ∆t is the size of each time step. In the last
equation we note that we need the acceleration from the next time step. To make the
algorithm as effective as possible, we wait until the next time iteration to calculate the
updated velocities. This is fine to do, because we only need the updated positions to
get a new potential.

3.2 Initial conditions

To run simulations of structure formation we need to have a set of initial conditions to
start the simulation from. These initial conditions are determined by the cosmological
parameters and gaussian fluctuations set up by inflation. Initial conditions for the N-
body codes consists of particle positions and velocities. To generate initial conditions
we need to evolve the linearised Einstein and Boltzmann equations up to the time we
want to start our N-body simulation.

3.2.1 Particle distribution

Gaussian random field initial conditions [5] are based on the assumption that pertur-
bations to the matter density is small compared to the actual density, δ = δρ/ρ0 � 1.
We can then solve the equation for linear evolution of the CDM density perturbations

δ̈ + 3Hδ̇ − ∇
2φ

a2
= ∇2P

to get an expression for the perturbation as a function of a cosmological growth factor,
δ(t) = D(t)δ0. In this equation P is a pressure term. Now we can solve the Poisson
equation ∇2φ = δ, and get the gradient of the potential, ∇φ. Finally we can use this to
solve the geodesic equation and get particle positions, and velocities by the derivative
of the positions.

xi = x0 +D(t)∇φ, vi =
dD

dt
∇φ.





CHAPTER 4

Modifying the code

In this thesis we want to simulate structure formation on large scales in the universe,
using a ΛCDM model. We will use an already existing N-body code developed by Clau-
dio Llinares [15], which is based on the 3PM algorithm for calculating the gravitational
potential. We will add neutrinos to this code, and study the effect the neutrinos have
on formation of structure, via the power spectrum. Due to the higher thermal velocity
of the neutrinos, it can be a challenge to do full N-body simulations of neutrinos to-
gether with the CDM. This is because he neutrinos will form structure on larger scales
than the CDM. We will therefore look at two methods on how to implement neutrinos
into the N-body code.

4.1 The power spectrum

To analyse the results of simulations of structure formation, we use the power spectrum
of the density fluctuations of matter. The power spectrum P (k) is defined by

< δ(k)δ(k′) >= (2π)3P (k)δ3(k − k′), (4.1)

with units of (length)3. Here δ(k) is perturbations to the density field in Fourier space,
and the brackets indicates that they are averaged over the whole distribution. And δ3

is the Dirac delta function, which sets the restriction k = k′. P (k) is a measure of the
variance in the density distribution. Scales that have structure with densities much
higher or lower than the average density, will have a high power in P (k), and scales
with densities close to the average, will have low power.

4.2 Creating initial conditions

The initial conditions to the N-body code is created by the publicly available COS-
MICS package [6]. The lingers code is integrating the linear theory equations up to
the time the simulation is initiated, which is at z = 50. The Nine-Year Wilkinson Mi-
crowave Anisotropy Probe (WMAP9) data for a pure ΛCDM model [20] is used to get
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Cosmological parameters

ΩCDM 0.233
Ωb 0.0463
ΩΛ 0.721
H0 70.0 km/s/Mpc
σ8 0.81
TCMB 2.726 K
YHe 0.24
n 0.97

Table 4.1: Input parameters for the codes that create initial conditions for the N-body
code. Taken from WMAP9 [20].

the cosmological parameters. Lingers needs the parameters ΩCDM, Ωb, ΩΛ and Ων ,
which are density fractions of CDM, baryons, the cosmological constant and neutrinos
respectively. The initial conditions are generated for a ΛCDM model, so the neutrino
density fraction is set to zero. Lingers also needs the Hubble parameter for today H0,
the temperature of the cosmic microwave background TCMB and the fraction of baryons
that are helium YHe. The values are given in table (4.1). Lingers outputs the density
and velocity divergence for all the different components.

This output is used by grafic, which computes the positions and velocity of the cold
dark matter particles. In addition to the lingers output, grafic also takes as input
the spectral index n and the normalisation factor σ8. Next, the size of the simulation
box is set. The used value is 128 Mpc/h. How many particles are used in the simulation
is determined by an input file, and is set to 128 particles in each dimension. Lastly, the
grafic code needs a seed for a random number generator. This seed is used to create
gaussian distributed random numbers, used in the random density and displacement
fields in the output.

4.3 Method 1: Linear transfer functions

The first method on how to include neutrinos into the simulation was presented in [1].
It involves solving the Boltzmann equations in linear theory to get neutrino transfer
functions at regular time intervals in the simulation. The transfer functions are used to
make a neutrino density realisation at each time step in the simulation. The neutrino
density is then added to the CDM density grid, which is created in the normal way,
using particle mass and positions.
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Neutrino masses

Ων 0.013 0.025 0.05 0.15
Σmν 0.60 eV 1.14 eV 2.28 eV 6.85 eV

Table 4.2: Mass fractions and the sum of the masses for the three species of neutrinos
in electron volt (eV).

4.3.1 Implementation

Transfer functions

The first thing I did was acquire neutrino transfer functions. For this I used CAMB
[16], which is a code that solves the linearised Einstein and Boltzmann equations. In
the input file in CAMB I still use the WMAP9 parameters, but here I also include
neutrinos. The total number of neutrino species is set to 3.046, where 2.046 species
is massless and 1 is massive. The reason why the number of species is slightly over 3
is because at the time of decoupling, not all of the neutrinos decoupled at exactly the
same time. The electron neutrino decoupled a little later than the other two species,
which slightly raises the background neutrino temperature. I ran the code with four
different neutrino masses, presented in table (4.2). Because of what I assume is a bug
in the CAMB code, I could only get transfer functions for one redshift z, on each run.
For each of the masses, I wrote to a file the neutrino transfer functions for the redshifts
z = 55, 50, 45, 40, 35, 30, 25, 20, 15, 10, 8, 6, 4, 3, 2, 1 and 0.

Density grid

In a routine in the N-body code, I read the transfer functions into a two-dimensional
grid over the z and k values used by CAMB. I then used linear interpolation to get
values for the functions between those given in the grid.

I also read the file with random numbers created by grafic. They are needed to
get the correct density distribution. In the N-body code I ran a loop over all the grid
points, and for each point I found the density in Fourier space, using a realisation of
the power spectrum. The power spectrum is given as

P (k) = 2π2AkT (k, z)2, (4.2)

where A is a scale factor with the value A = 2.1 · 10−9. With the power spectrum and
the gaussian random numbers, I found the density.

δ(k) =
1√
2π
P (k)1/2W (4.3)

W is a matrix with the random numbers. The factor (2π)−1/2 comes from a normali-
sation in the Fourier transform. Next, I move the density grid around in the memory
to prepare for a backwards Fourier transform. I use the fast Fourier transform code
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Figure 4.1: Plot of a slice of the density grids of CDM and neutrinos at the start of the
simulation. The neutrino density fraction is Ων = 0.05.

fftw [18], to do the transforms. When I have the density in real space, it is added to
the density of the CDM particles.

The problem I had with this method is that the density is not distributed in the
same way for neutrinos and CDM, even though the same random numbers are used in
the generation of both. This is shown in figure (4.1).

4.4 Method 2: CDM diffusion

The second method consists of applying a damping routine to the already present
CDM density grid in the N-body code. This damping routine is a gaussian function
that will smooth out and damp the structure of the CDM grid. The damped grid will
simulate the effect of massive neutrinos, because their main effect is to suppress the
CDM perturbations on scales smaller than the horizon at the time the neutrinos went
from being relativistic to becoming non-relativistic.

4.4.1 Implementation

The damping routine can be applied in either real space or in Fourier space. In real
space the the density field is damped by

δν(x) =

∫ ∞
−∞

δ(x′)
e−(x−x′)2/2λ2

(2π)3/2λ3
dx′. (4.4)

Here δν and δ are the density perturbations for neutrinos and CDM respectively. λ is
the free streaming length, discussed in [13], which is given by

λ =
2π

0.0180Ω
1/2
m

(
1eV

mν

)1/2

Mpc/h, (4.5)
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where Ωm is the density fraction of matter and mν is the total neutrino mass in electron
volts. The background of neutrinos behaves like a collisionless fluid, so the neutrinos
propagate through space at the speed of their thermal velocity. The free streaming
length is the length which the neutrinos have propagated since decoupling. At early
times, when neutrinos were relativistic particles, their velocity was very close to the
speed of light. Therefore the free streaming length was equal to the Hubble radius.
After the neutrinos became non-relativistic, and during matter domination in the uni-
verse, the free streaming length increases slower than the expansion of the universe, so
the comoving free streaming length decrease. The comoving free streaming wavenum-
ber knr goes to a minimum at the time of transition from relativistic to non-relativistic
neutrinos. The free streaming length is defined as the wavelength that corresponds
to this wavenumber, λ = 2π/knr. The neutrinos will not form gravitationally bound
structure on scales smaller than this.

To implement equation (4.4) into the code, we need to discretise it.

δν(x, y, z) = Σbox
i,j,k=0δ(i, j, k)

e−(∆x2+∆y2+∆z2)/2λ2

(2π)3/2λ3
(4.6)

Here ∆x, ∆y and ∆z are the distance in Mpc in each spatial dimension from the grid
point (x, y, z) that the neutrino density is evaluated in, to the grid points (i, j, k) that
is summed over. The exponential function damps the contribution from the CDM
grid points that are far from the neutrino grid point being calculated. There are two
problems with this method. The first problem is that it takes too much time to do a
sum over the whole simulation box for each grid point. I therefore restricted it to a sum
over the three nearest neighbours in each dimension. This will cut off the exponential
function before it has had time to get to a sufficiently low value, as illustrated in figure
(4.2). This has the effect that the neutrino density grid will have smaller values than
if the whole box was used in the sum. As the figure illustrates, if the free streaming
length is smaller than the cutoff point in the sum, the majority of the exponential is
included in the sum, and this simplification will not be a problem. Figure (4.3) shows
the density grid for neutrinos with a free streaming length of 5 Mpc. The density is
both smoothed out and damped as we wanted, but the density fluctuations are always
negative, which might be because out sum over nearest neighbours is too small.

The other problem is that realistic values of the free streaming length is much larger
than the box in the simulation. Using equation (4.5), we find that for a total neutrino
mass of 1 eV, λ = 910 Mpc, which is five times as large as the box in the simulation.
The only thing to do here is using a smaller unphysical λ in the simulation. I have used
λ = 5, 10, 15, 20 and 40 in the simulation.
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i = 0 i = +3i = −3

λ

Figure 4.2: Illustration of how a sum over only a small portion of the simulation box
will affect the neutrino density.
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Figure 4.3: Plot of a slice of the density grids of CDM and neutrinos at the start of the
simulation. In the neutrino plot, the free streaming length used is 5 Mpc.



CHAPTER 5

Results

In this chapter results are presented for simulations with different parameters.
In the first plot, we test the code by running ΛCDM simulations, without neutrinos.

The mass of the CDM particles are decreased by by adding to the mass fraction of
the neutrinos, Ων , thereby decreasing ΩCDM. This is only done to decrease the CDM
mass, and neutrino physics are not added to the code. The effect of the decrease in
CDM mass can be seen in figure (5.1). Decreasing the mass of CDM particles will lower
the power spectrum uniformly on all scales. In the case where Ων = 0.15, the power
spectrum falls more steeply, which indicates that the CDM does not form structure as
well as expected.
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Figure 5.1: These power spectra are from simulations using only CDM, but for non-
zero Ων . In the simulation the CDM density fraction is given by ΩCDM =
Ωm − Ωb − Ων . Here Ων is varied to see the effect on the power spectrum.
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In the figures (5.2), (5.3), (5.4) and (5.5) we have plotted the ΛCDM+ν models
where we use transfer functions from CAMB to get the neutrino component. Figure
(5.2) shows the effect of neutrinos on the power spectrum, which is very small. I chose
to use Ων = 0, 05, which is equal to a total neutrino mass of mν = 2.28 eV, because this
is the largest realistic neutrino mass I have used in the simulations. In figure (5.2a), I
have also included the power spectrum for Ων = 0.05 from figure (5.1), to compare with
the simulation where neutrino physics are included. We see that for the simulation with
neutrino physics included, the power spectrum is damped toward the red line on small
scales, as we would expect. But figure (5.2b) shows that when the power spectrum
is rescaled to start at the same scale as the spectrum for the pure ΛCDM model, the
damping is not significant. Figures (5.3) and (5.4) further shows the neutrino effect for
different values of total neutrino mass (see table (4.2)). I chose the different masses
to get a good variation in the range of realistic total mass. I also included the mass
mν = 6.85 eV to see what would happen in a simulation with a mass that is too large
to be considered realistic. None of the simulations with different masses, except for
the simulation with Ων = 0.15, gives any noticeable damping on the power spectrum.
Figure (5.5) shows the relative difference in the power spectrum between simulations
with and without neutrinos, where the curve is a least squares fit. For Ων = 0.013 and
Ων = 0.15, it seems like the plots are dominated by noise, but for the two intermediate
mass fractions, there is a tendency towards smaller relative differences on small scales,
which is the opposite of what we expect.
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Figure 5.2: Plots of power spectra with and without neutrinos. The total neutrino mass
used is mν = 2.28 eV.
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Figure 5.3: Power spectra for ΛCDM+ν simulations.
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Figure 5.4: Comparison between ΛCDM and ΛCDM+ν for four total neutrino masses.
This is a continuation of figure (5.3), where the power spectrum for each
value of Ων are plotted independently for clarity.
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Figure 5.5: Relative difference between ΛCDM and ΛCDM+ν. The neutrino density
grid for these simulations are generated using linear transfer functions. The
blue line is fitted to the points using a least squares method.

In figure (5.6) and (5.7), we have plotted the power spectra for a ΛCDM+ν model,
using linear theory. The power spectrum are calculated with the formula

P (k) = 2π2AkTtotal(k)2, (5.1)

where A is a primordial scale factor that we have set to A = 2.1× 10−9, and Ttotal is a
linear combination of TCDM and Tν , using ΩCDM and Ων as weights.

Ttotal =
ΩCDM

ΩCDM + Ων
TCDM +

Ων

ΩCDM + Ων
Tν

The transfer functions for CDM and neutrinos were calculated by CAMB. The neutrino
density fractions we have used are Ων = 0.013, 0.025, 0.05 and 0.15. ΩCDM is given
as ΩCDM = Ωm − Ωb − Ων . The figures show the expected damping of P (k) on small
scales due to neutrinos.
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Figure 5.6: Power spectra calculated using linear theory with CAMB.
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Figure 5.7: Comparison between ΛCDM and ΛCDM+ν for four different total neutrino
masses. Plotted using linear transfer functions from CAMB.

Figure (5.8) shows a comparison between the power spectra from the N-body simu-
lations, plotted in figure (5.4) and the linear power spectra plotted directly from the
CAMB data. The non-linear spectra are rescaled to fit with their linear counterparts.
We see that the non-linear power spectra have more power than the linear theory.
And they stay at the same scales for all the different masses, whereas the linear power
spectra are damped more for larger neutrino masses.
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Figure 5.8: Comparison between linear and non-linear power spectra, for four total
neutrino masses. The non-linear power spectra are scaled to start at the
same value as the linear power spectra from CAMB.

In figures (5.9), (5.10) and (5.11) the method of diffusion of the CDM density field
in the simulations have been used to produce the plots. The neutrino free streaming
length (FS) is used as the variable that determines the mass of the neutrinos. But the
box in the simulations is only 128 Mpc/h long in each dimension, while a free streaming
length is about 900 Mpc. So because of computational limitations, we have to choose
free streaming lengths that are much smaller than what is realistic. For the simulations
I ran, I chose free streaming lengths of 5, 10, 15, 20 and 40 Mpc.

Figures (5.9) and (5.10) shows that for small free streaming lengths the power spec-
trum has a higher amplitude on all scales, and increasing the free streaming length
decreases the power until it is equal to the λCDM power spectrum. The reason for this
may be that the sum that adds up the neutrino density for each grid cell in the code, is
only over the three nearest neighbours in each direction. So, the sum is over a length
of 6 Mpc in the simulation box, which is to small to account for all the contributions
to the neutrino density in most of the simulations. The effect is that simulations with
a higher free streaming length will appear very similar.
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(b) This is the same plot as in figure (5.9a), but rescaled.

Figure 5.9: In these plots the method of CDM density diffusion to generate neutrinos
have been used in the simulations.
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Figure 5.10: This is a continuation of figure (5.9), where more free streaming lengths are
included. As the free streaming length is increased, the spectra converge
fast toward the power spectrum of the ΛCDM model.
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Figure (5.11) shows the relative difference between the the λCDM model and the
power spectra from figure (5.10). What all of these plots have in common, is that the
relative difference is always above zero. Which means that the neutrino power spectrum
is larger than the λCDM power spectrum for all scales and for all free streaming lengths.
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Figure 5.11: Relative difference between ΛCDM and ΛCDM+ν. The neutrino density
for these simulations are generated using diffusion of the CDM density.
The blue line is fitted to the points using a least squares method.

To sum up, neither of the two methods we have implemented seem to have the effect
on small scale structure formation that we would expect. For the neutrinos generated
with linear transfer functions, the problem was that the neutrino grid did not align with
the CDM grid in the code. It is likely that this was the cause for the power spectrum
not getting damped on small scales, as expected. For the other method, it is difficult
to work with free streaming lengths larger than the box size we are using.



CHAPTER 6

Conclusion

The goal of this thesis was to present a simple way to include neutrinos in N-body sim-
ulations, introduced in [1], and then include the method into an already existing code.
The chosen code was written by Claudio Llinares. The neutrinos were included into
the code using linear transfer functions from CAMB, by creating a density realisation
from the transfer functions. Another way of including neutrinos into the code was also
presented. It consisted of using a smoothing function on the CDM grid in the code
to represent neutrinos. This smoothed out grid can represent the neutrinos because
neutrinos free stream on scales smaller than the horizon at the time of transition from
relativistic to non-relativistic particles.

Due to some problems implementing these methods exactly, the results were not as
expected. As seen in figures (5.3) and (5.10), there are not much effect from neutrinos
on the power spectrum. This can be compared to the results presented in [1], where we
see that neutrinos are the source of a significant damping of the matter power spectrum.

The source of these unexpected results are likely the misalignment of the neutrino and
CDM density grids, as seen in figure (4.1). So, going from here, we need to investigate
why the neutrino grid and the CDM grid do not align. Another thing to do is increase
the size of the simulation to accommodate the large free streaming length.
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