
Observing impact of
performance variation in cloud
games using a chess engine

Jonas Sollihøgda
Master’s Thesis Spring 2014

Observing impact of performance variation in cloud
games using a chess engine

Jonas Sollihøgda

May 20, 2014

ii

Abstract

Cloud computing is growing extensively, and in correlation, so is the number of
users. Businesses look at the opportunity of increasing effectiveness and decrease
cost, and are moving their infrastructure to the cloud. With such high increase in
users, the cloud providers has turned to multitenancy. In which multiple tenants
may end up running services or applications on the same physical server. This
leads to shared resources, and may contribute to contention for resource allocation
between the various services. This contention may result in varying degrees of per-
formance and yield a very unpredictable service.

Furthermore one is witnessing parts of the industry taking advantage of the cloud
as a platform for hosting games. The mentioned resource contention may impose
severe performance deficiency on hosted games and servers running in the cloud.

This thesis propose the use of a chess engine as a way of simulating games hosted
in a cloud environment where one is looking at observing the possible impact of
shared resources and contention between virtual machines. The goal of the the-
sis is to map performance variation in the cloud and look at how it impacts the
quality of the games, through observing chess matches being played under various
conditions. In order to utilize a chess engine in the cloud, a set of frameworks
was developed. The frameworks was responsible for hosting and running chess
matches, and furthermore analyze the outcomes in order to observe any significant
impact related to performance variation and resource contention.

iii

iv

Contents

1 Introduction 1
1.1 Problem Statement . 4

2 Background 5
2.1 Performance Variation and unpredictability 5

2.1.1 Virtualization . 5
2.1.2 Cloud-Computing . 6

2.2 Environment of implementation 7
2.3 The game of chess . 8

2.3.1 Algebraic Notation . 8
2.3.2 Board representation . 9
2.3.3 Evaluation function . 10
2.3.4 Stockfish Chess Engine 11
2.3.5 UCI Protocol . 11

2.4 Related research . 12

3 Methodology 13
3.1 The objective and design . 13
3.2 Design Phase . 14

3.2.1 Modeling . 14
3.2.2 Pseudocode . 15

3.3 Implementation Phase . 16
3.3.1 Environment . 16
3.3.2 Synthetic testing . 17

3.4 Approach summary . 18
3.4.1 Exploration . 18
3.4.2 Investigation . 19

3.5 Expected Results . 19

4 Result - Identifying technical possibilities 21
4.1 Introduction of terminology . 21
4.2 Selecting a chess engine . 22
4.3 Communicating with Stockfish 22

4.3.1 Setting a specific FEN 23
4.3.2 Initiating the evaluation 23
4.3.3 Invoking a move . 25

4.4 Determinism . 25

v

CONTENTS

5 Result - Chess framework 27
5.1 Modeling and architecture . 27
5.2 Orchestrating chess matches on a large scale 27

5.2.1 Organizing matches in batches 28
5.2.2 Parallelization of matches 29
5.2.3 Chess bots . 29

5.3 The broker - Chess framework 31
5.3.1 Match penalty . 34

5.4 Stockfish - What it provides in terms of data 34
5.5 Intended run time scenario . 36
5.6 Database model . 37
5.7 Implementation of Chess Framework 39

5.7.1 Creating chess bots . 39
5.7.2 The chess Framework - Script 41
5.7.3 Creating batches . 42
5.7.4 Initiating matches . 43

5.8 A game - Through the eyes of the broker 44
5.9 The Database . 48

6 Result - Analysis Framework 51
6.1 Measuring success . 51
6.2 Organizing the analysis . 53

6.2.1 Analysis batches . 53
6.2.2 Referees . 54
6.2.3 Parallel analysis . 54

6.3 The Broker - Analysis Framework 55
6.3.1 Quality of a move . 57

6.4 Intended run time scenario . 57
6.5 Database model . 58
6.6 Implementation of Analysis framework 60
6.7 Analysis framework - Script . 60

6.7.1 Creating analysis batches 61
6.7.2 Initiating an analysis . 61

6.8 How an analysis is conducted . 62

7 Analysis 65
7.1 Synthetic testing . 66

8 Discussion 75
8.1 May this be conducted in another cloud environment? 75
8.2 Do the frameworks work? . 76
8.3 Live Testing . 77
8.4 Implementation of queues - Considering RabbitMQ 78
8.5 Does the analysis work? . 79

8.5.1 Better understanding the analysis 80
8.6 What can system administrators learn from this? 80

8.6.1 Game success monitoring 81
8.7 Future Work . 81

vi

CONTENTS

9 Conclusion 83

10 Appendix 89

vii

CONTENTS

viii

List of Figures

2.1 Virtualization techniques . 6
2.2 Algebraic notation . 9
2.3 Illustrating a FEN string . 10

3.1 Perception of a chess game chess engine vs human 15

4.1 Communicating with Stockfish 23
4.2 Stockfish representing a chessboard 24
4.3 Stockfish output . 25

5.1 The concept of batches . 28
5.2 One chess bot scenario . 30
5.3 White chess bot vs Black chess bot 30
5.4 The framework "repeat match" function 32
5.5 Chess broker communication . 33
5.6 Runtime scenario of a chess match 36
5.7 Proposed database structure chess framework 37
5.8 How the broker communicates with the DB 39
5.9 Communication through Xinetd 41
5.10 Game scenario from the brokers point of view 44
5.11 Flowchart of a particular chess game 45
5.12 Implementation of the DB . 48

6.1 The concept of analysis batches 53
6.2 Concept of parallel analysis . 54
6.3 An overview of the infrastructure 55
6.4 Runtime scenario of chess match with concurrent analysis 58
6.5 Proposed database structure for the analysis framewrok 59
6.6 Analysis scenario from the brokes point of view 63
6.7 Referee communicating with the database 64

7.1 Outcomes of matches with fixed penalty 66
7.2 Outcomes of matches with uniform penalty 67
7.3 Outcomes of matches with uniform penalty(Both players) 68
7.4 Fixed & uniform penalty . 69
7.5 Nodes over time 4000 - 2000ms 70
7.6 Uniform penalty . 71
7.7 Nodes over time 10 - 5 ms . 71

ix

LIST OF FIGURES

7.8 8 Seconds match - Depth 15 analysis 72
7.9 10ms match - Depth 15 analysis 73
7.10 5ms match - Depth 15 analysis 74

8.1 Live test scenarios . 78

x

Acknowledgments

I would like to express my sincere gratitude to my supervisors Paal Engelstad and
Kyrre Begnum, for the dedication and guidance they have shown during this pro-
cess. Your determination and encouragement has infused me with the inspiration
and motivation needed in order for me to fully take use of my full potential. Your
support has helped form this thesis, and for that I am eternally grateful.

Moreover i would like to express my sincere thanks and appreciation towards
Hårek Haugerud. You have given me a tremendous amount of support throughout
the course of this masters program, and your guidance and belief in me is highly
valued.

I would like to thank my family for their support over the course of this thesis,
your kind words and constant encouragement has been most helpful. And i am
truly thankful.

Lastly, to the person who has stood by me through the entire course of this masters
program, and constantly encouraged and pushed me in order for me to reach my
goals, Karoline, i deeply thank you for all the patience and love you have shown.

Oslo, May 20th
Jonas Sollihøgda

xi

LIST OF FIGURES

xii

Chapter 1

Introduction

Cloud-computing has grown extensively over the years and with it its number
of users. Businesses and private actors look to the cloud in order to increase
effectiveness and decrease cost. As a result cloud providers are faced with
serving an increasing number of tenants and applications across their platforms,
culminating in shared resources between the numerous tenants and hosted
applications. Ultimately this lead to resource contention. This sharing of resources
and resulting contention yields an unpredictable utilization of resources and
potentially diminishes the cloud providers overall quality of service.

Still, adoption of cloud-computing is prominent. With cloud providers offering
various cloud platforms such as Software as a Service(SaaS) and Infrastructure as
a Service(IaaS), the incentives of moving to the cloud are many and the apparent
benefits of increased agility, flexibility, scalability and the pay-as-you-go model
are highly sought after by businesses and private actors. This has contributed
to businesses moving away from traditional in-house server infrastructures and
transitioned into moving more of the infrastructure and workload to cloud
platforms.

It is not only within the corporate world that cloud-computing has become
immensely popular, the gaming industry has also started to embrace the cloud
platform as a way of providing their gaming services, so called "Gaming on
demand". It is estimated that the online games market will double and that
downloading/streaming games will increase a nine-fold by 2017[17]. Prominent
providers such as OnLive, Gaikai and Ciinow provide end-users with an alternative
way of playing games as the games are stored and run on the respective companies
servers.

When one is concerned with game hosting in the cloud, awareness of CPU
utilization is vital in order to deliver a solid product. In cloud environments
where vast amount of the resources are virtualized and shared, the CPU of a
physical server may be utilized by a various amount of hosted applications and
services simultaneously, even more so in cloud environments which are run with
multitenancy in mind. This may lead to contention, in practice meaning that VMs
may struggle over the available resources. Therefore it is favorable to be aware

1

CHAPTER 1. INTRODUCTION

of how the CPU is utilized across such a platform as it may help increase the
predictability of how the CPU is used when being shared between multiple services
and applications.

One may consider the scenario where one is playing a game, for instance a first
person shooter(FPS), where the game itself is run within in a cloud environment.
The game scenario features the player and one or more opponents in which are non-
playable characters(NPC), who’s actions are based on Artificial Intelligence(AI).
Specific to this scenario is the expectation of the player towards the NPCs actions
and level of difficulty. In this lies that the player who is facing the NPC expects the
NPC to perform at the difficulty chosen. With this in mind, what may be the reason
for the NPC in some instances playing at its intended level, and in other instances
of the game underachieving and playing poorly when the player keeps repeating
his pattern in terms of game play. For instance, one may be be playing a game at
a specific difficulty and under optimal conditions one may be loosing 10 out of 10
matches, making the exact same choices every game. If one then was to repeat the
game scenario at the same level of difficulty, the player would expect the NPC to
win all of the matches again if the player makes the exact same choices as he did
during the first set of matches. Although this time the player comes out victorious
in 5 out of 10 matches, even though the matches have been played on the exact
same terms.

Another game one may take into consideration is that of chess. When a player
is playing chess versus the computer, one may make a move, and then observe
the counter move made by the computer. Under the same conditions, meaning
that the chess computer is running its evaluation at the same duration at all times,
one would expect the chess computer to make the same move again if one was to
experience the same game scenario in several matches. Although what if one in
some cases witnesses the chess computer making a considerably inferior move to
what one has observed earlier in the same scenario. The two situations described
and their outcomes may be related to varying degrees of performance in terms of
the underlying resources utilized by the NPC and the chess computer, and may
be a result of possible contention in the environment in which they are run. The
role of the system administrator in this case is making sure that resources always
are readily available and keeping possible contention to a minimum in order not to
experience such loss in quality in running games.

The predictability of performance regarding virtual machines(VMs) in a cloud
is difficult to assess as several VMs running on the same physical server may share
the same resources. As a cloud user one may not be aware of other simultaneously
running VMs that are handled by other users on the same server. Furthermore it
is hard to assess whether the resources of the underlying physical server are over
utilized and as a result it is hard to predict the likelihood of VMs interfering with
each other. Lastly, one is usually not aware of the activity of the surrounding
VMs, making it difficult to predict if a VM will have enough resources available to
accomplish its given tasks, without interference from its surroundings.

2

As the objective of this research is to map performance variation and look at
how it may be linked to Quality of Service with respect to applications running in
the cloud, with the main concern being CPU utilization between VMs, the usage
of a CPU heavy technology is of interest. There is a strong correlation between
the CPU and chess engines, as they depend on the CPU in order to evaluate chess
positions. Therefore a chess engine is a viable option when wanting to have a CPU
intensive application running in the cloud when mapping performance variation.

Chess engines have been around since the fifties, gaining more popularity
through the seventies and eighties. As of today chess engines can be used by
anyone who wants to analyze their chess matches and improve their game. A chess
engine is first and foremost a computer program that analyses chess positions and
decides what the best chess move is relative to the current board representation.
Chess engines such as Houdini[20], Stockfish[32] and Komodo[5] are examples
of highly popular chess engines within the chess community. A chess engine is
a good candidate for the current research as they are well studied and fairly well
documented, and they are furthermore simple compared to modern 3D shooters
and other games one may have utilized for this purpose. Another important aspect
is that it is possible to utilize the functionality of a chess engine through the
development of scripts.

When it comes to using a chess engine within a cloud as a tool for mapping
performance variation, one could look at the outcome of chess matches under
various conditions, as a measure of how successful the engine has been in its
position evaluations. One could coin this with a term such as success rate, in
where one is able to look at the outcome of chess matches to make conclusions in
terms of performance variation. With the underlying notion being if a chess engine
is given less CPU its performance will be diminishing.

If one takes the above statement of predictability of performance in regards
to VMs into account, two active VMs running on the same physical server may
interfere with one another, although the process of this interference and how it
manifests itself is uncertain. One aspect of this research is how the resources are
utilized, more specifically the CPU. If the VMs are using CPU in some random
intervals, they will most likely only interfere in the case where both VMs need
to utilize CPU resources simultaneously. A different aspect may be where both
of the VMs are constantly utilizing the CPU, in which case mutual interaction is
constant, but it is not certain what effect this has on a running chess game. Would
a 50% decrease in CPU utilization amount to a 50% decrease in success rate, or
would a 10% decrease in CPU utilization lead to a 100% probability of losing a
game?. None of the mentioned aspects are certain, and will as such be taken into
consideration during the exploration in this research.

3

CHAPTER 1. INTRODUCTION

1.1 Problem Statement

The thesis and its involved research will be based on the following problem
statement.

How can we explore Quality of Service(QoS) through the investigation of success
rate of chess engines in a cloud environment with varying degrees of resources ?

In this research the aspect of exploring Quality of Service(QoS) refers to the
observation and mapping of performance variation, more specifically in that of
CPU utilization in a virtualized cloud environment. The performance of which
will be observed is that of the services running on Virtual Machines hosted in
a cloud environment, which comprises of looking at how various services on
Virtual Machines performs when run in conditions where performance variation
is introduced. The services running are not that of ordinary services such as web
or mail, but services related to gaming.

Success rate in this research is not to be seen relative to the success rate of
performance, stability or other system related values, but will be defined as a
variable that describes or depicts whether a chess engine is playing at its full
potential. The success rate will be used to determine whether or not the chess
engine is playing favorably or whether it is playing in a more diminishing manner.

A chess engine in the case of this research should be thought of as Virtual
Machine running one instance of a chess engine listening to a specific port. This
will enable several VMs running such chess engines to partake in chess matches
played across the network.

A cloud environment is in terms of this research an environment where
physical resources are consolidated into virtual resources, shared between multiple
applications and services being run on multiple Virtual Machines. The sharing of
resources is done in a manner that is transparent to the hosted Virtual Machines.

4

Chapter 2

Background

Throughout the following background chapter general concepts of chess and its
related jargon will be described in order for the reader to be comfortable with the
various aspects of chess and how a game of chess is played. This will be necessary
as the research conducted in this thesis will utilize a chess engine in order to answer
the problem statement. It will furthermore introduce some concepts in relation to
cloud computing and virtualization since it is imperative knowledge in order to
understand the architectural design of the current research.

2.1 Performance Variation and unpredictability

As the demand for serving an increasing number of users has grown, cloud
providers have adopted a multitenancy architecture allowing multiple tenants
and applications to use the same physical and network infrastructure. Some
virtualization techniques do not provide effective performance isolation between
virtual machines [26], hence when multiple tenants and applications compete for
resources of a physical server, it introduces the problem of resource contention.
Such a contention implies that VMs will be competing for resources such as CPU,
memory and disk. With VMs competing for resources another issue arises, that
of unpredictability in terms of how much resources are in fact being used by the
respective VMs at any given time.

With the cloud market being what it is today, performance variation is
present within many cloud environments as many applications may be running
simultaneously within vicinity of one another on the same physical host. It has been
proposed that cloud providers re-evaluate their current Service Level Agreement
policy as it is mainly concerned with uptime and availability, and not the underlying
performance in which the consumers trust is provided[10]. Studies have been made
in order to map performance variation within various Cloud environments such as
Amazon EC2[16] and Googel App Engine[18][23].

2.1.1 Virtualization

Virtualization is a concept that started with IBMs mainframe dating back to the late
1960s and early 1970s. It was in this period of time where IBM was looking into

5

CHAPTER 2. BACKGROUND

the possibility of sharing the mainframes computer resources among several users.
This technology has since been popularized and is widely used within the field of
cloud computing. The goal of this effort was to improve the overall efficiency of
both the users and computer resources. As of today large data centers embrace this
virtualization technology as it enables them to make abstractions of the underlying
physical hardware and create larger aggregated pools of virtual resources. These
resources may be CPU, memory and storage[21].

The virtualization itself is achieved by installing a virtual machine moni-
tor(VMM) also knows as a hypervisor on a host machine. The virtual machines
which are running on top of the hypervisor are regarded as guest machines, and
as a way of managing the execution of these guest machines the hypervisor pro-
vides them with a virtual operating platform. The created guest machines will
now have the ability to share the virtual hardware resources. There exist differ-
ent types of virtualization techniques and ways the hypervisor is employed, one of
which is full virtualization, meaning that the hypervisor is installed directly on top
of the underlying hardware making it possible to manage the hardware and guest
machines. The guest machines will run on top of the hypervisor. Another virtual-
ization technique is that of paravirtualization, where the hypervisor is run within
another traditional operating system, and guest machines are run on the layer above
the hypervisor. The virtualization techniques can be seen in Figure 2.1.

Hardware

Bare Metal Hypervisor

Guest
Machine /
Applications

Guest
Machine /
Applications

Hardware

Operating System

Guest
Machine /
Applications

Guest
Machine /
Applications

Hypervisor

(a) (b)

Figure 2.1: Illustratring Type 1, Full Virtualization (a) and Type 2, Paravirtualiza-
tion (b).

2.1.2 Cloud-Computing

Often associated with virtualization is cloud computing environments. Cloud
computing is a phrase that was coined for a concept involving application and
service hosting across the internet and furthermore the underlying architecture
on which it is offered upon. Amazon and Rackspace are examples of providers
who offers both public and private clouds for consumers. Consumers have the
opportunity to choose from different service models:

6

2.2. ENVIRONMENT OF IMPLEMENTATION

Software as a Service(SaaS) is a service model where consumers are provided
with applications fitting their requirements by cloud providers. The cloud providers
handle the infrastructure and the overall platform that run the application software
and the consumers only need to connect to the application software through thin
clients or other cloud clients.

Platform as a Service(PaaS) gives consumers the opportunity to move, develop
and run their own software on their own platform within the cloud environment.

Infrastructure as a Service(IaaS) is a service model that enables the consumer to
create and run virtual machines within a cloud environment and furthermore take
control of resources such as storage and network. Additionally the consumer is
given access to resources such as firewall, load balancing and software bundles.
Cloud providers are able to offer this on a "on-demand" basis, meaning that
consumers have the ability to scale their resources in terms of their requirements.
The VMs that are created within the cloud are under the control of consumers
themselves, and they can administer them as they would any pay-as-you-go
machine.

As of recent years some of the focus within the area of cloud computing has
shifted towards that of gaming in the cloud. Unlike the other "as-a-service" models
such as Software as a Service and Infrastructure as a Service, a new model has been
proposed and is called Gaming as a Service(GaaS). Although GaaS is considered
new, it has been around for some time as games have been offered in the cloud for
a longer period through sites such as Facebook, offering games from companies
such as Zynga[33]. Zynga released Farmville on facebook and garnered huge
success within a short time span[34]. Furthermore companies such as OnLive offer
consumers games that are playable in the cloud on both computers, consoles and
other devices.

2.2 Environment of implementation

The environment in which will be utilized during this research is that of an
OpenStack[19] cloud environment. The OpenStack environment provides the the
user with the following possibilities:

• Create Images

• Choose capacity of the virtual machine(Flavors)

• Creation of snapshots

In the OpenStack environment, when creating a virtual machine(VM), one has
the possibility of choosing from several images, meaning one may choose various
operating systems that the VMs will be run with. The following research will be
using a Linux/Unix based image. Moreover one has the possibility of choosing
from predefined capacities in which these VMs will be fitted with. The flavors

7

CHAPTER 2. BACKGROUND

dictate the storage, memory and CPU capacity of a given VM. Furthermore as the
VMs are being created with different specifications, for different purposes, it is
possible to create snapshots of the already created VMs. These snapshots are in
essence a duplicate of the original, creating another instance with the exact same
specifications in terms of capacity and data contained within the original VM.

2.3 The game of chess

Chess is a strategy based board-game in which two players alternate moving a
set of chess pieces with the aim of capturing the opponents pieces, and ultimately
check-mating the opponents king. The traditional game of chess is played on an
eight by eight chess board with each side, black and white respectively, having 16
pieces to choose from. Each game of chess is begun with the two players having
one king, one queen, two rooks, two knights, two bishops, and eight pawns. All
of which have different movement patterns. The overall goal of a traditional chess
game is to checkmate the king of ones opponent, which means forcing the king
into a position where it may no longer move without being captured [6].

A game of chess is divided into three phases, the opening, middle game and end
game respectively. These phases have different characteristics.

The opening phase is the initial start of a chess game, in which a set of initial
moves in a recognizable sequence are made. Although opening is used as a general
term within chess, an initial move for white is considered openings and defenses
for black. There exists many variations of chess openings, and many of which are
named and more popular than others.

The middlegame is a phase recognizable by the many different board combina-
tions and tactical moves made by each side. There is no distinct beginning or end
of the middlegame. The opening moves may be part of this phase, and the middle
game will after a while transition into what is called the end game.

The end game is generally categorized as the phase where the amount of captured
chess pieces grows, leaving few pieces left on the board. The end game will
conclude when one of the players check mates the opponents king, or the two
parties agree on a remis, which is a draw in a game of chess.

2.3.1 Algebraic Notation

Standard Algebraic Notation(SAN) is the only system of notation recognized by
the World Chess Foundation, and is also considered the standard way of recording
moves in a game of chess. The rows(from left to right) on a chess board is
commonly referred to as files, given the letters a through h respectively and the
columns are referred to as ranks, represented by the numbers 1 through 8. Bottom
to top for white, and from top to bottom for black. Such that a specific position on
a chess board is denoted with both a file letter and a rank number. E.g a2,b3,c7,d8.
Figure 2.2 illustrates this.

8

2.3. THE GAME OF CHESS

Figure 2.2: Illustratring Algabraic notation[7][8][9]

The Algebraic System denotes the six different chess pieces by their first letter;

• K = King

• Q = Queen

• R = Rook

• B = Bishop

• N = Knight(N used not to conflict with kings K)

The pawn piece is not denoted with any letter, and a pawn move will be
recognized only by the square to which it is moved. Each move made during a
game of chess is represented by the first letter of the name of the piece and by the
square it is placed. E.g: Knight to c6 = Nc6 and King to a2 = Ka2. As mentioned
a pawn move is only indicated with the square of which it is placed, for instance
moving a pawn piece to e4 is only denoted e4[22].

2.3.2 Board representation

In chess there is a standard for noting the current board position for a game of
chess. Forsyth-Edwards Notation(FEN) is a system invented by David Forsyth and
is considered the standard for noting board positions in chess. The FEN notation
or record, holds information about the various piece placements currently applying
to a specific board, it furthermore holds information regarding which player is next
to move and how many moves are made. A FEN is also used to restart or initiate a
game from a specific game position. A typical FEN record will look like this:

The FEN record, represented in ASCII, consists of 6 fields separated by a space,
each field representing various information about the game. The fields are as
follows:

9

CHAPTER 2. BACKGROUND

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1

 1 2 3 4 5 6

Figure 2.3: The concept of a FEN string

1. Placement of the pieces. All of the ranks are described, 8 through 1. Each
rank is described from file a through h. Each piece is noted using the
Standard Algebraic Notation. White pieces are denoted using upper-case
letters(PNBRQK) and similarly black pieces are denoted using lower-case
letters(pnbrqk). Each empty square within a rank is denoted using digits 1
through 8, and / separates the ranks.

2. Tells which player is next to move; w for white and b for black.

3. Denotes castling availability. If either white or black can castle, the field
is represented by one or more letters: "K" for king side castling or "Q" for
queen side castling for white. As for black the same will be denoted, only in
lower case letters. In the event where castling is not available the field will
simply denote "-".

4. Represents the target square for which "En passant" can be made. If there is
a possibility for en passant, the field will be denoted with the target square
in Standard Algebraic Notation E.g b3. If no such move is available it will
be denoted with "-".

5. Halfmove clock. This field represents the number of halfmoves since a pawn
advance or last piece capture. The field is used to check if it is possible to
call a draw under the fifty-move rule.

6. Fullmove number. This is the number of full moves that has been made, it
starts at 1 and is incremented with each black move.

2.3.3 Evaluation function

The evaluation function[13] within a chess engine is used to heuristically determine
the relative value of a position in chess. This value represents which of the playing
parties are currently at an advantage after a move has been made during a game
of chess. The evaluation function bases its evaluations(which are approximations)
on the balance of material for both sides in conjunction with other considerations,
with material being the most significant aspect.

Material is a term that is determined by the sum of piece values for both white
and black, in which is the sum of constant values for each piece still on the board,
measured in units of a fraction of a pawn. This is commonly referred to as the
centipawn scale[15][14][12]. Commonly the chess piece relative values for chess
pieces are[30];

• Pawn = 1

10

2.3. THE GAME OF CHESS

• Knight = 3

• Bishop = 3

• Rook = 5

• Queen = 9

Centipawns(cp), then gives a score in which 100 cp = 1 pawn. Although in
regular chess the value is of no specific help, but may be useful to the players.
As mentioned the centi pawn value gives an indication as to which player has an
advantage on the current board, it may also happen to be an equal standing in which
none of the players have any form of advantage. As a game of chess progresses this
centi pawn value will shift in favor of the player who has the stronger position on
the board, even more so if one party collects material from its opponent. One may
look at the standing at the start of a match, in which the centi pawn value would
be 0, indicating equal advantage at the beginning of the match(Although white is
considered to be at an advantage as he has the first move). As the players move
their respective pieces on the board, the centi pawn value will increase or decrease
based on how good the previous move was. During a chess game, if the centi
pawn value is above 0 then white has the advantage, accordingly if the centi pawn
value goes below 0 and becomes negative, the black player is currently holding an
advantage.

2.3.4 Stockfish Chess Engine

The Stockfish chess engine is derived from Glaurung[28], an open source chess
engine developed by Tord Romstad, and is a collaborated work between chess
programmers Tord Romstad, Marco Costalba and Joonas Kiiski. Stockfish is, as of
writing this thesis, the second strongest chess engine in the world, only beaten by
the proprietary chess engine Houdini[3][1].

During the thesis Stockfish will be run in a Unix-like environment and it is
possible to compile it to suit the environment in which it is selected to run,
which is recommended as it improves the efficiency of the chess engine. As of
now Stockfish supports the use of 64 CPUs running on either a 32 bit or 64 bit
architecture, with the possibility of changing the wanted number of CPU cores
when running the engine.

2.3.5 UCI Protocol

Stockfish is what is commonly referred to as a UCI chess engine. The Universal
Chess Interface(UCI) is a protocol used for the communication between a chess
engine and a chess user interface[24][25]. Stockfish supports the UCI protocol,
and traditionally one would communicate with the engine through a chess GUI
such as Arena[11]. All the communication between the engine and the GUI is
done via text based commands.

11

CHAPTER 2. BACKGROUND

As the communication is done via commands one has the possibility to
communicate directly with the UCI protocol through a regular command line
interface. The usage of the command line interface will be used in the case of
this thesis, as UCI commands will be passed in order to tweak engine parameters
and invoke various functions within the Stockfish engine.

2.4 Related research

Cloud computing has seen a great increase in popularity, and has as such also
become the focus of many researchers. Within the area of performance variation
and performance predictability in the cloud, similar research to that of this has been
conducted. Research of which considers performance variation and predictability
to that of CPU utilization in the cloud, is considered that of similar research.

When it comes to that of mapping performance variation in the cloud, a proposed
research is Schad et al.[29] in which CPU performance is measured using Unix
Benchmark Utility, which is a widely used tool for measuring CPU performance.
The Unix Benchmark Utility provides a single CPU performance score by making
various concurrent integer and floating point calculations. The measurements of
the proposed researched where made in the Amazon EC2 cloud in order to map
the variance of performance and analyze the impact it had on real applications.
Furthermore more, Moses et al.[27] propose the use of shared resource monitoring
in order to understand the resource usage of each virtual machine on a given
platform. And they conclude that high priority applications suffer from contention
if scheduling of resources is not done at a data center level.

Other research such as Silva et al.[31] have delved into the area of enabling
performance isolation as means of controlling how multiple VMs share resources
on a physical host, in order to be able to classify different levels of QoS to
the customer. They look at how they can employ "soft-limits and "hard-limits"
enforced by the underlying hypervisor such that it is possible to set a lower
and upper bound of resource usage. Their preliminary experiments found that
the developed framework effectively enforced CPU and Network I/O limits and
protecting performance of a virtual machines workload while maintaining a high
resource utilization towards the numerous hosts.

12

Chapter 3

Methodology

The methodology chapter will introduce the approach of this research, which will
detail how the following problem statement will be answered:

How can we explore Quality of Service(QoS) through the investigation of success
rate of chess engines in a cloud environment with varying degrees of resources

In the problem statement several aspects are of significant interest, and may be
further denoted into key concepts: Measuring success in the context of QoS(K1),
how may one define and view success in conjunction with resource contention
and how does it affect QoS. Incorporating a chess and analysis framework in the
cloud(K2), the creation of a chess framework is needed in order to utilize a chess
engine for the purpose of this thesis. And the subsequent analysis framework in
order to analyze the data produced by games of chess.

The focus of the design will be on answering, or accommodating the concepts
mentioned in this brief introduction and furthermore serve as the overall scheme
for the development of the frameworks that will serve to answer the concept of K2.

3.1 The objective and design

The goal of this thesis and research is to design and create a framework
for observing and mapping the impact performance variation has on quality
of service(QoS) of applications running on virtual machines based in a cloud
environment. As described during the introduction of this thesis, a subsequent goal
is being able to make a cohesion between resource contention occurring in such
environments to that of success in a game. Success in the case of this research,
related to gaming, is being measured in how well a specific chess match is played
out by a chess engine.

The framework in question will have to be able to integrate a chess engine
within a virtualized cloud environment, and furthermore be able to orchestrate
chess matches on a large scale across the network. It will be necessary to identify
the technical possibilities of the chess engine as the framework will have to rely

13

CHAPTER 3. METHODOLOGY

heavily on automation, since manually arranging a large scale of chess matches
and storing the related data is a non-trivial task. Accordingly the framework will
have to take into account the preservation of required data from intended chess
matches to be played. The data will need to be stored in such a fashion that one
may easily extract only wanted results for analysis.

Furthermore, the method of storage to be used within the architecture must
feature a way of backing up or replicating the created storage structure and its
contained data.This may be done manually. The framework that will be proposed
also needs to account for an analysis module that will be utilized by possible third
party nodes, proposed as referees, as a part of observing and comparing the impact
that may have been imposed by varying degrees of performance.

3.2 Design Phase

In order to comprehend the framework and its related architectural design, a way of
portraying the said design is needed. Models may provide a good overall view of
the frameworks intended functionality and its required modules. The complexity
may be viewed in a more shallow manner and ease the comprehension of the
framework.

3.2.1 Modeling

Whether you are developing a tool, creating a framework, or building an entire
architecture, a model or graphical representation of the intended creation is always
preferable as it may give both the developer and exterior onlookers a better
perception of the end product. A model may give easier insight into the how the
processes within a given framework intertwine, and how they are needed to give
life to the intended functionality. It will furthermore help introduce the various
tasks that the intended functionality are meant to serve. Although a modeled design
may be helpful in most cases, it is important to recognize the possible flaws it may
possess. One has to be careful not to make the models to extensive as this will ruin
the purpose of the models intention of reducing complexity and ease the overall
comprehension of the processes, modules or in worst case the entire framework.

In order to make a model or graphical interpretation of a proposed framework
one first has to decide on what type of modeling language one wants to make use
of. This is important as it will determine how one structure and build ones models.
It will furthermore set limits for what is possible to achieve given the constraints
of the chosen modeling language.

When using models or graphical representations of a proposed module or
feature, people that are either exterior to the project or just not fluent in any
sort of programming languages may have a chance of comprehending what the
displayed model is trying to achieve in terms of either how a specific process is
thought out to work, or how a certain module will be developed. An example
of said modeling languages is UML(Unified modeling language). UML may be

14

3.2. DESIGN PHASE

used to model a variety of concepts of which some being architectures, processes,
as well as data structures. A model may manifest itself in different forms of
diagrams such as state diagrams which serve to describe and display a behavior in
a given system, flowcharts which easily depicts the flow of a given process within
a system or a sequence diagram that visually illustrates how certain processes act
and operate with each other. UML will be used throughout the research to model
the architectural concepts and furthermore to model certain proposed functions that
will be implemented within the frameworks.

Evaluation
process

start

Chess engine

Optimal move

Thought
process

start

Chess player

Making move

end end

Figure 3.1: Illustrating the perception of a chess game through a chess engine and
a human player. The design formalized using a UML model.

3.2.2 Pseudocode

Another approach to that of illustrating a concept or some piece of functionality
is that of pseudocode. Pseudocode may be seen as a high level description of
a given process or feature(or functionality). Pseudocode, in its simplicity uses
the same structural conventions to that of a programming language. The main
difference being that pseudocode is intended for human reading, as opposed to
that of a programming languages which is to be understood by a machine. With
that being said, pseudocode may be interpreted easier by a person that has some
experience with programming contrary to that of a person who has no or limited
exposure to programming languages.

15

CHAPTER 3. METHODOLOGY

Models or diagrams may be suitable for many occasions, but it may be difficult
to really grasp the finer details of a specific process or function. If one combines a
model with a piece of pseudocode one may be able to illustrate the overall meaning
of a given process, but in order to understand how the process works on a deeper
level one may introduce pseudocode that explicitly details the process in a more
specific manner. That way one may not only understand the overall design, but
also comprehend how the following design may be implemented.

WHILE match is going
AND IF new match
THEN

INSERT information to database
PRINT inserted information

END
CONTINUE match

The pseudocode displayed above tries to explain a certain function within a
program. In comparison to a model, these few lines of pseudocode takes up less
space and may even more accurately portray what at a given function is supposed
to accomplish. Although it is possible to combine the two in order to have an
overview of the function and its integration with other parts of the framework and
supply it with a snippet of code to further detail the functions purpose. Pseudocode
will be used as it provides an easier way of portraying and explaining various
functionality on a lower level, and together with a model it serves as a more
complete look on the wanted, or implemented piece of functionality.

3.3 Implementation Phase

The modeled design will serve as the overall scheme for the process of
implementation. The implementation will see the creation of a prototype that will
provide answers to that of the concepts in K1 and K2.

3.3.1 Environment

As for the implementation, the framework(K2) will be based on the previously
mentioned design and as the current research involves observing and mapping how
performance variation may impact quality of service, and subsequently this could
also be linked to how to better ascertain the predictability of the extent to which
one can expect that performance varies.

If time permits, the most ideal way of answering the problem statement will be
to integrate the proposed framework within a cloud environment, as one wants to
recreate a scenario that is as close to realistic as possible. Usually one may want
to avoid placing the proposed solution in a real environment as it may expose the
solution to unwanted noise which may manipulate the results and somewhat distort
the process, but in the case of the frameworks developed here, this noise will be
welcomed as it servers as the main source of distortion in order to produce the

16

3.3. IMPLEMENTATION PHASE

wanted results for answering the questions in regards to performance variation and
the unpredictability that it brings along.

Although a realistic environment is ideal, there are some aspects that need to
be considered before one can start doing live testing of the framework, as it is
uncertain how the quality of service will be affected by the possible performance
variation. Furthermore there is an underlying uncertainty as to what one may
expect to observe during testing. As a result a form of rigged testing is needed
before moving the framework into a real environment and commencing live testing.
This rigged, or synthetic testing will serve as blueprint for the live testing of the
proposed frameworks.

3.3.2 Synthetic testing

Before one may one commence any sort of live testing in a more real like
environment, there are some preliminary tests that need to be conducted. The
reason, as already mentioned, is that it is uncertain how the variation in
performance will impact, as in the case of this research, a game of chess.

Furthermore, in order to map the conjunction between the key properties of
K1, and how one expects to observe their coherence and behavior, a few games
will be played in a more controlled environment and where the games themselves
are controlled to a greater degree in order to see if the observations made of the
properties are like the ones that was expected. It would have been impossible to
commence with the live testing immediately, but it would have be difficult as there
are uncertainties tied to the observations of a specific chess game and its related
properties.

The synthetic testing will be organized in a more controlled fashion, meaning
that instead of having real-time noise interfering with the undergoing chess
matches, a given penalty will be introduced as a way of mimicking unwanted
noise. This may be viewed as a way of controlling the CPU usage from inside
the virtual machine where the chess engine is running, as a penalty inflicted on its
evaluation time will result in decreased time for the chess engine to evaluate the
given position, contrary to the time it was originally meant to spend evaluating.
It is fair to argue that inflicting such a penalty would be close to what one would
expect to happen in a real environment as resources may be shared and applications
may be experiencing contention, and as a result consume less CPU than expected.

17

CHAPTER 3. METHODOLOGY

3.4 Approach summary

This chapter has established an approach for the research that is to follow. The
approach serves to give insight into how one will go about answering the problem
statement, and how one is to obtain a cohesion between the success of games to
that of contention in the cloud, and furthermore bring an understanding as to how
the proposed frameworks will be modeled and lastly where and how they will
be implemented and created. The following research will be comprised of the
following phases:

3.4.1 Exploration

Identifying technical phases

As mentioned during the approach it is crucial to identify the technical
possibilities of Stockfish in order to be able to create the desired frameworks, and
because the frameworks will rely on automation. In terms Stockfish, this may be
how to successfully establish communication, setting a specific FEN, initiating the
evaluation and invoking moves.

Modeling phase - Chess framework

The main objective of the modeling phase is to identify how one may orchestrate
chess matches on a large scale. The modeling phase will propose a solution as
to how one should create and implement the intended chess framework. This
phase will comprise of identifying a set of criteria that needs to be met during the
development of the chess framework, but it will also seek to identify the various
functionality needed in order for the framework to successfully work. A need to
identify how one can orchestrate chess matches is in order, furthermore how one is
to control the framework, identifying the data provided by Stockfish and how one
is to store these data.

Implementation phase - Chess framework

As for the implementation phase, the objective will be to create the proposed
frameworks based on the criteria set in the modeling chapter and furthermore
elaborate on how the various concepts of functionality are sown together. Important
factors what will be considered are the creation of chess servers, how to implement
the needed functionality and looking at how a chess match may be performed by
the developed framework.

Modeling phase - Analysis framework

As mentioned during the approach(K2), two proposed frameworks will be
developed. The modeling phase for the analysis framework will set of criteria
for how to successfully analyze the data produced from the chess matches. This

18

3.5. EXPECTED RESULTS

may be how to organize the analysis, running and controlling the proposed analysis
framework, how to fetch and store the analyzed data.

Implementation phase - Analysis framework

The purpose of the implementation phase concerning the analysis framework is
to create and implement the analysis framework based on the criteria set during the
modeling of the framework, and furthermore look at how an analysis is conducted.

3.4.2 Investigation

Testing

As set of various synthetic tests will be conducted in order to observe and map
the variation in performance and conjunction between the key properties of K1.
The synthetic testing will serve as a blueprint for live tests, that will only be
conducted if time permits.

Analysis

The analysis phase will observe the generated data from the various chess
matches as well as the analyzed data. The purpose of the analysis is to look at the
properties in K1 and link them to the results received from the rigorous synthetic
testing. The analysis will look to answer if one is observing the wanted conjunction
between that of success in games and resource contention, in this case in terms of
the synthetic test. And if there are noticeable variations in the quality of the moves
made by the players?

3.5 Expected Results

The main tasks are to successfully identify variables capable of being used as
criteria of success in order to map the cohesion between a success in games to that
of resource contention. Furthermore the identification of technical possibilities
in terms of the Stockfish chess engine, as it will be vital for the successful
development of the proposed frameworks. The research will be formed around
several phases of which will lay the foundation and ultimately shape the resulting
frameworks. One of these phases is a modeling phase which will identify the
needed functionality, based on the technical possibilities, and where the aim is
to model a working architecture in order to pursue the goal of creating a fully
functional chess and analysis framework.

The following process of creating the frameworks will need to adhere to
certain criteria established during the modeling phase in order to be successfully
implemented and working. The synthetic testing will serve to identify and fulfill
the expectations surrounding the variables concerned with uncovering the cohesion
between success and resource contention, and will furthermore serve as a blueprint
for the live testing, as will only be conducted if time permits.

19

CHAPTER 3. METHODOLOGY

20

Chapter 4

Result - Identifying technical
possibilities

This chapter seeks to identify and map the technical possibilities of the Stockfish
chess engine. This process is necessary in order identify what is possible to
achieve with a chess engine when one thinks of utilizing it in a virtualized
cloud environment, and when wanting to orchestrate chess matches on a large
scale across the network. It is furthermore important to ascertain the technical
boundaries of Stockfish as the proposed frameworks will rely heavily on
automation, and therefore it is vital to know if there are any limitations to Stockfish
that may hinder or complicate the matter of automation.

4.1 Introduction of terminology

During the remainder of this thesis, specific phrases related to the world of chess,
chess engines and its accompanying features will be frequently used. As such a
brief introduction of its jargon is in order to fully comprehend the technology and
research conducted in the following chapters.

• Stockfish is the chess engine used during this research, a chess engine may
be viewed as a tool for evaluating chess games and its related moves.

• UCI protocol is the main protocol used for communicating with a modern
chess engine.

• Ply or half move, refers to that of a move made by ONE side only(E.g whites
move). Consider the following; Stockfish performs a 6 ply search, in reality
it has searched 3 whole moves, like 1. e2e4 e7e5, 2. g1f3 b8c6, 3. b1c3
g8f6.

• Black & White refers to that of the participating players of a chess game.

• FEN is a string that represents a specific chess board with a specific set chess
piece positions.

• Evaluation function is Stockfish’s way of analyzing chess piece positions.

21

CHAPTER 4. RESULT - IDENTIFYING TECHNICAL POSSIBILITIES

• Best move is the last thing Stockfish outputs when its evaluation is over,
indicating what it considers to be the most optimal move to make in the
current game situation, hence the best move.

• Stdout or standard out, refers to that of a stream of data returning from a
running process, usually returned to the screen of a user.

4.2 Selecting a chess engine

A chess engine is in essence a piece of computer software that analyze chess
positions and ultimately decide what the best move would be for the moving party.
Chess engines have increased in popularity and own tournaments, such as the Chess
Engines Grand Tournament[2], are being held in order to rate and decide which one
of the engines are the strongest.

As of today a number of chess engines are available for use, which are
continuously being updated and improved. Houdini[20], Stockfish[32] and
Komodo[5] are examples of chess engines that are currently considered the
strongest chess engines on the market[3][1]. For this thesis Stockfish has been
chosen as the engine to use as it is an open source project licensed under the GNU
General Public License[4] and can be run in a unix/linux environment.

4.3 Communicating with Stockfish

In order to have Stockfish perform various actions like running an evaluation
or making a move on behalf of a specific player, one is in need of a way to
communicate with the engine. As mentioned during the background chapter of
this thesis, chess engines are usually referred to as UCI chess engines. What lies in
the term UCI chess engine, is that it is possible for the engine to communicate with
a chess graphical user interface also known as a GUI, through text based commands
that are passed to the engine when the user interacts with the GUI through the UCI
protocol. The GUI on the other hand is not necessary. If one compiles Stockfish on
a given machine one has the possibility to run the engine and communicate with it
directly through feeding it commands via a terminal, and it is possible to read the
output of the commands through stdout.

As can be seen in figure 4.1 it is possible to issue a command using the UCI
protocol that will invoke a specific function within Stockfish, be it running an
evaluation of the current position or making a move.

Stockfish is the most integral part of the proposed framework and as such it has
been necessary to identify how one may be able to interact with the chess engine
to receive the desired behavior and functionality. Important factors in this process
are identifying how one can have Stockfish set a specific FEN, or more simply put,
the current board representation, and consequently how one may analyze the given
FEN. Furthermore one has to, based on the evaluation given by Stockfish on the

22

4.3. COMMUNICATING WITH STOCKFISH

Terminal

UCI Protocol

Stockfish

1. Issuing command

2. UCI invoking command

4. Reading output from stdout

3. UCI(Stockfish) returning desired output

Figure 4.1: The above figure illustrates the concept of communicating with
Stockfish through the UCI protcol.

said FEN, be able to move the piece of which was found to be the best move for
the currently playing party.

4.3.1 Setting a specific FEN

An important step in creating the needed framework using Stockfish is knowing
how one may analyze a given position on the chessboard, and using the UCI
protocol it is possible to either feed Stockfish with a desired FEN string, or one
may just start the engine and it will automatically assume a new game is about to
begin, meaning that it will set a board in which no pieces have yet moved. In order
to instruct Stockfish as for what FEN it is to set, one has to issue a UCI command
that specifically invokes a new FEN string within the engine. One may see the
needed command below:

Setting a FEN
1 position fen rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1

If one inputs the above command using the UCI protocol, the FEN string within
that command will be set and by issuing a debug command, "d(debug)", one has
the opportunity to both display the current board representation in cohesion with
the set FEN and obtain information regarding legal moves that are possible to make
and whether or not there is a check mate in a given number of moves.

Figure 4.2 displays how Stockfish would portray the currently set FEN when
running the debug command.

4.3.2 Initiating the evaluation

After one has set the wanted FEN, it is possible to invoke an evaluation of the
current board. The evaluation done by Stockfish may either be done in a given
time frame e.g 5 seconds, or one may give Stockfish a specific depth in which to
analyze. In order to invoke the evaluations one has to pass the following command
to Stockfish:

23

CHAPTER 4. RESULT - IDENTIFYING TECHNICAL POSSIBILITIES

+---+---+---+---+---+---+---+---+
| r | n | b | q | k | b | n | r |
+---+---+---+---+---+---+---+---+
| p | p | p | p | p | p | p | p |
+---+---+---+---+---+---+---+---+
| | . | | . | | . | | . |
+---+---+---+---+---+---+---+---+
| . | | . | | . | | . | |
+---+---+---+---+---+---+---+---+
| | . | | . | | . | | . |
+---+---+---+---+---+---+---+---+
| . | | . | | . | | . | |
+---+---+---+---+---+---+---+---+
| P | P | P | P | P | P | P | P |
+---+---+---+---+---+---+---+---+
| R | N | B | Q | K | B | N | R |
+---+---+---+---+---+---+---+---+

Figure 4.2: The above figure illustrates how Stockfish represents a chessboard after
a FEN has been set.

Initiating an evaluation by either time or depth
1 go movetime 5000(ms)
2

3 go depth 10(Ply depth)

The evaluation Stockfish performs is done in such a way that if one specifies
a specific depth, e.g 10 like displayed above, Stockfish will search 10 plies(half
moves) ahead and while this evaluation is running Stockfish will output the specific
result for each depth it has evaluated. At the end of every depth evaluated, Stockfish
will return what it has found to be the best move to make based on the evaluated
position. E.g an evaluation of position e2e4, may result in Stockfish recommending
moving e2e5(Which is moving a pawn forward one square). Similarly if one
desires only to evaluate within a certain time frame one may invoke the go
movetime command which tells Stockfish that it shall only evaluate for the duration
of the specified time. The time specified is in milliseconds and as such if one
evaluates for 5000 milliseconds, Stockfish will run its evaluation for 5 seconds.
Running an evaluation within a specific time may result in different search depths
as Stockfish will stop its evaluation when reaching the specified time.

Figure 4.3 shows an example of the output from an evaluation conducted by
Stockfish.

24

4.4. DETERMINISM

info depth 1 seldepth 1 score cp 75 nodes 27 nps 13500 time 2 multipv 1 pv e2e4
info depth 2 seldepth 2 score cp 12 nodes 140 nps 46666 time 3 multipv 1 pv e2e4 e7e5
info depth 3 seldepth 3 score cp 57 nodes 459 nps 91800 time 5 multipv 1 pv g1f3 d7d5 d2d4
info depth 4 seldepth 4 score cp 17 nodes 977 nps 122125 time 8 multipv 1 pv e2e4 d7d5 b1c3 g8f6
info depth 5 seldepth 5 score cp 50 nodes 1842 nps 153500 time 12 multipv 1 pv d2d4 d7d5 g1f3 g8f6 b1c3
info nodes 1842 time 12
bestmove d2d4 ponder d7d5

Figure 4.3: Example of output from an evaluation of Stockfish

4.3.3 Invoking a move

As Stockfish has finished evaluating the given depth or specified time, it will
return a subsequent best move in which one wants to invoke on the current board.
In order to invoke this move, one may use the following command:

Invoking a chess move
1 position fen rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1 moves e2e5

As displayed above one may take note that in order to make a specific move,
the UCI protocol demands that the current FEN is a part of the input in order to
make sure that the move is made on the correct board, and that it is a legal move
being made on the represented FEN. Making a move that is not legal will result
in Stockfish returning an error. Stockfish separates the actual evaluation of moves
from that of invoking the concurrent best move, as Stockfish will run its evaluation
and output the desired best move and will then sit idle until the move is invoked by
the command displayed above.

4.4 Determinism

Before the synthetic testing commence there is a need to establish whether or
not the the Stockfish chess engine behave in deterministic manner. One wants
to confirm that there is no random events being triggered during run time. This
means that if Stockfish is set to evaluate a match with specific settings and running
at a specific depth, one should obtain the exact same result if the match is repeated.
Meaning that Stockfish will evaluate in the same way each time, ending up with
the same best move, traversing the same number of nodes and so forth for all of
the values related to that specific evaluation. This is important knowledge as it
will be crucial to know how the chess engine behaves under certain conditions in
order for the testing to be valid. One will have to be certain that the specific tests
that are run, is running on the same terms, as far as the chess engine is concerned.
The outcomes of the chess matches should not be determined because of the chess
engine, but on the noise factor imposed on the participating players of the chess
match.

25

CHAPTER 4. RESULT - IDENTIFYING TECHNICAL POSSIBILITIES

26

Chapter 5

Result - Chess framework

5.1 Modeling and architecture

The following chapter will introduce how the designed chess framework and
architecture was created and deployed.

In an effort to answer the problem statement given in the introduction of this
thesis, the following chapter will detail the process of modeling and designing the
needed chess framework and that of the infrastructure it will be run within.

5.2 Orchestrating chess matches on a large scale

When planning to orchestrate chess matches on a large scale as envisioned in this
research, there are certain criteria that need to be met during the development of a
framework. The criteria are as follows:

• A way of organizing a large array of matches with different parameters.

• The creation of a chess bot.

• A module responsible for handling communication between chess bots.

• Looking at the possibility of parallelization of matches.

• Identifying data provided by Stockfish and what is of importance.

• A means of storing data produced by Stockfish.

27

CHAPTER 5. RESULT - CHESS FRAMEWORK

5.2.1 Organizing matches in batches

As the preliminary chess matches run during the synthetic testing will have noise
introduced in varying degrees, one will be faced with matches inhabiting different
characteristics in terms of evaluation time, and one may witness varying results
based on what type of penalty is given to a specific match setup. Furthermore
if time permits the proposed framework will at some point the placed in a live
environment, where the matches will be subject to various degrees of noise, and
there will be scenarios where the chess servers are running at different capacities.

As a consequence, one will have a diverse group of matches being played, and
thus it is imperative that there is a way of organizing the various matches in such a
way that one is in control of what sort of parameters the matches have been initiated
with. A way one may do this is creating unique batches in which to store specific
matches. One may think of a batch as putting each individual and identical initiated
match into the same set, which will be identified by a set of unique identifiers along
with its given parameters(Such as penalties, evaluation time).

By organizing the matches in such way one has the opportunity to initiate several
matches that have different parameters and group them, which is beneficial in the
sense that one is able to separate the distinct matches. It will also provide an easier
way of playing numerous matches with the same parameters having them stored in
the same batch. Furthermore by concentrating chess matches into unique batches,
it will become easier to look at a specific set of matches, this is especially useful in
terms of the analysis.

Batch 1
ID: 1

Match-1
4 Second evaluation time

2 Seconds Penalty
Ip of players:

10.0.7.2
10.0.7.4

ID: 1
Match-2

4 Second evaluation time
2 Seconds Penalty

Ip of players:
10.0.7.2
10.0.7.4

Batch 2
ID: 2

Match-1
8 Second evaluation time

4 Seconds Penalty
Ip of players:

10.0.7.8
10.0.7.9

ID: 2
Match-2

8 Second evaluation time
4 Seconds Penalty

Ip of players:
10.0.7.8
10.0.7.9

Figure 5.1: Illustrating the concept of batches, as a way of organizing matches.

Figure 5.1 depicts how a batch is thought out as a concept of storing chess
matches. On the left having batch 1 with a set of parameters, and on the right

28

5.2. ORCHESTRATING CHESS MATCHES ON A LARGE SCALE

another batch which has its own match settings. The figure illustrates how multiple
matches may be associated with a single batch. Note: the database model will
include the full description of a batch

5.2.2 Parallelization of matches

With the introduction of batches as a primary way of structuring the desired chess
matches, and the subsequent data collected during their time of play, it will not
only be possible to run one match, but numerous matches in parallel. This may
be achieved by having several chess bots playing each other at any given time.
Parallelization will make it possible to develop the framework in such a way that
one may, instead of playing one single chess match and wait for it to end in order
to start a new one, initiate several unique matches at the same time, seeing as they
are apart of different batches and are uniquely identified. It will furthermore help
reduce the time spent running chess matches considerably.

5.2.3 Chess bots

At this stage, the concept of a chess server, may be transmuted into that of a chess
bot, of which there will be several. More specifically, The chess bots are in essence
virtual machines with the latest version of Stockfish chess engine compiled on
them. It will be necessary to configure the chess bots to listen on a specific port in
order for it to be possible to orchestrate chess matches across the network between
various chess bots.

One may also look at a specific chess bot as a chess player, seeing as one chess
bot will be given the role as one of the two sides, either white or black. The reason
why it is desirable to model the framework this way is that given the approach and
ultimate goal of this research it will not be ideal to have for instance, one chess
bot running multiple chess matches simultaneously. If the latter scenario was to be
the case, it would impede the research to be conducted as it will be difficult to rely
on the results. The train of thought is that if one chess bot is to be responsible for
running several chess matches, one will have various chess matches competing for
the resources of that particular chess bot. More over, the single chess bots capacity
may be overbooked and the ending results may be inadequate as none of the chess
matches will have had the opportunity to fully utilize the capacity of the chess bot
itself.

As the research looks to identify how resource contention between multiple
running virtual machines, consolidated on the same physical hardware, affects the
overall quality of service of the applications running there, in this case a chess bot,
it will not be desirable to have the chess bots capacity and performance diminished
by internal processes, as the overall goal is to witness diminishing performance
in light of the underlying physical resources being shared between multiple chess
bots when running within the same environment.

29

CHAPTER 5. RESULT - CHESS FRAMEWORK

Single Chess Bot

Multiple running chess matches

Figure 5.2: The above figure depicts the scenario where one would have one single
chess bot running numerous chess matches.

The proposed solution of having one chess bot portraying one specific side
during a game is a solution that may be seen as a alternative to that of the scenario
just described. In its entirety the framework will be modeled in such a way that
one chess bot will represent the white player, and accordingly one will have one
chess bot representing the black player. By modeling the framework in such a way
one has, in conjunction with batches, the opportunity to orchestrate a large number
of individual chess matches at any give moment, and each chess bot will handle
solely one side of the running match.

WHITE BLACK

WHITE BLACK

WHITE BLACK

Chessbot

Move

Move
Move

Move

Move

Move

Figure 5.3: Illustration of the concept having white vs black player, each player
being a separate chess bot in the cloud.

30

5.3. THE BROKER - CHESS FRAMEWORK

This way the chess bots will not have to account for other players or chess
matches being played on that given chess bot. In this sense, it will be easier to look
at the outcome of a single chess match in terms of how affected the end results are
in terms of varying performance due to contention of resources in the environment
where the chess bots will placed.

Figure 5.3 illustrates the concept of having a chess bot represent one side of a
particular chess match. As one can see, this will enable the initiation of several
chess matches at the same time, with each player being an independent chess bot.
Although one may have the ability of running multiple matches at the same time
if one adheres to this solution, it will be seemingly tedious having to initiate each
batch of matches on the chess bots separately. Furthermore as the chess engine
itself does not inhabit any feature allowing it to play across a network, a way
to make sure that the chess bots are connected and communicating with each
other and storage is of need. Therefore it may be convenient having a centralized
communications node, in which will be able to communicate with the chess bots
and storage accordingly.

5.3 The broker - Chess framework

As one is looking to orchestrate a large array of chess matches based in a
virtualized cloud environment, and furthermore that these chess matches will be
played out by independent chess bots, or "players", across the network, it will
be beneficial to have a more centralized way of organizing the communication
between the various chess bots and the storage module that will be at their disposal
each match. As a result, within the final architecture, a controlling node will
reside. Denoted chess broker. The proposed chess framework will be placed within
this broker and the broker will be responsible for running the created modules
within the framework in order to communicate with the chess bots and storage,
and enabling the respective nodes to communicate with each other, although in
an indirect manner. Furthermore the broker will be responsible for handling the
analysis framework which will be addressed in section 6.3.

The intention of the chess broker will be that of initiating chess matches between
the chess bots and convey the needed information between the two bots, white
and black respectively, in order for the underlying chess engine to perform the
wanted actions. The information conveyed by the broker will consist of data
outputted from Stockfish during its evaluation of chess positions, and some of the
information will be relayed back and forth between the two chess bots, such as the
board representation, which player is next to move and furthermore the duration
that Stockfish should run its evaluation of a given board. Furthermore the broker
will be responsible for relying the data to the database, as this will be used by the
analysis framework during the testing and resulting analysis.

The chess framework that is to reside within the broker will have to be designed
in such a fashion that it will be possible to create the already mentioned batches, as
they will be crucial in the game playing process. As a specific batch allows matches

31

CHAPTER 5. RESULT - CHESS FRAMEWORK

of the same specification to be stored within the same batch, the framework has to
be modeled such that it will allow matches of the same specification to be repeated.
This is a feature that will need to be adjustable, meaning, one is able to explicitly
specify how many times a match of a given specification will be run. It will be
beneficial if this is passed to the broker as a match, or set of matches are to begin.

Chess
match

Batch 3

Batch 2

Batch 1

Batch 6

Batch 5

Batch 4

Figure 5.4: Illustrating the needed replay functionality of the framework

Figure 5.4 depicts intended the scenario in which a chess match with specific
parameters, belonging to a batch is repeated. The intended match will be initiated
with the following parameters;

• Which batch the match will be part of.

• Which chess bots are playing and their given side.

• How many times the given match scenario is to be repeated.

Another important factor to consider before initiating the development of the
chess framework is that various scenarios that one may encounter while playing
a game of chess. As a chess engine will continuously evaluate chess positions
without considering the chance of obtaining a remis, which is essentially a draw in
chess, the framework will have to take this into account when a match is initiated.
A way one may claim a draw in chess is by threefold repetition, although in human
chess, a player will have to ask for a draw when this situation occurs.

32

5.3. THE BROKER - CHESS FRAMEWORK

The threefold repetition entails that the same board representation occurs three
times, the moves in which renders the same pattern on the board, need not come in
succession in order to for it to apply towards the threefold repetition. As already
mentioned the chess engine does not take this into account and this must therefore
be implemented in the framework in such a way that it looks for repetition of
board patterns. A way one may solve this is by looking at the FEN-string which
represents the current board and the chess piece positions. If the same FEN-string is
seen three times over the course of a match, one may call it a draw. The introduction
of the threefold repetition rule may be beneficial in the sense that when chess
matches are being played, if one of the sides are experiencing significant variation
in performance, a match that might have ended up a remis, may actually turn out
with a winner in the player who is not, or to a less degree experiencing loss in
performance.

CB 2CB 1

CB 3 CB 4

Chess Broker

CB

Chess Bot

Broker establishes
communication

1. Current FEN sent to
the Chess

Server(White)

2. Analysis invoked on
the FEN and a move is

made based on the
analysis. Information
passed back to the

broker
3. FEN based on the

whites move is sent to
Chess Server 2(Black)

4. Analysis invoked on
the FEN and a move is

made based on the
analysis. Information
passed back to the

broker

Figure 5.5: The following illustration depicts how the intended chess broker may
communicate with the chess engines. One may observe that chessbot 1(CB1)
represents the white player, and chessbot 2(CB2) represents the black player.

Figure 5.5 shows a model of how the intended broker communicates with the
various chess bots, where the broker initiates a match in which;

1. It sends the initial FEN-string(The initial Board) to the chess bot representing
the white player.

2. The broker is then to pass instructions to the chess bot and it will perform an
evaluation of the current FEN.

3. After the evaluation is complete, the broker initiates a move on whites behalf,
retrieves a new FEN, and collects other significant data and passes it to
storage.

33

CHAPTER 5. RESULT - CHESS FRAMEWORK

4. The broker will then pass the new FEN, which is a result of whites move, to
the black player. Which will be given the same instructions.

5.3.1 Match penalty

As previously mentioned there will be introduced a penalty to the matches in terms
of the synthetic testing. This penalty may be either a fixed amount of seconds or
a more uniform penalty in which a player is given a specific penalty but will also
have a random generated amount of penalty seconds added to the sum. These added
penalty seconds will decrease the time a given chess bot will be able to evaluate
a specific FEN, meaning it will have less time to find the move considered to be
the most optimal. This random penalty will never exceed the maximum evaluation
time given when a match is initiated, and it will never drop below the imposed fixed
penalty. E.g if the white and black player is to play a match where the evaluation
time of Stockfish is set to 2000 milliseconds(2 seconds), and black is forced upon
a penalty of 1 second, black will evaluate for a duration of 1 second + a random
number of seconds. This may be 1000ms + 544ms = 1544. As opposed to white
which will evaluate for the intended duration of 2 seconds.

5.4 Stockfish - What it provides in terms of data

The stockfish chess engine provides a significant amount of data during its
evaluation of a current position. The longer the said evaluation is, the more data
stockfish produces. Although the data increases in quantity, the fields of which the
data is represented by, remains the same. Until Stockfish has reached the end of a
given chess match, in which some fields change as a checkmate is expected within
a certain number of moves.

Stockfish output
info depth 1 seldepth 1 score cp 19 nodes 48 nps 24000 time 2 multipv 1 pv e2e4 d7d5 b1c3 g8f6
info depth 2 seldepth 2 score cp 19 nodes 87 nps 43500 time 2 multipv 1 pv e2e4 d7d5 b1c3 g8f6
info depth 3 seldepth 2 score cp 19 nodes 141 nps 70500 time 2 multipv 1 pv e2e4 d7d5 b1c3 g8f6
info depth 4 seldepth 2 score cp 19 nodes 207 nps 103500 time 2 multipv 1 pv e2e4 d7d5 b1c3 g8f6
info depth 5 seldepth 2 score cp 19 nodes 308 nps 154000 time 2 multipv 1 pv e2e4 d7d5 b1c3 g8f6

Above one is an excerpt of an evaluation performed by Stockfish. When
initiated, the evaluation function within Stockfish will run for the duration given
in time or until a specific search depth is reached, as described in section 4.3.2.
The specific data give by during the evaluation is;

• Depth - Depth can easily be explained as the depth at which Stockfish is
evaluating at a given time. As one can see from the above excerpt, Stockfish
outputs a line for each depth it has analyzed. The depth in which is searched
is that of half moves, as mentioned in section 4.3.2. In reality a search
depth of 2, is subsequently a search of one full move. In this lies that if the
evaluation is initiated from whites point of view it would be an evaluation
of one specific move for white and accordingly blacks counter move to the
evaluated position.

• Seldepth - Seldepth,or selective depth depicts the depth at which Stockfish
has done a more thorough search in specific branches of the search tree.

34

5.4. STOCKFISH - WHAT IT PROVIDES IN TERMS OF DATA

• CP - CP or centipawn is an important factor in chess as it is the score given
to a specific move. E.g, if white moves and the CP results in "cp 20" it means
that white has an advantage(Measured in 100th of a pawn, a pawn having a
score of 1) of 0,2. Similarly for black it will be "CP -20"(Where the minus
sign indicates black advantage).

• Nodes - Nodes is how many positions within the search tree Stockfish has
searched. This field may accumulate to a substantial number if the engine is
searching at a larger depth or longer evaluation time.

• Nodes Per Second(nps) - NPS is equivalent to Nodes above, only that it
represents nodes searched per second.

• Time - Time represents the time Stockfish has spent evaluating a given depth.

• Multipv - Multipv or Multiple principal variation allows the display of
several principal variation lines.

• Pv - Pv or principal variation is the sequence of moves that Stockfish
considers best moves and are expected to be played.

Of the above mentioned, the type of data that will be important for this current
research are the following;

• Depth

• CP

• Nodes

• Time

• Pv

The depth value will become valuable in terms of observing how for the various
chess bots have been able to search at the time they are given, both with and
without the impeding penalties given, and furthermore the contention they may
exposed to during the live testing. The depth value is also an important factor
when considering the analysis, as the chess referees will be set to run at specific
depths in order to analyze the matches that have been played by the chess bots.
This will be addressed further in section 6.3.

The centipawn value will be one of the most important values given by stockfish
during a chess match, as it may be used to look at how well the two sides are
performing under various scenarios. As the centipawn value denotes a score to
every move made, it will be possible to use this in order to look at and create a
cohesion between success and contention occurring within the environment. This
will also be addressed further in section 6.3.

35

CHAPTER 5. RESULT - CHESS FRAMEWORK

For the current research the nodes value provided by stockfish will be important
as it may be used to identify how many positions stockfish is able to traverse during
a given match scenario. In this lies that if a chess bot is experiencing diminishing
performance as a result of contention within the environment, it may be possible
to look at the number of nodes traversed and furthermore look for discrepancies in
as to how many nodes it has managed to traverse relative to other matches played
under other circumstances.

As an example, consider the scenario where one would have two instances of
stockfish running within the same virtual machine. If one initiated the evaluation
function within the two instances simultaneously, one would expect that they both
shared approximately the same CPU capacity during evaluation. If one has run a
single preliminary match beforehand with only one instance of stockfish running,
with the same parameters, one would expect that the number of nodes traversed
to be close to half of the traversed nodes during the match with a single instance
running.

Data provided by in terms of time will be useful as it gives an indication as to
how long stockfish has evaluated each ply depth during a single evaluation.

The data given by the principal variation field will be important as it will return
what stockfish considers as the best move to make for a the currently moving side.
This will be used when developing the framework as it will be possible to retrieve
this value after each evaluation and make the framework(The broker) invoke the
given best move for each player.

5.5 Intended run time scenario

Runtime scenario

W

B
Fen1 Go BM1

w

GoFen2 BM1
b

Fen3Move1
w

Move1
b

CP1
w

CP1
b

BM = Bestmove
CP = Centipawn

FEN = Current board after a move is made

Go

Figure 5.6: Showing a run time scenario of a chess match

Figure 5.6 depicts how the intended run time scenario as far as game play is
concerned, penalties and other constraints aside. Of the figure one may see how
the white player has the initial FEN set, and then the evaluation is triggered,"GO",
in order to find the most optimal move based on the said FEN is initiated. When
the chess bot has finished evaluating its possible moves, white moves the piece in

36

5.6. DATABASE MODEL

which has been found to be the best move(BM). The resulting best move also has
an associated centi pawn(CP) value which will be stored for analysis.

5.6 Database model

As mentioned throughout the modeling chapter the broker will be retrieving and
storing data as the chess matches progresses, and this section will describe the
needed database model. The data stored will be crucial for the analysis framework
as it will fetch the game data and have the opportunity to analyze it as it stored.
The database structure proposed for the intended chess framework is as follows:

handicap_b varchar(100)

int(11)pen_mean_b
pen_range_b int(11)

varchar(15)pen_dist_b
varchar(15)pen_type_b

max_time_b int(11)

ip_b varchar(15)

varchar(100)handicap_w
pen_mean_w int(11)

int(15)pen_range_w
varchar(15)pen_dist_w
varchar(15)pen_type_w
int(11)max_time_w
varchar(15)ip_w

max_moves int(11)

varchar(20)batch_name
batch_desc varchar(500)

batch_id(PK) int(11)

Table: Batch

Batch

hint int(10)
timestamp_finished datetime

datetimetimestamp_start
total_moves int(11)
result varchar(35)
batch_id(FK) int(11)
match_id(PK) int(11)

Table: Matches
Matches

int(11)penalty
int(11)depth

int(11)

best_move

int(11)

move_nr

game_cp

varchar(35)

int(11)
match_id(FK)
move_id(PK)

int(11)

varchar(70)

int(11)

fen

nodes

int(11)

black_move

player_cp
int(11)

Table: Moves

Moves

Figure 5.7: The proposed database structure for the chess framework

Figure 5.7 displays the intended database model for this research. One may see
that a specific batch may be related to one or more matches and that a given match
will have one or more moves related to it.

Batch table

The first table one should consider is the "Batch" table, as a batch will be created
in advance of initiating chess matches. An en entry in the batch table is what
defines how a specific match, or a batch of matches will be played in terms of;

37

CHAPTER 5. RESULT - CHESS FRAMEWORK

• Evaluation length(max_time_w/b)

• Which chess bots are playing the given match (ip_w/b)

• Which chess bot is to represent a given side. (pen_type_w/b)

• What type of distribution the penalty is (pen_dist_w/b)

• The range of which the penalty is expected to be within in in relation to the
penalty mean(pen_dist_w/b).

• What duration of the imposed penalty is (pen_mean_w/b).

All of the batches will also be given individual names and have a description
added to it in order to be able to distinguish them and as a way of summarizing
the parameters given to each individual batch. Each batch will also be uniquely
identified with an ID, as this will be used to connect the various matches to the
correct batch.

Matches table

Accordingly there will be a need for creating a table for storing the relevant data
in relation to a match in which an entry in the matches will need to contain;

• The ID of the batch the current match belongs to, this will be passed as a
parameter when a match is initiated in order for it to be stored in the correct
batch(batch_id).

• A match ID, as it will the connection between the match and the moves made
during the match (match_id)

• What the end result of a match was, this may will depict the winner or if the
result was a remis" (result)

• A column that stores the number of total moves made during a chess
match.(total_moves)

• The timestamp of when a match was initiated and when it ended.(timestamp_start/finish)

Moves table

The last table needed in the database model is a table for storing moves and data
related to each sides turn. En entry in the "moves" table will contain;

• A column representing a move ID for each move, as it will be vital when
wanting to look at specific moves(move_id)

• A column representing the match ID of the match in which the moves
belong.(match_id)

• A column representing what move number it is, this is indicated in half
moves. Meaning that the move number will not increase before both players
have moved. E.g (1. e2e4 1. e5e7) - (2. b1c3 2. b8c6) (move_nr)

38

5.7. IMPLEMENTATION OF CHESS FRAMEWORK

• A column showing who the move belongs to, either white(0) or black(1).
(black_move)

• A column showing the centi pawn score of each move, for each
player(player_cp)

• A column showing the centi pawn value for the match. (game_cp)

• A column representing the number of nodes traversed in order to find that
specific move(nodes)

• A column showing the depth at which the evaluation was made(depth)

• A column showing the sort of penalty the player had during the its evaluation.
This will also display none-penalized move times.(penalty)

DB

Batch, match and
move related data
stored

CB

Chess Bot

CB 2CB 1

CB 3 CB 4

Chess Broker

Broker establishes
communication

Fetching batch,
and match data

Figure 5.8: Illustrating how the broker is to store and collect data from the database

Figure 5.8 illustrates the concept where the broker communicates with the
database and in which it stores all the data described above as each match is being
played and whenever a move is being made.

5.7 Implementation of Chess Framework

5.7.1 Creating chess bots

The chess bots, and the proposed referee bots, are created in OpenStack from
snapshots of predefined images. Each virtual machine that was to be created with
the intention of being a chess bot was created from these images. The Stockfish
chess engine is not created for the purpose of playing chess games between
multiple hosts across the network, and it is therefore necessary to configure the

39

CHAPTER 5. RESULT - CHESS FRAMEWORK

virtual machines such that it is possible to connect to the chess bots over a specific
port, and furthermore execute the Stockfish chess engine. In order to have the
chess bot listen on a specific port for incoming requests, the Xinetd super-server
daemon was used. Xinetd allows one to create services that listens on a specific
port, and when an incoming request is handled, Xinetd launches the appropriate
server connected to that specific service. In the case of this thesis, and in regards
of the chess bots, a chess server script was implemented on each chess bot and was
run whenever a request was made to the specified port.

Xinetd.d chess service
1 # default: on
2 # description: An RFC 863 discard server.
3 # This is the tcp version.
4 service chess
5 {
6 disable = no
7 server = /home/player/chess_server.sh
8 socket_type = stream
9 protocol = tcp

10 user = player
11 wait = no
12 port = 3333
13

14 }

The above code displays how the Xinetd.d chess service was implemented.
The service points to that of /home/player/chess_server.sh which is the script
responsible for initiating the Stockfish chess engine whenever a request is made
to port 3333.

Chess Server Script
1 #!/bin/bash
2

3 LOG="/tmp/chess-server.log"
4

5 /bin/echo "Start \$(/bin/date)" >> \$LOG
6 /bin/echo >> \$LOG
7

8 /usr/local/bin/stockfish
9

10 /bin/echo | /usr/bin/tee -a \$LOG
11 /bin/echo "Stop \$(/bin/date)" | /usr/bin/tee -a \$LOG

The above code is the implemented script responsible for initiating Stockfish. As
one can see, whenever a request is received, the binary of Stockfish, which resides
in /usr/local/bin/stockfish is run.

Figure 5.9 illustrates how the framework within the chess broker interact with
the chess bots. As a match is initiated, the broker will send the a request through a

40

5.7. IMPLEMENTATION OF CHESS FRAMEWORK

Socket SocketFramework

Xinetd.d/Chess-Service

Chess-Server Script

Stockfish Chess Engine

PortXinetd.d/Chess-Service

Chess-Server Script

Stockfish Chess Engine

Port

Chess Broker

Black / CS2White / CS1

1. Sending request(Chess data)

2. Request received 6. Request received

3. Request passed to Stockfish 7. Request passed to Stockfish

4.
Chessdata

passed
back to
broker

5. Sending request(Chess data)

8.
Chessdata

passed
back to
broker

Figure 5.9: The process in which the broker communicates with the chess bots
using Xinetd and chess server service

socket created by the framework script(1) to a specific port on the receiving chess
bot(2). When the request has reached the chess bot, which may be that the chess bot
is to initiate its evaluation of positions on the current FEN, the Xinetd daemon will
make sure that the chess service will run the chess server script implemented on
the chess bots. This chess server script will start the chess engine and the request
sent by the broker will be run as a UCI command on the engine(3). The broker
will then read the output and the data following the current evaluation, send some
additional requests such as making the white player perform a move, and the data
will be sent back to the broker, which will now send the updated FEN to the black
player and perform the same actions.

5.7.2 The chess Framework - Script

In order to realize the chess framework described during the modeling section, a
Perl script was created and is in its entirety the chess framework. chess.pl. As
mentioned in chapter 4, the chess framework would rely heavily on automation in
order to fully to satisfy the criteria in which entailed such as orchestrating a large
array of chess matches being played simultaneously, communicating with chess
bots, and furthermore be able to retrieve and store all the needed data produced

41

CHAPTER 5. RESULT - CHESS FRAMEWORK

by the various matches. The purpose of the chess framework script was to create
various modules that followed up on these criteria and seamlessly intertwined them
so that the only interaction needed with the framework would be when creating a
new batch for organizing matches, and furthermore when initiating a set of matches
with specific parameters that would be repeated until reaching the match limit in
which was set in their corresponding batches.

5.7.3 Creating batches

The chess batches were created before a match, or a set of matches was initiated, as
the purpose was to organize them in such a fashion that one would be able to play
a set of matches with different parameters and store the related matches together,
as it would ease the analysis process of the analysis framework. This section will
look at how such a batch is created and furthermore the functionality behind it.

In order to create a batch one would use the following command:
Batch Creation Command

1 ./chess.pl -B create -e "Batch description" -n Batch6 /
2 -P fixed:normal:100:0:fixed:normal:100:1000 -t 2000

The command displayed is used in order to create the wanted batches. As one
may see, the command takes specific parameters in order to create a batch that
is tailored after how one wants the matches to be played out. Especially for the
synthetic testing some of the parameters are valuable as it determines how great
of a penalty should be imposed on what player, if any, and if it is to be a constant
penalty or more random in terms of withdrawn or added time. The parameters
serve these functions:

• -B create - Signals that a new batch is in the creation

• -e Is the batch description parameter, in which one would describe the
currently created batch.

• -n Will be the name of the currently created batch.

• -P takes a string of parameters which will be further explained in the next
section.

• -t is the original amount of milliseconds the evaluation is supposed to run.

The fields of the string that is input to the script has following meanings:

• Noise type:Distribution type:Penalty range:Given penalty

The first field stating "Noise type", as may been seen as "Fixed" in the command,
may also also say "uniform" in which fixed is a constant form of penalty(in
seconds) and uniform being a constant penalty with some random noise generated
and added to the already imposed fixed penalty. The field "Distribution type",
represented by "normal" in the command, indicates what sort of distribution it

42

5.7. IMPLEMENTATION OF CHESS FRAMEWORK

is. Furthermore "Penalty range" field, indicated by "100" in the display above
indicates within a certain range one may expect to find the penalty mean, if the
match was run with uniform noise. The last field "Given penalty", or "2000" in the
command excerpt is the actual fixed penalty given to the player in milliseconds.

Batch creation
Batch creation

If (create, description, name, penalty string, time) {
run function to parse input string ->
(split input string,
return data to batch creation)

connect to database
insert provided values into database
finish
else { End batch creation as based on wrong or

missing parameters
finish

}
}

When the framework is initiated on the broker with the broker creation command
the framework will check the if the correct parameters have been issued, unless it
will not create a new batch. Furthermore the framework will take the inputted
penalty string and run it through a function that will split the string correctly, and
together with the input values accompanying the other parameters, they will be
inserted into a new entry in the batch table.

5.7.4 Initiating matches

When initiating a specific set of matches the following command is used:

Run match command
./chess.pl -p play -B 8 -x 30 -w 10.0.7.8 -b 10.0.7.9

The command displayed is the command that is used by the framework to initiate
a set of matches. The command used to initiate a match, or set of matches takes
a couple of parameters in order to correctly associate chess bots to each side of a
match and furthermore how many matches are to be played. The parameters are
the following:

• -p play - indicates that match is to be initiated

• -B will be the ID of the matches corresponding batch

• -x Tells the framework how many times the specified match is to be repeated

• -w IP of the white player

• -b IP of the black player

43

CHAPTER 5. RESULT - CHESS FRAMEWORK

As the following command is issued, the framework will initiate the matches
and they will play out without any form of interaction, only handled by the broker.

Match initiation
If (play, BatchID, Numb of matches, whiteIP, blackIP) {
Connect to database
Update batch table with player IPs where batch ID is
that of the one supplied.

while (match is going) {

call run_match() function
}
finish

}

5.8 A game - Through the eyes of the broker

The
broker Updating batch entry

with IP of players

The
broker

Initiating match with
correct chess bots

The
broker

The broker controlling
the match

Database
10.0.7.2
10.0.7.4

10.0.7.2

10.0.7.4

10.0.7.4

10
.0

.7
.2

The
broker

The broker having initiated
more than two players

10.0.7.2

10.0.7.410.0.7.810
.0

.7
.9

1. 2.

3a. 3b.

Figure 5.10: This illustration depicts the scenes where the broker starts a match,
initiates the players and spawns more chessbots.

44

5.8. A GAME - THROUGH THE EYES OF THE BROKER

After the wanted batches are created a match is ready to be started. Figure 5.10
outlines a game play scenario seen from the brokers point of view. When a match is
about to start, the framework within the broker will first update the batch to which
the match belongs with the chess bots IP addresses, this is done in order to have
control over which of the chess bots have played the different matches. the broker
will then initiate the match between these two players and will keep control of it
until all of the matches for the specific match is completed. Simultaneously, as a
set of matches between two chess bots are underway, it is possible to launch more
matches with other chess bots, which may be noted in the last frame of the figure.

Setting FEN for
white

Whites turn?Yes No Setting FEN for
black

Yes Yes

Remis

No

Run evaluation to
find best move for

black

No

Run evaluation to
find best move for

white

FEN seen 3
times?

FEN seen 3
times?

Legal moves
applicable for

black?

Legal moves
applicable for

white?
NoNo

Check mate black

Check mate White

Yes

Black moves its best
move

Yes

White moves its
best move

Figure 5.11: Flowchart of how a match is played out from its initiation and the
possible outcomes of a match.

45

CHAPTER 5. RESULT - CHESS FRAMEWORK

Figure 5.11 depicts a game scenario from the viewpoint of the chess broker. In
order to fully appreciate how a match is played out by the broker, one may view a
simplified version of the overall construction of the framework.

Game initiation

When the chess broker initiates a match between two chess bots, it will check for
which of the chess bots are to make a move, in which it will look at which chess
bot has been appointed white player, and this chess bot will automatically be set
to move first. When white has made the initial move, the broker will check which
player is next to move, and black will then be appointed the player next to move. In
the event white player was a chess bot given the IP address 10.0.7.2 the mentioned
scenario may be viewed as the following:

Who is to move?
While (match is going) {
white player = 10.0.7.2
call run_match()
Whites turn finished -> New round

if (player is white) {
then switch to black)
else { player is white) }

}
}

Setting FEN

As the broker has checked whether the player to move is white or black, the broker
will set the current FEN for the chess bot to analyze. As mentioned the FEN
represents the current board and its piece positions, as well as indicating which
player is expected to move on the current board. The FEN which the broker will
set is either the initial one given when a new match is initiated, or a FEN that is the
result of one of the participating parties having moved a piece on the board.

Setting the FEN
While (match is going) {

within the run_match function (
initiate socket to current player
set position fen 8/8/3k1p1p/5K2/R2P2P1/8/8/5r2 w 11 42
)

}

Checking FEN

Whenever a FEN is set, the framework within the broker will perform a check in
order to verify if the currently set FEN has occurred 2 times before during the
ongoing match, if so, the rule of threefold repetition will be invoked as the FEN
currently set will be the third occurrence. The result will be that the match is
concluded in a remis, meaning a draw between the white and black chess bot.

46

5.8. A GAME - THROUGH THE EYES OF THE BROKER

Checking for threefold repetition
While (match is going) {

within the run_match function(
fetch current FEN from current match

connect to database
count number of occurrences of current FEN
in database
If (fen is seen 2 times already) {

End match in remis
finish match

}else{ continue match }
)

}

Finding the best move - Evaluation

After a specific FEN has been set, the broker will make the currently playing
party(e.g white) start the evaluation of the current board in order to find the best
possible move for the player to make. The duration of the evaluation of a chess bot,
may either have a fixed number of seconds it is to run, or it may have an impeding
penalty in which the evaluation time is shortened by the amount of penalty given.
As for the synthetic testing, this penalty is forced upon the chess bot(s) in order to
observe the outcome.

Running evaluation function
While (match is going) {
within the run_match function(
initiate socket to current player

call calculatePenalty(
connect to database
fetch penalty given at match start

If (Penalty equals fixed) {
original time - fixed penalty
return calculatedPenalty

}elsif (Penalty equals uniform) {
original time - fixed penalty
calculatedPenalty + random noise
return calculatedPenalty
}

)
)

}

Making a move

As the evaluation finishes the broker will make sure that currently playing party
moves the best move found based on the just run evaluation. In the case where the
evaluation of the current FEN does not return any legal moves, it is because the

47

CHAPTER 5. RESULT - CHESS FRAMEWORK

opposing player has check mated the current player. And as a result, the match
will result in a win to the player in which has obtained a check mate.

Making a move
While (match is going) {
within the run_match function(
initiate socket to current player
call check_move(

if (No legal move found) {
return end of game
}else{ return best move }

)
If (no legal move found) {

Opposing player wins
}else{ player moves best move }
)
}

5.9 The Database

The database that is implemented in the current architecture is the relational
database management system MySQL. The database is implemented on a separate
virtual machine as it was highly unwanted that the database may be exposed to the
varying conditions when the solution will be implemented in a live environment.

MySQL
Database

TB

W B W B

W BW B

Live environment

Isolated DBM VM

TB

The broker White/black player

Figure 5.12: Database isolated from the rest of the machines

As it was desirable that the database was affected as little as possible during
the tests, the database was moved out of the environment where the other virtual

48

5.9. THE DATABASE

machines were running. As one may see of figure 5.12, the broker and the chess
bots are running within their own secluded area of the architecture(located on
another server), as they will be put under duress while running chess matches
during the the proposed live testing. Furthermore as there are large sets of data
being both passed and fetched from the database at any give time during a given
match, and consequently even more data when multiple chess bots are playing
simultaneously, it was highly desirable that the database was to be isolated from
the unwanted noise and pollution created by the other virtual machines running
within the testing environment. This way the database performed optimally at all
times during both synthetic and possible live testing.

49

CHAPTER 5. RESULT - CHESS FRAMEWORK

50

Chapter 6

Result - Analysis Framework

The previous result chapter featured the modeling and design of the chess
framework and its intended implementation. The following chapter will introduce
the analysis framework, and how it was modeled designed and implemented within
the environment.

The proposed concept in terms of the analysis is that a functional and scalable
analysis framework is to be developed. This analysis framework is to be
implemented within the chess broker, along side the chess framework. The purpose
of the proposed analysis framework is to utilize referee bots for analyzing the
already played through moves and matches done by the chess bots. As to have the
analysis be effective and efficient, there are several criteria that has to be considered
when developing the analysis framework.

• How to measure success in a game

• A way of organizing the analyzed data.

• Creation of referees.

• Functionality for analyzing multiple batches.

• Creating a database model for the analysis.

6.1 Measuring success

As one of the overall aims(K1) is to map possible contention bound to virtual
machines to that of success in terms of chess matches, one has to first define what
success may concern. The concept of success is not easily identified or measured
based on a game of chess, as one does not have concrete identifiers pointing directly
to what concedes as success. Therefore, defining a set of surrogate variables is
in place in order to measure the rate of success. A surrogate variable can be
viewed as a measurable variable used in place of something that cannot be directly
measured(e.g a chess match).

51

CHAPTER 6. RESULT - ANALYSIS FRAMEWORK

Concerning the aim of establishing a relationship between contention and
success rate, two variables are of interest in order to define success, one of which
is the centipawn value produced by the evaluation function of the chess engine.
More specifically the centipawn is a score value that roughly corresponds to one
hundredth of a pawn(2.3.3). This score is given to a move made during a game
of chess, in order to display the advantage of a position, and is essential in chess
engines when evaluating a chess match. Success rate may be broken down to that of
success of individual moves. The thought of looking at isolated moves is based on
the notion of looking at how well the evaluation of a given FEN is from a referees
point of view, in contrast to that of the chess bots.

Once the chess bots are running or have completed an array of matches and
the data from the subsequent moves have been stored, a number of chess referees,
will fetch a selection of the data and analyze it in an effort of achieving a higher
rate of success than that of the chess bots. And the aim being that a comparison
of the centipawn value given by the chess bots and that of the referees will be
conducted, in order to look at the possible differences in the centipawn value. This
comparison will be more reliable if the referees are given more room for evaluation
and being isolated as much as possible from the noise within a live environment.
As it will not be optimal having the referees in an environment where they may be
exposed to possible contention and have varying degrees of resource capacity, as
the goal is to establish a sense of proof that contention in fact impacts the overall
quality of service of the chess matches played by the chess bots. Based on this one
may denote cp_loss as the variable of which will represent the loss in quality of a
given move made by the chess bot. Based on the success rate in terms of the centi
pawn value. More specifically the value represented by cp_loss may be seen as
the analysis frameworks way of identifying whether the referees produced a higher
quality move during the analysis compared to the move found by the players during
the original match. This will be further explained in section 6.3.1.

The following mathematical formula serves as how one may look at the quality
of a move:

CPloss = CP1
otimal − CP2

proposed

The second variable of interest when concerned with defining success, is that
of nodes, and nodes over time. Nodes may be defined as the number of positions
the chess engine is able to evaluate within the span of a given time frame or a
certain search depth. Nodes over time reveals the speed of the chess engine as it
gives an indication of how many nodes it has managed to traverse. Although nodes
over time may represent the speed of the engine, it may be used to look at how
many nodes it has managed to traverse in a given scenario, as the engine relies
on the CPU to traverse such vast amount of nodes. As a result, an introduction of
noise or variation in CPU performance during evaluation may impact the number of
nodes it manages to traverse. Nodes over time may be denoted with the following
expression(A bit uncertain as to how mathematically formulate this):

Nodes over time = N/t

52

6.2. ORGANIZING THE ANALYSIS

6.2 Organizing the analysis

6.2.1 Analysis batches

As with the chess framework, the proposed concept of organizing data in batches
is also valid for the analysis framework. The data stored within these analysis
batches, will be based on the data produced by the already played, or currently
running chess games. The proposed solution is having the analysis framework
analyze a specific batch of matches and then store the processed data within its
own analysis batch. This way it will be possible to separate the analyzed data on
specific matches and also which batch they originally belonged to. This will be
helpful as one will want to look at independent matches with different parameters
and characteristics. An analysis batch will furthermore act as template for how the
analysis should be run as it indicates what parameters the analysis should be run
with.

Analysis Batch 1
Analysis batch ID: 1

Batc ID-1
Latest analyzed move ID: 513

Evaluation Depth of analysis: 15
Type of referee: small

Last entry in table: timestamp

Analysis batch ID: 1
Batc ID-1

Latest analyzed move ID: 514
Evaluation Depth of analysis: 15

Type of referee: small
Last entry in table: timestamp

Analysis Batch 2
Analysis batch ID: 2

Batc ID-4
Latest analyzed move ID: 5320
Evaluation Depth of analysis: 15

Type of referee: small
Last entry in table: timestamp

Analysis batch ID: 2
Batc ID-4

Latest analyzed move ID: 5321
Evaluation Depth of analysis: 15

Type of referee: small
Last entry in table: timestamp

Figure 6.1: Illustrating the concept analysis batches to store analyzed data.

Figure 6.1 depicts a set of proposed analysis batches in which an analysis batch
has an ID of its own, and the analysis batch should also inhabit a field indicating
which chess batch it is currently set to analyze. Furthermore it will be beneficial to
update the analysis batch with the latest chess move currently analyzed. It will also
be necessary to indicate at which depth the evaluation the referee should analyze,
and what sort of type the referee is in terms of capacity. Lastly a field indicating
when the analysis batch was last updated is wanted.

53

CHAPTER 6. RESULT - ANALYSIS FRAMEWORK

6.2.2 Referees

The mentioned referees or referee bots are in essence, like the chess bots described
in section 5.7.1, virtual machines with the latest version of Stockfish compiled
on them. They are also configured such that the broker may communicate with a
referee through a specific port. A key difference that will set the referees aside from
the chess bots is that it will be possible to configure the referees to run at different
capacities. The reason for this possibility is that one is interested in identifying
exactly how much better the chess bots might have played in the off chance that
they are not affected by impeding performance variation and contention within the
environment. By having referees isolated and being able to play in a significantly
less noisy environment, with increased capacity, one may be able to obtain results
that one may consider to be how the chess bots should have been performing.

6.2.3 Parallel analysis

As one looks to analyze the data given by the chess matches, it would be optimal
having several referees analyzing game data at any given time. As one match
may produce a significant amount of data it will be time consuming having only
one referee handling the analysis. One may consider the scenario where one may
have a batch which contains 100 chess matches, if one then consider that each
match may contain between 60-190 moves, it amounts to a total of 6000-19000
moves for a single batch of matches. As a result, one is interested in running
several referees in parallel with the opportunity of analyzing both the same and
separate batches simultaneously, as this will increase the rate of analyzed moves
considerably. Moreover, as the proposed referees may be created with different
capacities, it is desirable being able to initiate an analysis on a batch with two
distinct referees as one may then compare the analysis of the two referees.

TB
R2

R3

R1

TB

The broker

Chess referee

Batch
1 Batch

1
Batch
2

Batch
3

R1

Figure 6.2: Illustrating the wanted parallel analysis scenario

Figure 6.2 illustrates the wanted functionality in that the broker is responsible for
fetching the wanted data from several batches stored in the batch table within the
database, and then distributes this among the referees that has been initiated. In this

54

6.3. THE BROKER - ANALYSIS FRAMEWORK

proposed scenario it will be necessary to create a solution such that the broker will
know to which referee it should distribute the data retrieved for analysis. Hence
a similar functionality is needed where one is able to specify to the broker which
referee is to handle the analysis.

6.3 The Broker - Analysis Framework

TB
R1

R2

DB

R1 TB

The brokerChess referee

CB1

CB2

CB

Chess bot

AF CB

AF

Chess framework

CB

Chess broker

1.

2.3.

4.

Figure 6.3: An overview of the infrastructure in terms of the broker communicating
with referees, chess bots and the database

As mentioned in section 5.3 the broker will be responsible for handling the
chess framework, which in itself is the main tool for organizing and orchestrating
chess matches on a large scale. The broker will be responsible for the creation of
chess batches in which the related matches will be stored and subsequently store all
of the data that is produced by each significant match. This storing of data is done
in such a manner that the analysis will be eased. In this lies that when wanting to
analyze the stored data, and if one wants to analyze a particular set of matches that
were run or are running with specific parameters, one may simply fetch the wanted
batch and with it comes the related move data.

As the chess matches are initiated, another proposed framework, the analysis
framework, will either be run simultaneously along side the chess framework,
or may be invoked after a set of matches have been played. The broker will,
simultaneously as it is orchestrating the initiated chess matches, be responsible for
handling the analysis framework and its intended functions for analyzing chess
data. As with the chess bots, the broker will furthermore be responsible for
initiating the chess referees as they will handle the execution of the analysis itself.

55

CHAPTER 6. RESULT - ANALYSIS FRAMEWORK

Figure 6.3 displays an overall overview of the intended architecture where the
chess broker will handle both of the frameworks and the communication between
the several referee and chess nodes. It furthermore depicts how the broker will
communicate with the the database and distribute the data between the respective
nodes. To appreciate the architecture in its entirety, a more detailed description of
figure 6.3 is favorable.

1. The broker will first initiate chess matches between various chess bots, in
this case represented by chess bot 1 and 2.

2. The data produced by each chess bot in terms of move and match related
data will be stored in the database by the broker.

3. As the matches are undergoing, or after they are finished, the broker will
initiate the analysis framework and fetch move data from the database.

4. The broker will then distribute this data to the various referee bots that will
be conducting the analysis. The analyzed data will subsequently be stored in
the database.

In order to achieve the wanted level of parallelism described in the section
concerning parallel analysis, a specific function is needed that allows for fetching
data from the same batch within the database simultaneously in such a way that
one may avoid race conditions. If such a solution is not implemented, one may
experience having multiple referees analyze the same moves more than once. This
scenario would not be trivial as it would be a waste of resources running an analysis
on the same move more than once, and it will fill the database with multiple
duplicates.

Furthermore will the proposed analysis framework require functionality that
allows one to fetch the best move made by the chess bots and re-iterate this move
during the analysis, only now on a significantly deeper evaluation in order to see if
the chess bots chosen move was indeed the best move to make. The phases of the
analysis will be;

1. Fetch the FENs from an original chess match played by the chess bots

2. Run an initial evaluation on the FEN in order to find the proposed moves that
the player may have invoked during the original match, and its centi pawn
values.

3. Invoke the best proposed move on the currently set FEN(Which is fetched
from the original match).

4. Run an evaluation on this FEN in order to find the optimal move, and
subsequently the optimal centi pawn value.

5. This centi pawn value given by the best proposed move and the optimal
move will be grounds for calculating the quality of a move made during the
original match, in which will be further explained in section 6.3.1

56

6.4. INTENDED RUN TIME SCENARIO

6.3.1 Quality of a move

As briefly mentioned during the introduction of this chapter when elaborating on
the matter of measuring success(6.1), one is interested in looking at the potential
loss of quality in a move made by a chess bot. Based on the success rate measured
in centi pawns. In this lies that during the analysis, the referee bots will be
fetching move data from the already played through chess matches and replaying
the given scenarios. During the analysis the proposed referees are to analyze the
fetched move data on a depth that should always exceed the evaluation depth of the
player in order to obtain meaningful results. The denoted cp_loss value will be an
important factor during the analysis, as it will be used to indicate whether the chess
bots during the original match have in fact made a move that would be seemingly
poorer to that of a move found during the analysis, as this would have been the
optimal move to make.

During the analysis of a given move, if the best move found after the evaluation
of a given FEN, by a chess bot during the originally match, is the same as the move
found during a referee bots initial analysis(proposed move), one would expect the
cp_loss value to be 0. In this lies that the move found by the player, at e.g depth
9 is of the same quality as the move found by the referee during an analysis at for
instance depth 15 or 20. Meaning the success of the moves were equal. Although
in the case where the move found during the analysis differs from that one found
during the original match, one would expect that the move made by the player, be
of lower quality. The move found during the analysis would seemingly be stronger
because of its deeper evaluation.

Based on the mathematical formula(6.1), one may denote the proposed move
as the move found during the initial analysis run by the referee bots. The initial
analysis may be considered the scenario where the referees finds the best move to
make for a given FEN retrieved from the match in which it is analyzing. This will
be considered the proposed move, meaning the move that the chess bot should have
made during its original match. And it has related success rate, in centi pawns.

In order to calculate a possible loss in quality, the proposed move found during
the initial analysis should be invoked on the current FEN, meaning the proposed
move should be moved on the current board. As the move is made a new FEN
is generated, and an evaluation should be run in order to obtain what the optimal
move would be. The optimal move found, will give a related success rate in terms
of a centi pawn value, and it is the deviation of this optimal rate of success to that
of the success rate of the proposed move that the cp_loss will be calculated. And it
tells us something about the loss in quality of the move made by the chess bot.

6.4 Intended run time scenario

In figure 6.4 one can observe the intended run time scenario for a referee in
conjunction with the running chess matches. The game scenario will run its
intended course but as the matches are underway, the referee will start its analysis.

57

CHAPTER 6. RESULT - ANALYSIS FRAMEWORK

Runtime scenario

W

REF

B

Fen1 Go

Fen1 Go

BM1
w

BM1
r

Go

Fen2 Go BM2
r

Fen2 BM1
b

Fen3

Fen3

Move1
w

Move1
r

Move1
b

Move2
r

CP1
w

CP1
r

CP1
b

CP2
r

BM = Bestmove
CP = Centipawn

FEN = Current board after a move is made

Figure 6.4: Showing a run time scenario of a chess match with a concurrent
analysis of the ongoing or stored matches.

Concurrently as the white player has made its move, a separate chess referee will
invoke its analysis of the move just made. The chess referee will be analyzing the
move deeper than that of the chess bots and therefore the evaluation process will
take more time.

6.5 Database model

The analysis framework will, as mentioned during the modeling of the chess
framework, have the opportunity to fetch data from the running matches as they
are running. And during the introduction of this chapter a solution for storing
the analyzed data in organized fashion using analysis batches was proposed. The
proposed database structure may be seen in 6.5. An analysis batch may have
many analyzed moves associated with, these moves will belong to a specific batch
specified in the analysis batch entry. The data stored in the results table will
accordingly belong to one specific analysis batch entry in the database.

An entry in the analysis batch table is what will define how a given analysis will
be conducted and by which referee. An entry in this table will contain:

Analysis batch

• A column defining the ID of the current analysis batch (analysis_batch_id)

• A column representing the ID of the batch that will be analyzed (batch_id)

• A column indicating which move id was last analyzed (latest_id)

• A column indicating at which depth the referee will be evaluating. (depth)

58

6.5. DATABASE MODEL

datetimelast_update
varchar(30)ref_type

depth int(11)

int(11)latest_id
batch_id(FK) int(11)

analysis_batch_id(PK) int(11)

Table: Analysis_batch

Analysis Batch

int(11)optimal_time
varchar(8)optimal_move

cp_difference int(11)

optimal_nodes int(11)

int(11)optimal_cp
movetime int(11)

int(11)prop_nodes
int(11)prop_cp
varchar(8)prop_move
varchar(8)original_move
varchar(30)ref_id

match_id int(11)

int(11)move_id(FK)
analysis_batch_id(FK) int(11)

analysis_result_id(PK) int(11)

Table: Analysis_result

Analysis_result

Figure 6.5: Proposed database structure for the analysis framework

• A column representing what type of referee will perform the analysis
(ref_type)

• A column indicating when the analysis batch was last updated with new
information (last_update)

Analysis result

Furthermore, each entry in the analysis batch table has corresponding entries in the
analysis result table which will contain all of the analyzed data. An entry in this
table will consist of:

• A column defining the ID of an entry in the analysis result table.
(analysis_result_id)

• A column representing the ID of which analysis batch the analyzed move
belongs to.(analysis_batch_id)

• A column representing the ID of which move is being analyzed (move_id)

• A column representing the ID of which match the analyzed move belongs to
(match_id)

• A column representing the ID of which referee bot is currently analyzing the
given move (ref_id)

59

CHAPTER 6. RESULT - ANALYSIS FRAMEWORK

• A column identifying the original move of which is currently being analyzed
(original_move)

• A column identifying the proposed move based on the original move given
during the analysis conducted by the referee. (prop_move)

• A column identifying the centipawn value of the proposed moves given by
the analysis. (prop_cp)

• A column identifying the number of nodes traversed during the analysis of
the proposed moves (nodes)

• A column representing the time it took conducting the analysis on the given
depth. (movetime)

• A column representing the optimal centipawn value given by the analysis of
the proposed moves (optimal_cp)

• A column representing the optimal nodes traversed given by the analysis of
the proposed moves(optimal_nodes)

• A column representing the difference in centipawn value between the
proposed centipawn value and the optimal centipawn value(cp_difference)

• A column representing the optimal move found by the analysis of the
proposed move (optimal_move)

• A column representing the time the evaluation function spent finding the
optimal move (optimal_time)

6.6 Implementation of Analysis framework

This section of the chapter will elaborate on how proposed analysis framework
was created and implemented within the architecture, and it will furthermore detail
certain functionality and concepts described in the previous modeling chapter.

6.7 Analysis framework - Script

In order to successfully meet the criteria described in the modeling section of
this chapter, a perl script was developed. This script created, analysis.pl, is as
with chess.pl, in its entirety the analysis framework. As with the chess script the
analysis script would rely on automation in order for the referees to constantly be
analyzing match data. The purpose of the analysis script was to serve as framework
within the broker, in which the broker would have the responsibility of handling the
communication between the various referees and the database during the analysis
process. The analysis script, similarly to the chess script was to contain various
functions that were neatly intertwined in order for the process of analysis to work
seamlessly.

60

6.7. ANALYSIS FRAMEWORK - SCRIPT

6.7.1 Creating analysis batches

The analysis batches was created before an analysis was initiated, and the purpose
is as with the chess batches because it eases the analysis process in the sense that
one is able to group the analyzed data together and easily extract the data one needs.
Furthermore as the referees will analyze a given batch of matches with different
specifications in terms of evaluation depth, it is optimal to have the analyzed data
separated.

In order to create an analysis batch one needs to invoke the following command
to the framework:

Analysis Batch Creation
1 ./referee.pl -c create -b 3 -t m1.small -d 15

The command displayed above is used in creating an analysis batch. The
command, like the one used when creating a regular batch, takes a set of obligatory
parameters that will is used to create specific and independent analysis batches.
The parameters serve the following purpose.

• -c create - Specifies that a new batch is being created.

• -b identifies which chess batch to analyze.

• -t Represents what type the referee analyzing the batch will be

• -d Represents at which search depth the referee is to analyze. This should
always be more than the original players in order to achieve meaningful
results.

Creating analysis batches
Analysis batch creation

If (create, chess batch ID, type, search depth) {

connect to database
insert provided values into analysis batch table
finish
else { End batch creation as based on wrong or

missing parameters
finish

}
}

6.7.2 Initiating an analysis

When wanting to initiate an analysis process one initiates the analysis framework
with the following command:

Analysis Batch Creation
1 ./referee.pl -A analyze -r 10.0.7.5 -i 7 -d 15

61

CHAPTER 6. RESULT - ANALYSIS FRAMEWORK

The above will be invoked when initiating an analysis of a given chess batch.
The parameters are as follows:

• -A analyze - Specifies that an analysis is to be conducted.

• -r specifies the IP address of the referee analyzing the chess batch.

• -i species which analysis batch the analysis should be conducted on.

• -d specifies the depth at which the analysis will be conducted and has to
match the depth given in the analysis batch.

Initiating Analysis
Initiating analysis

If (analyze, analysis batch id, search depth,
search depth) {

connect to database

while (analysis going) {
call fetch_data() function
call run_analysis() function

else { Analysis not initiated due to wrong or
missing parameters
finish

}
}

6.8 How an analysis is conducted

Once the needed analysis batches have been created, one can initiate an analysis.
Of figure 6.7 one may see how an analysis is conducted. Of the illustration one
may observe how the chess broker, as with the initiating of a chess match, first
updates the analysis batch with the IP address of the respective referee bots that
are to analyze the given batch. After the update, the broker will also fetch the first
available move to analyze from the batch it the respective referee has been set to
analyze. Next the broker will distribute the fetched move to the said referee for
analysis. The broker will then control the analysis for as long as there are new
moves to analyze. From the frame 3b, one may see how the broker initiates more
referees to run simultaneously.

As noted during the introduction of this chapter(6), a criteria for analyzing
multiple batches had to be met in order for the framework to function as intended,
and furthermore that parallel analysis of a single analysis batch asks for a solution
to deal with race conditions(6.3). This is needed as it is not desirable to have
duplicated data in the database because of having the same move being analyzed
more than once, furthermore it would diminish performance of the analysis. Based
on this the analysis framework was created in such a way that it allowed locking
of the various table rows in the database. This means that each time the broker

62

6.8. HOW AN ANALYSIS IS CONDUCTED

The
broker

Updating analysis batch
 entry

with IP of referees and
 fetching move data

The
broker Distributing analysis

data to correct referees

The
broker

The broker controlling
the analysis

Database
10.0.7.15
10.0.7.16

10.0.7.16

10.0.7.15

10.0.7.15

10.0.7.16

The
broker

The broker having initiated
more referees

10.0.7.16

10.0.7.15

10.0.7.1710
.0

.7
.1

8

1. 2.

3a. 3b.

Figure 6.6: Illustrating how the analysis is conducted from the brokers point of
view.

is about to fetch a move for analysis in the database, a check will be performed in
order to identify which move was last updated, but the broker will not be allowed to
this before another instance of the broker has finished fetching a move for another
ongoing analysis. This way one is able to circumvent the race condition factor.
This locking is possible by using a built in feature in the MySQL database that
will lock a specific row when it is being read, keeping others from reading the
same row. When the read operation is complete, it will unlock the table for further
reading such that the next read operation may be permitted.

63

CHAPTER 6. RESULT - ANALYSIS FRAMEWORK

TB

Data fetched for
analysis

TB R

The broker Chess referee

Batch 1

Batch 2

Batch 3

R2

R3

R1
DB

Analysis Result

Analysis Result

Analysis Result

DB

Analyzed data stored
in analysis result

Batch 1

Batch 3

Batch 1

TBR2

R3

R1
Batch 1

Batch 3

Batch 1

1.

2.

Figure 6.7: Illustrating how the referees interact with the database

Of figure 6.7, illustration 1, one may observe how the broker fetches data from
two different analysis batches and distributes the data to the correct referees, as
specified in the analysis batch. One may observe that two referees, referees 1 and
3 respectively, are analyzing moves from the same batch, and as mentioned in the
last paragraph this would have prompted a race condition if the two were to fetch
data from the batch simultaneously, but because of the locking of table rows in the
database this is avoided.

If one further observes illustration 2, one can see how the analyzed data is stored
within the database. The analyzed data will be stored in separate rows within the
analysis result table.

64

Chapter 7

Analysis

The following chapter will look at data produced by the chess matches run by
the chess framework and data analyzed by the analysis framework. The data in
this chapter is data produced during the synthetic testing of the chess and analysis
framework. The synthetic testing, as described in section 3.3.2, was concerned
with the observation of various chess match scenarios as one was interested in
uncovering the coherence between the properties of K1.

Furthermore as one was not certain how variation in performance would impact
the various chess matches, the analysis chapter will look at data produced under
specific conditions. The analysis will furthermore look at the outcomes of
preliminary matches under various evaluation times, imposed penalties. This
will is important in order to observe the key properties(K1) under various
circumstances. The synthetic testing has been conducted with all of the matches
being subject to varying conditions, in which a penalty has been imposed on the
chess bots, or players, in order to mimic a certain degree of noise during the testing.

65

CHAPTER 7. ANALYSIS

7.1 Synthetic testing

100 White Remis Black White Remis Black White Remis Black

30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

Outcomes

M
at

ch
es

2sec v 1sec 4sec v 2sec 8sec v 4sec
Outcome scenarios - Fixed penalty for black

Figure 7.1: Graph displaying the outcomes of matches run with a fixed penalty.

Figure 7.1 illustrates the outcomes of three different 30 match sets that was run
with a fixed penalty and where the evaluation time of Stockfish was set to the
following

• White 2 seconds vs Black 1 second

• White 4 seconds vs Black 2 seconds

• White 8 seconds vs Black 4 seconds

Of the graph, in the 2vs1 second secnario, one may see that when running the
matches where the black player has been given a penalty of 1 second, black comes
out victorious in 8 matches, whereas white does not win a single match. The rest
of the chess matches end in a draw. The following matches where the evaluation
times was increased to that of 4 seconds and black was given a fixed penalty of 2
seconds, one may see that white wins a total of 9 matches whereas black doe not
come out victorious in one match. Most of the matches still ended in a remis. The
last set of bars represents the outcome where the evaluation time was originally set
to 8 seconds, and where black was given a 4 second penalty, here one may observe
that the matches all ended in remis, and neither player won a single match.

66

7.1. SYNTHETIC TESTING

The outcome of the first batch of matches running with an evaluation time of
2 seconds was unexpected as the black player was given a penalty of 1 second,
and would ultimately evaluate for a shorter duration, but still won 8 of the matches
played. It is reasonable to assume that the reason for this is that the 1 second
gap between the two players is not enough for Stockfish to do a significantly
better evaluation. As when reaching a certain depth, 1 second will not impact
the evaluation to the extend where Stockfish is able to find a better move.

100 White Remis Black White Remis Black White Remis Black

30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

Outcomes

M
at

ch
es

Fixed 2sec v Uniform 1sec+additional sec

Fixed 8sec v Uniform 4sec+additional sec
Fixed 4sec v Uniform 2sec+additional sec

Outcomes scenarios - Uniform penalty for black

Figure 7.2: The graph displays the outcomes of matches where a uniform penalty
has been imposed on the black player

Figure 7.2 represents the outcomes of chess matches where the black player was
given a uniform penalty(see section 5.3.1). As with the set of matches described in
the last section, the white player would run at the intended evaluation time of 2, 4
and 8 seconds. The black player had a uniform penalty imposed on its evaluation
in which would make the evaluation time for the black player to fluctuate between
the lower bound and upper bound of the evaluation time. This uniform penalty was
imposed to mimic a more real scenario in where the chess bot experiences varying
degrees of resources utilization. Of the graph one may observe that both the white
and the black player comes out victorious in some of the matches in all but one
scenario, although the number of draws are still high.

If one further observes the graph, one may see that as the evaluation time
increases from 2 to 8 seconds the number of wins shared between the two players
decrease, and that the number of draws increase. The reason behind this is that
as the evaluation time increases, the further the chess engine will search, and at

67

CHAPTER 7. ANALYSIS

a certain depth the chess engine will spend more time evaluating as the number
of moves needed to evaluate increases. And seeing as the black player has a
fluctuating penalty between 4 and 8 seconds, the white and the black player may
end up running the same evaluation time, in which may result in the two ending up
with finding equally good moves.

100 White Remis Black White Remis Black White Remis Black

30

0
2

4

6

8

10

12

14
16

18

20

22

24

26

28

Outcomes

M
at

ch
es

Uniform 1sec+additional sec vs Uniform 1sec+additional sec

Uniform 4sec+additional sec vs Uniform 4sec+additional sec
Uniform 2sec+additional sec vs Uniform 2sec+additional sec

Outcome scenarios - Uniform penalty both players

Figure 7.3: The graph above displays the outcomes where both players were given
a uniform penalty

Figure 7.3 displays a graph that portrays the outcomes of chess matches having
been played with uniform noise imposed on both players. Meaning that the
evaluation time has been fluctuating for both parties. Of the graph one may observe
that the outcomes are fairly similar to the ones displayed in graph 7.2. As one
may see, the number of draws are quite substantial in contrast to that of victories
for either player. Compared to the graph in the last section, this set of matches
experienced an even lower number of wins, and higher rate of remis. This may be
seen as a result of both parties now having the evaluation time running at various
random intervals, within the fixed lower and upper bound of 2-1, 4-2 and 8-4
seconds. As a result, the two players may end up with quite similar evaluation
times, which means that the two players may end up finding equally good moves.

68

7.1. SYNTHETIC TESTING

0 5 10 15 20 25 30 35
Move number

2000

2500

3000

3500

4000

4500

5000

M
illi

se
co

nd
s

Lowest peak - 2158ms

Max peak - 3966

Fixed vs Uniform noise
4000ms vs 2000ms + random generated noise
Black line(White): 4000ms
Red line(Black): 2000+random noise
Match result: Remis

Evaluation time black
Evaluation time white

Figure 7.4: Graph showing how the uniform noise inflicts a chess bots evaluation.

One may observe of figure 7.4 how the uniform penalty imposed on the black
player impacts the time in which he is to evaluate. One may observe that the
white player evaluates at its given 4 second run time, and that the black player is
significantly disrupted when initiating its evaluation. The uniform penalty imposed
on the black player initially gives him a 4 second fixed penalty, which is equal to
half the intended evaluation time, and then another random set of seconds are added
to this penalty, having the lower bound being 2 seconds and the upper bound being
the total number of seconds in which the players are allowed to evaluate, which is
8 seconds.

One may further observe that the black player experiences a distinct variation in
evaluation time, and having its lowest peak at 2158 ms, and accordingly the highest
at 3966 ms. This variation in evaluation is an interesting observation and gives the
wanted indication towards how the engine is affected under varying conditions.
This variation will also impact the number of nodes traversed by the engine.

69

CHAPTER 7. ANALYSIS

’

0 5 10 15 20 25 30 35
Moves

0

1x106

2x106

3x106

4x106

N
od

es
Match: 124
Evaluation: 4000ms
Penalty: Uniform 2000ms black
Result: Remis

Nodes over time
White: 4000 ms
Black: 2000 ms + random noise

White Nodes

Black Nodes

Figure 7.5: Illustrating how number of nodes traversed running with fixed and
uniform penalty.

As mentioned in the latter part of the last paragraph figure 7.5 illustrates how the
variation in evaluation time affects the overall nodes traversed by the chess engine.
One can observe the white player, having a fixed evaluation time of 4000ms(4
seconds), has a stable node traversal throughout the represented moves, compared
to that of the black player which has a fluctuating in evaluation time.

If one observers the black line throughout the graph, one can see how the
number of nodes traversed by the black player fluctuates throughout the game.
This fluctuation indicates that the engine is not capable of traversing the same
amount of nodes as what would have been optimal, meaning that an impact on
the performance of the engine affects the overall traversal of nodes.

70

7.1. SYNTHETIC TESTING

0 2 4 6 8 10 12 14 16 18
Moves

2000

2500

3000

3500

4000

M
illi

se
co

nd
s

Match: 557
Result: White wins

Both players running uniform noise
Upper bound: 4000ms
Lower bound: 2000ms

White player
Black player

Figure 7.6: Graph showing how the uniform noise inflicts both chess bots during a
match

If one views the graph depicted in figure 7.6, one may observe the scenario in
which both players are subjected to noise. Both the white and black player have
been running chess matches with an impeding uniform penalty. As described in
figure 7.4, one may observe that both of the players are now experiencing variation
in evaluation time when a match is undergoing. The two players experiences
fluctuations between the lower and upper bound of 2 to 4 seconds. One may
observe that the noise has an impact on the performance of the engine.

0 10 20 30
Moves

0

500

1000

1500

2000

2500

3000

3500

N
od

es

Match: 811
Evaluation: 10 milliseconds
Penalty: Uniform 5ms black
Result: Black wins

Nodes over time
White 10 ms
Black 5 ms

Figure 7.7: Illustrating how number of nodes traversed during extremely short
evaluation time.

71

CHAPTER 7. ANALYSIS

0 20 40 60 80 100 120 140
Moves

0

100

200

300

400

500

C
P

Evalution: 8 seconds
Penalty: 4 sec black
Result: White wins
Analysis Depth: 15

Original match 8 seconds - Analysis Depth 15

Game CP
CP Loss

Figure 7.8: Analysis of a chess match running at 8 seconds vs 4 seconds evaluation
time.

The graph illustrated in figure 7.8 represents the analysis of a chess match played
out by two chess bots. This particular graph is concerned with the analysis of a
chess match that has been run with an evaluation time of 8 seconds for white, and a
4 second penalty for the black player. Meaning that the black player would evaluate
for half the original duration. The red line within the graph represents the changes
in the centi pawn value as the original game progresses. What one may observe
of the graph is the expected fluctuation in the centi pawn value, represented by
game_cp, as the game is progressing. This due to white and black making moves
that either increase of lower their advantage.

The black line relates to CP_loss, and as mentioned during 6.3, if one observes
that the move made during the original game is also the move found to be best
move by the referee during the analysis, one would expect to find the cp_loss value
to be 0. As the moves found are the same. If the move found during the original
match by the player does not correspond to that of the referees analysis, one would
expect the move of the player to be of poorer quality, and the centi pawn loss would
be represented by the black line displayed in the graph.

Observing the said graph one may furthermore see that the line representing
cp_loss is quite flat, which one might expect as an evaluation time of 8 seconds
is quite long, and the depth reached during the evaluation would be quite similar
to that of the fixed depth set in the analysis. Meaning that the outcome of the
evaluation performed during the original game by the players, compared to those
done by the referee during the analysis were quite similar. This may be further
verified as there are no significant spikes along the line represented by cp_loss.

72

7.1. SYNTHETIC TESTING

0 20 40 60 80
Moves

0

200

400

600

800

C
P

Match: 773
Evaluation: 10 milliseconds
Penalty: 5ms for black
Result: White wins
Analysis depth: 15

Original match 10 milliseconds - Analysis depth 15

Game CP
CP Loss

Figure 7.9: Analysis of a chess match running at 10 ms vs 5 ms evaluation time.

Figure 7.9 represents the analysis of a chess match in which the chess bots, more
specifically the white player, ran with an evaluation time of 10 milliseconds and the
black player with 5 milliseconds. The black player having a 5 millisecond penalty.
As with the graph displayed in figure 7.8, the red line represents the changes in the
centi pawn value throughout the match. Here one may also observes the fluctuation
in the centi pawn value as the match progresses.

Compared to the analysis result in which one may observe in 7.8, where one
expected to observe few variations in the cp_loss value as the evaluation time for
the chess bots were quite long, one would expect for the current scenario to see
quite elaborate differences in the cp_loss value. The reasoning behind this is that
one would expect that the chess bots evaluations, in such an extreme short time,
would find moves that are substantially poorer than to that of the referee bots during
a far deeper analysis at a depth of 15.

By observing the graph one may see that this is in fact not the outcome. The
line representing cp_loss does not show the expected spikes in terms of the cp_loss
value fluctuating because of poor quality moves being made by the player, as would
be the case if the player had come of with a move that was seemingly lower quality
to that of the move evaluated by the referee in the analysis.

73

CHAPTER 7. ANALYSIS

0 20 40 60 80 100

0

100

200

300

400
Match: 735
Evaluaiton: 5 milliseconds
Penalty: No penalties
Result: White wins
Analysis depth: 15

Game CP
CP Loss

Original match 5 milliseconds - Analysis Depth 15

Figure 7.10: Analysis of a chess match running at 5 ms vs 5 ms evaluation time.

In figure 7.10 one may observe the graph in which the evaluation time of the
chess bots have been lowered to that of 5 milliseconds, without any form of
penalties. As with the scenario described above, one would have expected to see a
change in the cp_loss value as the chess bots have been running their evaluation at
such a short time span. One would have expected to see greater fluctuations in the
cp_loss value, as the referees are evaluating at a deeper depth than the chess bots,
and one would expect the moves made the players be poorer than those made by
the referee.

74

Chapter 8

Discussion

The following chapter will discuss the conducted research, and aspects concerning
the thesis. It will furthermore discuss alternatives to the approach in some
specific areas, future work, and implementation of the framework and the related
architecture. And furthermore ways to use the frameworks outside this research.

8.1 May this be conducted in another cloud environment?

One may easily conduct this research within another cloud environment, such as
Amazon, although there are a few prerequisites:

• One is in need of the chess bot images

• The framework scripts

• A MySQL database

The chess bot images are created from snapshots of the original virtual machines
in which portrays the chess bots. These images are running a Linux/Unix operating
system and has Stockfish readily compiled on them, as well as the needed Xinetd
service, in which is necessary in order to establish communication between the
chess bots, and furthermore the referees. These images may be downloaded and
uploaded to any cloud environment, such as Amazon.

Furthermore one may either develop some own form of framework in order to
run similar scenarios concerning chess matches, or one may move the frameworks
themselves, as they provide all the needed functionality in order to run chess
matches and analysis, and moreover communicate with the chess bots, referees
and the database.

Lastly one is in the need of storage medium, and the currently developed
frameworks supports MySQL, so this needs to be installed on a separate virtual
machine within the environment in which the frameworks are set to run. The
frameworks contain the needed functionality in order to connect and communicate
with the database, and one need only change the database specific information in
order to connect.

75

CHAPTER 8. DISCUSSION

8.2 Do the frameworks work?

This process has seen the creation of two individual frameworks, the chess
framework and the analysis framework. The two frameworks were created each
for its own purpose. The chess framework aimed at orchestrating a large array of
chess matches in the cloud, and the analysis framework was to analyze these chess
matches.

The Chess framework As mentioned in section 4, both of the frameworks would
rely on automation as it would be a tedious task to manually arrange the vast
number of chess matches and rounds of analysis intended during the research. The
automation of the chess framework has been successful in the sense that it has
been possible to initiate the frameworks to play a set of matches and subsequently
analyze them.

The concept of batches as a way of organizing chess matches has proven to
be successful, as one has been able to separate chess matches that has been run
under various conditions in terms of penalties into their on respective chess batches.
The integration of this solution has given one the opportunity of playing multiple
matches simultaneously. Being able to do this greatly increases the efficiency of
the framework, and as the framework has been automated, this benefits the overall
orchestration of chess games. As one is, after the creation of a specific batch, in
the position to initiate the framework and it will handle the matches without any
interaction until all of the matches are finished playing.

The communication between the chess bots, channeled through the chess broker,
has worked as intended in that it has been possible to run chess matches across the
network between individual chess bots. The chess bots have been successful in
playing out the matches as described by the chess batch they belong to, and the
players have been successfully penalized during their matches. If any penalty was
given. Furthermore has the chess framework, through the broker, been able to
store the wanted chess game related data in the database for easy extraction when
necessary.

The Analysis framework As with the chess framework the analysis was
subjected to the concept of batches, although they were analysis batches in which
had different specifications in order to meet the requirement of the analysis. The
concept of analysis batches has proven successful as it has enabled the separation of
analyzed data. This separation was necessary as extracting the data for inspection
would be easier when having the various analyzed data grouped together in terms
of the parameters they were subjected to during the analysis. Furthermore the
automation of the analysis has proven effective, as an analysis that is initiated will
be handled by the broker and the framework until its duration is over.

The referee bots are successful in handling their analysis in that they are able
to fetch the correct data from the database through the communication of the
broker. There is, however, a minor drawback in the analysis framework, in that

76

8.3. LIVE TESTING

when the referees are analyzing, several referees may analyze data from the same
analysis batch. And because of this a mechanism was implemented in order to
circumvent race conditions when multiple referees were fetching data from the
database. The implemented functionality as of now locks the table rows within the
database whenever a read operation has been initiated on the specific table, this
may cause a small, not too significant, performance loss in the analysis process.
The ramification of this locking and a proposed solution is further discussed in
section 8.4. On the contrary, implementing queues adds an extra implementation
task, and may be unnecessary and avoided as the current solution provides the
functionality to circumvent race conditions.

8.3 Live Testing

As mentioned during the approach(section 3) the live testing would only become a
reality if time permitted. The frameworks were to be moved into a live environment
and the synthetic testing would act as a blueprint for the live testing.

The scenario under which the live testing would be conducted is different from
that of the synthetic testing. During the live testing the chess matches would not
be affected by penalties, meaning the matches will not be initiated with various
penalties imposed of the various players. One does not want to impose penalties
on the chess framework while the matches are running in the live environment
as this would return misleading results, and one is interested in having the chess
bots playing chess matches in what would be a real environment. Instead of such
penalties, one would want to affect external factors within the environment that
ultimately would affect the chess bots during their chess matches.

There are several scenarios under which the live testing could be conducted, as
seen in figure 8.1. It is desirable that the chess broker, referee bots and the database
is isolated from the environment in which the tests are conducted as they are not to
be subjected to unwanted noise. Using processor affinity, or CPU affinity, you may
lock, or bind specific processes to certain cores. One may consider the scenario
where one have the chess bots running in an enclosed environment running on four
cores(1), having each chess bot locked to one core each. One would then initiate the
chess matches running in this scenario, and observe the outcome. This enclosing
of chess bots and cores, provides opportunities for further experimentation with
various forms of run time environments for the chess bots. As a way of mapping
possible contention performance variation within the environment one may run
experiments where one locks two chess bots to a single core in order to observe
how they are affected during the game(2). One could then furthermore move on and
place four chess bots on one core(3), and observe how the chess bots are impacted.

Moreover it may be possible to separate the chess bots, in the sense that two
chess bots are isolated from the enclosed environment where each chess bot runs
on their separate core. Whereas the chess bots inside the enclosed environment
are locked to the same core(4). One may then look at the outcomes and link the
mapping of contention between the two scenarios. All of these scenarios may be

77

CHAPTER 8. DISCUSSION

used in order to fully map the possible contention between the chess bots in cloud
environment.

CB

C

CB CB CB

CC C

CB CB

C

CB CB

C

CBCB

1. 2.

3. 4.
CB CB

C

ChessbotCPU Core

CB

C

CB

C

Figure 8.1: The above illustration depicts the various scenarios just described

8.4 Implementation of queues - Considering RabbitMQ

The analysis framework utilizes a functionality in order to prevent race conditions
when several referee bots are analyzing the same analysis batch. These race
conditions may be bad for the overall performance of the framework as it will
allow analysis of the same data more than once, which is a waste of resources
and it will generate duplicates within the database. As described during section
6.8 the analysis framework has been developed with a mechanism for preventing
unwanted race conditions. As of the end of this research, the analysis framework
utilizes a built in function in the MySQL database in order to lock specific rows for
reading when a read operation on a given row is on going.

This mechanism provides the needed functionality in that it allows for better
handling of read operations in terms of having simultaneous requests to the
database any given second. There is an imminent drawback in that there is sort of
a "first come, first serve" principle in that when the chess broker is running several
referees simultaneously and they need to access the database all at the same time,
the broker will allow the first referee to check for the latest move to analyze, but
will deny all of the other referees access. This will impede on the performance of
the analysis, as it will delay and create unnecessary gaps in the analysis process.
Even though not too significant, it is a factor to consider.

78

8.5. DOES THE ANALYSIS WORK?

A solution, and a different approach that may improve on this impeding factor
is that of implementing a queuing service, e.g RabbitMQ. The reason this might
considerably enhance the analysis is that instead of having the database locking
a row in the database each time a referee wants to perform read operation, all of
the referees may collect moves for analysis from its own queue. This would be
implemented in the way that in addition to having the database isolated on its own
VM, one could implement RabbitMQ on a separate virtual machine. On could also
have implemented it on its own physical server, as this might even further enhance
the capacity of RabbitMQ. Although it depends of the activity towards the database
in terms of where one may consider implementing the RabbitMQ service.

Each of the referees would have been assigned to their own queue, and the move
data would be sent to the RabbitMQ handler, and then the respective referees would
then consume the data from the queues that they have been assigned to.

8.5 Does the analysis work?

The conducted research had a goal of successfully mapping success in a game of
chess to that of resource contention. As described throughout the process, specific
success criteria were chosen in order to map the cohesion between the two. One of
which was the centi pawn value, the other nodes over time. The centi pawn value
was chosen as a success criteria as it is portrays the current advantage for any of the
two players during a game. The goal was to run a set of chess matches, and then
analyze the moves produced from these matches, with the focus on the potential
loss in quality of the moves made by the players compared to what the referees
found during the analysis. Based on the success rate of the individual moves.

Meaning that one expected to observe a significant loss in quality in the moves
made by the player if the moves made were different to what the referees found on
a considerably deeper evaluation depth. One would expect to see a fluctuation in
the centi pawn value represented by cp_loss, as this would indicate that the moves
found showed a centi pawn value in which would be greater than if the moves made
my the player and the referees were identical.

As described during the analysis chapter 7 the expectations towards the findings
in graph 7.5 were that the cp_loss value would stay close to 0 throughout the game
as the evaluation time of the players were quite long, and because of that they
would have evaluated to a depth very similar to that of the referee bots. Because of
this the majority of moves made during the game would end up identical. So the
quite flat line observed in the graph was expected.

As the evaluation time of the players lowered considerably, one expected a
change in the cp_loss value as the players were now running significantly lower
evaluation times and would accordingly end up much lower evaluation depths.
Although if one observes the graphs 7.9 and 7.10 one may see that there are no
significant fluctuations in the cp_loss value. Which is unexpected as one would

79

CHAPTER 8. DISCUSSION

have expected that the referees would have come up with considerably better moves
at the depth at which was analyzed compared to what was run by the players.

This unexpected behavior may be caused by the input to the framework, or the
analysis itself and may be the reason behind the inconclusive result of the analysis
of specific matches. One may argue that it perhaps is the processing of the data
during the analysis that is not efficient enough. Meaning that the approach taken in
calculating the loss in quality of the moves are not correctly adjusted.

8.5.1 Better understanding the analysis

In retrospect, there might be ways to try to better understand the analysis and how
the values behave, and to more correctly calculate the cp_loss value for a given
move. The chess bots, or players, are running their evaluation based on time, and
as of now one is not observing the expected outcome of the analysis. It might be
possible to rig the cp_loss value better if one instead of having the players running
the evaluation on time, dictate the depth at which they are to evaluate.

Although controlling the depth of the evaluation contradicts the purpose of the
research and is not the same type of "sabotage" as one would have with inflicting
penalties on the evaluation time. This is because one would have to make rough
assumptions that a given evaluation time would lead to a specific depth. And one
would rig the game just to confirm assumptions made as to how the outcome would
have been for a certain evaluation time, and furthermore in order to observe if one
obtains the wanted result. Although this is not in line with current research it might
have been used as a method to better understand the evaluation and the values used
to measure success, in order to more adequately calculate the cp_loss value.

8.6 What can system administrators learn from this?

In the future for the branches within the industry that host gaming services,
resource locking is something that may become a challenge, not only for the
industry itself, but for the system administrators that are responsible for the
administrating the game servers. There are services being hosted that achieve
success, for instance Netflix and Dropbox, are hosted in Amazon. But these
services are asynchronous, for instance, Netflix is not an immediate service, as
Netflix will buffer the content before streaming it to the user, and one can not
buffer a game.

And with this type of sensitivity in terms of seamless hosting one may envision
that the cloud as it is now, may not have the same prerequisites for game hosting
as it does streaming, but one may consider the scenario where one may host game
servers on more prioritized machines, in terms of locking the resources to specific
machines. It would be possible with the technology of today, but it might force an
evolution in terms of hosting game servers. As the services hosted today do not
have the same issues as a game service.

80

8.7. FUTURE WORK

That being said, although we witnessed a slight variation in terms of
performance when playing chess, other games may be harder to measure. In the
sense that it would not have been possible to create an equivalent framework as the
one created in this thesis, in relation to a first person shooter. How could one go
about observing and verify how the penalty inflicts another type of game? As long
as one has the possibility of running a simulation of the given game, it is possible
to recreate a similar scenario, the essence of the framework created will still be
valid in the sense that one could still organize matches played with batches, but
one would probably not be concerned with individual moves as one is in chess like
scenario. One would still have the possibility of graphing the outcomes of matches
as has been done during this research.

8.6.1 Game success monitoring

If the system administrator has the possibility of extracting the success rate related
to the played matches, in terms of who is winning and losing, it is may be possible
to create an expectation of success. A system administrator usually does not have
access to "game play logic", meaning that the system administrator has no way of
knowing how well a specific opponent or server is performing or how successful it
is.

Although if the system administrator has access to information in terms of how
successful the server is, he may to a greater extent, observe how the variation in
success propagates. The system administrator can use this knowledge in sense that,
if an opponent is initiated with a difficulty level of "hard" it is expected that this
opponent adheres to this level. If the this opponent however, is losing frequently,
one may have an issue in terms of resources. In the sense that he is under achieving
in relation to the expected level.

8.7 Future Work

One could have further developed more tools working in conjunction with the
frameworks in order to retrieve summaries from the specific batches, in terms of
wins, losses and remis. Moreover one could have moved the frameworks to another
cloud environment after conducting needed tests in the current environment. This
is order to look at how these environments impact the matches run. For instance
one could have moved the frameworks to Googles Amazon cloud environment.

In terms of the analysis framework designed and implemented in this thesis,
there are a few aspects to consider when looking at further development. As
discussed in section 8.4, the analysis framework implemented as of right now may
be further improved by implementing a form of queuing service. This may ease the
job of the broker, and furthermore help prevent the race conditions that are likely
to occur, without the impeding effect that the current solution impose.

Furthermore as discussed in section 8.5.1, one may consider during future
development, running more controlled preliminary tests with the main focus being

81

CHAPTER 8. DISCUSSION

on running the evaluation on a specific depth in order to better clarify the behavior
of the variables used as a measure for success in order to more adequately calculate
the loss in quality of move. This means obtaining a clearer understanding of the
values related to success.

82

Chapter 9

Conclusion

The thesis has seen exploration through the successful creation of a set of
frameworks meant for running and analyzing games. The work put down is this
research may easily be continued by utilizing and tweaking these frameworks.
The frameworks that have been created are already running in the cloud, and may
be moved to other cloud environments as long as the environment fulfills certain
criteria.

Concerning the investigation conducted one may look at the results in the sense
that if one is given less time to evaluate, or think, the likelihood of winning
is considerably reduced. A reduction in half a second considerably affects the
likelihood of winning. This confirms our assumptions that game types that
depends on quite substantial computation will suffer in an environment where
resources vary to a certain degree. Although, for game types that has considerably
longer periods of evaluation, there is no substantial evidence that support these
assumptions. This may concern turn based and strategy based games. One
may then generalize this and say that the shorter the evaluation period, the more
vulnerable it is. Meaning that the success rate is reduced.

Furthermore one wanted to go deeper and investigate why this is the case, and
for chess in general, one wanted to investigate the quality of individual moves made
during a game of chess. This has seen partly successful results. One received some
unexpected results and it is clear that more work needs to be conducted and further
investigation is needed. Nonetheless, the results were promising, but difficult to
interpret. In order to further investigate this and obtaining a better understanding
one may look to the method described in section 8.5.1, concerning using depth
during preliminary testing.

As stated during the introduction of this thesis, one was introduced to the
scenario in which one was playing a game against an opponent. Envision that
you are now playing against this opponent, and try and imagine how this would
play out if you had half a second less to evaluate any given situation. This research
has shown that if this game had run on a machine in the cloud, that varying degrees
of resources and contention is something that one should be wary of.

83

CHAPTER 9. CONCLUSION

84

Bibliography

[1] Cegt rating list. http://www.husvankempen.de/nunn/40_4_Ratinglist/
40_4_BestVersion/rangliste.html. Last visited March 9th 2014.

[2] Chess engine grand tournament. http://www.husvankempen.de/nunn/.
Last visited March 9th 2014.

[3] Computer chess rating list. http://www.computerchess.org.uk/ccrl/4040/
index.html. Last visited March 9th 2014.

[4] Gnu general public license. https://www.gnu.org/copyleft/gpl.html. Last
visited March 9th 2014.

[5] Komodo home page. http://komodochess.com/. Last visited March 9th
2014.

[6] Simen Agdestein. Simens Sjakkbok. Gyldendal Norsk Forlag ASA, 1997.
ISBN: 82-05-25146-0.

[7] Wikimedia Beao. Algebraic notation representation. http://en.wikipedia.
org/wiki/Algebraic_notation_(chess). Last visited March 8th 2014.

[8] Wikimedia Beao. Algebraic notation representation. http://commons.
wikimedia.org/wiki/File:SCD_algebraic_notation.png. Last visited
March 8th 2014.

[9] Wikimedia Beao. Algebraic notation representation. http://commons.
wikimedia.org/wiki/Commons:GNU_Free_Documentation_License_1.
2. Last visited March 8th 2014.

[10] Sara Bouchenak, Gregory Chockler, Hana Chockler, Gabriela Gheorghe,
Nuno Santos, and Alexander Shraer. Verifying cloud services present and fu-
ture. http://static.googleusercontent.com/external_content/untrusted_
dlcp/research.google.com/en/us/pubs/archive/40816.pdf. Last visited
March 12th 2014.

[11] Programmed by Martin Blume and GUI Website by Wilhelm Hudetz. Arena
chess gui. http://www.playwitharena.com/. Last visited March 10th 2014.

[12] Chessprogramming.com. Centipawns. http://chessprogramming.
wikispaces.com/Centipawns. Last visited March 9th 2014.

85

http://www.husvankempen.de/nunn/40_4_Ratinglist/40_4_BestVersion/rangliste.html
http://www.husvankempen.de/nunn/40_4_Ratinglist/40_4_BestVersion/rangliste.html
http://www.husvankempen.de/nunn/
http://www.computerchess.org.uk/ccrl/4040/index.html
http://www.computerchess.org.uk/ccrl/4040/index.html
https://www.gnu.org/copyleft/gpl.html
http://komodochess.com/
http://en.wikipedia.org/wiki/Algebraic_notation_(chess)
http://en.wikipedia.org/wiki/Algebraic_notation_(chess)
http://commons.wikimedia.org/wiki/File:SCD_algebraic_notation.png
http://commons.wikimedia.org/wiki/File:SCD_algebraic_notation.png
http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License_1.2
http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License_1.2
http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License_1.2
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/40816.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/40816.pdf
http://www.playwitharena.com/
http://chessprogramming.wikispaces.com/Centipawns
http://chessprogramming.wikispaces.com/Centipawns

BIBLIOGRAPHY

[13] Chessprogramming.com. Chess engine evaluation function. http://
chessprogramming.wikispaces.com/Evaluation. Last visited March 9th
2014.

[14] Chessprogramming.com. Chess material. http://chessprogramming.
wikispaces.com/Material. Last visited March 9th 2014.

[15] Chessprogramming.com. Chess piece relative value. https:
//chessprogramming.wikispaces.com/Point+Value. Last visited March
9th 2014.

[16] Amazon EC2. Amazon elastic cloud. http://aws.amazon.com/ec2/. Last
visited March 12th 2014.

[17] Cloud Gaming. Cloud gaming report 2012 distribution and
monetization strategies to increase revenues from cloud gaming.
http://www.cgconfusa.com/report/http://www.cgconfusa.com/report/
documents/Content-5minCloudGamingReportHighlights.pdf, 2012.
Last visited 26nd of February, 2014.

[18] Google. Google app engine. https://developers.google.com/appengine/
docs/whatisgoogleappengine. Last visited March 11th 2014.

[19] Rackspace Hosting and NASA. Openstack open source cloud software.
https://www.openstack.org/. Last visited March 25th 2014.

[20] Robert Houdart. Houdini home page. http://www.cruxis.com/chess/
houdini.htm. Last visited March 9th 2014.

[21] IBM. Ibm and hp virtualization a comparative study of unix virtualization
on both platforms. https://www.ibm.com/developerworks/aix/library/
au-aixhpvirtualization/au-aixhpvirtualization-pdf.pdf. Last visited March
3rd 2014.

[22] Fédération internationale des échecs(FIDE) or World Chess Foundation. Fide
handbook(laws of chess) under appendix c: Algebraic notation. http://www.
fide.com/component/handbook/?id=125&view=article. Last visited 10th
of February 2014.

[23] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. On the performance
variability of production cloud services. http://www.pds.ewi.tudelft.nl/
~iosup/tech_rep/cloud-perf-var10tr.pdf/. Last visited March 12th 2014.

[24] Stefan-Meyer Kahlen. Universal chess interface(uci). http:
//wbec-ridderkerk.nl/html/UCIProtocol.html. Last visited March 10th
2014.

[25] Stefan-Meyer Kahlen and Rudolf Huber. Universal chess inter-
face(uci). http://www.shredderchess.com/chess-info/features/
uci-universal-chess-interface.html. Last visited March 10th 2014.

86

http://chessprogramming.wikispaces.com/Evaluation
http://chessprogramming.wikispaces.com/Evaluation
http://chessprogramming.wikispaces.com/Material
http://chessprogramming.wikispaces.com/Material
https://chessprogramming.wikispaces.com/Point+Value
https://chessprogramming.wikispaces.com/Point+Value
http://aws.amazon.com/ec2/
http://www.cgconfusa.com/report/ http://www.cgconfusa.com/report/documents/Content-5minCloudGamingReportHighlights.pdf
http://www.cgconfusa.com/report/ http://www.cgconfusa.com/report/documents/Content-5minCloudGamingReportHighlights.pdf
https://developers.google.com/appengine/docs/whatisgoogleappengine
https://developers.google.com/appengine/docs/whatisgoogleappengine
https://www.openstack.org/
http://www.cruxis.com/chess/houdini.htm
http://www.cruxis.com/chess/houdini.htm
https://www.ibm.com/developerworks/aix/library/au-aixhpvirtualization/au-aixhpvirtualization-pdf.pdf
https://www.ibm.com/developerworks/aix/library/au-aixhpvirtualization/au-aixhpvirtualization-pdf.pdf
http://www.fide.com/component/handbook/?id=125&view=article
http://www.fide.com/component/handbook/?id=125&view=article
http://www.pds.ewi.tudelft.nl/~iosup/tech_rep/cloud-perf-var10tr.pdf/
http://www.pds.ewi.tudelft.nl/~iosup/tech_rep/cloud-perf-var10tr.pdf/
http://wbec-ridderkerk.nl/html/UCIProtocol.html
http://wbec-ridderkerk.nl/html/UCIProtocol.html
http://www.shredderchess.com/chess-info/features/uci-universal-chess-interface.html
http://www.shredderchess.com/chess-info/features/uci-universal-chess-interface.html

BIBLIOGRAPHY

[26] Younggyun Koh, Rob Knauerhase, Paul Brett, Mic Bowman, Zhihua Wen,
and Calton Pu. An analysis of performance interference effects in virtual
environments. http://ieeexplore.ieee.org.ezproxy.hioa.no/stamp/stamp.
jsp?tp=&arnumber=4211036. Last visited 27th of January, 2014.

[27] Jaideep Moses, Ravi Iyer, Ramesh Illikkal, Sadagopan Srinivasan, and Kon-
stantinos Aisopos. Shared resource monitoring and throughput optimization
in cloud-computing datacenters. http://ieeexplore.ieee.org.ezproxy.hioa.
no/stamp/stamp.jsp?tp=&arnumber=6012910. Last visited March 11th
2014.

[28] Tord Romstad. Glaurung chess. https://chessprogramming.wikispaces.
com/Glaurung. Last visited March 9th 2014.

[29] Jorg Schad, Jens Dittrich, and Jorge-Arnulfo Quiane-Ruiz. Run-
time measurements in the cloud: Observing, analyzing, and reduc-
ing variance. http://dl.acm.org/citation.cfm?id=1920902&dl=ACM&coll=
DL&CFID=301673206&CFTOKEN=59311921. Last visited March 11th
2014.

[30] Claude E. Shannon. Programming a computer for playing chess. http:
//vision.unipv.it/IA1/ProgrammingaComputerforPlayingChess.pdf. Last
visited March 8th 2014.

[31] Marcio Silva, Kyung Dong Ryu, and Dilma Da Silva. Vm performance
isolation to support qos in cloud. http://ieeexplore.ieee.org.ezproxy.hioa.
no/stamp/stamp.jsp?tp=&arnumber=6270766. Last visited March 12th
2014.

[32] Daylen Yang. Stockfish home page. http://stockfishchess.org/. Last visited
March 9th 2014.

[33] Zynga. Zynga. http://zynga.com//. Last visited March 5th 2014.

[34] Zynga. Zynga revenue. http://investor.zynga.com/releasedetail.cfm?
ReleaseID=738074. Last visited March 5th 2014.

87

http://ieeexplore.ieee.org.ezproxy.hioa.no/stamp/stamp.jsp?tp=&arnumber=4211036
http://ieeexplore.ieee.org.ezproxy.hioa.no/stamp/stamp.jsp?tp=&arnumber=4211036
http://ieeexplore.ieee.org.ezproxy.hioa.no/stamp/stamp.jsp?tp=&arnumber=6012910
http://ieeexplore.ieee.org.ezproxy.hioa.no/stamp/stamp.jsp?tp=&arnumber=6012910
https://chessprogramming.wikispaces.com/Glaurung
https://chessprogramming.wikispaces.com/Glaurung
http://dl.acm.org/citation.cfm?id=1920902&dl=ACM&coll=DL&CFID=301673206&CFTOKEN=59311921
http://dl.acm.org/citation.cfm?id=1920902&dl=ACM&coll=DL&CFID=301673206&CFTOKEN=59311921
http://vision.unipv.it/IA1/ProgrammingaComputerforPlayingChess.pdf
http://vision.unipv.it/IA1/ProgrammingaComputerforPlayingChess.pdf
http://ieeexplore.ieee.org.ezproxy.hioa.no/stamp/stamp.jsp?tp=&arnumber=6270766
http://ieeexplore.ieee.org.ezproxy.hioa.no/stamp/stamp.jsp?tp=&arnumber=6270766
http://stockfishchess.org/
http://zynga.com//
http://investor.zynga.com/releasedetail.cfm?ReleaseID=738074
http://investor.zynga.com/releasedetail.cfm?ReleaseID=738074

BIBLIOGRAPHY

88

Chapter 10

Appendix

Chess framework script
Chess framework - chess.pl

1 #!/usr/bin/perl
2 use strict vars;
3 use Getopt::Std;
4 use IO::Socket;
5 use DBI;
6

7 #DATABASE VARIABLES#
8

9 #MySQL Server HOST IP ADDRESS
10 my $DBHOST = "*";
11 #MySQL Server PORT
12 my $DBPORT = "13306";
13 #The database to use when connecting to the server
14 my $DB = "*";
15 #The user in which is used to login with
16 my $DBUSER = "*";
17 my $DBPASS = "*"; #Password of the current user
18

19 #SWITCHES NEEDED FOR THE SCRIPT#
20

21 my $opt_string = "vhB:b:d:D:e:i:m:M:n:p:r:t:w:x:P:";
22 getopts("$opt_string", \my %opt) or usage() and exit(1);
23

24 my $VERBOSE = 1 if $opt{’v’};
25 my $DEBUG = #1 if $opt{’d’};
26 #Switch for batch creation or listing
27 my $BATCH = $opt{’B’};
28 #Switch for IP address of white player
29 my $WHITEIP = $opt{’w’};
30 #Switch for IP address of black player
31 my $BLACKIP = $opt{’b’};
32 #Switch to determine type of distribution
33 #(ex: Poisson, normal)
34 my $DISTRIBUTION = $opt{’D’};
35 #Switch providing maximum number of moves
36 #allowed during the matches of this batch
37 my $MAXMOVES = $opt{’m’};
38 #Switch which names a given batch
39 my $BATCHNAME = $opt{’n’};
40 #Switch enabling one to describe a batch
41 my $BATCHDESC = $opt{’e’};
42 #Switch issued to start a chess match
43 my $PLAY = $opt{’p’};
44 #Switch determining the maximum time each side
45 #is allowed to search for moves(stockfish)
46 my $MAXTIME = $opt{’t’};

89

CHAPTER 10. APPENDIX

47 #Switch enabling one to choose which batch
48 #to list(All will be shown if not given)
49 my $BATCHID = $opt{’i’};
50 #Specify a depth to run the chess engine
51 my $DEPTH = $opt{’d’};
52 #Specify a movetime to run the chess engine
53 my $MOVETIME = $opt{’M’};
54 #Counts number of matches
55 my $MATCHCOUNT = $opt{’x’};
56 #Input a range for the random generator
57 my $randRange = $opt{’r’};
58 my $PENALTY_STRING = $opt{’P’};
59

60

61 ## TODO: Corresponding columns in batch table
62 my $WHITE_PENALTY_TYPE;
63 my $WHITE_PENALTY_DIST;
64 my $WHITE_PENALTY_RANGE;
65 my $WHITE_PENALTY_MEAN;
66 my $BLACK_PENALTY_TYPE;
67 my $BLACK_PENALTY_DIST;
68 my $BLACK_PENALTY_RANGE;
69 my $BLACK_PENALTY_MEAN;
70

71 if ($opt{’h’}){
72 usage();
73 exit 0;
74 }
75

76 #CONNECTING TO MYSQL DATABASE#
77

78 my $dbh = DBI->connect("DBI:mysql:$DB;host=$DBHOST /
79 ;port=$DBPORT",$DBUSER,$DBPASS) or die $DBI::errstr;
80 if ($dbh){
81 print "Connection to $DBHOST and $DB successfull\n";
82 }
83

84

85 #Checking if correct swithces are provided with the script
86 usage() and die "Need to supply correct /
87 switches \n" unless $BATCH or $PLAY;
88

89 #BATCH CREATION AND BATCH LISTING#
90 #Code for batch creation and batch listing
91

92 if ($BATCH && $BATCH =~ /create/ && $BATCHDESC && /
93 $BATCHNAME && $DISTRIBUTION && /
94 $PENALTY_STRING && $MAXMOVES && $MAXTIME) {
95 print "New batch in the making\n";
96 ## TODO: Insert values for penalties (for black and white)
97 parsePenaltyString();
98 batch_creation($BATCHDESC,$BATCHNAME,$DISTRIBUTION, /
99 $MAXMOVES,$MAXTIME,$WHITE_PENALTY_TYPE, /

100 $WHITE_PENALTY_DIST,$WHITE_PENALTY_RANGE, /
101 $WHITE_PENALTY_MEAN,$BLACK_PENALTY_TYPE,/
102 $BLACK_PENALTY_DIST,$BLACK_PENALTY_RANGE /
103 $BLACK_PENALTY_MEAN);
104 } elsif ($BATCH && $BATCH =~ /list/ && $BATCHID) {
105 print "Now listing wanted batch(es)\n";
106 batch_listing($BATCHID);
107 } elsif ($BATCH =~ /list/) {
108 print "Now listing wanted batch(es)\n";
109 batch_listing();
110 }
111

112 ##CODE THAT INITIATES A GAME OF CHESS##
113

114 #Preparing statements for adding information about /

90

115 players to batch.
116 my $matchSelect = $dbh->prepare /
117 ("SELECT match_id FROM matches");
118

119 my $batchUpdate = $dbh->prepare /
120 ("UPDATE batch SET ip_w=’$WHITEIP’, /
121 ip_b=’$BLACKIP’ WHERE batch_id = ?");
122

123 my $batchSelect = $dbh->prepare /
124 ("SELECT * FROM batch");
125

126 #IP of the players(White and Black)
127 my $player = $WHITEIP;
128

129 #Proceding to start a chess match and /
130 #adding information of the two players in the batch table.
131

132 if ($PLAY && $PLAY =~ /play/ && $BATCH /
133 && $MATCHCOUNT && $WHITEIP && $BLACKIP) {
134 print "Chess match commencing ### /
135 White: $WHITEIP Vs black: $BLACKIP ###\n";
136 print "Updating batch with id: $BATCH, /
137 with player information unless already updated\n";
138

139 $batchSelect->execute();
140 while (my @row = $batchSelect->fetchrow_array()) {
141 for (my $i=0; $i<$#row; $i++) {
142 if ($row[0] == $BATCH && $row[4] == NULL && /
143 $row[9] == NULL) {
144 # TODO: Fetch penalty variables and
145 #insert into global variables
146 $batchUpdate->execute($BATCH);
147 }
148 }
149 }
150

151 #MATCH INITIATED - MAIN SCRIPT STARTING - PLAY MATCH#
152

153 #MAIN SCRIPT VARIABLES#
154 my $chessboard = "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/
155 RNBQKBNR w KQkq - 0 1"; #The initial match board.
156 #Newfen is set with the initial chessboard when
157 #starting a match.
158

159 my $newfen = $chessboard;
160

161 #Set to ensure that the game is played in a loop. If true.
162 my $match_going = 1;
163

164 #If set to 1, a new match will commence, if 0 = false,
165 #a match is still in progress.
166

167 my $newMatch = 1;
168 #TEMP VARIABLE, WILL BE REPLACED BY
169 #DATA FROM MAX_TIME IN THE DB.
170

171 my $movetime;
172

173 #TEMPORARY - Ensures that only the given
174 #number of moves are played.
175

176 my $count = 0;
177

178 #ID of the current match being played,
179 #fetched for insertion of move data.
180 my $MATCHID;
181

182 #Sets the blackmove to 0 for the first

91

CHAPTER 10. APPENDIX

183 #move(Which is white).
184 my $blackmove = 0;
185

186 #LoopCounter for adding HALF MOVES for @
187 #white and black player
188 my $loopCounter = 0;
189

190 #Denotes which move number is being made.
191 #Increases only when each have made one half move
192 my $move_number = 1;
193 my $matchcount = 0;
194 my $moveTimePen;
195

196 while ($match_going){
197 if ($newMatch == 1) {
198 $move_number = 1;
199 $player = $WHITEIP;
200 $blackmove = 0;
201 if ($matchcount == $MATCHCOUNT) { #Ends the current /
202 batch if the number of matches reaches a /
203 pre-set number(e.g "-x 10")
204 exit 0;
205 }
206 my $HINT = int(rand(10000));
207

208 $dbh->do("INSERT INTO matches (batch_id,timestamp_start,
209 hint) VALUES($BATCH,NOW(),$HINT)");
210 #GETTING CURRENT MATCH ID
211

212 my $findMatch = $dbh->prepare("SELECT match_id FROM /
213 matches WHERE hint = $HINT");
214

215 $findMatch->execute();
216

217 my @row = $findMatch->fetchrow_array();
218 $MATCHID = $row[0];
219 $dbh->do("UPDATE matches SET hint=0 /
220 WHERE match_id = $MATCHID");
221 }
222 print "The current matchID is: $MATCHID\n";
223

224 #Running the run_match sub which starts the match
225 $newfen = run_match($player,$newfen);
226 print "got fen after one move: ’$newfen’\n";
227

228 #Checks if it is White or blacks turn, also sets the /
229 blackmove variable.
230 if ($player eq $WHITEIP){
231 $player = $BLACKIP;
232 $blackmove = 1;
233 } else {
234 $player = $WHITEIP;
235 $blackmove = 0;
236 }
237

238 #Code for making sure the move number is the
239 #same for black and white, half moves.
240 if ($loopCounter %2 > 0) {
241 $move_number++;
242 print "CURR MOVE NUMBER: $move_number\n";
243 }
244

245 # Checking that it does not SURPASS MAX MOVES!
246 #STOPS THE MATCH IF IT DOES
247 #$batchSelect->execute();
248 # while (my @row = $batchSelect->fetchrow_array()) {
249 # if ($row[0] == $BATCH && $count > $row[3]){
250 # $match_going = 0;

92

251 # }
252 #}
253 $count++;
254 $loopCounter++;
255 }
256

257 #Sub routine that initiates the chess match between two /
258 virtual machines running an instane of stockfish.
259 sub run_match {
260 my $opponents = $_[0]; #IP addresses of the black and /
261 white
262 player(Two virtual machines)
263 my $fen = $_[1]; #The Chess board
264

265 #Connecting to a socket on virtual machines hosting
266 #a chess server.
267 my $socket = new IO::Socket::INET (
268 PeerAddr => $opponents,
269 PeerPort => 3333,
270 Proto => ’tcp’,
271) or die "Couldn’t connect to Server\n";
272

273 my $lastline = "";
274 if ($socket){
275

276 # 1. Send brett
277 print $socket "position fen $fen\n";
278

279 # 2. beregn trekk
280 $batchSelect->execute();
281 while (my @row = $batchSelect->fetchrow_array()) {
282 if ($row[0] == $BATCH) {
283 if ($MOVETIME) {
284 #$MOVETIME = $row[5];
285 my $movetime = calculatePenalty($MOVETIME,$BATCH);
286 print $socket "go movetime $movetime\n";
287 print "THIS IS CURRENT MOVETIME: $movetime\n";
288 $moveTimePen = $movetime;
289 }
290 elsif ($DEPTH) {
291 print "DEPTH $DEPTH\n";
292 print $socket "go depth $DEPTH";
293 print "THIS IS DEPTH: $DEPTH\n";
294 }
295 }
296 }
297 my $bestmove; #The best possible move
298 while (my $line = <$socket>) {
299 chomp $line;
300 #print "$line\n";
301 #Example of lastline: info depth 18 seldepth 26 score /
302 #cp 26 nodes 1863996
303 $lastline = $line if ($line =~ /info depth /);
304 if ($line =~ /bestmove (\S+) /){
305 $bestmove = $1;
306 last;
307 }
308 }
309 print "$lastline\n";
310 print "running move $bestmove\n";
311 #print "$bestmove\n";
312

313 # 3. Gjennomfør trekk
314 print "BLACK MOVE IS: $blackmove\n";
315

316 #Calling Check_move function check wether mate or draw
317 my $check_move = check_move($player,$bestmove, /
318 $fen,$MATCHID);

93

CHAPTER 10. APPENDIX

319

320 #checking return values for what to do next, either start /
321 #a new match or continue playing
322 if ($check_move == 1) {
323 $newMatch = 1;
324 move_data($lastline,$MATCHID,$move_number,$blackmove, /
325 $fen,$bestmove,$moveTimePen);
326 $matchcount++;
327 print "MATCHCOUNT: $matchcount\n";
328 $newfen = $chessboard; #The initial match board.
329 }elsif ($check_move == 0) {
330 print $socket "position fen $fen moves $bestmove\n";
331 print "MAKING A NEW MOVE: $bestmove\n";
332 $newMatch = 0;
333

334 #ADDING MOVE DATA TO THE "MOVES" table. See move_data sub.
335 move_data($lastline,$MATCHID,$move_number, /
336 $blackmove,$fen,$bestmove,$moveTimePen);
337 print "ADDING TO DB\n";
338 # 4. få ny fen
339 print $socket "d\n";
340 my $newfen;
341 while (my $line = <$socket>) {
342 print "D-DATA: $line";
343 #info depth 18 seldepth 26 score cp 26 nodes 1863996
344 if ($line =~ /Fen: (.*)$/){
345 $newfen = $1;
346 chomp $newfen;
347 }
348 if ($line =~ /Legal /){
349 last;
350 }
351 }
352 return $newfen;
353 print "Conversation finished\n";
354 print "socket still active\n" if $socket;
355 close($socket);
356 }
357 }
358 }
359 }
360

361 #SUB ROUTINE THAT CHECKS FOR WIN OR DRAW
362

363 #The CUT FET is a FEN without the last 5 fields.
364 my $cut_fen;
365 my $fen_repeat = 0; #The number the same FENs have occurred.
366 sub check_move {
367 #Regex that matches only the FIRST field of the input FEN
368 if ($_[2] =~ /(.+\/\w+)/) {
369 $cut_fen = ’%’.$1.’%’;
370 }
371 #Fetching the input FEN from the DATABASE and putting /
372 #it in $fen_repeat.
373

374 my $fenFetch = $dbh->prepare("SELECT COUNT(*) as /
375 fen_count FROM moves WHERE /
376 match_id = ’$_[3]’ and fen LIKE ’$cut_fen’");
377

378 $fenFetch->execute();
379 my @row = $fenFetch->fetchrow_array();
380

381 my $fen_repeat = $row[0];
382 print "FEN-REPEAT: $fen_repeat\n";
383

384 #Checks if the same FEN occurs 3 times within /
385 #the same match, if so it is a DRAW.
386

94

387 if ($fen_repeat == 2) {
388 $dbh->do("UPDATE matches SET result=’remis’, /
389 timestamp_finished=NOW() WHERE match_id = $_[3]");
390 return 1;
391 print "THE GAME IS A DRAW\n";
392 }
393

394 #Checks if the position is CHECK MATE, as is the /
395 #case if a "NONE" move is returned.
396 elsif ($_[1] =~ /\(none\)/) {
397

398 if ($_[0] eq $WHITEIP) {
399 $_[0] = $BLACKIP;
400 }else{ $_[0] = $WHITEIP }
401

402 #REMEMBER TO ADD TOTAL MOVES TO THE MATCHES TABLE
403 $dbh->do("UPDATE matches SET result=’win_$_[0]’, /
404

405 timestamp_finished=NOW() WHERE match_id = $_[3]");
406 print "ITS CHECK MATE PEOPLE\n";
407 return 1;
408 }
409 else {
410 return 0;
411 }
412 }
413

414 #SUB ROUTINE THAT ADD MOVE DATA TO THE MOVES TABLE
415 my $nodes;
416 sub move_data {
417 print "Current pen: $_[6]\n";
418 my @moveData = split(’ ’, $_[0]);
419 if ($moveData[9] eq "nodes") {
420 $nodes = $moveData[10];
421 }else {
422 $nodes = $moveData[9];
423 }
424 print "$_[0]\n";
425 print "$moveData[2]\n";
426 $dbh->do("INSERT INTO moves(match_id,move_nr, /
427 black_move,fen,best_move, /
428 player_cp,nodes,depth,penalty) VALUES($_[1],$_[2], /
429 $_[3],’$_[4]’,’ /
430 $_[5]’,’$moveData[7]’,’$nodes’,’$moveData[2]’,’$_[6]’)");
431 }
432

433 #SUB ROUTINE THAT CREATES A NEW BATCH
434 sub batch_creation {
435

436 my $batchInsert = $dbh->prepare("INSERT INTO batch(/
437 batch_desc,batch_name,max_moves,max_time_w, /
438 pen_type_w, pen_dist_w,pen_range_w,distribution_w /
439 ,pen_mean_w, / max_time_b,pen_type_b, /
440 pen_dist_b,pen_range_b, /
441 distribution_b,pen_mean_b) VALUES /
442 (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)");
443 $batchInsert->execute($_[0],$_[1],$_[3],$_[4], /
444 $_[5],$_[6],$_[7],$_[2], /
445 $_[8],$_[4],$_[9],$_[10],$_[11],$_[2],$_[12]);
446 print "Batch $_[1] successfully created\n";
447 }
448

449 #SUB ROUTINE THAT LIST BATCHES
450 sub batch_listing {
451 if ($_[0]) {
452 my $batchSelect = $dbh->prepare("SELECT * FROM /
453 batch WHERE batch_id = ?");
454 $batchSelect->execute($_[0]);

95

CHAPTER 10. APPENDIX

455 while (my @row = $batchSelect->fetchrow_array()) {
456 print join(" ", @row);
457 }
458 print "\n";
459 } else {
460

461 my $batchSelect = $dbh->prepare("SELECT * FROM batch");
462 $batchSelect->execute();
463 while (my @row = $batchSelect->fetchrow_array()) {
464 print join(" ", "@row\n");
465 }
466 }
467 }
468

469 #SUB FOR PARSING INPUT STRING FROM "-P" switch
470

471 # W_fixed:W_dist:W_range:W_mean:B_fixed:B_dist:B_range:B_mean
472 # example: fixed penalty (300 ms) for black, none for white
473 # -P "0:::fixed:::300"
474

475 # example: Uniorm noise, mean 300 ms, range /
476 100 (in practice somewhere between 200ms /
477 and 400ms) for white, fixed 200ms for black
478 # -P "variable:uniform:100:300:fixed:::200"
479

480 sub parsePenaltyString {
481

482 my @penarray = split /:/,$PENALTY_STRING;
483

484 $WHITE_PENALTY_TYPE = $penarray[0];
485 $WHITE_PENALTY_DIST = $penarray[1];
486 $WHITE_PENALTY_RANGE = $penarray[2];
487 $WHITE_PENALTY_MEAN = $penarray[3];
488 $BLACK_PENALTY_TYPE = $penarray[4];
489 $BLACK_PENALTY_DIST = $penarray[5];
490 $BLACK_PENALTY_RANGE = $penarray[6];
491 $BLACK_PENALTY_MEAN = $penarray[7];
492 }
493

494 #SUB FOR CALCULATING PENALTY
495 sub calculatePenalty {
496 my $penSelect = $dbh->prepare("SELECT pen_type_w, /
497 pen_mean_w,pen_type_b,pen_mean_b /
498 FROM batch WHERE batch_id = ?");
499 $penSelect->execute($_[1]);
500

501

502 my @row = $penSelect->fetchrow_array();
503 if ($player eq $WHITEIP){
504 print "Penalty given to WHITE: $row[1]\n";
505 if ($row[0] eq "fixed"){
506 # my $random_number = int(rand($randRange));
507 # print "Rand numb: $random_number\n";
508 my $penTime = ($_[0] - $row[1]); #+ $random_number;
509 print "Current movetime with penalty WHITE: $penTime\n";
510 return $penTime;
511 }
512 }
513 if ($player eq $BLACKIP){
514 print "Penalty given to BLACK: $row[3]\n";
515 if ($row[2] eq "fixed"){
516

517 #my $minimum = $randArray[1];
518 my $random_number = int(rand($randRange));
519 print "Rand numb: $random_number\n";
520 my $penTime = ($_[0] - $row[3]) + $random_number;
521 print "Current movetime with penalty BLACK: $penTime\n";
522 return $penTime;

96

523 }
524 }
525 }
526

527 sub usage {
528

529 print "Usage:\n";
530 print "-h for help\n";
531 print "-v for verbose (more output)\n";
532 print "-d for debug (even more output)\n";
533 print "-B create (CREATE needs the following switches: -e /
534 <batch description> -n
535 <name> -D <distribution> -x <Matchcount> -P <(for W&B) /
536 type:dist:range:mean>-m <MaxMoves> -t
537 <MaxTime>(Must be defined in MS ex: 1000)\n";
538

539 print "-B list (LIST needs the following switches: /
540 -i <ID of batch to list>\n";
541 print "-p play (need to supply the following switches: -B /
542 <name of batch> -d <search depth> OR -M <Movetime> /
543 -w <White player IP> -b <Black player IP>)\n";
544 }
545

546 sub verbose {
547 print "VERBOSE: " . $_[0] if ($VERBOSE or $DEBUG);
548

549 }
550

551 sub debug {
552 print "DEBUG: " . \$_[0] if ($DEBUG);
553

554 }

Analysis framework script
Analysis framework - analysis.pl

1 #!/usr/bin/perl
2 use strict vars;
3 use Getopt::Std;
4 use IO::Socket;
5 use DBI;
6

7 #DATABASE VARIABLES#
8

9 #MySQL Server HOST IP ADDRESS
10 my $DBHOST = "*";
11 #MySQL Server PORT
12 my $DBPORT = "13306";
13 #The database to use /
14 my $DB = "*";
15 when connecting to the server
16 #The user in which is used to login with
17 my $DBUSER = "*";
18 #Password of the current user
19 my $DBPASS = "*";
20

21 #SWITCHES NEEDED FOR THE SCRIPT#
22

23 my $opt_string = "vhA:c:b:d:i:r:t:";
24 getopts("$opt_string", \my %opt) or usage() and exit(1);
25

26 my $VERBOSE = 1 if $opt{’v’};
27 my $DEBUG = #1 if $opt{’d’};
28 #Switch for supplying which BATCH should be analyzed
29 my $BATCHID = $opt{’b’};
30 #Switch for batch creation or listing

97

CHAPTER 10. APPENDIX

31 my $ANALYSIS_BATCH = $opt{’c’};
32 #Switch Analysis batch ID in order to LIST a specfic batch
33 my $ANALYSIS_BATCH_ID = $opt{’i’};
34 my $REFTYPE = $opt{’t’};
35 #Specify a depth to run the chess engine
36 my $DEPTH = $opt{’d’};
37 #Switch for inputing the referee IP
38 my $REFIP = $opt{’r’};
39 #To initiate the analysis process
40 my $ANALYZE = $opt{’A’};
41 my $move_id;
42 my $match_id;
43 my $fen;
44 my $best_move;
45 my $move_depth;
46 my $move_cp;
47 my $move_nodes;
48 my $move_time;
49 my $player_cp;
50 my $move_bestmove;
51 my %moveData;
52 my $socket;
53 if ($opt{’h’}){
54 usage();
55 exit 0;
56 }
57

58 #CONNECTING TO MYSQL DATABASE#
59

60 my $dbh = DBI->connect("DBI:mysql:$DB;host=$DBHOST; /
61 port=$DBPORT",$DBUSER,$DBPASS) or die $DBI::errstr;
62 if ($dbh){
63 print "Connection to $DBHOST and $DB successfull\n";
64 }
65

66

67 #Checking if correct swithces are provided with the script
68 usage() and die "Need to supply correct switches \n" unless /
69 $ANALYSIS_BATCH or $ANALYZE;
70

71 #BATCH CREATION AND BATCH LISTING#
72 #Code for batch creation and batch listing
73 if ($ANALYSIS_BATCH && $ANALYSIS_BATCH =~ /create/ /
74 && $BATCHID && $DEPTH && $REFTYPE) {
75 print "Creating new analysis batch\n";
76 batch_creation($BATCHID,$DEPTH,$REFTYPE);
77 } elsif ($ANALYSIS_BATCH && $ANALYSIS_BATCH =~ /
78 /list/ && $ANALYSIS_BATCH_ID) {
79 print "Now listing wanted batch(es)\n";
80 batch_listing($ANALYSIS_BATCH_ID);
81 } elsif ($ANALYSIS_BATCH =~ /list/) {
82 print "Now listing wanted batch(es)\n";
83 batch_listing();
84 }
85

86 if ($ANALYZE && $ANALYZE =~ /analyze/ && /
87 $ANALYSIS_BATCH_ID && $REFIP && $DEPTH) {
88 print "Analysis commencing with the following referee
89 $REFIP\n";
90

91 my $new_analysis = 1;
92 my $analysis_going = 1; #IF true(1) analysis will /
93 keep running, if set to false(0), the analysis will stop
94

95 while ($analysis_going) {
96 # if ($new_analysis == 1) {
97 # $dbh->do("INSERT INTO analysis_result /
98 (anal_batch_id,ref_id) VALUES($ANALYSIS_BATCH_ID,’ /

98

99 $REFIP’)");
100 # }
101 fetch_data();
102 run_analysis($REFIP);
103 }
104 # Sub routine that initiates the chess match between /
105 two virtual machines running an instane of stockfish.
106 sub run_analysis {
107 my $analyzer = $_[0];
108 # Connecting to a socket on virtual machines hosting /
109 #a chess server.
110 $socket = new IO::Socket::INET (
111 PeerAddr => $analyzer,
112 PeerPort => 3333,
113 Proto => ’tcp’,
114) or die "Couldn’t connect to Server\n";
115

116 #my $lastline = "";
117 if ($socket){
118 # 1. Send brett
119 my $lastMove = 0;
120 print "Current MOVEID and FEN is being evaluated $move_id /
121 AND $fen\n";
122 print $socket "position fen $fen\n";
123 # 2. beregn trekk
124 print $socket "d\n";
125

126 print $socket "go depth $DEPTH\n";
127 # my $bestmove; #The best possible move
128 while (my $line = <$socket>) {
129 chomp $line;
130 #print "$line\n";
131 if ($line =~ /info\sdepth\s(\d+)\sscore\smate\s(\d+)/) {
132

133 $dbh->do("INSERT INTO analysis_result(anal_batch_id, /
134 match_id,move_id,ref_id,/original_move,prop_move,/
135 prop_cp,prop_nodes,move_depth,movetime,optimal_cp, /
136 optimal_nodes,cp_loss,optimal_move,optimal_time) /
137 VALUES($ANALYSIS_BATCH_ID,$match_id,$move_id,’ /
138 $REFIP’,’$best_move’,0,0,0,0,0,0,0,0,0,0)");
139 $lastMove = 1;
140 }
141 elsif ($line =~ /info\sdepth\s(\d+)\sseldepth\s(\d+)\ /
142 sscore\s(\bcp|mate)\s(-{0,1}\d+)\snodes\s(\d+) /
143 \snps\s(\d+)\stime\s(\d+)\smultipv\s(\d+) /
144 \spv\s(\({0,1}\w{0,4}\){0,1})/){
145 #print "$move_depth\n";
146 #print "$move_cp\n";
147 add_result($1,$4,$5,$7,$9,$fen);
148 $lastMove = 0;
149 }
150 if ($line =~ /bestmove/){
151 last;
152 }
153 }
154 if ($lastMove == 0) {
155 re_run();
156 }
157

158 #print $socket "position fen $fen moves $bestmove\n";
159 $new_analysis=0;
160 print "Conversation finished\n";
161 print "socket still active\n" if $socket;
162 close($socket);
163 }
164 }
165 }
166

99

CHAPTER 10. APPENDIX

167 sub re_run {
168 foreach my $move (keys %moveData){
169 my $lastline = ’’;
170 my $analysisDepth = $DEPTH - 1;
171 print $socket "position fen $moveData{$move}{’Fen’} moves /
172 $moveData{$move}{’Bestmove’}\n";
173 print $socket "d\n";
174 print $socket "go depth $analysisDepth\n";
175 my $finished = 0;
176 while (not $finished and my $line = <$socket>) {
177 chomp $line;
178 # print "$line\n";
179 $lastline = $line if ($line =~ /info depth/);
180 if ($line =~/bestmove/) {
181 print "THIS IS LASTLINE: $lastline\n";
182 add_optimalData($lastline,$move);
183 print "Setting finished flag\n";
184 $finished = 1;
185 # last;
186 }
187 }
188 }
189 }
190 # }
191

192 #my $optimalSwitch;
193 sub add_optimalData {
194 my $nodes;
195 my $move = $_[1];
196 my @optimalData = split(’ ’, $_[0]);
197 if ($optimalData[9] eq "nodes") {
198 $nodes = $optimalData[10];
199 }else {
200 $nodes = $optimalData[9];
201 }
202

203 print "$_[0]\n";
204 print "$_[1]\n";
205 print "$nodes\n";
206 print "$optimalData[7]\n";
207 print "$optimalData[17]\n";
208 print "$optimalData[13]\n";
209 #if ($best_move eq $moveData{$move}{Bestmove}) {
210 my $optimalSwitch = $optimalData[7] * -1;
211 #}
212 my $cpDiff = $optimalSwitch - $moveData{$move}{CP};
213 #my $absDiff = abs($cpDiff);
214

215 $dbh->do("INSERT INTO analysis_result(anal_batch_id, /
216 match_id, move_id,ref_id,original_move,prop_move, /
217 prop_cp,prop_nodes,move_depth,movetime,optimal_cp, /
218 optimal_nodes,cp_loss, optimal_move,optimal_time) VALUES /
219 ($ANALYSIS_BATCH_ID,
220 $match_id,$move_id,’$REFIP’,’$best_move’, /
221 ’$moveData{$move}{Bestmove}’,
222 $moveData{$move}{CP},$moveData{$move}{Nodes} /
223 ,$moveData{$move}{Depth},$moveData{$move}{Time},/
224 $optimalData[7],$nodes,$cpDiff,’$optimalData[17]’, /
225 $optimalData[13])");
226 }
227

228 sub add_result {
229 print "adding move for $_[4]\n";
230 $moveData{$_[4]}{"Depth"}=$_[0];
231 $moveData{$_[4]}{"CP"}=$_[1];
232 $moveData{$_[4]}{"Nodes"}=$_[2];
233 $moveData{$_[4]}{"Time"}=$_[3];
234 $moveData{$_[4]}{"Bestmove"}=$_[4];

100

235 $moveData{$_[4]}{"Fen"}=$_[5];
236 }
237

238 #FETCH MOVE DATA FROM MOVE TABLE.
239 #hvis verdien er mindre enn 0 ganger med -1. Trekk CPene /
240 #fra hverandre, hvis det er mindre enn 0, gang med -1
241 #absolute value perl
242 sub fetch_data {
243

244 # empty moveData
245 %moveData = ();
246

247 # TODO Lag read lock og hent latest_id i tillegg til batch_id
248 # Getting batch id from analysis_batch in order /
249 #to fetch the correct set of matches
250 $dbh->do("START TRANSACTION");
251

252 my $batchSelect = $dbh->prepare("SELECT batch_id,latest_id /
253 FROManalysis_batch WHERE anal_batch_id = ? FOR UPDATE");
254 $batchSelect->execute($ANALYSIS_BATCH_ID);
255 my @row = $batchSelect->fetchrow_array();
256 my $batch_id = $row[0];
257 my $latest_id = $row[1];
258 print "THIS IS LATESTID $latest_id\n";
259 print "This is the batchID: $batch_id\n";
260

261 my $analysisData = $dbh->prepare("SELECT moves.move_id, /
262 moves.match_id,moves.fen,moves.best_move,player_cp /
263 FROM moves LEFT JOIN matches ON /
264 moves.match_id = matches.match_id WHERE moves.move_id > /
265 ’$latest_id’ AND matches.batch_id = ? ORDER BY /
266 moves.move_id ASC LIMIT 1");
267 my $countResult = 0;
268 $analysisData->execute($batch_id);
269 while (my @row = $analysisData->fetchrow_array()) {
270 $countResult++;
271 print "COUNTRESULT: $countResult\n";
272

273 if ($row[3] =~ /(none)/) {
274 my $analysisData = $dbh->prepare("SELECT moves.move_id, /
275 moves.match_id,moves.fen,moves.best_move,player_cp /
276 FROM moves LEFT JOIN matches ON /
277 moves.match_id = matches.match_id /
278 WHERE moves.move_id > ’$latest_id’ /
279 AND matches.batch_id = ? /
280 ORDER BY moves.move_id ASC LIMIT 1");
281 }
282

283 $move_id = $row[0];
284 $match_id = $row[1];
285 $fen = $row[2];
286 $best_move = $row[3];
287 $player_cp = $row[4];
288

289 $dbh->do("UPDATE analysis_batch SET latest_id = $move_id, /
290 @last_update = NOW() WHERE /
291 anal_batch_id = $ANALYSIS_BATCH_ID");
292 }
293 $dbh->do("COMMIT");
294

295 unless ($countResult) {
296 print "No more moves to fetch - Going to sleep for /
297 10 seconds\n";
298 exit 0;
299 # fetch_data();
300 }
301

302 #TODO Hent move_id where move_id > latest_id ... /

101

CHAPTER 10. APPENDIX

303 Update anylis_batch med latest. Deretter release lock
304 #Limit 1 Order by (Desc eller asc)
305 }
306

307 #SUB ROUTINE THAT CREATES A NEW ANALYSIS BATCH
308 sub batch_creation {
309

310 my $batchInsert = $dbh->prepare("INSERT INTO /
311 analysis_batch(batch_id,depth,ref_type) VALUES (?,?,?)");
312 $batchInsert->execute($_[0],$_[1],$_[2]);
313 print "Analysis batch $_[0] successfully created\n";
314 }
315

316 #SUB ROUTINE THAT LIST ANALYSIS BATCHES
317 sub batch_listing {
318 if ($_[0]) {
319 my $batchSelect = $dbh->prepare("SELECT * /
320 FROM analysis_batch
321 WHERE anal_batch_id = ?");
322 $batchSelect->execute($_[0]);
323 while (my @row = $batchSelect->fetchrow_array()) {
324 print join(" ", @row);
325 }
326 print "\n";
327 }else {
328

329 my $batchSelect = $dbh->prepare("SELECT * FROM /
330 analysis_batch");
331 $batchSelect->execute();
332 while (my @row = $batchSelect->fetchrow_array()) {
333 print join(" ", "@row\n");
334 }
335 }
336 }
337

338 sub usage {
339

340 print "Usage:\n";
341 print "-h for help\n";
342 print "-v for verbose (more output)\n";
343 print "-d for debug (even more output)\n";
344 print "-c create (CREATE needs the following switches: /
345 -b <Id of batch to analyze> -t <Type of referee> /
346 -d <Depth at which to analyze> <)\n";
347 print "-c list (LIST needs the following swtiches: /
348 -i <ID for listing specific analysis batches \n";
349 print "-A analyze (need to supply the following switches: -r /
350 <IP of referee> -i <ID for which analysis batch to use>)\n";
351 }
352

353 sub verbose {
354 print "VERBOSE: " . $_[0] if ($VERBOSE or $DEBUG);
355

356 }
357

358 sub debug {
359 print "DEBUG: " . $_[0] if ($DEBUG);
360

361 }

102

	Introduction
	Problem Statement

	Background
	Performance Variation and unpredictability
	Virtualization
	Cloud-Computing

	Environment of implementation
	The game of chess
	Algebraic Notation
	Board representation
	Evaluation function
	Stockfish Chess Engine
	UCI Protocol

	Related research

	Methodology
	The objective and design
	Design Phase
	Modeling
	Pseudocode

	Implementation Phase
	Environment
	Synthetic testing

	Approach summary
	Exploration
	Investigation

	Expected Results

	Result - Identifying technical possibilities
	Introduction of terminology
	Selecting a chess engine
	Communicating with Stockfish
	Setting a specific FEN
	Initiating the evaluation
	Invoking a move

	Determinism

	Result - Chess framework
	Modeling and architecture
	Orchestrating chess matches on a large scale
	Organizing matches in batches
	Parallelization of matches
	Chess bots

	The broker - Chess framework
	Match penalty

	Stockfish - What it provides in terms of data
	Intended run time scenario
	Database model
	Implementation of Chess Framework
	Creating chess bots
	The chess Framework - Script
	Creating batches
	Initiating matches

	A game - Through the eyes of the broker
	The Database

	Result - Analysis Framework
	Measuring success
	Organizing the analysis
	Analysis batches
	Referees
	Parallel analysis

	The Broker - Analysis Framework
	Quality of a move

	Intended run time scenario
	Database model
	Implementation of Analysis framework
	Analysis framework - Script
	Creating analysis batches
	Initiating an analysis

	How an analysis is conducted

	Analysis
	Synthetic testing

	Discussion
	May this be conducted in another cloud environment?
	Do the frameworks work?
	Live Testing
	Implementation of queues - Considering RabbitMQ
	Does the analysis work?
	Better understanding the analysis

	What can system administrators learn from this?
	Game success monitoring

	Future Work

	Conclusion
	Appendix

