
UNIVERSITY OF OSLO
Department of Informatics

Performance Evaluation
Of FileSystems
Compression Features

Master Thesis In the field of

Network and System Administration

Solomon Legesse

Oslo and Akerhus University College

(hioa) In collaboration with

University of Oslo (UiO)

May 20, 2014

1

Performance Evaluation Of FileSystems
Compression Features

Master Thesis In the field of

Network and System Administration

Solomon Legesse

Oslo and Akerhus University College (hioa) In collaboration with University of Oslo (UiO)

May 20, 2014

Abstract

The Linux operating system already provide a vast number of filesystems to
the user community. In general, having a filesystem that can provide scala-
bility, excellent performance and reliability is a requirement, especially in the
lights of the very large data size being utilized by most IT data centers. Re-
cently modern file systems has begun to include transparent compression as
main features in their design strategy. Transparent compression is the method
of compressing and decompressing data so that it takes relatively less space.
Transparent compression can also improve IO performance by reducing IO
traffic and seek distance and has a negative impact on performance only when
single-thread I/O latency is critical. Two of the newer filesystem technologies
that aim at addressing todays IO challenges are ZFS and Btrfs. Using high
speed transparent compression algorithms like LZ4 and LZO with Btrfs and
Zfs can greatly help to improve IO performance. The goal of this paper is
threefold. 1st, to evaluate the impact of transparent compression on perfor-
mance for Btrfs and ZFS, respectively. 2nd, to compare the two file system
compression feature on performance. Thirdly studying the performance be-
havior of a more traditional filesystem implementation, ext4 as an additional
reference point. The experiment is carried out by conducting an actual em-
pirical analysis, comparing the performance behavior of Btrfs and ZFS under
varying workload conditions, utilizing an identical hardware setup for all the
benchmarks. The results obtained from the Iozone benchmarking tool show a
large difference between Zfs and Btrfs compression feature performance. LZ4
compression option shows very high performance improvement on Zfs for
single disk set up for all record and file sizes while LZO compression option
shows no significant performance improvement on Btrfs for single disk set up.
The compression feature of both file system has shown better performance im-
provement for for raid disk set up.

Acknowledgements

All things came into being through Him, and apart from Him nothing came
into being that has come into being. John 1:3

My first and deepest gratitude goes to my beloved wife, Chachi Desalegn,
to my beloved son Samuel Solomon and my beloved daughter Jael Solomon.
You are my strength, my courage, and the love of my life. You gave me your
precious time so that I can follow my childhood dream, the dream of learning.
Chachi I would like to use this opportunity to express my sincere appreciation
to your selfless personality.

Im heartily thankful to my supervisor, Ismail Hassan, for his great support,
motivating discussions and encouragement. I also would like to extend my
deepest gratitude to my other instructors professor Kyrre Begnum and pro-
fessor Hårek Haugerud. Dear Kyrre, even though you didnt supervise me
directly in this project, your influence has been so enormous in shaping the
theme of this thesis and I also acquire the very basic and key principles and
advanced way of doing research and how to write a thesis from your wonder-
ful and high standard teachings.

A number of friends have contributed to the success of my academic and
nonacademic life in Norway. Iam always blessed in having wonderful friends
whose blessed heart imagine the success of others. My special thanks go to my
best friends Frezer Teklu, Neftalem Woldemariam, Addisu Tesfaye, Eskedar
Kefialew, Solomon Habtu, and my class mates. Thank you for being there for
me.

Last, but not least; it is an honor for me to express my deepest gratitude to
my parents for their special love and scarifies to their children. Dad and Mom
you are so much loving parents, Im very proud to have been raised in that
lovely family and always wonder how you able to create such strong bond
between us.

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Problem Statement . 9
1.3 Research Goals and Contributions 9
1.4 Thesis Outline . 10

2 Background and Related Works 11
2.1 Local Filesystems . 11

2.1.1 Architecture . 12
2.1.2 Filesystem Evolution . 13
2.1.3 File System Internals evolution 14

2.2 Zfs . 17
2.2.1 Storage Pool Model . 17
2.2.2 Dynamic Block Sizes . 17
2.2.3 Strong Data Integrity . 17
2.2.4 Integrated Software RAID 18
2.2.5 Copy-on-write transactional model 18
2.2.6 Compression . 19
2.2.7 Zfs Artechiture . 19
2.2.8 ZFS Block Allocation . 21
2.2.9 Arc . 22
2.2.10 TXG . 22

2.3 The Btrfs Filesystem . 22
2.3.1 Btrfs Design and Architecture 22
2.3.2 Dynamic Inode allocation 24
2.3.3 Compression . 24

2.4 IO Sub system and File System Workloads 25
2.4.1 IO Performnce . 25

2.5 Compression . 26
2.5.1 What is Transparent Data compression? 26
2.5.2 Standard lossless data compression corpora 28

2.6 Bench Marking Tools: Iozone . 28
2.7 Related Works . 30

3 Approach and Methodology 32
3.1 Experimental Setup . 33

3.1.1 Iozone benchmarking tool and options used 37

1

CONTENTS

3.1.2 Modeling and the Environment 40
3.1.3 Package Installation and Configuration 40
3.1.4 Expectation of this experiment 41

4 Results 43
4.1 Performance benchmarking test Results for Zfs Single Disk . . 43

4.1.1 Performance benchmarking test Results for Zfs Single
uncompressed . 43

4.1.2 Performance benchmarking test Results for Zfs Single
compressed . 47

4.2 Performance benchmarking test Results for Btrfs Single 49
4.2.1 Performance benchmarking test Results for Btrfs Single

uncompressed . 49
4.2.2 Performance benchmarking test Results for Btrfs Single

Compressed . 53
4.3 Performance benchmarking test Results for Zfs Raidz1 uncom-

pressed . 56
4.4 Performance benchmarking test Results for Zfs Raidz1 compressed 57
4.5 Performance benchmarking test Results for Btrfs Raid5 uncom-

pressed . 58
4.6 Performance benchmarking test Results for Btrfs Raid5 com-

pressed . 59
4.7 Performance benchmarking test Results for Ext4 Single uncom-

pressed . 60
4.8 Performance benchmarking test Results for Ext4 Raid5 uncom-

pressed . 61

5 Analysis 62
5.1 Zfs Compression vs default Comparison for Single Disk 64

5.1.1 Zfs Single Sequential Write Operations comparison . . . 67
5.1.2 Zfs Single Sequential Read Operations comparison . . . 68
5.1.3 Zfs Random Read Operations comparison 69
5.1.4 Zfs Random Write operations comparison 70

5.2 Btrfs Single Compression vs default Comparison 71
5.2.1 Btrfs Sequential Write Operations Comparison 75
5.2.2 Btrfs Sequential Read Operations Comparison 76
5.2.3 Btrfs Random Read Operations comparison 78
5.2.4 Btrfs Random Write Operations Comparison 79

5.3 Multi-thread VS Zfs Single compression resource utilization . . 80
5.3.1 CPU time Comparison 81
5.3.2 CPU utilization Comparison 82

5.4 Monitoring disk and CPU usage by Zfs Single Compression fea-
ture . 83
5.4.1 IOPS comparison . 83
5.4.2 Bandwidth utilization comparison 84
5.4.3 CPU usage comparison 85

5.5 Multi-threading Vs Btrfs Single compression feature 86

2

5.5.1 Cpu utilization Comparison 86
5.6 Monitoring disk and cpu usage by Btrfs Single Compression

feature . 86
5.6.1 Write and Read IOPS comparison 87
5.6.2 Bandwidth utilization comparison 88
5.6.3 CPU usage comparison 89

5.7 Performance Analysis for Zfs raidz1 90
5.8 Performance test Analysis for Btrfs Raid5 92
5.9 Zfs Compression Against Btrfs Compression Comparison . . . 94

5.9.1 Zfs Compression Against Btrfs Compression Compari-
son for Single Disk . 94

5.9.2 Impact of Compression on Zfs against Btrfs for Raid Disk 96
5.10 Performance benchmarking test Analysis for Ext4 97
5.11 DD Command File Write and Read Test Results 98
5.12 Linux kernel compile Test Analysis 98

6 Discussion 100

7 Conclussion 106
7.1 Summary of main findings . 106
7.2 Evaluation and FutureWork . 106

A Scripts full overview 111

B Supplementary graphs of benchmarking results 116

C Acronyms 126

List of Figures

2.1 Architectural view of linux filesystem components 12
2.2 Zfs Artechitecture . 20
2.3 Btrfs Btree Structure . 24
2.4 Lz4 Compressed Data Format . 27
2.5 Lz4 Uncompressed Stream Data Format 27

3.1 Summary of setup and Neccessary tools to be used 35

4.1 Sequential read/write operation for uncompressed Zfs Single 44
4.2 Sequential read/write operation for uncompressed Zfs Single per file

size . 44
4.3 Random read/write operation for uncompressed Zfs single 44
4.4 Random read/write operation for uncompressed Zfs Single per file size 45

3

LIST OF FIGURES

4.5 write/Read operation for uncompressed Zfs Single in boxplot 45
4.6 Boxplot values . 46
4.7 Sequential read/write operation for compressed Zfs Single 47
4.8 Sequential read/write operation for compressed Zfs Single per file size 47
4.9 Random read/write operation for compressed Zfs Single 48
4.10 Random read/write operation for compressed Zfs Single perfile size . 48
4.11 Sequential and Random write/Read operation for compressed Zfs in

boxplot . 48
4.12 Sequential read/write operation for uncompressed Btrfs Single . . . 49
4.13 Sequential read/write operation for uncompressed Btrfs Single per

file size . 50
4.14 Random read/write operation for uncompressed Btrfs Single 50
4.15 Random read/write operation for uncompressed Btrfs Single per file

size . 51
4.16 write/Read operation for uncompressed Btrfs in boxplot 51
4.17 Sequential read/write operation for compressed Btrfs Single 53
4.18 Sequential read/write operation for compressed Btrfs Single per file size 53
4.19 Random read/write operation for compressed Btrfs Single 54
4.20 Random read/write operation for compressed Btrfs Single per file size 54
4.21 Read/Write operation for compressed Btrfs in boxplot 55
4.22 Write/Read operation for uncompressed Zfs Raidz1 56
4.23 Write/Read operation for compressed Zfs Raidz1 57
4.24 Write/Read operation for uncompressed Btrfs Raid5 58
4.25 Write/Read operation for compressed Btrfs Raid5 59
4.26 Write/Read operation for uncompressed Ext4 Single 60
4.27 Write/Read operation for uncompressed Ext4 Raid5 61

5.1 Explanation of of statistical terms used in this thesis 63
5.2 Zfs single average throughput uncompressed 64
5.3 Zfs single average throughput compressed 65
5.4 Zfs single average throughput percentage of increase due to compres-

sion . 65
5.5 Zfs single standard error of mean comparison 66
5.6 Zfs Single Write Avg Throughput Comparison 67
5.7 Zfs Single write throughput standard error of mean comparison . . . 67
5.8 Zfs Single Read Average Throughput Comparison 68
5.9 Zfs Read throughput standard error of mean Comparison 68
5.10 Zfs Random Read Avg throughput Comparison 69
5.11 Zfs Random Read throughput standard error of mean Comparison . 70
5.12 zfs Random Write Avg throughput Comparison 70
5.13 zfs Random Write throughput standard error of mean Comparison . 71
5.14 Btrfs single disk uncompressed average Throughput 72
5.15 Btrfs single disk compressed average Throughput 72
5.16 Btrfs single average throughput Percentage of increase due to com-

pression . 73
5.17 Btrfs single disk comparison standard error of mean 73
5.18 Btrfs single disk Write Avg Throughput comparison 75

4

5.19 Btrfs single disk Write Throughput standard error of mean compari-
son . 75

5.20 Btrfs single disk Read Avg Throughput comparison 76
5.21 Btrfs Read Throughput standard error of mean comparison 77
5.22 Btrfs Random Read Avg Throughput comparison 78
5.23 Btrfs Random Read Throughput standard error of mean comparison 78
5.24 Btrfs Random Write Avg Throughput comparison 79
5.25 Btrfs Random Write Throughput standard error of mean comparison 80
5.26 CPU time comparison . 81
5.27 CPU utilization comparison . 82
5.28 Zfs IOPS comparison . 83
5.29 Zfs bandwidth utilization comparison 84
5.30 CPU Utilization Comparison . 85
5.31 cpu utilization Comparison(Comp Vs Ucomp) 86
5.32 Instant throughput Comparison(Comp Vs Ucomp) 87
5.33 Bandwidth utilization Comparison(Comp Vs Ucomp) 88
5.34 Cpu Utilization Comparison (Comp Vs Ucomp) 89
5.35 Average Throughput for Zfs Raidz1 90
5.36 Zfs Raidz1 average throughput percentage of increase due to com-

pression . 90
5.37 Standard error of mean comparison for Zfs Raidz1 91
5.38 Average Throughput for Btrfs Raid5 92
5.39 Average Throughput percentage of increase for Btrfs Raid5 due to

compression . 92
5.40 Standard error of mean Comparison for Btrfs Raid5 93
5.41 Impact of compression on Zfs against Btrfs for Single Disk 94
5.42 Impact of compression on Zfs against Btrfs for Raid Disk 96
5.43 Average Throughput Comparison for Btrfs Ext4 97
5.44 Standard error of mean Comparison for Btrfs Ext4 97
5.45 Average Throughput and Time elapsed Comparison for Btrfs Zfs . . 98
5.46 percentage increase in time to compile for Btrfs and Zfs 99

B.1 Boxplot for Zfs single Write Read result 117
B.2 Boxplot for Zfs single Rnwrite Rnread result 118
B.3 Boxplot for Btrfs single Write Read result 119
B.4 Boxplot for Btrfs single Rnwrite Rnread result 120
B.5 Btrfs Comparison for IOPS Requests 121
B.6 Zfs Comparison for IOPS Requests 121
B.7 Btrfs Compression Percentage of increase for single disk against multi

processe . 122
B.8 Btrfs Single WallTime per processes 122
B.9 Zfs Compression Percentage of increase for single disk against multi

processe . 123
B.10 Zfs Single WallTime per processes 123
B.11 Zfs Single WallTime per processes with Rnread 124
B.12 Btrfs Single Impact of Compression Comparison, CPU and Disk Usage 124
B.13 Zfs Single Impact of Compression Comparison, CPU and Disk Usage 125

5

LIST OF TABLES

List of Tables

3.1 Hardware Specifications . 36
3.2 Software Specifications . 36
3.3 Experimental Hard Disk Partition Layout 36
3.4 Bench Marking Tools . 37

5.1 Significant Performance Differences for Zfs Single compression
feature . 66

5.2 Significant Performance Differences for Btrfs Single compres-
sion feature . 74

5.3 Summary of Zfs Compression Comparison for Raid disks 91
5.4 Summary of Btrfs Compression Comparison for Raid disks . . . 93
5.5 Summary of impact of compression on Zfs against Btrfs for Sin-

gle Disk . 95
5.6 Summary of impact of compression on Zfs against Btrfs for Raid

Disk . 96

6

Chapter 1

Introduction

1.1 Motivation

A filesystem is the method and data structure that an operating system uses
to keep track of files on a disk or partition [1]. The desire to develop a better
performing filesystem is an issue that has been significant for decades.

Currently, the increase of data size in todays data centers makes it an even
more crucial topic that needs due consideration. In general, having a filesys-
tem that can provide scalability, excellent performance and reliability is a re-
quirement for modern computer systems.

Breaking IO performance bottleneck is one of the focus in the design of
the next generation file systems. According to moore‘s law [2] The computing
power of cpu and memory size of computers are better solved than the still
lagging disc IO throughput performance improvement. So the focus of todays
file system design is evolving around this crucial topic.

Recently modern file systems has began to include transparent compres-
sion as main features in their design strategy. Transparent compression is the
method of compressing and decompressing data so that it takes relatively less
space. So it increasing space utilization on hard discs. Transparent compres-
sion can also improve IO performance by reducing IO traffic and seek distance
and has a negative impact on performance only when single-thread I/O la-
tency is critical.

Using high speed transparent compression algorithms like LZ4 and LZO
with advanced next generation file systems like Btrfs and Zfs can greatly help
to improve IO performance and contribute for fast data consumption and re-
trieval in todays data oriented society who is fuled by internet, mobile com-
puting and social media applications.

7

1.1. MOTIVATION

Transparent compression can be done in fraction of seconds because of the
gigantic power of cpu now a days and it is applicable to include it as part of on
the fly operation in the file system. Over the years, the Linux operating system
has provided different kinds of filesystems, beginning with the well known
ext2, as its default base file system. More recent ones have added a variety of
features and functionality having their own strengths and shortcomings espe-
cially those affecting file system(IO) performance.

ZFS on linux is the most Recent file system ported to linux in 2013 from
free BSD which has the got the nick name the last word in file system [3]. It is
very highly scalable file system and almost fail free file system which makes it
to be highly reliable. ZFS is more than file system , it is actually designed to be
storage manager.

The Btrfs filestem was developed beginning in the year 2007. It provides ad-
ditional features over those in the ext4 file system. Btrfs was is designed to
deliver significant improvements in scalability, reliability, and ease of manage-
ment [4]. The Btrfs filesystem has built-in support for software RAID, includ-
ing balancing multiple devices and recovering from corruption. It also sup-
ports live resizing and device addition and removal [5], as well as transparent
compression, creation of snapshots and support for subvolumes.

The Ext4 filesystem was developed to addressing scalability, performance, and
reliability issues faced by ext3 [6]. It provides support for large size filesys-
tems and advanced features such as implementation of extents, delayed and
multi-block allocations (in order to prevent file fragmentation), and persistent
preallocation.

All these evolution and new development has been mostly in search of per-
formance among other things. The aim of this research is to undertake an I/O
performance investigation and comparison between ZFS on Linux, Btrfs with
respect to transparent compression. The impact of transparent compression
feature of both Zfs and Btrfs will be investigated on each filesystem and fur-
ther the impact will be compared to each other. It will examine their general
performance for a variety of tasks against compression feature.. It will also de-
termine if there is a performance impact associated with the added features of
compression and logical volume management which are part of ZFS on Linux
and Btrfs and available via separate software for ext4.

8

1.2. PROBLEM STATEMENT

1.2 Problem Statement

The research question described in this thesis is both investigation and com-
parison of the ZFS, Btrfs and , focusing on the following scenarios and ques-
tions:

• Does Real Time Transparent Compression In Filesystems improve IO
performance ?

• Does Compression Improve IO Performance In Zfs And Btrfs FileSys-
tems?

Performance: For this discussion, the term performance refers primarily to
I/O throughput of the filesystem.

Transparent Compression: built in feature that compresses every read/write
task on the fly transparently with out loss and with out the knowledge of the
user.

Impact or Effective: these are measurable values in Kb/s.

This problem statement has been chosen because of the current challenge fac-
ing I/O performance. Transparent Compression has now becoming our sav-
ior tool to achieve this goal. So the above scenarios will be dealt properly by
benchmarking the mentioned file systems with and without compression.

1.3 Research Goals and Contributions

Modern filesystems has come with excellent and advanced features like trans-
parent compression. This is highly reflected on Btrfs and Zfs linux filesystem.
Transparent compression is one of the latest innovation to be included as part
of next generation filesystems which need to be tested in order to know how
well it affects performance. LZ4 is a very fast lossless compression algorithm,
providing compression speed at 400 MB/s per core, scalable with multi-cores
CPU. It also features an extremely fast decoder, with speed in multiple GB/s
per core, typically reaching RAM speed limits on multi-core systems. LZO
also offers pretty fast compression and extremely fast decompression. There
fore lz4 and lzo are very good for real time or near-real time compression,
providing significant space saving at a very high speed and possibly positive
performance impact for some workloads. It is still under heavy development
and benchmarking and evaluation of this IO performance improviser is that
makes this project important. Finally the findings of this study will suggest
which record and file workloads are favourable to exploit the technology.

9

1.4. THESIS OUTLINE

1.4 Thesis Outline

This paper is organized in the following manner:-

The first chapter provides the motivation of the research paper and specify
research questions that needs to be addressed in this research paper.

The second chapter provides background information about filesystems in
general, detailed feature design and structure of Zfs, Btrfs and Ext4 filesystems
and also related works that have been done on benchmarking Zfs, Btrfs and
Ext4 filesystems.

The third chapter explains the experimental setup , hardware and software
specification as well as about the selected benchmarking tools.

The fourth chapter present results obtained from different benchmaking
tools used for this project.

The fifth chapter present analysis based on the result obtained form the
fourth chapter.

The six chapter present discussion based on the analysis obtained form the
fifth chapter.

The seventh chapter is dedicated for conclusion and suggestion for future
works.

10

Chapter 2

Background and Related Works

For better understanding of the subject matter The first part of chapter will
discuss background information about local filesystems, architecture, evolu-
tion and features in short. The next part of this sections will provide detailed
discussions of the features and design of the Zfs, Btrfs and Ext4 filesystems,
and the last section will describe filesystem performance benchmarking, tools
and finally related works.

2.1 Local Filesystems

Filesystems determine the way that the storage of data is organized on a disk.
Linux operating systems have different kinds of filesystems with features that
differentiate them from one another. Each type of filesystem has its own set
of rules for controlling the allocation of disk space to files and for associating
related data about each file (known as metadata) with that file. Metadata in-
cludes its filename, the directory in which it is located, its permissions and its
creation and modification dates[ref1].

For Linux operating system, the important aspects of a file system is how the
data is organised, e.g., in linked lists, i-nodes or B-trees, how many blocks there
are in a sector, caching and block size, to name a few examples. The users are
concerned with what files are, how they are protected and how they can be
used. For example a B-Tree is a data structure in the form of a balanced tree.
Balanced means that all leafs have the same distance from the root of the tree,
which makes data look ups efficien [7].

The flexibility of the Linux operating system in supporting multiple filesys-
tems arises from its implantation of abstraction in its low-level filesystem in-
terface. This is possible because the Virtual Filesystem Switch (VFS), a special
kernel interface level, defines a common, low-level model that can be used to
represent any particular filesystems features and operation [8] [13]. In addi-
tion to this abstraction of the lowest-level file operation from the underlying

11

2.1. LOCAL FILESYSTEMS

Figure 2.1: Architectural view of linux filesystem components

filesystem, the VFS also connects physical (block) devices to the actual filesys-
tems that are in use.

2.1.1 Architecture

Linux views all filesystems as a common set of objects, which are categorized
into four major parts. The first one is the superblock that describes the struc-
ture and maintains the state of filesystems. The second major object is the
Inode (short for index node) which contains metadata that is used to manage
objects and specify which operations are permitted on those objects. The third
object type is the directory entry (dentry), which represents a directory entry
as a single component of a path. The final major object is the file object, which
represents an open file associated with a process [8].

Superblock

The Superblock is a structure that represents a filesystem as a whole, together
with all required information that is necessary to manage the filesystem. This
information includes the name, size and state of the filesystem, a reference to
the underlying block device and filesystem metadata information.

Inode

An Inode is the data structure on disk that describes and stores a files at-
tributes, including its physical location on disk. Inodes are created at the initial
stage of filesystem creation. Historically, the number of Inodes equals the max-

12

2.1. LOCAL FILESYSTEMS

imum number of files of all types that can exist in a filesystem[9]. Inodes hold
information such as the type of file, its access permissions, its user and group
owner ids, the time of the most recent modification done to the file, the size of
the file and the disk address of the files data blocks. In general, Inodes store
all information about the file except the name. The filename is stored in the
directory where the file is located, together with the Inode number of the file.

2.1.2 Filesystem Evolution

The Berkeley Standard Distribution (BSD) fast filesystem is the traditional filesys-
tem used all but the earliest Unix systems. It was designed to address the per-
formance limitations of the original System V filesystem[9]. The BSD filesys-
tem supports filesystem block sizes of up to 64KB. Even though the increased
block size over System V improves performance, it will also creates internal
fragmentation as a result of wasted space. In order to tackle this problem, the
BSD filesystem additionally divides a single filesytem block into fragments,
and each block can be broken down in to two, four or eight fragments, which
can be addressed separately[9]. The BSD filesystem divides the filesystem par-
titions into cylinders groups, which are comprised of one or more consecutive
cylinders. Each cylinder groups will have a copy of the Superblock, a fraction
of the Inodes for the filesystem and data blocks, and the block map that de-
scribes available blocks in the cylinder group[9]. The Superblock is replicated
in each cylinder group for the purpose of redundancy. Since each cylinder
group contains a free block map, Inodes and blocks, together with the copy of
Superblock, the occurrence of data loss on some part of the disk will not affect
other cylinder groups that do not belong to the affected cylinder group. The
BSD filesystem directory structure is a linear list which contains a length field
and the file name whose length can be up to 255 bytes [10][16].

The major drawback of the BSD filesystem is its demand to perform filesystem
checking at every boot, which takes a long time. This slowness is intolerable,
especially with the huge storage devices of the current era.

The default Linux filesystem for many years was the Ext2 filesystem. Ext2
inherits most characteristics from BSD filesystem and makes changes to three
basic features. The first change is the elimination of fragments. The increase
in disk space and file size makes the demand of partitioning blocks into frag-
ments less important[10]. As a result, the Ext2 filesystem provides a single
allocation unit, the block size, for all allocations. The second change made by
Ext2 is its usage of fixed size blocks instead of cylinder groups to divide the
filesystem partition, since block size is more meaningful for newer hard disk
types. The third and basic change made with Ext2 is utilization of buffer cache
to store metadata until it is flushed to disk, in contrast to the BSD filesystem
which writes out metadata immediately to disk[?].

13

2.1. LOCAL FILESYSTEMS

The third extended file system (ext3) was a major advance in Linux file sys-
tems, even though its performance was less than some of its competitors. The
ext3 file system introduced the concept of journaling to improve the reliability
of the file system when the system is abruptly halted. And although compet-
ing file systems had better performance (such as Silicon Graphics’ XFS and
the IBM Journaled File System [JFS]), ext3 supported in-place upgrades from
systems already using ext2. Ext3 was introduced in November 2001 and im-
plemented by Stephen Tweedie.

Ext4 introduces numerous new advancements for performance, scalability, and
reliability. Most notably, ext4 supports file systems of 1 exabyte in size. Ext4
was implemented by a team of developers, led by Theodore Tso (the ext3 main-
tainer), and was introduced in the 2.6.19 kernel. It is now stable in the 2.6.28
kernel (as of December 2008).

Ext4 borrows many useful concepts from a variety of competing file systems.
For example, the extent approach to block management had been implemented
in JFS. Another block management-related feature (delayed allocation) was
implemented in both XFS and in Sun Microsystems’ ZFS.

Today, Ext4 is the default Linux lesystem for some common Linux distribu-
tions. As it is an in-place replacement for Ext3, older lesystems can seamlessly
be manages storage in extents. It uses an efcient tree-based index to repre-
sent les and directories. A write-ahead journal is used to ensure operation
atomicity. Checksumming is performed on the journal, but not on user data.
Snapshots are not supported internally, rather, the underlying volume man-
ager provides that functionality.

BTRFS is a Linux filesystem that has been adopted as the default filesystem
in some popular versions of Linux. It is based on copy-on-write, allowing for
efficient snapshots and clones. It uses B-trees as its main on-disk data struc-
ture. The design goal is to work well for many use cases and workloads. To
this end, much effort has been directed to maintaining even performance as the
filesystem ages, rather than trying to support a particular narrow benchmark
use-case. much effort has been directed to maintaining even performance as
the filesystem ages, rather than trying to support a particular narrow bench-
mark use-case.

2.1.3 File System Internals evolution

Some file systems, like ZFS and Btrfs, support multiple block sizes on the same
file systems. The advantage of using fix-sized blocks is that it is simple to im-
plement, but as the block is the smallest unit, space is wasted if they are not
used fully. The best block size depends on what type of data is going to be
stored on the file system, called the workload. This has to be known in ad-

14

2.1. LOCAL FILESYSTEMS

vanced in order to create a file system with the appropriate block size. If the
files are large, large blocks yield better performance. Because the file system
divide files in blocks, an important part of the file system is to keep track of
which blocks are free to store new data. To keep track of free and used blocks,
and which blocks belongs to which files, the file system use methods such as
allocating files blocks contiguously, as linked lists or using i-nodes.

A. Allocation Methods

Filesystems use different kinds of allocation methods to allocate disk blocks
for file storage. The type of allocation method selected and implemented in a
filesystem is one of the determining factors for its overall performance since
effective disk space utilization and quick access to a file depends on the space
allocation technique used by the filesystem [11]. In general, there are three
widely used allocation methods.

Contiguous Allocation

The contiguous allocation method requires a file to occupy a set of contigu-
ous blocks on the disk[11]. The location of a file is defined by the disk address
of the first block and the size of the file. Since all records are placed next to
each other, sequential access of a file is fast. Moreover, random access is also
fast as it only requires getting the starting block and size of a file, which is
stored in the directory entry, to locate it.

The difficulty encountered with this allocation method is finding space for
new file. Two common strategies, namely first fit and best fit, are used to select
an unallocated segment for the requested space of the new file [11]. The former
searches for a space until it finds one that is big enough to fulfil the require-
ment, while the latter searches for the smallest possible unallocated segment
or hole that is big enough to hold the required size. Even though these strate-
gies may help in locating the total amount of space needed for the new file,
preallocation is still a major issue. Since a file can grow from time to time,
the currently allocated space might end up being unable to fulfil the new size
requirement, causing the file to require relocation. This is detrimental to per-
formance and causes filesystem fragmentation.

Extent-based allocation

Extent-based allocation maintains all the advantages of contiguous allocation
techniques while at the same time provides a solution to prevent this problem.
Instead of allocating a single block, this technique initially allocate a contigu-
ous chunk of space (an extent) that can be enlarged by adding another chunk
of contiguous space as the demand arises. In extent based allocation, the loca-
tion of a files block is recorded as a location and a block count, plus a link to
the first block [11].

15

2.1. LOCAL FILESYSTEMS

Linked Allocation

The linked allocation technique uses a linked list of disk blocks for each file.
The directory entry for a file contains pointers to the first and last file blocks
[11]. Each data block uses 4 bytes of its space for a pointer to the next block of
the file. The the last block specifies an end-of-file value in this location. This
scheme is effective for sequential file access, but it does not support direct ac-
cess for a single block. Direct access is only possible if implemented with a
table which stores all pointers to a file.

This technique also has the advantage that it eliminates external fragmenta-
tion and allows files to increase size easily. Its greatest shortcoming is relia-
bility. Since disk blocks are linked by pointers, a problem occurring within a
single pointer can make all the remaining blocks in the chain inaccessible with-
out rebuilding the filesystem metadata.

Indexed Allocation

In this allocation method, an index block is allocated for each file that is
created. The index block of a file contains pointers to all of the data blocks
for that file, essentially an array of disk block addresses [11]. The directory
entry for the file contains a pointer to this index block. Indexed allocation sup-
ports both sequential and direct access. It eliminates the occurrence of external
fragmentation and also the problem of file growth exhibited by the contiguous
block allocation technique.

However, one of the shortcomings associated with this technique is the oc-
currence of internal fragmentation as a result of a free space wastage on index
blocks. The other issue is the the overhead associated with having an index
block, which is most significant for small files.

B. Transparent compression

Transparent compression is a way of providing automatic, on-the-fly data com-
pression for an entire filesystem without any user knowledge or intervention.
The major advantage of compression is saving disk space but it also can pro-
vide reduced disk I/O operations, which in turn leads to improvement in the
filesystems overall performance compared [12].

16

2.2. ZFS

2.2 Zfs

ZFS is a relatively new general purpose file system for the Solaris and OpenSo-
laris operating systems, developed to reduce the complexity of storage man-
agement.

The traditional standard file system on Solaris, UFS, has a fragmented set of
different tools for managing the file system, volume management, RAID and
monitoring. ZFS has two programs, with many sub-commands, to manage ev-
erything. This implies that ZFS offer more than the file system layer of a stor-
age system. ZFS is a 128-bit file system, which means that it has a maximum
data capacity of 256 quadrillion ZB(ZettaByte). Directories has a maximum of
256 trillion entries, and there are no limit on the number of files a file system
can store [3].

2.2.1 Storage Pool Model

ZFS does not use the concept of traditional volumes, but has its own model of
storage pools. A storage pool is a collection of storage devices, whose physi-
cal blocks are distributed to file systems, on request, in the form of virtual disk
blocks, analogous to the virtual memory abstraction. This means that one pool
can have several file systems attached, which can grow or shrink by virtue of
the virtual block concept.

2.2.2 Dynamic Block Sizes

ZFS supports dynamically changing block sizes in the range from 512 bytes
to 128 KBs[13]. Analogous to stem cells, ZFS divides all storage into so-called
meta-slabs. A slab consists of one or more pages of virtually contiguous mem-
ory carved up into equal-size chunks, with a reference count indicating how
many of those chunks have been allocated [14], and is used to allocate mem-
ory in the kernel of Solaris. These meta-slabs are divided into different-sized
blocks, and the most efficient block size for each file is calculated from its
length [15].

2.2.3 Strong Data Integrity

ZFSs solution to the silent data corruption problem is a combination of end-to-
end checksumming and self-healing. Every node in the internal data structure
store a 256-bit checksum of its child node, i.e., the integrity of the whole path
from the root of the tree to the node (each block has one) is verified when the

17

2.2. ZFS

data is checked for errors, which is done regularly.

Writes are atomic, copy-on-write, where blocks are not overwritten, but writ-
ten to a new location, followed by updating the pointer to the data only if the
write was successful[15]. If an error is detected, ZFS can heal itself by replacing
the bad block with a correct copy. The latter requires a setup with mirroring
using RAID-Z [16]. When data is updated, the checksums are updated through
the whole tree, up to the root.

2.2.4 Integrated Software RAID

ZFS has an integrated software RAID implementation called RAID-Z. RAIDZ
is a type of RAID 5 which provides striping with distributed parity bits.

ZFS also implements its own flavour of RAID 6, called RAID-Z2. RAID 6 is
similar to RAID 5, but has two parity schemes and is capable of losing two
devices without destroying the array[?].

The advantage that RAID-Z has over other hardware or software implemen-
tations is that its integration with ZFS mitigates the so-called write hole prob-
lem. The write hole is the case where an interruptiony causes inconsistencies
between the data in the RAID array and its parity bits, because two devices
cannot be updated atomically. ZFS solves the write hole problem by using dy-
namic stripe widths and never overwriting live data[17]. Conventional RAID
implementations use static stripe widths [18]. That the stripe width is static,
means that the data is written to the medium in equally sized chunks, and
the width cannot be changed in another way than recreating the array. This
also has the disadvantage that the slowest device set the performance limit.
Having dynamic stripe width makes ZFS able to scale the number of writes on
each device, eliminating the previous problem. ZFS can write any data block
anywhere, on any disk in the RAID-Z array, in dynamically sized blocks, and
use this to implement dynamic striping, by letting each block be its own stripe.
This makes every write to a RAID-Z a full stripe write, which in combination
with transactional copy-on-write eliminates the write hole problem [15] [17].
A full stripe write is also faster than a partial stripe write, because the parity
bits do not have to be read first, before the new bits can be computed [17].

2.2.5 Copy-on-write transactional model

The ZFS design represents a combination of a file system and a volume manager[3].
The file system commands require no concept of the underlying physical disks
(because of the storage pool virtualization). All of the high-level interactions
occur through the data management unit (DMU), a concept that is similar to

18

2.2. ZFS

a memory management unit (MMU) for disks instead of memory. All of the
transactions committed through the DMU are atomic, and therefore the data
is never left in an inconsistent state.

In addition to being a transaction-based file system, ZFS also performs copy-
on-write operations[19]. This implies that the blocks containing the data (that
is in use) on disk are never modified. The changed information is written to al-
ternate blocks, and the block pointer to the data in use is only moved once the
write transactions are completed. This scenario holds true all the way up the
file system block structure to the top block, which is labeled the uberblock[20].
In the case that the system encounters a power outage while processing a write
operation, no corruption occurs as the pointer to the good data is not moved
until the entire write operation completes. It has to be pointed out that the
pointer to the data is the only entity that is moved. This eliminates the need
for journaling or logging, as well as for an fsck or mirror resync when a ma-
chine reboots unexpectedly.

2.2.6 Compression

ZFS is built with the realization that in modern systems we typically have large
amounts of memory and CPU available, and we should be provided with the
means to put those resources to work[21]. Contrast this with the traditional
logic that compression slows things down, because we stop and compress the
data before flushing it out to disk, which takes time. Consider that in some
situations, you may have significantly faster CPU and Memory than you have
IO throughput, in which case it may in fact be faster to read and write com-
pressed data because your reducing the quanity of IO through the channel.so
compression isn’t just about saving disk space. ZFS uses variable block sizes
when compression is enabled so if a block of data is compressible, its com-
pressed.

2.2.7 Zfs Artechiture

Zfs artechiture consists the following units:

• The Data Management Unit (DMU) provides the object based storage
model. One interacts with the DMU to modify objects in a storage pool.

• The Dataset and Snapshot Layer (DSL) provides a wrapper for object sets
that enables clones and snapshots.

• The Adaptable Replacement Cache (ARC) provides the primary caching
layer in the ZFS stack.

19

2.2. ZFS

Figure 2.2: Zfs Artechitecture
.

20

2.2. ZFS

• The ZFS Input Output framework (ZIO) provides a pipeliend I/O frame
management framework for organizing the devices in a storage pool.

• The ZFS Attribute Processor (ZAP) provides a means of storing name
value entries in the DMU objects.

2.2.8 ZFS Block Allocation

Block allocation is central to any filesystem. It affects not only performance,
but also the administrative model (e.g. stripe configuration) and even some
core capabilities like transactional semantics, compression, and block sharing
between snapshots. So it’s important to get it right[20]. There are three com-
ponents to the block allocation policy in ZFS:

• Device selection (dynamic striping)

• Metaslab selection

• Block selection

By design, these three policies are independent and pluggable. They can be
changed at will without altering the on-disk format, which gives us lots of
flexibility.

The goal of device selection (dynamic striping) is to spread the load across
all devices in the pool so that we get maximum bandwidth without needing
any notion of stripe groups. This can be done in the fly in round-robin scheme
by switching from one device to the next every 512K works well for the current
generation of disk drives.

By dividing each device into a few hundred regions, called metaslabs, the one
with the most free space and with the most free bandwidth the metaslab selec-
tion algorithm is fulfilled.

Having selected a metaslab, we must choose a block within that metaslab.
The current allocation policy is a simple variation on first-fit. For keeping track
of free space in a metaslab is a new data structure called a space map.

Every filesystem must keep track of two basic things: where your data is, and
where the free space is. The most common way to represent free space is by
using a bitmap but this doest scale up well for Zfs. Another common way to
represent free space is with a B-tree of extents. An extent is a contiguous region
of free space described by two integers: offset and length. The B-tree sorts the
extents by offset so that contiguous space allocation is efficient.

Unfortunately, B-trees of extents suffer the same pathology as bitmaps when
confronted with random frees. ZFS divides the space on each virtual device
into a few hundred regions called metaslabs. Each metaslab has an associated

21

2.3. THE BTRFS FILESYSTEM

space map, which describes that metaslab’s free space. The space map is sim-
ply a log of allocations and frees, in time order.

2.2.9 Arc

The ARC (Adaptive Replacement Cache) improves file system and disk per-
formance, driving down overall system latency.

2.2.10 TXG

Transactions and Copy on Write are praised as being efficient in terms of frag-
mentation and data integrity. But this robustness comes with a cost in perfor-
mance. Every modication of a node in the tree results in all parent nodes up to
the top being modified. This means that even the slightest change in a single
node scales to involve all nodes in a tree walk up to the root. When the weak
performance of the disk speed is taken into account, this makes up a major
problem. To solve this ZFS uses Transactions Groups. A Transaction Group
is what ZFS commits to the disk. First when a Trans-action Group, TXG, is
committed, the actual changes are Written to disk

2.3 The Btrfs Filesystem

Btrfs (the name stand for b-tree filesystem) is a copy-on-write (COW) Linux
filesystem which is intended to address the lack of pooling, snapshots, check-
sums and integrated multi-device spanning in traditional Linux filesystems[5].
It has many features such as its support for snapshots of a live system, includ-
ing rollback to a previous state, its capability to perform offline conversion of
Ext3 and Ext4 filesystems, online block device addition and removal, and on-
line volume growth and shrinking. Btrfs is designed to solve the problem of
scalability that often occurs with large and fast storage[22]. As a 64-bit filesys-
tem, Btrfs addresses up to 16 exabytes (16,384 petabytes), both in terms of the
maximum volume size and the maximum file size[23].

2.3.1 Btrfs Design and Architecture

Btrfs uses b-trees to store generic objects of varying data types in a single, uni-
fied data structure. A b-tree is a tree data structure that allows tree nodes (also
known as leaves) to have more than 2 child nodes. B-trees are designed for
performance, and perform perations like searching, insertion and deletion in

22

2.3. THE BTRFS FILESYSTEM

logarithmic time.

Inside the b-tree, root nodes consists of two fields: the key, which holds infor-
mation about the item contained in the leaves of a tree, and the block pointer,
which provides information about the disk location of the next node or leaf in
the b-tree[4].

Btrfs uses three types of on-disk structures, namely block headers, keys and
items. The block header contains information about the block, including a
checksum for the block contents, the universal unique identification (UUID)
of the filesystem that owns the block, the level of the block in the tree, and the
block number where this block is supposed to live.

Leaves of the tree hold the item and data fields, they grow toward one an-
other. Items are combinations of keys and data, where the offset and size field
of the item indicates the location of the item in the leaf. This way of storing the
key with the data makes efficient use of space compared to the usual way of
storing of only one kind of data in any given filesystem block[?].

Items are sorted by their 136-bit key, which groups related items together via
a shared key prefix (and thus automatically optimizes the filesystem for large
read and write operations). Small files can be stored directly in the tree leaves,
while large files are allocated by extents. This technique both lowers the over-
head and reduces fragmentation[4].

A key is divided into three chunks, which are the object id, type and offset
fields. Each object in the filesystem has an object id, which is allocated dynam-
ically on creation. The object id field allows all items for a given filesystem
object to be logically grouped together in the b-tree. The offset field of the key
stores the byte offset for a particular item in the object. The type field indicates
the type of data stored in the item[24].

Btrfs component b-trees

A newly-created Btrfs filesystem contains five types of b-trees[23], as illus-
trated in Figure 2.2:

• The tree of root trees b-tree keeps track of the location of all the roots of
the filesystem b-trees. It serves as a directory for all other tree roots.

• The extent tree holds information about extents allocated for the filesys-
tem.

• The filesystem tree which contains the files and directory information.

• The chunk tree holds information about chunks of the device that are
allocated and the type of data they hold.

• The checksum tree checksums of all data extents within the filesystem.

23

2.3. THE BTRFS FILESYSTEM

Figure 2.3: Btrfs Btree Structure

The Btrfs filesystem Superblock contains two pointers. The first pointer points
to the tree of root trees, and the second pointer points to the chunk tree, which
is responsible for device management[24]. Btrfs Inodes are stored in struct
Btrfs Inode item. The Btrfs Inodes store the traditional Inode data for files
and directories (as returned by the stat system call). The Btrfs Inode structure
is relatively small, and does not contain any embedded file data or extended
attribute data[4].

2.3.2 Dynamic Inode allocation

When creating the filesystem, only a few Inodes are established, rather than
creating all Inodes that will ever exist at the very beginning. Based on the ac-
tual filesystem use, additional Inodes are created and allocated, which is suit-
able for data de-/compression in real-time. This means favoring speed over
the best possible compression ratio.

2.3.3 Compression

Compression is implemented at the extent level. Btrfs implements transpar-
ent compression with two kinds of compression schemes, LZo and Zlib, with

24

2.4. IO SUB SYSTEM AND FILE SYSTEM WORKLOADS

Zlib being the default method[25]. This feature can be turned on at the mount
option, and any new writes will be compressed. Moreover, Btrfs automati-
cally identifies what should and should not be compressed to make this feature
more efficient[26]. Both LZo and Zlib are of a lossless compression technique,
i.e the original data can be recovered exactly from its compressed data coun-
terpart.

• Lempel-Ziv-Oberhumer (LZO) compression is a data compression library
that is suitable for data de-/compression in real time, and it which favours
speed over compression ratio. It is a block compression algorithm that
compresses a block of data into matches (using a sliding dictionary) and
runs of non-matching literals[26]. Unlike Zlib, LZo supports a number
of algorithms.

• The Zlib compression library provides in-memory compression and de-
compression functions, including integrity checks of the uncompressed
data. It supports DEFLATE algorithm that provides good compression
on a wide variety of data with minimal use of system resources[27].

2.4 IO Sub system and File System Workloads

The IO subsystem is the vital component of an operating system over which
the filesystem is governing the layout of data and retrieval of the data from[28].
Performance is sometimes highly dependent of the Io subsystem on which case
such IO activity is called IO bound. The Most known IO subsystem is hard disc
which is managed by block level access abstraction through either SCSI or IDE
controller channel. The access operations can be either read, write or seek. One
of the primary goals of file system design is to hide the slow speed of the disk
using techniques such as caching, prefetching, and delayed write-back.

2.4.1 IO Performnce

IO performance is important factor and several mechanisms are devised to
increase the performance[29] . Some of which are the following:

• Load balancing and striping

• Buffering and Caching

• Data Compression

• Using Comcurrency using DMA

• Increase IO size and Rate

25

2.5. COMPRESSION

2.5 Compression

Compression is the new tool to Increase IO subsystem performance by directly
affecting the size of data bound to IO channel. This will decrease the disc seek
time by reducing amount of data sent to disc. Hence the write and read oper-
ations rate will increase directly.

2.5.1 What is Transparent Data compression?

Data compression, the process of encoding digital information using fewer bits
[30]. In data compression, transparency is the ideal result of lossy data com-
pression. If a lossy compressed result is perceptually indistinguishable from
the uncompressed input, then the compression can be declared to be transpar-
ent. In other words, transparency is the situation where compression artifacts
are nonexistent or imperceptible. It is commonly used to describe compressed
data bitrates. All lossless data compression methods are transparent, by na-
ture.

Types of Compression Techniques

The two new transparent compression techniques are LZO and LZ4

What is LZO ?

LempelZivOberhumer (LZO) is a lossless data compression algorithm that is
focused on decompression speed. The LZO library implements a number of
algorithms with the following characteristics [26]:

• Compression is comparable in speed to DEFLATE compression(LZ77 al-
gorithm and Huffman coding)

• Very fast decompression Requires an additional buffer during compres-
sion (of size 8 kB or 64 kB, depending on compression level).

• Requires no additional memory for decompression other than the source
and destination buffers.

• Allows the user to adjust the balance between compression ratio and
compression speed, without affecting the speed of decompression.

LZO supports overlapping compression and in-place decompression. It is a
block compression algorithmit compresses and decompresses a block of data.
Block size must be the same for compression and decompression. LZO com-
presses a block of data into matches (a sliding dictionary) and runs of non-
matching literals to produce good results on highly redundant data and deals

26

2.5. COMPRESSION

Figure 2.4: Lz4 Compressed Data Format

Figure 2.5: Lz4 Uncompressed Stream Data Format

acceptably with non-compressible data, only expanding incompressible data
by a maximum of 1/64 of the original size when measured over a block size of
at least 1 kB.

What is LZ4 ?

LZ4 is a very fast lossless compression algorithm, providing compression speed
at 400 MB/s per core, scalable with multi-cores CPU [31] [32]. It also features
an extremely fast decoder, with speed in multiple GB/s per core, typically
reaching RAM speed limits on multi-core systems. LZ4 was also implemented
natively in the Linux Kernel 3.11. The BSD implementation of the ZFS filesys-
tem supports the LZ4 algorithm for on-the-fly compression.

Compressed Data Format
the format below describes the content of an LZ4 compressed block [33]. But
a file, or a stream, of arbitrary size, may consist of several blocks. Combining
several blocks together is the scope of another layer, with its own format.

27

2.6. BENCH MARKING TOOLS: IOZONE

2.5.2 Standard lossless data compression corpora

Silesia compression corpus

The intention of the Silesia corpus is to provide a data set of files that covers the
typical data types used nowadays for researchers in the universal lossless data
compression field. The sizes of the files are between 6 MB and 51 MB [34]. The
chosen files are of different types and come from several sources. Nowadays
the two fastest growing types of data are multimedia and databases. The for-
mer are typically compressed with lossy methods so we do not include them
in the corpus. The database files, osdb, sao, nci, come from three different
fields. The first one is a sample database from an open source project that is
intended to be used as a standard, free database benchmark. The second one,
sao, is one of the astronomical star catalogues. This is a binary database com-
posed of records of complex structure. The last one, nci, is a part of the chem-
ical database of structures. The sizes of computer programs are also growing
rapidly. The projects are composed of hundreds or thousands files, so it is a
common habit to compress it all together. We often can achieve a better com-
pression ratio if we compress a concatenated file of similar contents than the
small separate ones. This trend is reflected in including a samba file. Besides
the source codes, there is also a need to store the executables. There are also
types of images that cannot be compressed loosely,the medical images. The
standard corpora contain text files.

2.6 Bench Marking Tools: Iozone

I. The choice of Iozone:

In general, IOzone has the following especial features and advantageous com-
pare to the other available benchmarking tools. And, that is why it is chosen
to benchmark file system. It works for all types of file systems (local, network,
and distributed file systems)[35].

• It is easy to use and it works under many platforms (or operating sys-
tems)

• which includes Linux and Windows.

• It assumes its execution is bottlenecked by storage devices to avoid the

• significant effect of CPU speed and RAM size specifications.

• It is Compatible for very large file sizes.

• It is Compatible for multi-process measurement.

28

2.6. BENCH MARKING TOOLS: IOZONE

• It is Compatible for both single and multiple stream measurement.

• It is Compatible for POSIX Asynchronous I/O

• It is Compatible for POSIX Threads, or Pthreads.

• Its I/O Latency plots feature.

• Its processor cache size configurable feature.

• Excel importable output for graph generation feature.

• Compared to bonnie++, IOzone has more features and generates more
detailed outputs than the common read and write speeds. It measures
many file systems operations (files I/O performance), like: read, write,
re-read, re-write, read backwards, read strided, fread, fwrite, random
read/write,

II. Installing Iozone:

It is also possible to install IOzone on the Linux command line by typing:

$ apt-get install iozone3

Since the file system benchmarking result is highly influenced by the size of
the systems buffer cache, before running IOzone one need to know the follow-
ing requirments [35]:

I. For accuracy the max size of the file going to be tested should be bigger
than buffer cache. If the buffer cache is dynamic or confusing to know its size,
make the max file size bigger than the total physical memory which is in the
platform [35]

II. Unless the max file size is set very smaller than the buffer cache, you must
see at least the following three plateaus:

• File size fits in processor cache.

• File size fits in buffer cache.

• File size is bigger than buffer cache.

III. Use -g option to set the maximum file size value. Refer manual page of
IOzone command (man iozone) for more information.

IOzone Command Line Options:
For simple start use the automatic mode:

$ apt-get install $ iozone -a

-a Run in automatic mode; it generates output that

covers all tested file operations for

record sizes of 4k to 16M for file sizes of 64KB to 512MB.

29

2.7. RELATED WORKS

-b filename

Iozone will create a binary file format file in Excel compatible

output of results.

-e

Include flush in the timing calculations.

-f filename

Used to specify the filename for the temporary file under test.

-g #

Set maximum file size (in Kbytes) for auto mode.

-i #

Used to specify which tests to run. (0=write/rewrite,

1=read/reread, 2=random-read/write

3=Read-backwards, 4=Re-write-record, 5=stride-read,

6=fwrite/re-fwrite, 7=fread/Re-fread,

8=random mix, 9=pwrite/Re-pwrite, 10=pread/Re-pread,

11=pwritev/Re-pwritev, 12=preadv/Re-preadv).

-s Sets file size in KB for the test. It also accepts MB and GB

which needs to be explicitly specified

-R Generate Excel report.

2.7 Related Works

Jan Kara and co-workers [36] undertook a comparative study of the Btrfs,
Ext4,XFS and Ext3 filesystems. The experiment was performed on a two-core
CPU in a single SATA drive running the 2.6.29 Kernel and with a RAID sys-
tem. They made the performance comparison without including any of the
features that makes Btrfs unique except that of the copy-on-write feature. One
of the results of the test performed on a single SATA drive shows that Btrfs
takes 10 percent less time than Ext4 to perform the task of creating 30 kernel
trees. Another test on similar setup, reading 6400 files within a directory, Btrfs
shows better results than that of Ext4, although it was not as good as XFS. The
third test done on the single disk setup shows that Btrfs outperforms Ext4 in
a 100 thread synchronous writing of 100 files. They also reported that, in the
RAID setup experiment, turning on the copy-on-write feature of Btrfs causes
the performance to degrade; with a test of random writes using 16 threads us-
ing the default copy-on-write feature of Btrfs, Ext4 outperformed Btrfs .

Dominique A. Heger [37] made a performance comparison among the Btrfs,
ZFS and Ext4 filesystems by using the Flexible FileSystem Benchmark(FFSB)
IO benchmarking set. The experiment was done on both a single disk and a
RAID setup consisting of 8 Seagate driver with (Linux kernel 2.6.30). One of
the major findings was that the Ext4 filesystem outperforms the others on the
sequential read and mixed workloads for the single disk. Ext4 showed sim-
ilar performance results with that of Btrfs for the sequential read, sequential
write, random read/write and mixed tests conducted. The paper also stated
that conducting the test with the nodatacow and nodatasum features of Btrfs,

30

2.7. RELATED WORKS

which turn off COW and data checksums, gained only a small improvement
on the achieved throughput.

Meaza Taye [38] has also under took a general comparative study of Btrfs and
ext4 filesystem in which Compression feature on Btrfs was taken into account
to see it performance impact on Btrfs eventhough ext4 has no compression
feature yet enabled. In her study she both used synthetic and real world ap-
plication benchmarking tools. In addition the logical volume management
features of btrfs with Ext4 in combination with Linux LVM were compared.
The result of the study shows that a large difference between Btrfs and Ext4
for synthetic tests performed where as the real application tests shows more
or less the same result. The other interesting result from her test is the impact
of compression feature on btrfs filesystem where compression has significant
performance impact on btrfs operation.

Sakis Kasampalis [39] in his study of copy On Write Based File Systems Per-
formance Analysis And Implementation specifically on the two most known
file systems Btrfs and zfs where he used one application emulator for emu-
lating macro-benchmarks, Filebench, one trace/workload generator, IOzone,
and two micro-benchmarks, bonnie-64 and Bonnie++ on both single disk and
mirrored raid by using the default mount option this means that in ZFS meta-
data are compressed and data are uncompressed, In Btrfs, both data and meta-
data are uncompressed has tried to get some analysis. The performance anal-
ysis between ZFS and Btrfs has shown the strengths and weaknesses of each
file system. Because of its simplicity and tight integration with GNU/Linux,
Btrfs performs better than ZFS on single disk systems when the caches are by-
passed, and as soon as it becomes stable, it seems to be the right choice for all
but metadata creation intensive applications on single disks. Btrfs should also
be the preferred choice for NFS file servers and applications which rely on cre-
ating, reading, and randomly appending files. Note that all these apply only
when the caches are bypassed. When the caches are utilised, ZFS seems to
outperforms Btrfs in most cases, but he cannot make any conclusions since in
his micro-benchmark tests he bypassed the caches. ZFS is the right choice for
both single disks and mirroring for applications which use exclusively 64 KB
buffering. he believes that when the caches are utilised, ZFS can outperform
Btrfs no matter the size of the buffers. ZFS is also more scalable than Btrfs,
which means that it is more appropriate to use it on mail servers, database
servers, and applications that require synchronous semantics (fsync).

31

Chapter 3

Approach and Methodology

The operationalization of the problem statement stated above needs to inves-
tigated the impact of transparent compression on IO performance of Zfs and
Btrfs file systems under a variety of tasks or different loads and further com-
pare the impact between two file systems namely Zfs and Btrfs. The impact of
compression will be more investigated if the set up could include both single
disk and raid.
In order to attain the best possible result out of this approach the following
approaches are followed

• Single disk setup (for both default and compression mount options).

• Software Raid5 setup (for both default and compression mount options).

• Using Ext4 filsystem for single and raid5 disk with out compression
as baseline reference to measure how much improvement the modern
filesystems has shown.

• Using better benchmarking tool (iozone and additional tools) to simulate
different loads and benchmark the performance.

• Collecting data: while the benchmarking tools are running on a specific
disk or raid, output data will be collected using log files and iostata com-
mand and other scripts. To increase the predictability of the experiment
each experiment will be repeated a number of times as necessary.

• Analysing: Finally r studio and Microsoft Excel will be used to anal-
yse the data mainly the Average out put and its distribution in the form
of standard deviation and standard error of mean. To perform the I/O
throughput performance comparison, one should use a filesystem bench-
marking tool that is capable of showing how both filesystems perform
under different work load. Basically there are two options:

– real application

– synthetic benchmarking tools

32

3.1. EXPERIMENTAL SETUP

Real applications are more advantageous to use, especially if it is the
type of application that is intended to be used with the filesystem since
this will imitate the exact situation in the real environment. However,
the problem associated with this type of benchmarking is the difficulty
of finding such a representative real application [40].

The second alternative is using synthetic benchmark tools that are de-
signed to simulate different workloads. Synthetic benchmarks are mostly
flexible and have different parameters that can be adjusted for specific
requirements. However, the problem with synthetic benchmarks is that
they do not measure any real work. For example, the synthetic bench-
mark might add overhead that does not exist in a real application. On
the other hand, a real application might incur overhead not modelled in
the benchmark [40]. Wasim Ahmad Bhat et al. [41] specify that the ideal
benchmark for file and storage systems combines the ease of use of syn-
thetic benchmarks with the representativeness of real workloads.

Combining both Synthetic and real application benchmarking for filesys-
tem I/O throughput measurements will produce a more representative
result rather than solely depending on either of the two types of bench-
marking tools. This project implements both synthetic benchmarking
tool Iozone as well as real application tests by file and Directory read-
/write tests .

Even though performance is a broader concept, file system performance
measurement is mainly about how fast the file system is able to write
and read. Accordingly and as per the description of the problem state-
ment above, the general performance of Zfs and Btrfs will be measured
against compression feature. The plan is to measure read/write speed
using a benchmarking tool under varying loads (i.e. different file sizes
and record lengths).

3.1 Experimental Setup

According to the plan of the approach above The experiment set is di-
vided into the following main types.
1. first the setup is divided according to the three filesystem.
2. Then the setup has single and raid disk setup again which will give us
a total of six set ups.
3. Next is test of performance with compression and and with out com-
pression which will make the number of setup ten.

4. Then it is intended to study performance by scaling up file size and
record size which will make the total number of variables to be studied

33

3.1. EXPERIMENTAL SETUP

at this point to be 20 different variables.

5. Finally in total for the above ten set up 30 file sizes and 40 record
sizes will be studied.
6. For these 30 files and and 40 records four write and read operations
will be taken and becomes 160 record operations and 120 file operations.

7. Totally from the above 10 setup 280 write and read operations will
be investigated individually.
The above seven procedures will be repeated for:

– Iozone file and record scalablity test.

– Iozone throughput mode for process scalablity

– Iostat disk and cpu monitoring test

But studying the impact of compression on record and file size is not
enough. The impact of compression on throughput as the number of
thread increases is necessary to investigate the relationship b/n Com-
pression and cpu usage. So for one file and one record size when the
number of thread scales from one to five will be studied. Which means
ten Iozone throughput commands will be run and data will be collected.

Additional 5 dd commands and 5 linux compile commands will be run
to see additional impact of compression other than iozone one file copy
and compiling time as alternative approach to iozone. Depending one
kind of tool to bench mark will mislead the result. So additional 20 com-
mands will be run.

Finally a number commands and data collection scripts will be used,
around 38 scripts will be used to get result for the necessary tests men-
tioned above.

In the plan of data collection procedure, mainly MS excel will be used
to collect the sample data for the two kind of iozone commands, one for
the record and file combination and the other for throughput.

Last but not least of the approach and setup chapter is how the disk
and file system configuration looks likes. First 5 benchmarking disks of
73GB size are available for this experiment. The first step is to prepare
the disks for single disk setup. Then all the three filesystem will be con-
figured first with out compression and all the planed commands will be
run. Next to umount the default option of the file system and mount the
compression option and do all the tests again.

Then the disks has to be configured for raid set up and the above tests
has to be repeated again for both compression and default mount op-
tions.

34

3.1. EXPERIMENTAL SETUP

Figure 3.1: Summary of setup and Neccessary tools to be used
.

The Benchmarking is to be taken under different conditions and using number
of options.
The overall hardware specifications and the topology of the file systems used
in the process of the experiment are stated in this chapter.
The experiment is organized according to the type of conditions sets in the
benchmarking process. The IOzone options used are discussed in this chapter.
Finally, the Perl scripts used in the process of benchmarking and data collec-
tions are discussed

The experiments were conducted on a Dell PowerEdge 2850 Rack Mount Chas-
sis Server with 64bits two dual-core Intel(R) Xeon(TM) CPU with a clock speed
of 3.00GHz each, 16KB L1 Cache, 2MB L2 Cache and 3GB SDDR2 memory. The
Ubuntu 13.10 Operating system was used with kernel 3.11 The system contains
six hard disks one with 146GB(10k rpm) and the rest 73GB(15k rpm). The first
hard disk (sdb) is used only to host the operating system while the other hard
disks (sdc, sdd, sde, sdf and sdg) are used entirely for the experiment. The
following table shows details about the hardware and software environments
used for the experimental setup.

35

3.1. EXPERIMENTAL SETUP

Device-Component Model
Computer PowerEdge 2850
Cpu 2 Intelxeon CPU 3.00GHZ
L1 and L2 cache 16KiB and 2MiB
Memory 3GiB DDR2
System HDD 146GB scsi disc 15rpm
Benchmarked HDD Benchmarked HDD 5 73GB scsi discs 10rpm

Table 3.1: Hardware Specifications
Name Version
Ubuntu 13.10 Kernel 3.11
Ext4 Rw
Btrfs Rw, lzo, Btrfs v0.20-rc1
ZfsonLinux Rw lz4
Iozone v.397

Table 3.2: Software Specifications
Disc 0 146GB /dev/sdb Os, Ext4
Disc 1 73 GB /dev/sdc Zfs, Btrfs, Ext4
Disc 2 73 GB /dev/sdd Zfs, Btrfs, Ext4
Disc 3 73 GB /dev/sde Zfs, Btrfs, Ext4
Disc 4 73 GB /dev/sdf Zfs, Btrfs, Ext4
Disc 5 73 GB /dev/sdg Zfs, Btrfs, Ext4

Table 3.3: Experimental Hard Disk Partition Layout

36

3.1. EXPERIMENTAL SETUP

The following subsections discuss the selected benchmarking tools and
necessary commands used for this project in detail.

Iozone IOstat DD Command COMPILE
Records, File size
and Process Scal-
ing

cpu and disk us-
age monitoring

time and
throughput

compiling time

Table 3.4: Bench Marking Tools

A. Combined file sizes with record sizes:
Iozone is used to test the I/O throughput for sequential read, sequential write
and re-write, random read and random write test types. All of the selected
test types are executed with record sizes of 256K to 2048K and file sizes of
4GB, 8GB and 16GB. These tests are done for a single disc as well as for raid
disc of both filesystems with and with out Compression mount options.

B. Throughput test using iozone t:
By increasing the number of threads from one to five and see the effect of mul-
tithreaded processes on the compression efficiency and see cpu utilization as
well.

C. Iostat:
To measure IOPS, CPU and disk usage while running Iozone benchmark
D. Using DD command to simulate big file read/write tests
File copy operations are used to perform sequential read and write test by
reading and writing an 6GB file

E. Compiling linux 3.14 kernel:
This will enable us to measure of the impact of compression on the big linux
kernel directory reading. F. APerl script is designed to Automate the bench-
marking process.

3.1.1 Iozone benchmarking tool and options used

According to the target of this project the suitable Iozone command options
are used to get the following two benchmarking conditions

1. Running Iozone in semi automatic mode to scale up the needed individ-
ual record lengths and file sizes for the different Read/write combinations.

2. Running Iozone in throughput mode to investigate the impact of compres-
sion on throughput when the number of processes scaled through one to five
threads.

IOzone is discussed in the last section,the default or automatic mode uses 13

37

3.1. EXPERIMENTAL SETUP

record sizes from 4KB to 16MB (which is 4, 8, 16 . . . 8192, and 16384 in KB)
for each file size test from 64KB to 512MB (which is 64, 128, 256, 512 . . .
262144, 524288 in KB). Again, it measures write, rewrite, read, reread, random
read, random write, etc. . . in total 13 different measures; and so 13 outputs
for each combination of record size and file size. This is one of the very inter-
esting features of IOzone if one would like to test a file system in many aspects.

In the experiment in the fulfillment of Type 1 condition above, one standard or
common IOzone command will be used in all benchmarking tests which has
file sizes of 4GB, 8GB and 16Gb and record sizes of 256KB, 512KB for read/re-
read and write/re-write performance as it is described above. The first com-
mon IOzone command to be used is:

iozone -a -i 0 -i 1 -i 2 -r 256 -r 512 -r 1024 -r 2048 -s 4g -s 8g

-s 16g

the following script is used to run the command

#!/usr/bin/perl

mkfs.btrfs /dev/sdg

mkdir btrfs_single_uncomp

mount /dev/sdg /btrfs_single_uncomp/

touch btrfs_single_uncompressed

for ($i=0; $i <= 5; $i++) {

system(" iozone -a -i 0 -i 1 -i 2 -r 256 -r 512 -r 1024 -r 2048

-s 4g -s 8g -s 16g -f /mnt/test >> out_put$i ");

}

iozone -i 0 -i 1 -i 2 -+u -l 1 -u 5 -r 2048 -s 8g \

-F /btrfs_single_uncomp/thrpt1

/btrfs_single_uncomp/thrpt2 /btrfs_single_uncomp/thrpt3 \

/btrfs_single_uncomp/thrpt4

/btrfs_single_uncomp/thrpt5

umount /btrfs_single_uncomp

mkdir btrfs_single_comp

mount -o compress=lzo /dev/sdg /btrfs_single_comp/

mount-o compress=lzo /dev/sdg /btrfstestcompress

iozone -a -i 0 -i 1 -i 2 -r 256 -r 512 -r 1024 -r 2048 -s 4g -s 8g \

-s 16g -f /btrfstest/btrfs_single_compressed$i

iozone -i 0 -i 1 -i 2 -+u -l 1 -u 5 -r 2048 -s 8g \

-F /btrfs_single_comp/thrpt1

/btrfs_single_comp/thrpt2 /btrfs_single_comp/thrpt3 \

/btrfs_single_comp/thrpt4 /btrfs_single_comp/thrpt5

umount /btrfs_single_comp

mkfs.btrfs -f -m raid5 -d raid5 /dev/sdd1 /dev/sde1 /dev/sdf1

mkdir /btrfsraid5comp

mount -o compress=lzo /dev/sdd1 /btrfsraid5comp/

38

3.1. EXPERIMENTAL SETUP

mkdir /btrfs_raid5_compressed

touch btrfs_raid5_compfile

./iozone_test.pl&

The iostat command:

#! /usr/bin/perl

system(" iostat -c -d -x -t -m /dev/sdg 1 >> iostat.out& ");

system(" iozone -i 0 -i 1 -i 2 -r 128k -s 6g -f /mnt/test >> \

iozone_out");

For experiment Type 2 another common IOzone command in throughput mode
was used for a single 8GB file size by scaling thread size from 1 to 5 for record
size of 2048KB . The second IOzone common command to be used in experi-
ment type 2 is:

iozone -i 0 -i 1 -i 2 -+u -l 1 -u 5 -r 2048 -s 8g -F /mnt/test1

/mnt/test2 /mnt/test3 /mnt/test4 /mnt/test5 >>throughput_out

data collection script

grep "Avg" single_zfs_disk_ucomp_throughput >> \

single_zfs_disk_ucomp_throughputAvg

grep "CPU" single_zfs_disk_ucomp_throughput >> \

single_zfs_disk_ucomp_throughputcpu

grep "Avg" single_zfs_disk_compr_throughput >> \

single_zfs_disk_compr_throughputAvg

1599 grep "CPU" single_zfs_disk_compr_throughput >> \

single_zfs_disk_compr_throughputcpu

grep "Avg" raidz1_zfs_ucomp_throughput >> raidz1_zfs_ucomp_throughputAvg

grep "CPU" raidz1_zfs_ucomp_throughput >> raidz1_zfs_ucomp_throughputcpu

grep "Avg" raidz1_zfs_comp_throughput >> raidz1_zfs_comp_throughputAvg

grep "CPU" raidz1_zfs_comp_throughput >> raidz1_zfs_comp_throughputcpu

less iostatdataset2all.out |grep sdc >> iostatdataset2IOPS

less iostatdataset1all.out |grep sdc >>iostatdataset1IOPS

Large file copy script

dd if=/dev/zero of=speetest2 bs=128k count=46875 conv=fdatasync

dd if=speetest2 of=/dev/null bs=128k

Linux kernel compile script

wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.14.tar.xz

cd linux-3.11.0/

echo "Clean"; make clean >/dev/null 2>&1 ;

echo "Defconfig"; make defconfig >/dev/null 2>&1 ;

echo "Build"; time (make >/dev/null 2>&1);

39

3.1. EXPERIMENTAL SETUP

3.1.2 Modeling and the Environment

The state of the system during the benchmarking process can have a signif-
icant impact on the obtained result of the benchmark. Traeger et al[9] states
that some of the major factors that can affect results are cache state, filesystem
ageing and non-essential processes running during the benchmarking process.

To avoid cache impact of filestems in the Iozone benchmark test, mounting
and unmounting of the tested filesystem is done for every consecutive tests.
Similarly for file and directory read/write tests and also for the compression
tests, a reboot is performed. Both filesystems are mounted by their respec-
tive default mount option except for compression tests, which require enabling
compression feature. Moreover, all non-essential process are stopped during
the test.

Repetitions for the various test were performed as follows:

The selected test types of Iozone are repeated six times on both single disk
and volumes and the average is taken

3.1.3 Package Installation and Configuration

Installing the Btrfs filesystem

The latest version of the file system is used

apt-get install btrfs-tools

Creating btrfs File Systems:

mkfs.btrfs /dev/sdg

Btrfs file system detail:

btrfs filesystem show /dev/sdg

Label: none uuid: 9438fad3-e12f-4b54-a56f-35206a6d6487

Total devices 1 FS bytes used 28.00KB

devid 1 size 68.37GB used 2.04GB path /dev/sdg

Btrfs v0.20-rc1

Mounting btrfs File Systems

mount /dev/sdg /btrfstest

Detail of the mount point

btrfs filesystem df /btrfstest

Data: total=8.00MB, used=0.00

System, DUP: total=8.00MB, used=4.00KB

System: total=4.00MB, used=0.00

Metadata, DUP: total=1.00GB, used=24.00KB

Metadata: total=8.00MB, used=0.00

40

3.1. EXPERIMENTAL SETUP

Using Compression With btrfs

mount -o compress=lzo /dev/sdg /btrfstest

Installing the Zfs file system

Installing zfs on ubuntu 13.10

steps

1. apt-add-repository –yes ppa:zfs-native/stable

2. apt-get update

3. apt-get install ubuntu-zfs

Formating Zfs filesystem

Zpool create f tank /dev/sdc

zfs create tank1/datasetuncomp

zfs create tank1/datasetcomp

zfs set compression=lz4 tank1/datasetcomp

zpool create tank1 raidz1 /dev/sdd1 /dev/sde1 /dev/sdf1

zfs create -o compression=lz4 tank1/datasetcompred

zpool status

pool: tank

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

/dev/sdc ONLINE 0 0 0

zfs create -o mountpoint=/tank/dataset1
zfs set compression=lz4 tank/dataset1
zfs list

NAME USED AVAIL REFER MOUNTPOINT

tank 11.7G 55.3G 32K /tank

tank/dataset1 11.5G 55.3G 11.5G /tank/dataset1

tank/dataset2 206M 55.3G 206M /tank/dataset2

3.1.4 Expectation of this experiment

From this experiment result and analysis the obtained data will be expected to
answer the following questions:

41

3.1. EXPERIMENTAL SETUP

• How is the performance of Zfs is affected when compression is applied
varying the record size and the file size for both sequential and random
read/write operations.

• How is the performance of Btrfs is affected when compression is applied
varying the record size and the file size for both sequential and random
read/write operations.

• How is the impact of compression on Zfs and Btrfs when compared.

42

Chapter 4

Results

The performance impact of compression on Btrfs and Zfs has been measured
and investigated according to the criterias discussed in Chapter 3. A lot of
benchmarking tests under different conditions were taken and results have
been collected.
Every benchmarking tests are iterated a number of times so as to evaluate and
interpret the results (sample outputs) as correctly as possible using statistical
calculations (like: average or mean, outliers, standard deviation, max, min,
median, confidence interval, standard error of mean, etc of the raw outputs).
Box plot and MS Excel are used for the statistical calculations and graphs of
the sample outputs of each benchmarking test results.

4.1 Performance benchmarking test Results for Zfs Sin-
gle Disk

This section presents the results obtained from sequential read/write and ran-
dom read/write tests of Iozone. The results are the output of 6 runs and are
plotted below.

For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.
The graphs below show both sequential and random operations performance
of a single zfs disk for uncompressed and compressed features.
Here the Y axis represents the amount of kilobytes read or written to disk in
thousands. The X axis represents the number of iterations. Excel graphs (line
and bar graphs) are used to show the pattern of the raw data values.

4.1.1 Performance benchmarking test Results for Zfs Single uncom-
pressed

43

4.1. PERFORMANCE BENCHMARKING TEST RESULTS FOR ZFS SINGLE
DISK

Figure 4.1: Sequential read/write operation for uncompressed Zfs Single

Figure 4.2: Sequential read/write operation for uncompressed Zfs Single per file size
.

Figure 4.3: Random read/write operation for uncompressed Zfs single
.

44

4.1. PERFORMANCE BENCHMARKING TEST RESULTS FOR ZFS SINGLE
DISK

Figure 4.4: Random read/write operation for uncompressed Zfs Single per file size
.

Figure 4.5: write/Read operation for uncompressed Zfs Single in boxplot
.

45

4.1. PERFORMANCE BENCHMARKING TEST RESULTS FOR ZFS SINGLE
DISK

The boxplot presentation needs some explanation. Here the Y axis repre-
sents the amount of kilobytes read or written to disk in thousands and The X
axis represents the variables from V1 to V12.
These variables are represents the four records multiplied by three files which
has 12 combinations.
256, 512, 1024 and 2048 records times 4, 8, and 16 GB file sizes. There are four
boxes from left to right. The first box is sequential write, the second is sequen-
tial read, the third is random read and the fourth is random write. Boxplot

Figure 4.6: Boxplot values
.

shows where the 25, 50, and 75 percent quartiles of the values are concen-
trated plus the data min, max, and outliers if any. Outliers are values in the
data which are very distant from the rest of the data.

46

4.1. PERFORMANCE BENCHMARKING TEST RESULTS FOR ZFS SINGLE
DISK

4.1.2 Performance benchmarking test Results for Zfs Single com-
pressed

Figure 4.7: Sequential read/write operation for compressed Zfs Single
.

Figure 4.8: Sequential read/write operation for compressed Zfs Single per file size

47

4.1. PERFORMANCE BENCHMARKING TEST RESULTS FOR ZFS SINGLE
DISK

Figure 4.9: Random read/write operation for compressed Zfs Single

Figure 4.10: Random read/write operation for compressed Zfs Single perfile size

Figure 4.11: Sequential and Random write/Read operation for compressed Zfs in
boxplot
.

48

4.2. PERFORMANCE BENCHMARKING TEST RESULTS FOR BTRFS
SINGLE

4.2 Performance benchmarking test Results for Btrfs Sin-
gle

This section presents the results obtained from sequential read/write and ran-
dom read/write tests of Iozone. The results are the output of 6 runs and are
plotted below.
For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.
The graphs below show both sequential and random operations performance
of a single Btrfs disk for uncompressed and compressed features.
Here the Y axis represents the amount of kilobytes read or written to disk in
thousands. The X axis represents the number of iterations. Excel graphs (line
and bar graphs) are used to show the pattern of the raw data values.

4.2.1 Performance benchmarking test Results for Btrfs Single un-
compressed

Figure 4.12: Sequential read/write operation for uncompressed Btrfs Single

49

4.2. PERFORMANCE BENCHMARKING TEST RESULTS FOR BTRFS
SINGLE

Figure 4.13: Sequential read/write operation for uncompressed Btrfs Single per file
size

Figure 4.14: Random read/write operation for uncompressed Btrfs Single

50

4.2. PERFORMANCE BENCHMARKING TEST RESULTS FOR BTRFS
SINGLE

Figure 4.15: Random read/write operation for uncompressed Btrfs Single per file
size

Figure 4.16: write/Read operation for uncompressed Btrfs in boxplot

51

4.2. PERFORMANCE BENCHMARKING TEST RESULTS FOR BTRFS
SINGLE

The boxplot presentation needs some explanation. Here the Y axis repre-
sents the amount of kilobytes read or written to disk in thousands and The X
axis represents the variables from V1 to V12.
These variables are represents the four records multiplied by three files which
has 12 combinations.
256, 512, 1024 and 2048 records times 4, 8, and 16 GB file sizes. There are four
boxes from left to right. The first box is sequential write, the second is sequen-
tial read, the third is random read and the fourth is random write.

52

4.2. PERFORMANCE BENCHMARKING TEST RESULTS FOR BTRFS
SINGLE

4.2.2 Performance benchmarking test Results for Btrfs Single Com-
pressed

Figure 4.17: Sequential read/write operation for compressed Btrfs Single

Figure 4.18: Sequential read/write operation for compressed Btrfs Single per file size

53

4.2. PERFORMANCE BENCHMARKING TEST RESULTS FOR BTRFS
SINGLE

Figure 4.19: Random read/write operation for compressed Btrfs Single

Figure 4.20: Random read/write operation for compressed Btrfs Single per file size

54

4.2. PERFORMANCE BENCHMARKING TEST RESULTS FOR BTRFS
SINGLE

Figure 4.21: Read/Write operation for compressed Btrfs in boxplot

55

4.3. PERFORMANCE BENCHMARKING TEST RESULTS FOR ZFS RAIDZ1
UNCOMPRESSED

4.3 Performance benchmarking test Results for Zfs Raidz1
uncompressed

This section presents the results obtained from sequential read/write and ran-
dom read/write tests of Iozone. The results are the output of 6 runs and are
plotted below.
For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.
The graphs below show both sequential and random operations performance
of a Raidz1 zfs disk for uncompressed features.

Here the Y axis represents the amount of kilobytes read or written to disk
in thousands. The X axis represents the number of iterations. Excel graphs
(line and bar graphs) are used to show the pattern of the raw data values.

Figure 4.22: Write/Read operation for uncompressed Zfs Raidz1

56

4.4. PERFORMANCE BENCHMARKING TEST RESULTS FOR ZFS RAIDZ1
COMPRESSED

4.4 Performance benchmarking test Results for Zfs Raidz1
compressed

This section presents the results obtained from sequential read/write and ran-
dom read/write tests of Iozone. The results are the output of 6 runs and are
plotted below.
For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.
The graphs below show both sequential and random operations performance
of a Raidz1 zfs disk for compressed features.

Here the Y axis represents the amount of kilobytes read or written to disk
in thousands. The X axis represents the number of iterations. Excel graphs
(line and bar graphs) are used to show the pattern of the raw data values.

Figure 4.23: Write/Read operation for compressed Zfs Raidz1

57

4.5. PERFORMANCE BENCHMARKING TEST RESULTS FOR BTRFS
RAID5 UNCOMPRESSED

4.5 Performance benchmarking test Results for Btrfs Raid5
uncompressed

This section presents the results obtained from sequential read/write and ran-
dom read/write tests of Iozone. The results are the output of 6 runs and are
plotted below.
For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.
The graphs below show both sequential and random operations performance
of a Btrfs Raid5 disk for uncompressed features.

Here the Y axis represents the amount of kilobytes read or written to disk
in thousands. The X axis represents the number of iterations. Excel graphs
(line and bar graphs) are used to show the pattern of the raw data values.

Figure 4.24: Write/Read operation for uncompressed Btrfs Raid5

58

4.6. PERFORMANCE BENCHMARKING TEST RESULTS FOR BTRFS
RAID5 COMPRESSED

4.6 Performance benchmarking test Results for Btrfs Raid5
compressed

This section presents the results obtained from sequential read/write and ran-
dom read/write tests of Iozone. The results are the output of 6 runs and are
plotted below.
For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.
The graphs below show both sequential and random operations performance
of a Btrfs Raid5 disk for compressed features.

Here the Y axis represents the amount of kilobytes read or written to disk
in thousands. The X axis represents the number of iterations. Excel graphs
(line and bar graphs) are used to show the pattern of the raw data values.

Figure 4.25: Write/Read operation for compressed Btrfs Raid5

59

4.7. PERFORMANCE BENCHMARKING TEST RESULTS FOR EXT4
SINGLE UNCOMPRESSED

4.7 Performance benchmarking test Results for Ext4 Sin-
gle uncompressed

This section presents the results obtained from sequential read/write and ran-
dom read/write tests of Iozone. The results are the output of 6 runs and are
plotted below.
For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.
The graphs below show both sequential and random operations performance
of a Ext4 single disk for uncompressed features.

Here the Y axis represents the amount of kilobytes read or written to disk
in thousands. The X axis represents the number of iterations. Excel graphs
(line and bar graphs) are used to show the pattern of the raw data values.

Figure 4.26: Write/Read operation for uncompressed Ext4 Single

60

4.8. PERFORMANCE BENCHMARKING TEST RESULTS FOR EXT4 RAID5
UNCOMPRESSED

4.8 Performance benchmarking test Results for Ext4 Raid5
uncompressed

This section presents the results obtained from sequential read/write and ran-
dom read/write tests of Iozone. The results are the output of 6 runs and are
plotted below.
For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.
The graphs below show both sequential and random operations performance
of a Ext4 Raid5 disk for uncompressed features.

Here the Y axis represents the amount of kilobytes read or written to disk
in thousands. The X axis represents the number of iterations. Excel graphs
(line and bar graphs) are used to show the pattern of the raw data values.

Figure 4.27: Write/Read operation for uncompressed Ext4 Raid5

61

Chapter 5

Analysis

This chapter presents the analysis of the results of the various tests described
in the previous chapter.
The main purpose of this research is to investigate the performance impact
of compression feature on zfs and btrfs file systems. The benchmarking and
result collection are already done in the previous chapter.
Boxplots and MS Excel line and bar graphs are used to show the results. The
three types of graphs used to express results are all important as they all give
different kind of information about the samples collected.
These are line graph to show the how the data look like at every single point
and its trend, boxplot to show general summary of the whole data (like min,
max, median and the 25, 50, and 75 percent quartiles of the raw data plus the
outliers if any), and bargraphs to compare single values of different data (like
to compare average, min, max, STDEV, MEM, CONF, etc. . .).

62

Figure 5.1: Explanation of of statistical terms used in this thesis

63

5.1. ZFS COMPRESSION VS DEFAULT COMPARISON FOR SINGLE DISK

5.1 Zfs Compression vs default Comparison for Single
Disk

For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.

The two graphs below show both sequential and random operations per-
formance of a single zfs disk for both compressed and uncompressed features.
The performance of both features are very much different, and there is signifi-
cant difference on the achieved average throughput.
The tables summarize the performance differences between the default and
compression feature for the Zfs single disk file systems tests
The noted differences in performance run across all record sizes and file sizes
unless explicitly stated otherwise. The calculation is taken as the percentage
of increase of the mean Performance of Compression feature against default
feature for table.

Figure 5.2: Zfs single average throughput uncompressed

64

5.1. ZFS COMPRESSION VS DEFAULT COMPARISON FOR SINGLE DISK

Figure 5.3: Zfs single average throughput compressed

Figure 5.4: Zfs single average throughput percentage of increase due to compression

65

5.1. ZFS COMPRESSION VS DEFAULT COMPARISON FOR SINGLE DISK

Figure 5.5: Zfs single standard error of mean comparison

Test Avg Through-
put with SEM
Increase

Disk usage In-
crease by IOPS
and

Cpu usage In-
crease by SYS,
IOWAIT, IDLE

Sequential Write 900%, high SEM
for lower record
2300%

-91%, -30% 940%, -66%, -52%

Sequential Read 600%, 700% -29%, -43% 1600%, -74%, -
37%

RandomRead 100%, 200%,
600%, 1200%
per Record and
400%, 500%,
700% per File and
500% SEM

-87%, -5% 124%, -5%, 0%

RandomWrite 900%, 1400% -82%, -22% 1160%, -63%, -
62%

Table 5.1: Significant Performance Differences for Zfs Single compression fea-
ture

66

5.1. ZFS COMPRESSION VS DEFAULT COMPARISON FOR SINGLE DISK

5.1.1 Zfs Single Sequential Write Operations comparison

Figure 5.6: Zfs Single Write Avg Throughput Comparison

Figure 5.7: Zfs Single write throughput standard error of mean comparison

As can be seen from figures 5.2, 5.3, 5.4, 5.5, 5.6 and finally from table 5.1 in
the analysis section the impact of compression on the write operation is clearly
seen to be very high.
Moreover, the attained throughput difference is similar with respective record
size and file size.
This is because the throughput in both uncompressed and compressed mode
decreases as the record size and file size increases.

67

5.1. ZFS COMPRESSION VS DEFAULT COMPARISON FOR SINGLE DISK

When the percentage of increase of mean throughput of compression to de-
fault feature calculated, on average 900% or ten times higher performance is
obtained.
In addition the compression feature exhibits higher standard error of mean
specially for lower record sizes.
The other noticeable difference observed is disk and cpu usage out put char-
acteristics.
As mentioned numerically in table 5.1 above, compression affected to have
lower write IOPS which has decreased almost by 90% times and hence the disc
bandwidth utilization ratio has too decreased by 93% times. The only negative
impact observed is that the cpu time usage has increased almost 900% or ten
times.

5.1.2 Zfs Single Sequential Read Operations comparison

Figure 5.8: Zfs Single Read Average Throughput Comparison

Figure 5.9: Zfs Read throughput standard error of mean Comparison

As can be seen from figure 5.2, 5.3, 5.4, 5.8, 5.9 and finally from table 5.1 in
the analysis section the impact of compression on the read operation is clearly

68

5.1. ZFS COMPRESSION VS DEFAULT COMPARISON FOR SINGLE DISK

seen to be very high.

The performance of Zfs with its compression feature outshine the perfor-
mance of Zfs with the default options for all record size and file size as it has
been similarly shown with sequentially reading from a file.
The read operation decreases as both record size and file sizes increase. More
over the throughput difference remain the same for all file size and record size.
The difference is calculated and it is seven times or 600% better than the de-
fault option with standard error of mean increase around eight times or 700%
higher for compression.
The other noticeable difference observed is disk and cpu usge out put charac-
terstics. As mentioned numerically in table 5.1 above, compression affected to
have lower read IOPS which has decreased almost by 90% and hence the disk
bandwidth utilization ratio has too decreased by 40%.
The only negative impact observed is that the cpu time usage has increased
almost seventeen (17x) times or 1600%.

5.1.3 Zfs Random Read Operations comparison

Figure 5.10: Zfs Random Read Avg throughput Comparison

As can be seen from figure 5.2, 5.3, 5.4, 5.10, 5.11 and finally from table 5.1
in the analysis section the impact of compression on the random read opera-
tion is clearly seen to be very high.
As it can be seen from the figures, the throughput achieved in randomly read-
ing a file after enabling the compression feature exhibits better performance.
More over one interesting characteristics of random reading as clearly seen
from the graph and table is that the performance increases as record size in-
creases and decreases as file size increases for compressed feature where as the
performance decreases with file size increase in both compression and default
case. throughput comparison between compression and default case varies
with both record and file sizes.

69

5.1. ZFS COMPRESSION VS DEFAULT COMPARISON FOR SINGLE DISK

Figure 5.11: Zfs Random Read throughput standard error of mean Comparison

The difference is calculated and it is 585% better than the default option with
standard error of mean ratio around six times or 500% higher for compression.
The other noticeable difference observed is disk and cpu usge out put charac-
terstics. As mentioned numerically in table 5.1 above, compression affected to
have lower random read IOPS which has decreased almost by 99% and hence
the disk bandwidth utilization has too decreased by 5%.

The only negative impact observed is that the cpu time usage has increased
almost 124%.

5.1.4 Zfs Random Write operations comparison

Figure 5.12: zfs Random Write Avg throughput Comparison

As can be seen from figure 5.2, 5.3, 5.4, 5.12, 5.13 and finally from table 5.1
in the analysis section the impact of compression on the random write opera-
tion is clearly seen to be very high.

70

5.2. BTRFS SINGLE COMPRESSION VS DEFAULT COMPARISON

Figure 5.13: zfs Random Write throughput standard error of mean Comparison

As it can be seen in the graphs, Zfs with compression enabled shows better
throughput for the single disk random write operation. Randomly writing to
a file after enabling compression feature on Zfs shows much a larger perfor-
mance improvement for all record and file size combinations.
While for compressed feature the performance degrades as file size and record
size increases where as the performance with file size and increases with record
size instead.
In addition the comparison is more or less the same for the different scenarios
given. The difference is calculated and it is ten times or 900% better than the
default option with standard error of mean ratio around fifteentimes or 1400%
higher for compression.
The other noticeable difference observed is disc and cpu usge out put charac-
terstics.
As mentioned numerically in table 5.1 above, compression affected to have
lower random read IOPS which has decreased almost by 82% and hence the
disk bandwidth utilization has too decreased by 22%.
The only negative impact observed is that the cpu time usage has increased
almost 1160%.

5.2 Btrfs Single Compression vs default Comparison

For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.

The two graphs below show both sequential and random average through-
putof a single Btrfs disk for both compressed and uncompressed features.
The tables summarize the performance differences between the default and
compression feature for the Btrfs single disk file systems tests
The noted differences in performance run across all record sizes and file sizes
unless explicitly stated otherwise. The calculation is taken as the percentage
of increase of the mean Performance of Compression feature against default
feature for table.

71

5.2. BTRFS SINGLE COMPRESSION VS DEFAULT COMPARISON

Figure 5.14: Btrfs single disk uncompressed average Throughput

Figure 5.15: Btrfs single disk compressed average Throughput

72

5.2. BTRFS SINGLE COMPRESSION VS DEFAULT COMPARISON

Figure 5.16: Btrfs single average throughput Percentage of increase due to compres-
sion

Figure 5.17: Btrfs single disk comparison standard error of mean

73

5.2. BTRFS SINGLE COMPRESSION VS DEFAULT COMPARISON

Test Avg Through-
put with SEM
Increase

Disk usage In-
crease by IOPS
and %utili

Cpu usage In-
crease by SYS,
IOWAIT, IDLE

Sequential Write 2%, -50% -81%, -36% 980%, -91%, -75%
Sequential Read 20%, -25% except

for 4GB filesize
-85%, -54% 484%, -98%, -67%

RandomRead 74%, -69% -92%, -12% 265%, -19%, -9%
RandomWrite -10%, -67% 88%, -9% 576%, -52%, -58%

Table 5.2: Significant Performance Differences for Btrfs Single compression fea-
ture

74

5.2. BTRFS SINGLE COMPRESSION VS DEFAULT COMPARISON

5.2.1 Btrfs Sequential Write Operations Comparison

Figure 5.18: Btrfs single disk Write Avg Throughput comparison

Figure 5.19: Btrfs single disk Write Throughput standard error of mean comparison

As can be seen the figures 5.14, 5.15, 5.16, 5.18, 5.19 and finally the table 5.2
in the analysis section show that sequentially writing to a file in a single disk
with compression enabled provides a minimal performance improvement for
the mentioned files sizes and record sizes.

For both compression and default the attained throughput decreases with
the increment of file sizes and record sizes. When compared compression pro-
vides minimal improvement and it is constant for all records and files.

The difference is calculated and it is 2% better performance than the de-
fault option with standard error of mean ratio around half times or 50% lower

75

5.2. BTRFS SINGLE COMPRESSION VS DEFAULT COMPARISON

for compression.

The other noticeable difference observed is disk and CPU usage out put
characterstics. As mentioned numerically in table 5.2 above, compression af-
fected to have lower write IOPS which has decreased almost by 85% and hence
the disk bandwidth utilization has too decreased by 54%. The only negative
impact observed is that the CPU time usage has increased almost 980%.

5.2.2 Btrfs Sequential Read Operations Comparison

Figure 5.20: Btrfs single disk Read Avg Throughput comparison

As can be seen from the The graphs in figures 5.14, 5.15, 5.16, 5.20, 5.21 and
the table 5.2, the performance of Btrfs with its compression feature starts to
outshine the performance of Btrfs with the default options.

The behavior of the difference could be further investigated by file and
record level. Hence for compression feature the throughput decreases with
the increase of file and record except for file size of 4gb where the throughput
increases with increase of file and record. Where as for default the through put
relatively remain the same for record sizes and decreases significantly as file
size increases.

Therefore the compression provides performance improvement that de-
creases with file size in effect. The difference is calculated and it is 20% better
performance than the default option with standard error of mean ratio around

76

5.2. BTRFS SINGLE COMPRESSION VS DEFAULT COMPARISON

Figure 5.21: Btrfs Read Throughput standard error of mean comparison

25% lower for compression except for 4GB file which is high.

The other noticeable difference observed is disc and CPU usage out put
characteristics. As mentioned numerically in table 5.2 above, compression af-
fected to have lower write IOPS which has decreased almost by 81% and hence
the disk bandwidth utilization has too decreased by 36%. The only negative
impact observed is that the CPU time usage has increased almost 484%.

77

5.2. BTRFS SINGLE COMPRESSION VS DEFAULT COMPARISON

5.2.3 Btrfs Random Read Operations comparison

Figure 5.22: Btrfs Random Read Avg Throughput comparison

Figure 5.23: Btrfs Random Read Throughput standard error of mean comparison

As can be observed from the graphs in figures 5.14, 5.15, 5.16, 5.22, 5.23
and the table 5.2, the throughput achieved in randomly reading a file after en-
abling the compression feature does show better performance as compared to
the default option.

The graph obviously shows throughput increase as record size increases
where as decreases as file size increases.

78

5.2. BTRFS SINGLE COMPRESSION VS DEFAULT COMPARISON

Actually it is in this random reading case where the highest significant dif-
ference is obtained for Btrfs single set up. But compression provides perfor-
mance improvement as compared to default where the comparison remains
the same for records and decreases as file size increases.

The difference is calculated and it is 74% better performance than the de-
fault option with standard error of mean 59% lower for compression.

The other noticeable difference observed is disk and CPU usage out put
characteristics. As mentioned numerically in table 5.2 above, compression af-
fected to have lower write IOPS which has decreased almost by 92% and hence
the disk bandwidth utilization has too decreased by 12%.

The only negative impact observed is that the CPU time usage has in-
creased almost 265%.

5.2.4 Btrfs Random Write Operations Comparison

Figure 5.24: Btrfs Random Write Avg Throughput comparison

As it can be seen from the graphs in figures 5.14, 5.15, 5.16, 5.24, 5.25 and
the table 5.2 for the first time in this benchmark testing process Btrfs without
the compression feature enabled shows better throughput for all record sizes
and file sizes.

The performance without compression feature is significant for small record
sizes. For larger record sizes the difference is getting lower as is proved by the

79

5.3. MULTI-THREAD VS ZFS SINGLE COMPRESSION RESOURCE
UTILIZATION

Figure 5.25: Btrfs Random Write Throughput standard error of mean comparison

graph in figure 5.24.

The average throughput difference is calculated and it is 10% lower perfor-
mance than the default option with standard error of mean difference around
67% lower for compression.

The other noticeable difference observed is disk and CPU usage out put
characterstics. As mentioned numerically in table 5.2 above, compression af-
fected to have lower write IOPS which has decreased almost by 88% and hence
the disk bandwidth utilization has too decreased by 9%. At the same time CPU
time usage has increased almost 576%.

5.3 Multi-thread VS Zfs Single compression resource uti-
lization

The experiment is done for one file size and one record size changing the num-
ber of threads running from one to five.
For the results presented in this section, results are limited to one record sizes:
2048KB, one file size: 8GB file size and one to five processes used.

80

5.3. MULTI-THREAD VS ZFS SINGLE COMPRESSION RESOURCE
UTILIZATION

5.3.1 CPU time Comparison

CPU time in contrast to wall time measures only the time during which the
processor is actively working on a certain task.
As it can be seen in the graph in Figure 5.26 below the I/O operations for com-
pressed feature has taken more CPU time to finish than with default feature
except for random read and write.
The CPU time significantly increases with the increases of the process num-
ber. The CPU time difference b/n compressed and uncompressed feature is
significant for read operaton. The rest difference is not significant.

Figure 5.26: CPU time comparison

81

5.3. MULTI-THREAD VS ZFS SINGLE COMPRESSION RESOURCE
UTILIZATION

5.3.2 CPU utilization Comparison

CPU utilization being the percent of CPU cycles spent on a process, figure
5.27 below show clearly that compression feature has actually taken more CPU
cycles to compress and decompress I/O channel data than the default feature.
Hence compression features takes advantage of more CPU resources. One can
experience latency due high CPU utilization in this case.

Figure 5.27: CPU utilization comparison

82

5.4. MONITORING DISK AND CPU USAGE BY ZFS SINGLE
COMPRESSION FEATURE

5.4 Monitoring disk and CPU usage by Zfs Single Com-
pression feature

The following sections present the iostat output graphs that are obtained from
the block layer and CPU utilization done when performance test is taken for
6GB file size and 128KB record size. The iostat output were taken simultane-
ously with the Iozone tests.

5.4.1 IOPS comparison

The results shown in Figure 5.28 displays the read and write I/O per second
taken during the whole run time of performance benchmark for 6GB file and
128KB recordsize.
There is significant throughput difference in the two cases. The effect of com-
pressing the data in to smaller size has affected the size of write and read op-
eration in the range of ten times reduction for compression feature.

Figure 5.28: Zfs IOPS comparison

83

5.4. MONITORING DISK AND CPU USAGE BY ZFS SINGLE
COMPRESSION FEATURE

5.4.2 Bandwidth utilization comparison

Figure 5.29 illustrates that Zfs exhibits a much lower bandwidth utilization
when applied compression feature and this is how compression relieves disk
bandwidth saturation by sending smaller size i/o channel data by compress-
ing data.

The graph shows Percentage of CPU time during which I/O requests were
issued to the device (bandwidth utilization for the device). Device saturation
occurs when this value is close to 100

Figure 5.29: Zfs bandwidth utilization comparison

84

5.4. MONITORING DISK AND CPU USAGE BY ZFS SINGLE
COMPRESSION FEATURE

5.4.3 CPU usage comparison

The graph in figure 5.30 depicts the behavior of the cpu usage pattern during
the performance benchmarking test taken.
%system show the percentage of CPU utilization that occurred while execut-
ing at the system level (kernel).
%iowait show the percentage of time that the CPU or CPUs were idle during
which the system had an outstanding disk I/O request.
%idle show the percentage of time that the CPU or CPUs were idle and the
system did not have an outstanding disk I/O request.
The graph reveals that the CPU was busy of compressing file during the writ-
ing mode(sequential and random) and it was less idle or there was less iowait
cycles.
Where as in the sequential reading the compression feature is relatively uses
lesser CPU than default. But random reading was different from the other that
the compression feature uses higher CPU cycle.

Figure 5.30: CPU Utilization Comparison

85

5.5. MULTI-THREADING VS BTRFS SINGLE COMPRESSION FEATURE

5.5 Multi-threading Vs Btrfs Single compression feature

5.5.1 Cpu utilization Comparison

CPU utilization being the percent of CPU cycles spent on a process, figure 5.31
below shows clearly that compression feature has actually taken more CPU
cycles to compress and decompress I/O channel data than the default feature.
Hence compression features takes advantage of more CPU resources. One can
experience latency due high CPU utilization in this case.

Figure 5.31: cpu utilization Comparison(Comp Vs Ucomp)

5.6 Monitoring disk and cpu usage by Btrfs Single Com-
pression feature

The following sections present the iostat output graphs that are obtained from
the block layer and cpu utilization done when performance test is taken for
6GB file size and 128KB record size.
The iostat output were taken simultaneously with the Iozone tests.

86

5.6. MONITORING DISK AND CPU USAGE BY BTRFS SINGLE
COMPRESSION FEATURE

5.6.1 Write and Read IOPS comparison

The results shown in Figure 5.32 displays the read and write throughput per
second taken during the whole run time of performance benchmark for 6GB
file and 128KB recordsize.

There is significant throughput difference in the two cases. The effect of
compressing the data in to smaller size has affected the size of write and read
operation in the range of ten times reduction for compression feature.
In both cases the random read has lower value operation.

Figure 5.32: Instant throughput Comparison(Comp Vs Ucomp)

87

5.6. MONITORING DISK AND CPU USAGE BY BTRFS SINGLE
COMPRESSION FEATURE

5.6.2 Bandwidth utilization comparison

Figure 5.33 illustrates that Btrfs exhibits a much lower bandwidth utilization
when applied compression feature and this is how compression relieves disk
bandwidth saturation by sending smaller size i/o channel data by compress-
ing data.

The graph shows Percentage of CPU time during which I/O requests were
issued to the device (bandwidth utilization for the device).

Device saturation occurs when this value is close to 100%. In addition the
graph shows that while reading and rereading bandwidth utilization is signif-
icantly reduced due compression feature and random writing has not changed
much due to the impact of compression.

Figure 5.33: Bandwidth utilization Comparison(Comp Vs Ucomp)

88

5.6. MONITORING DISK AND CPU USAGE BY BTRFS SINGLE
COMPRESSION FEATURE

5.6.3 CPU usage comparison

The graph in figure 5.34 depicts the behavior of the CPU usage pattern during
the performance benchmarking test taken.
The graph reveals that the CPU was busy of compressing file during the writ-
ing mode (both sequential and random) and sequential reading so it was less
idle or there was less iowait cycles.
But random reading was different from the other that both compression fea-
ture and default feature shows the same pattern.

Figure 5.34: Cpu Utilization Comparison (Comp Vs Ucomp)

89

5.7. PERFORMANCE ANALYSIS FOR ZFS RAIDZ1

5.7 Performance Analysis for Zfs raidz1

This section presents the analysis obtained from sequential read/write and
random read/write tests of Iozone. The results are the average throughputs
and and their standard error mean.
For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.
The graphs below show both sequential and random operations performance
of a Raidz1 zfs disk for uncompressed and compressed features.
The findings are further summarised in the table

Figure 5.35: Average Throughput for Zfs Raidz1

Figure 5.36: Zfs Raidz1 average throughput percentage of increase due to compres-
sion

90

5.7. PERFORMANCE ANALYSIS FOR ZFS RAIDZ1

Figure 5.37: Standard error of mean comparison for Zfs Raidz1

Test Avg Throughput Increase
Sequential Write 450%
Sequential Read 200%, decrease with record and file
RandomRead 144%, increase with file and record
RandomWrite 400%, Decrease with record and file

Table 5.3: Summary of Zfs Compression Comparison for Raid disks

91

5.8. PERFORMANCE TEST ANALYSIS FOR BTRFS RAID5

5.8 Performance test Analysis for Btrfs Raid5

This section presents the analysis obtained from sequential read/write and
random read/write tests of Iozone. The results are the average throughputs
and and their standard error mean.
For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.
The graphs below show both sequential and random operations performance
of a Raid5 Btrfs disk for uncompressed and compressed features.
Further the findings of the comparison are summarised in the table.

Figure 5.38: Average Throughput for Btrfs Raid5

Figure 5.39: Average Throughput percentage of increase for Btrfs Raid5 due to com-
pression

92

5.8. PERFORMANCE TEST ANALYSIS FOR BTRFS RAID5

Figure 5.40: Standard error of mean Comparison for Btrfs Raid5

Test Avg Throughput Increase
Sequential Write 250% - 200%, decrease with record, increase with file
Sequential Read 100% - 150%, decrease with record
RandomRead 70% - 200%, decrease with file pattern for record
RandomWrite 150% - 200%, constant with file

Table 5.4: Summary of Btrfs Compression Comparison for Raid disks

93

5.9. ZFS COMPRESSION AGAINST BTRFS COMPRESSION COMPARISON

5.9 Zfs Compression Against Btrfs Compression Com-
parison

Both the figures and the tables show the analysis of the comparison of the
impact of compression on the average throughput of Zfs when compared with
the impact on Btrfs.

5.9.1 Zfs Compression Against Btrfs Compression Comparison for
Single Disk

Figure 5.41: Impact of compression on Zfs against Btrfs for Single Disk

94

5.9. ZFS COMPRESSION AGAINST BTRFS COMPRESSION COMPARISON

Test AVG
THROUGH-
PUT Increase

Disk usage In-
crease by IOPS
and %UTILITI

Cpu usage In-
crease by SYS,
IOWAIT, IDLE

Sequential Write 900% -55%, 10% -4%, 284%, 90%
Sequential Read 450% -55%, 23% 193%, 1370%,

93%
RandomRead 170%, 290%,

460% per File and
34%, 79%, 312%,
790% per Record

-84%, 8% -39%, 17%, 9%

RandomWrite 1000% per File
and 1000%,
1100%, 880%,
750% per Record

47%, -14% 86%, -24%, -11%

Table 5.5: Summary of impact of compression on Zfs against Btrfs for Single
Disk

95

5.9. ZFS COMPRESSION AGAINST BTRFS COMPRESSION COMPARISON

5.9.2 Impact of Compression on Zfs against Btrfs for Raid Disk

Figure 5.42: Impact of compression on Zfs against Btrfs for Raid Disk

Test Avg Throughput Increase
Sequential Write 55%
Sequential Read 50%
RandomRead -30% - 50%, Increase with file and record
RandomWrite 30% - 190%, Decrease with file and record

Table 5.6: Summary of impact of compression on Zfs against Btrfs for Raid
Disk

96

5.10. PERFORMANCE BENCHMARKING TEST ANALYSIS FOR EXT4

5.10 Performance benchmarking test Analysis for Ext4

This section presents the analysis obtained from sequential read/write and
random read/write tests of Iozone. The analysis includes both the single and
raid disk set up offcourse for the uncompression feaure only as EXT4 doesnot
include transparent compression so far.
For the results presented in this section, results are limited to four record sizes:
256KB, 512KB, 1024KB and 128KB.
The graphs below show the average for both sequential and random opera-
tions performance of a Ext4 single and Raid5 disk.

Figure 5.43: Average Throughput Comparison for Btrfs Ext4

Figure 5.44: Standard error of mean Comparison for Btrfs Ext4

97

5.11. DD COMMAND FILE WRITE AND READ TEST RESULTS

5.11 DD Command File Write and Read Test Results

The test was performed writing to and reading from all filesystems.
The Linux DD command was used to benchmark 6GB file size and 128KB
record size.
Then the report of the elapsed time, system time and user time were taken to
perform the read and write operations were taken.
dd if=/dev/zero of=speetest2 bs=128k count=46875 conv=fdatasync
dd if=speetest2 of=/dev/null bs=128k

As can be seen in the graph in figure 4.45 below, compressed Zfs performs
better for writing and reading a file.

Figure 5.45: Average Throughput and Time elapsed Comparison for Btrfs Zfs

5.12 Linux kernel compile Test Analysis

The following figure 4.46 shows the result of analysis obtained from Linux ker-
nel 3.14 compile test comparison for the two file systems.
Even though there is no significant time difference in minutes measured when
taken in to account the total half hour time it took to compile the kernel the
opposite is recoded for Btrfs and Zfs.

98

5.12. LINUX KERNEL COMPILE TEST ANALYSIS

While Btrfs compressed has taken longer time, Zfs Compressed has taken
lesser time compared with the respective default feature.

Figure 5.46: percentage increase in time to compile for Btrfs and Zfs

99

Chapter 6

Discussion

Transparent Compression in Zfs and Btrfs have impact on performance. It is
relatively new feature in file system that would give performance boost by uti-
lizing the abundantly available cpu and memory power of todays servers.

More over Zfs and Btrfs are also modern file system which are designed to
be object-based than the old fashioned block-based file systems. Due to their
design and architecture they are very flexible for management and to add ad-
ditional new features which goes with the demand of the day. Zfsonlinux is
relatively new file system included to linux that will highly boost the need for
linux in the market as Zfs has so many attractive benefits. So studying this
filesystem will help to investigate those advantages that will be used by linux
users in the future. Both file systems are copy on write and transactional file
systems that fulfill security and safety in data handling.

The compression feature specially will have a great potential that will be uti-
lized in todays data intensive society as the study could pin point out which
work loads in the form of file size and record size as well as for which data
operations in the form of either sequential or random operations are affected
by this new feature.

In this chapter we will discuss the overall project process from the beginning
till the end in a summarized manner. In general we will go through the fol-
lowing key points:
. Challenges and limitations
. Thesis summary
. Retrospective study of approach
. Unexpected results
. Reproducibility, Repeatability, and predictability

i. Challenges and limitations

Limiting the scope of the comparative study was the main challenge. In the
beginning the intention was to compare three file systems with and with out

100

compression for a number of record and file sizes and for single disk and raid
configuration. This make the study too much for analysis and even to com-
pare each other will be difficult. Hence formulating the problem statement
and designing the approach was affected by the process. Comparative or in-
vestigative study of performance of file system in general is a complex task.
Detailed study of the variable involved will affect the quality of the study. It is
possible to compare too many variables with out deep analysis but obscured
and important points will be missed.

ii Thesis summary

The Introduction chapter of this thesis provides the following important in-
formation:
.The motivation of the author to do this research and why it is important.
. File system overview.
. The type of problem to be tackled and why it is a problem.
. How the problem is going to be solved and approached.
. The goal and contribution of this research work.

In the background and related work chapter (chapter 2), it is discussed what
file systems are all about, their evolution, architecture and feature. Benchmark-
ing a file system and IOzone benchmarking tool are also discussed in chapter2.

The approach and methodology chapter explains first how the problem is go-
ing to be solved and approached and then the methodology and the best ex-
perimental set up for the suggested approach. The resources used and the
lab topology are also explained. Perl scripts used are discussed. Even though
Iozone has many options, write/rewrite, read/reread, random read and ran-
dom write speeds are measured in all benchmarking tests. Four record sizes
(256, 512, 1024, 2048) and three file sizes (4GB, 8GB, 16GB) are also used in
all cases. The experiment setup was divided into the following main types.
First the setup is divided according to the three filesystem. Then the setup has
single and raid disk setup which will give us six setup. Next is test of per-
formance with compression and and with out compression which will make
the number of setup ten. Then it was intended to study performance by scal-
ing up file size and record size which will make the total number of variables
to be studied at this point to be 20 different variables. Finally in total for the
above ten setup 30 file sizes and 40 record sizes were studied. For these 30 files
and and 40 records 4 write and read operations were taken and becomes 160
record operations and 120 file operations. Totally from the above 10 setup 280
write and read operations were investigated individually. Which makes the
result collection and analysis to make and difficult. This is only for iozone file
and record operation test. But studying the impact of compression on record
and file size is not enough. The impact of compression on throughput as the
number of thread increases were necessary. So for one file and one record
size when the number of thread scales from one to five were studied. Which
means 10 through put commands were run and data was collected. Then it

101

was necessary to test and see the characterstics of disk IOPs and CPU usage
for one file and one record size for four Btrfs and Zfs single compressed and
default set up. That is additional four commands where run to collect data
with iostat for 4 iozone commands that makes the 8 commands. Additional
5 dd commands and 5 linux compile commands were run to see additional
impact of compression other than iozone one file copy and compiling time. So
additional 10 commands where run. Finally in total 38 scripts were used to get
result for the necessary tests mentioned above.

Let us talk about data collection procedure next. Mainly MS excel were used
to collect the sample data for the two iozone commands, one for the record
and file combination and the other for throughput. So MS excel was used for
the data from the 20 scripts. But for the 4 iostat scripts grep command were
used extensively to take cpu and disk data separetly. Next to manuplate them
individually Ms excel were used. Still for the file copy dd command and linux
compile command MS excel was used.

Last but not least of the approach and setup chapter is how the disk and file
system configuration looks likes. First I have 5 benchmarking disks of 73GB
size. The first step was to prepare the disks for single disk setup. Then all the
three filesystem were to be configured first with out compression and next to
umount the file system and do it with compression and all the tests had to be
taken. Then the disks had to be configured for raid set up and the above tests
had to be repeated again.

In chapter 4 we get the results of the iozone(record and file), iozone through-
put, iostat, dd and linux compile experiment types that showed scalablity test
of compression for file size, record size and process numbers as well as the
impact of compressing file on the patten of disk and cpu usage. Ms Excel line
and bar graphs and R boxplots are used to show the results. All three types of
graphs used are important when we see the type of information we get from
each of them. They are all explained in the same chapter. Except there were
few outliers, the overall result clearly shows that enough samples were taken
to keep the normality of raw data distribution. It was not possible to take more
than six samples as the size of file size is big enough to have smooth data sam-
ples. The out put of each iteration by it self was average out puts that the raw
datas were smples of means. Each iterations take anumber of hours that will
prove the normality of the raw data distribution.

The analysis chapter deals with the best way of analyzing the raw data so as
to get the best possible meaning for the main question of the theis experiment.
There for taking the average and the standard error of mean of the average
was the best meaning full way of presenting the solution. In this way the av-
erage data will be compared as well as the distribution characterstics will be
obtained from the standard error of mean which is the result of the standard
deviation divided by the square root of the number of samples. This will best
describe the distribution specially when the sample is smaller. So that as ex-

102

plained above the focus of the analysis section was to get comparative average
values and their distribution so as to compare the performance boost or degra-
dation for each experiment set up. For the the file and record scalablity set up
alone we have four different set up to compare each other. Namely :
. zfs single disk compressed and uncompressed
. zfs raid disk compressed and uncompressed
. Btrfs single disk compressed and uncompressed
. Btrfs raid disk compressed and uncompressed
Then next comparison was the impact of compression on
. Zfs single against Btrfs single
. Zfs raid against Btrfs raid
For the single disk set up the disk and cpu usage characterstics were impor-
tant. There for from the disk usge the following variables were choosen
. Disk IOPS in MB/s
. Disk bandwidth utilization
. usage (System, iowait and idle time)
For process scalablity and impact of compression test the following variables
were taken
. CPU time processor time for the task
. CPU utilization - percent of cpu cycle spent on the task
Large File Copy and linux Compile test were done in addition to using io-
zone as additional tests as alternative test approach and the following vari-
ables were studied
. Large file writing throughput
. Large File reading throughput
. Large file writing time
. Large file reading time
. Compiling Time and Compression

The main findings from the analysis of the data look likes the following few
points summarized. The details of the findings are summarized in different
tables in the analysis section. It is so detailed that it is difficult to raise every
result here. But the main findings will be worth mentioning and discussing.

The first very high impact of compression is displayed for Zfs single disk
setup. The second high impact is exhibited for Zfs raid setup. The third high
impact is for Btrfs raid set up but the last impact is for Btrfs single disk set up.

To discuss roughly through each points, it was obtained that the single zfs
set up has got 900% sequential write performance increase while the sequen-
tial read has got 600% high. Compression has provided on average 500%
for random read and 900% for random write operations for the single Zfs
set up. While mentioning the second high impact on zfs raid set up it was
achieved 400% increase for sequential write and 200% increase for sequential
read higher throughput where as the improvement for the random operation
is 140% increase for random read and 400% times for random write.

103

The next significant difference is obtained from raid disk set for Btrfs. The se-
quential write has displayed from 250% - 200%, which decreases with record,
and increases with file. The sequential read has displayed from 100% - 150%,
that decreases with record. Random read has exhibited 70% - 200%, that de-
creases with file pattern for record. Lastly the random write improved by 150%
- 200%, constant with file.

The least impact of compression is found for single disk Btrfs set up. Oper-
ation wise the result look likes the following when ranked by improvement
percentage. Random read 74%, sequential read 20%, sequential write 2% and
random write has -10% which is the only negative impact.

The other point to discuss is the comparison of compression impact accord-
ing to the following variables.
. Read/write operations
. Record size
. File size
. Single/raid disk

Accordingly it was the sequential write that scored the highest improvement.
The least and the negative impact of compression is on random write Btrfs
single set up which is 10% lesser than the uncompressed throughput. The 512
record and 4GB file size has displayed the best throughput improvement so far.

In the above discussion the focus was on the average throughput advantage
obtained by utilizing compression feature on different Zfs and Btrfs setups.
The other finding in this thesis is the distribustion of the data which affects
directly the average throughput behavior discussed above. This is directly
related with SEM that is standard error of mean. Compression has negative
impact on all set up except Btrfs single with regard to standard error of mean
that is SEM is high. On average the SEM of Compressed data is 300% times
higher than uncompressed data.

The other negative impact of compression is on the use of CPU time and cycle.
Compression uses high CPU power especially when the number of processes
increase, where as compression has positive impact on disk bandwidth utiliza-
tion in all cases.

Ext4 file system was taken in this experiment as base line in the benchmarking
of the modern file systems Zfs and Btrfs. The revolutionary design difference
that is seen in Zfs and Btrfs which does not exist in ext4 has actually affected
many other aspect of the filesystems features except one thing, that is Ext4 still
has exhibited better performance in all read write operations in this experi-
ment setup where the default setup is followed with out further tuning to get
optimized performance in the single disk set up.

In case of raid set up Ext4 has shown lesser performance than the two modern

104

file system where Btrfs is seen to better in this case.

iii Retrospective study of approach

Benchmarking compression feature of Zfs and Btrfs by the suggested approach
using iozone and the other tools has given results that support the theory that
compression has more or less positive impact on performance at least for some
work loads. But using synthetic and micro benchmarking tools could not re-
veal the actual real life experience of daily life. It could have been done by the
alternative real benchmarking approach where data could have been collected
from real working environments like big companies who have different kind
of filesystem work loads. The problem with this approach is that it is diffi-
cult to get this kind of permission and the nature of the duration of the thesis
approach. In addition, iozone script data has demonstrated that it might be
highly compressible data that the results have been a little exaggerated for zfs
setup.

iv Unexpected results

Transparent compression on the fly in Zfs and Btrfs compresses at high speed
and the compression ratio depends on the compressibility of the data under
the test. In this thesis it is not the compression ratio that is directly studied
but indirectly the impact of compressing data on performance. The data type
supplied by iozone benchmarking tool is found to be very compressible and
might have influenced the result of the experiment. But from the theory Lzo
compresses better than Lz4 where as Lz4 compresses faster than Lzo. Here the
impact of compression speed is proved to be better than compression ratio.
Speed matters in performance that is why Lz4 has greater impact on Zfs than
Lzo has on Btrfs.

v Reproducibility, Repeatability, and predictability

Concerining the setup, installation and configuration of this thesis didnt cre-
ate very significant challenges rather it was straightforward. The results also
show clear trend and meaningful graphs that the whole project could be repro-
duced. Since the trends of the results found are consistent and show clear line
of graph except one or two few outliers (which are excluded from the average
calculations), its predictability is high. The projects repeatability is also high. If
many more repeated tests had been taken under same condition, similar result
would have been found as margins of standard errors and confidence interval
values are very less. Hence, the results were repeatable.

105

Chapter 7

Conclussion

7.1 Summary of main findings

The overall performance analysis made for transparent compression feature in
Zfs and Btrfs shows positive differences in the performance results obtained
with the synthetic benchmarking tool and real world application tests. The re-
sults obtained from the Iozone benchmarking tool show that the Zfs compres-
sion provides better performance for all read/write operations in general. Sim-
ilarly, Btrfs compression provides higher performance with most read/write
operations with random write operations being an exception for the single
disk setup only.

The results of iostat disk and cpu usage monitoring show that Compression
provides Better performance by utilizing the cpu power available 1000% and
hence decreasing disk bandwith utilization by average 30% for the single disk
setup. This will reduce for raid set up as long as raid is another solution for io
performance improvement.

7.2 Evaluation and FutureWork

The study in this thesis carried out as many possible tests of filesystem com-
pression feature functionality as feasible given the timeframe of the work.
The following observations can be made about ways that this study could be
strengthened even more.

• The Iozone benchmaking tool is good in providing an overall assessment
of filesystem performance. However, the data type provided by iozone
is proved to be highly compressible and the result is exaggerated at least
for Zfs and LZ4. The result will be more comprehensive if different file
types are tested, since this would help to identify the interactions of file
types with compression algorithms

• Implementing tests with both macro and micro benchmarking tools would
be helpful in understanding the differences between the filesystems.

106

7.2. EVALUATION AND FUTUREWORK

• The set up is done relatively for large files but if the set up can be done
in the future for small file sizes the result can show different scenarios.

107

Bibliography

[1] Lars Wirzenius, Joanna Oja, Stephen Stafford, and Alex Weeks. The linux
system administrators guide (1993-2004).

[2] Online. http://en.wikipedia.org/wiki/Moore%27s_law. [Accessed 20-
January-2014].

[3] Online. http://wiki.illumos.org/display/illumos/ZFS. [Accessed
January 22,2014].

[4] Valerie Aurora. https://lwn.net/Articles/342892/. [Accessed Jan-
uary 23,2014].

[5] Nathan Willis. Weekend project: Get started with btrfs, october
15,2010. http://www.linux.com/learn/tutorials/371623-weekend-

project-get-started-with-btrfs. [AccessedJanuary 23,2014].

[6] Suresh M. Ext4 file system- feature and setups. http://www.

bobcares.com/blog/ext4-file-system-features-and-setup/. [Ac-
cessedJanuary 23,2014].

[7] National Institute of Standards and Technology. B-tree. http://

www.xlinux.nist.gov/dads/HTML/btree.html, 2007. [AccessedFebru-
ary1,2014].

[8] M. Tim Jones. Anatomy of the linux file system. http://www.

ibm.com/developerworks/linux/library/l-linux-filesystem/, Oc-
tober 30,2007. [Accessed February1,2014].

[9] Robert Love. Linux kernel development, third edition. http://www.

ibm.com/developerworks/linux/library/l-linux-filesystem/, Jun
22, 2010.

[10] Paul Krzyzanowski. File system design case studies. http://www.cs.

rutgers.edu/~pxk/416/notes/13-fs-studies.html, March 23, 2012.

[11] Greg Gange Abraham Silberschatz, Peter Baer Galvin. Operating sys-
tems concepts,seventh edition. http://it325blog.files.wordpress.

com/2012/09/operating-system-concepts-7-th-edition.pdf, 2004.

[12] Ben Rockwell. Understanding zfs compression. http://www.

cuddletech.com/blog/pivot/entry.php?id=983, Nov 06 2008.

108

BIBLIOGRAPHY

[13] Zfsonlinux.org. Faq-zfs on linux. http://zfsonlinux.org/faq.html,
2013.

[14] Jeff Bonwick. The slab allocator: An object-caching kernel memory allo-
cator. http://zfsonlinux.org/faq.html, 2004.

[15] Matt Ahrens Val Henson and Jeff Bonwicki. Automatic performance tun-
ing in the zettabyte file system. http://3c2controller.net/project/

truetrue/solaris10/henson-self-tune.pdf, 2003.

[16] Jeff Bonwick. Zfs: The last word in filesystems. https://blogs.

oracle.com/bonwick/entry/zfs_the_last_word_infilesystems, octo-
ber 31, 2005.

[17] Jeff Bonwick. Raid-z. https://blogs.oracle.com/bonwick/entry/

raid_z, Nov 17, 2005.

[18] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redun-
dant arrays of inexpensive disks (raid). http://doi.acm.org/10.1145/

50202.50214, 1988.

[19] Sun. Zfs on-disk specification. , 2006.

[20] Jeff Bonwick. Zfs block allocation. https://blogs.oracle.com/

bonwick/en/entry/zfs_block_allocation, Nov 04, 2006.

[21] Benr. Understanding zfs: Compression. http://www.cuddletech.com/

blog/pivot/entry.php?id=983, Nov 06,2008.

[22] Amanda Amcpherson. A conversion with chris mason on btrfs.
http://www.linuxfoundation.org/news-media/blogs/browse/2009/

06/conversation-chris-mason-btrfs-next-generation-file-

system-linux, June 22,2009.

[23] Josef Bacik. Btrfs swiss army knife of storage. https://c59951.ssl.cf2.
rackcdn.com/4376-bacik_0.pdf, February, 2012.

[24] Chris Mason. Btrfs design. https://oss.oracle.com/projects/btrfs/
dist/documentation/btrfs-ukuug.pdf, February, 2012.

[25] Btrfs Wiki. Compression-btrfs. https://www.google.no/?gfe_rd\

=cr\&ei\=j3QsU_jKMaGK8QecuoCQBA\#q\=btrfs\+compression, Jun
25, 2013.

[26] Markus F.X.J. Oberhumer. Lzo. http://www.oberhumer.com/

opensource/lzo/, August 12, 2011.

[27] Mark Adler. Zlib, April 28, 2013.

[28] Abraham Silberschatz Greg Gagne, Peter Baer Galvin and Jo Allan Be-
ran. Operating system concepts. http://www.cs.uic.edu/~jbell/

CourseNotes/OperatingSystems/13_IOSystems.html, 2008.

109

BIBLIOGRAPHY

[29] Carl Henrik Holth Lunde. Improving disk i/o performance on
linux. http://heim.ifi.uio.no/paalh/students/CarlHenrikLunde.

pdf, 2009.

[30] Khalid Sayood. Introduction to data compression. http:

//www.google.no/books?hl=no&lr=&id=Lhrge2YVpBwC&oi=

fnd&pg=PP2&dq=Data+compression,the+process+of+encoding+

digital+information+using+fewer+bits&ots=iKXetFlPJk&sig=j_

NVT50eBZDdxCkd1soU0D7CQnU&redir_esc=y#v=onepage&q&f=false,
2012.

[31] Frank Ebner and Volker Schneide. Analysis of web data com-
pression and its impact on traffic and energy consumption.
https://www.bibliothek.fhws.de/static/PDFs/fhws-science-

journal/Analysis_of_Web_Data_Compression_and_its_Impact_on_

Traffic_and_Energy_Consumption.pdf, 2013.

[32] Yann Collet. Real time data compression. http://fastcompression.

blogspot.no/p/lz4.html, 2014.

[33] Yann Collet. Extremely fast compression algorithm. https://code.

google.com/p/lz4/, 2014.

[34] Silesian University of Technology. The data compression re-
source on the internet. http://www.data-compression.info/Corpora/

SilesiaCorpus/, 2014.

[35] Don Capps and Tom McNeal. Iozone filesystem benchmark. http://

www.iozone.org/, 2014.

[36] l Jan Kra SUSE Labs. Ext4, btrfs, and the others. http://atrey.karlin.
mff.cuni.cz/~jack/papers/lk2009-ext4-btrfs.pdf, 2009.

[37] Dominique A. Heger. Workload dependent performance evaluation
of the btrfs and zfs filesystems. http://www.dhtusa.com/media/

IOPerfCMG09.pdf, 2009.

[38] Meaza Tayer Kebede. Performance comparison of btrfs and ext4 filesys-
tems. https://www.duo.uio.no/handle/10852/34150, 2012.

[39] Sakis Kasampalis. Copy on write based file systems performance analysis
and implementation. http://faif.objectis.net/download-copy-on-

write-based-file-systems, 2010.

[40] Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P Wright. A
nine year study of file system and storage benchmarking. ACM Transac-
tions on Storage (TOS), 4(2):5, 2008.

[41] Wasim Ahmad Bhat and SMK Quadri. Benchmarking criteria for file sys-
tem benchmarks. International Journal of Engineering Science and Technology
(IJEST), 3(1), 2011.

110

Appendix A

Scripts full overview

Listing A.1: BenchMarking Scripts

Iozone s c r i p t
B t r f s
iozone −a − i 0 − i 1 − i 2 −r 256 −r 512 −r 1024 −r 2048
−s 4g −s 8g −s 16g −f / b t r f s t e s t / b t r f s s i n g l e c o m p r e s s e d $ i
iozone −a − i 0 − i 1 − i 2 −r 256 −r 512 −r 1024 −r 2048
−s 4g −s 8g −s 16g −f / b t r f s t e s t /b t r f s s i n g l e u n c o m p r e s s e d $ i
iozone − i 0 − i 1 − i 2 −+u − l 1 −u 5 −r 2048 −s 8g −F
/btr fs s ingle uncomp/thrpt1 /btr fs s ingle uncomp/thrpt2
/btr fs s ingle uncomp/thrpt3 /btr fs s ingle uncomp/thrpt4
/btr fs s ingle uncomp/thrpt5

iozone −a − i 0 − i 1 − i 2 −r 256 −r 512 −r 1024 −r 2048
−r 4096 −s 4g −s 8g −s 16g −f /btrfsraiduncomp/uncompressed
iozone −a − i 0 − i 1 − i 2 −r 256 −r 512 −r 1024 −r 2048
−r 4096 −s 4g −s 8g −s 16g −f /btrfsraid5comp/compressed
iozone − i 0 − i 1 − i 2 −+u − l 1 −u 5 −r 2048 −s 8g −F
/btrfsraid5comp/thrpt1 /btrfsraid5comp/thrpt2
/btrfsraid5comp/thrpt3 /btrfsraid5comp/thrpt4
/btrfsraid5comp/thrpt5
iozone − i 0 − i 1 − i 2 −+u − l 1 −u 5 −r 2048 −s 8g −F
/btrfsraiduncomp/thrpt1 /btrfsraiduncomp/thrpt2
/btrfsraiduncomp/thrpt3 /btrfsraiduncomp/thrpt4
/btrfsraiduncomp/thrpt5
Zfs
iozone −a − i 0 − i 1 − i 2 −r 256 −r 512 −r 1024 −r 2048
−s 4g −s 8g −s 16g −f /tank/d a t a s e t 1/ s o l t e s t 1 / t e s t 3
iozone −a − i 0 − i 1 − i 2 −r 256 −r 512 −r 1024 −r 2048
−s 4g −s 8g −s 16g −f /tank/d a t a s e t 2
iozone − i 0 − i 1 − i 2 −+u − l 1 −u 5 −r 2048 −s 8g −F
/tank/d a t a s e t 1/thrpt1 /tank/d a t a s e t 1/thrpt2
/tank/d a t a s e t 1/thrpt3 /tank/d a t a s e t 1/thrpt4

111

/tank/d a t a s e t 1/thrpt5
iozone − i 0 − i 1 − i 2 −+u − l 1 −u 5 −r 2048 −s 8g −F
/tank/d a t a s e t 2/thrpt1 /tank/d a t a s e t 2/thrpt2
/tank/d a t a s e t 2/thrpt3 /tank/d a t a s e t 2/thrpt4
/tank/d a t a s e t 2/thrpt5
iozone −a − i 0 − i 1 − i 2 −r 256 −r 512 −r 1024 −r 2048
−s 4g −s 8g −s 16g −f /tank1/datasetuncomp/uncompzaidz1
iozone −a − i 0 − i 1 − i 2 −r 128 −r 256 −r 512 −r 1024
−r 2048 −s 4g −s 8g −s 16g −f /tank1/datasetcompred/
z f s r a i d c o m p f i l e
iozone − i 0 − i 1 − i 2 −+u − l 1 −u 5 −r 2048 −s 8g −F
/tank1/uncompred/thrpt1 /tank1/uncompred/thrpt2
/tank1/uncompred/thrpt3 /tank1/uncompred/thrpt4
/tank1/uncompred/thrpt5
iozone − i 0 − i 1 − i 2 −+u − l 1 −u 5 −r 2048 −s 8g −F
/tank1/datasetcompred/thrpt1 /tank1/datasetcompred/thrpt2
/tank1/datasetcompred/thrpt3 /tank1/datasetcompred/thrpt4
/tank1/datasetcompred/thrpt5
Ext4
iozone −a − i 0 − i 1 − i 2 −r 256 −r 512 −r 1024 −r 2048
−s 4g −s 8g −s 16g −f /dev/sdd
iozone − i 0 − i 1 − i 2 −+u − l 1 −u 5 −r 2048 −s 8g −F
/Ex4 singledisk uncomp/thrpt1
/Ex4 singledisk uncomp/thrpt2
/Ex4 singledisk uncomp/thrpt3
/Ex4 singledisk uncomp/thrpt4
/Ex4 singledisk uncomp/thrpt5
iozone −a − i 0 − i 1 − i 2 −r 256 −r 512 −r 1024 −r 2048
−s 4g −s 8g −s 16g −f /E x t 4 r a i d 5/ e x t 4 r a i d
iozone − i 0 − i 1 − i 2 −+u − l 1 −u 5 −r 2048 −s 8g −F
/ e x t 4 r a i d 5 /thrpt1 / e x t 4 r a i d 5 /thrpt2 / e x t 4 r a i d 5 /thrpt3
/ e x t 4 r a i d 5 /thrpt4 / e x t 4 r a i d 5 /thrpt5

data c o l l e c t i o n commands

grep ”Avg” Ext4 singledisk ucomp throughput
>>Ext4 singledisk ucomp throughputAvg
grep ”CPU” Ext4 singledisk ucomp throughput
>>Ext4 singledisk ucomp throughputcpu
grep ”Avg” Btrfs raidz5 uncomp throughput
>>Btrfs raidz5 uncomp throughputAvg
grep ”CPU” Btrfs raidz5 uncomp throughput
>>Btrfs raidz5 uncomp throughputcpu
grep ”Avg” Btrfs ra id5 comp throughput
>>Btrfs raid5 comp throughputAvg
grep ”CPU” Btrfs ra id5 comp throughput
>>Btrfs raid5 comp throughputcpu

112

grep ”Avg” single zfs disk ucomp throughput >>
single zfs disk ucomp throughputAvg
grep ”CPU” single zfs disk ucomp throughput >>
s ingle zfs disk ucomp throughputcpu
grep ”Avg” s ing le z fs d isk compr throughput >>
s ingle zfs disk compr throughputAvg
1599 grep ”CPU” s ingle z fs d isk compr throughput >>
s ingle zfs disk compr throughputcpu
grep ”Avg” raidz1 zfs ucomp throughput >>
raidz1 zfs ucomp throughputAvg
grep ”CPU” raidz1 zfs ucomp throughput >>
raidz1 zfs ucomp throughputcpu
grep ”Avg” raidz1 zfs comp throughput >>
raidz1 zfs comp throughputAvg
grep ”CPU” raidz1 zfs comp throughput >>
raidz1 zfs comp throughputcpu

F i l e copy commands
wget ht tp ://www. gutenberg . org/ebooks /2701
cp 2701−h . htm /tank/d a t a s e t 1/mobby1

cp 2701−h . htm /tank/d a t a s e t 2/mobby2
du −ah /tank/d a t a s e t 1/mobby1
du −ah /tank/d a t a s e t 2/mobby2

time cp dickens . t x t /tank/d a t a s e t 1/dick . t x t
time cp dickens . t x t /tank/d a t a s e t 2/dick2 . t x t
time cp dickens . t x t dick3 . t x t

time cp dickens . t x t /Btr single uncomp/dick4 . t x t
time cp dickens . t x t /Btr s ingle comp/dick5 . t x t

Linux kernel Compile Commands
wget ht tps ://www. kernel . org/pub/l inux/kernel/v3 . x/linux−
3 . 1 4 . t a r . xz
cd l inux −3.11.0/
echo ”Clean” ; make c lean >/dev/n u l l 2>&1 ;
echo ” Defconfig ” ; make defconf ig >/dev/n u l l 2>&1 ;
echo ” Build ” ; time (make >/dev/n u l l 2>&1) ;

c a t i o s t a t B t r s i n g l e c o m p a l l . out | grep −A1 ’ avg−cpu ’ >>
i o s t a t B t r s i n g l e c o m p a l l . out1
c a t i o s t a t B t r s i n g l e c o m p a l l . out1 | grep 0 >>
i o s t a t B t r s i n g l e c o m p a l l . out−avg−cpu
l e s s i o s t a t d a t a s e t 2 a l l . out | grep sdc >> i o s t a t d a t a s e t 2 I O P S
l e s s i o s t a t d a t a s e t 1 a l l . out | grep sdc >>i o s t a t d a t a s e t 1 I O P S

113

c a t i o s t a t B t r s i n g l e c o m p a l l . out | grep sdg >>
Btr f s s ing le comp IOPS
c a t i o s t a t B t r s i n g l e u n c o m p a l l . out | grep sdg >>
Btrfs s ingle ucomp IOPS

DD commands
dd i f =/dev/zero of= s p e e t e s t 3 bs =128k count =46875
conv=fdatasync
dd i f = s p e e t e s t 3 of=/dev/n u l l

Listing A.2: ConfigurationScripts
Fdisk /dev/sdg
mkfs . b t r f s /dev/sdg
mkdir btr f s s ingle uncomp
mount /dev/sdg /btr fs s ingle uncomp/
touch btr f s s ing le uncompressed
./ i o z o n e t e s t . pl&

mkdir b t r f s s i n g l e c o m p
mount −o compress=lzo /dev/sdg / b t r f s s i n g l e c o m p /

mount−o compress=lzo /dev/sdg / b t r f s t e s t c o m p r e s s
./ i o z o n e t e s t . pl&

f d i s k /dev/sdd
f d i s k /dev/sde

f d i s k /dev/sdf
mkfs . b t r f s −f −m raid5 −d raid5 /dev/sdd1 /dev/sde1 /dev/sdf1
mkdir /btrfsraid5comp
mount −o compress=lzo /dev/sdd1 /btrfsraid5comp/

mkdir /bt r f s ra id5 compressed
touch b t r f s r a i d 5 c o m p f i l e

./ i o z o n e t e s t . pl&

f d i s k /dev/sdd
mkdir /Ext4 singledisk uncomp
mount /dev/sdd /Ext4 singledisk uncomp
./ i o z o n e t e s t . pl&

mdadm −−c r e a t e −−verbose /dev/md0 −−l e v e l =5 −−raid−devices =3
/dev/sdd /dev/sde /dev/sdf

mkfs . ext4 /dev/md0
mkdir / e x t 4 r a i d 5

mount /dev/md0 / e x t 4 r a i d 5 /
./ i o z o n e t e s t . pl&

114

f d i s k /dev/sdg
mkdir /Ex4 singledisk uncomp
1533 mount /dev/sdg1 /Ex4 singledisk uncomp/

1534 mkfs . ext4 /dev/sdg1
1535 mount /dev/sdg1 /Ex4 singledisk uncomp/

Zpool c r e a t e f tank /dev/sdc
z f s c r e a t e tank1/datasetuncomp

z f s c r e a t e tank1/datasetcomp
z f s s e t compression=l z 4 tank1/datasetcomp

zpool c r e a t e tank1 raidz1 /dev/sdd1 /dev/sde1 /dev/sdf1
z f s c r e a t e tank1/uncompred
z f s c r e a t e −o compression=l z 4 tank1/datasetcompred
./ i o z o n e t e s t . pl&

115

Appendix B

Supplementary graphs of
benchmarking results

116

Figure B.1: Boxplot for Zfs single Write Read result

117

Figure B.2: Boxplot for Zfs single Rnwrite Rnread result

118

Figure B.3: Boxplot for Btrfs single Write Read result

119

Figure B.4: Boxplot for Btrfs single Rnwrite Rnread result

120

Figure B.5: Btrfs Comparison for IOPS Requests

Figure B.6: Zfs Comparison for IOPS Requests

121

Figure B.7: Btrfs Compression Percentage of increase for single disk against multi
processe

Figure B.8: Btrfs Single WallTime per processes

122

Figure B.9: Zfs Compression Percentage of increase for single disk against multi pro-
cesse

Figure B.10: Zfs Single WallTime per processes

123

Figure B.11: Zfs Single WallTime per processes with Rnread

Figure B.12: Btrfs Single Impact of Compression Comparison, CPU and Disk Usage

124

Figure B.13: Zfs Single Impact of Compression Comparison, CPU and Disk Usage

125

Appendix C

Acronyms

Zfs: Zeta file system
Btrfs: Btree file system or Butter or Better file system
Ext4: Extended Family version 4 file system
LZ4: Real time Data Compression Protocol
LZO: Real time Data Compression Protocol
COMP: Compression
UNCOMP: Uncompressed
W: Write
R: Read
Rw: Rewrite
Rr: Reread
Rn: Random
Rnw: Random write
Rnr: Random read
Avg: Average
SEM: Standard error of Mean
proc: process
IO: Input output
r/s: Read Request per second in MB/S
w/s: write request per second in MB/s
Single: Single Disk Set up
Raid: Raid5 or Raidz1 set up

126

